
Exponential Multiplication Schemes

Bernd Borchert
Klaus Reinhardt

WSI-2006-10

Universität Tübingen
Wilhelm-Schickard-Institut für Informatik

Arbeitsbereich Theoretische Informatik/Formale Sprachen
Sand 13

D-72076 Tübingen

borchert/reinhard@informatik.uni-tuebingen.de

c© WSI 2006
ISSN 0946-3852

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/56755706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Exponential Multiplication Schemes

Bernd Borchert Klaus Reinhardt

Universität Tübingen, Sand 13, 72076 Tübingen, Germany

{borchert,reinhard}@informatik.uni-tuebingen.de

Abstract

We present an idea to describe a polynomial with 2n distinct integer zeros by an n-tuple
of integers via a scheme of n recurring equations. We call such an n-tuple an exponential
multiplication scheme of size n. Exponential multiplication schemes of size 1, 2, 3, and 4 are
presented. Under the assumption that fast exponential multiplication scheme generators exist
we suggest a fast randomized heuristic for the factorization problem.

1 Exponential Multiplication Schemes

Consider the following value x3, defined on x via two intermediate values x1 and x2:

x1 := x(x− 11)
x2 := x1(x1 − 28)
x3 := x2(x2 − 180)

The term x3, seen as an polynomial in x, is of degree 8 and has 8 different integer zeros: 0, 1, 2, 4,
7, 9, 10, 11. In other words:

x3 = x(x− 1)(x− 2)(x− 4)(x− 7)(x− 9)(x− 10)(x− 11).

This can be checked by comparing the two expansions of the two sides of the equation. More
efficiently, this can be checked the following way: x3 = 0 implies by the last equation either case (A)
x2 = 0 or case (B) x2 = 180. The case (A) together with the second equation leads to the case
distinction case (A.A) x1 = 0 or case (A.B) x1 = 28. Case (A.A) leads via the first equation to
the first two zeros: x = 0 and x = 11, and case (A.B) leads together with the first equation to the
quadratic equation 28 = x(x− 11) which is solved by x = 11/2±

√
(112 − 4 ∗ 28)/4, which gives the

next two zeros: x = 4 and x = 7. Case (B) together with the second equation gives the quadratic
equation 180 = x1(x1 − 28) which has the solutions x1 = 10 (call this case (B.A)) and x1 = 18 (case
(B.B)). Together with the first equation case (B.A) gives the quadratic equation 10 = x(x − 11)
solved by x = 1 and x = 10, and case (B.B) gives the quadratic equation 18 = x(x − 11) solved by
x = 2 and x = 9. This way, we have found all 8 zeros of x3. The following picture shows the case
distinction tree.

1



x3 = 0

x2 = 0 x2 = 180

x1 = 0 x1 = 28 x1 = 10 x1 = 18

x = 0 x = 11 x = 4 x = 7 x = 1 x = 10 x = 2 x = 9

������������

XXXXXXXXXXXX

�
���

��

HHH
HHH

���
���

HHH
HHH

�
�

�

@
@

@

�
�

�

@
@

@

�
�

�

@
@

@

�
�

�

@
@

@

The interesting point about x3 is that eight integers – namely the zeros of x3 – are determined by
the three integers 11, 28, 180 from the recurring definition above. We will call the triple (11, 28, 180)
an exponential multiplication scheme of size 3, see the formal definition later. This ”compression of
information” can be done one step higher, i.e. we will present a exponential multiplication scheme
of size 4 as follows. The four constants 367, 33642, 125167320, 3665689134307200 determine the
following polynomial x4:

x1 := x(x− 367)
x2 := x1(x1 − 33642)
x3 := x2(x2 − 125167320)
x4 := x3(x3 − 3665689134307200)

The polynomial x4 is of degree 16 and has 16 different integer zeros: 0, 4, 7, 12, 118, 133, 145,
178, 189, 222, 234, 249, 355, 360, 363, 367. These can again be verified by a case distinction
process like above. As an example, we follow one path of the case distinction tree: x4 = 0 implies
case (A) x3 = 0 or case (B) x3 = 3665689134307200. Case (B) together with the third equation
gives the quadratic equation 3665689134307200 = x2(x2 − 125167320). It has the solutions x2 =
62583660 ±

√
(1251673202 − 4 ∗ 3665689134307200)/4 which are x2 = 46739880 (case (B.A)) and

x2 = 78427440 (case (B.B)). Case (B.A) together with the second equation gives the quadratic
equation 46739880 = x1(x1− 33642). It has the solutions x1 = 16821±

√
(336422 − 4 ∗ 46739880)/4

which are x1 = 1452 (case (B.A.A)) and x1 = 32190 (case (B.A.B)). Case (B.A.B) together with
the first equation gives the quadratic equation 32190 = x(x − 367). It has the solutions x =
183.5±

√
(3672 − 4 ∗ 32190)/4 which are x = 145 and x = 222. These are two of the 16 zeros of x4,

the other 14 are found by continuing the other paths of the case distinction tree, as shown in the
following picture.

2



x4 = 0

x3 = 0 x3 = 3665689134307200

x2 = 0 x2 = 125167320 x2 = 46739880 x2 = 78427440

x1 = 0 33642 4260 29382 1452 32190 2520 31122

x = 0 367 178 189 12 355 118 249 4 363 145 222 7 360 133 234

������������

XXXXXXXXXXXX

�
���

��

H
HHH

HH

���
���

HHH
HHH

�
�

�

@
@

@

�
�

�

@
@

@

�
�

�

@
@

@

�
�

�

@
@

@

�
�

�

A
A
A

�
�

�

A
A
A

�
�

�

A
A
A

�
�

�

A
A
A

�
�

�

A
A
A

�
�

�

A
A
A

�
�

�

A
A
A

�
�

�

A
A
A

Call an n-tuple (c1, ..., cn) an exponential multiplication scheme of size n if the polynomial xn defined
by the recurrence

x1 := x(x− c1)
x2 := x1(x1 − c2)
x3 := x2(x2 − c3)
...

xn := xn−1(xn−1 − cn)

has 2n distinct integer zeros.
We have presented (11,28,180) and (367, 33642, 125167320, 3665689134307200) as examples of ex-
ponential multiplication schemes of size 3 and 4, resp. It is easy to verify that the 1-tuple (1) and
the 2-tuple (3,2) are exponential multiplication schemes of size 1 and 2, resp. For n ≥ 5 the authors
do not know whether exponential multiplication schemes of size n exist.
The trees for the examples of exponential multiplication schemes confirm the following observation:
An exponential multiplication scheme of size n exists if and only if there exists a complete binary
tree of depth n labeled with integers such that all leaf labels are distinct, every label of a non-leaf
node is the product of the labels of the two sons, the sums of the two labels of two brothers are
the same for every level of the tree, and the leftmost path is labeled with 0’s. The n integers for
the exponential multiplication scheme can be read as the labels of the right sons of the nodes of the
leftmost path.
The exponential multiplication scheme (11, 28, 180) was found ”manually” by the authors, the expo-
nential multiplication scheme (367, 33642, 125167320, 3665689134307200) was found with the help
of a computer (a Java applet running some hours on a PC).
The exponential multiplication scheme (11,28,180) is the lexicographically smallest one of size 3.

3



The following exponential multiplication schemes of size 3, in lexicographical order, are (13,42,360),
(15,50,504), (16,63,720), (17,72,1260), (18,77,1440), (19,78,1080), (19,88,1260), (21,110,1800), and
(22,112,2880), the last being a ”multiple” of the first: (22,112,2880) = (2∗11,4∗28,16∗180). Computer
simulations suggest that for every n ≥ 22 there is an exponential multiplication scheme starting with
c1 = n. The authors do not know a proof of this. It should be mentioned that the multitude seems
on average to grow with n: for example, there are 9 exponential multiplication schemes of size 3 with
c1 = 47.
The quadruple (367, 33642, 125167320, 3665689134307200) is the lexicographically smallest expo-
nential multiplication scheme of size 4. The next one is (474, 44933, 500669280, 58651026148915200).

2 Factorization

The factorization problem is the following computational problem:

Input: a composite integer n ≥ 2 in binary representation.

Output: an integer a with 2 < a < n which divides n.

For the prime number problem (a ”yes/no” problem) there are fast algorithms known, the most
efficient of them are randomized. Although the factorization problem seems to be just a little
generalization of the prime number problem, no fast algorithm is known for it, see any book on
complexity or cryptography, for example [Pa94] or [Sti95].
Call a program which computes a function 0n → (c1, ..., cn) such that (c1, ..., cn) is a exponential
multiplication schemes an exponential multiplication scheme generator. Note that the binary length
of the last component cn will grow exponentially with n. Therefore, an exponential multiplication
scheme generator running in polynomial time does not exist, even if exponential multiplication
schemes of size n ≥ 5 do exist. We will call an exponential multiplication scheme generator fast if
for every n ≥ 2 the integers c1 mod n, ..., cn mod n are computable in polynomial time in |n|.
Under the assumption that a fast exponential multiplication scheme generator exists we suggest the
following heuristic for the factorization problem.

int factor(n);

Input: a binary composite number n of length |n|.
Do all following computations modulo n.

Consider a fast exponential multiplication scheme (c1, . . . , cm) of size m = |n|.
Randomly choose an integer x between 1 and n.

Compute x1 := x(x− c1), x2 := x1(x1 − c2), x3 := x2(x2 − c3), . . .

until the first i is found such that a :=gcd(xi, n) 6= 1 (or i = m).

(use the well-known Euclid algorithm for gcd (greatest common divisor))

If a > 1 output a, otherwise output ”don’t know” (and retry with another x).

We believe that the probability that the algorithm reaches an a 6= 1 converges to 1 with growing n
since there are at least

√
n numbers < n which have a common factor with n. With the intuitive

4



assumption that the factors produced by the exponential multiplication scheme are randomly dis-
tributed modulo n we expect that such a factor hits a number with a common factor with n already
for i = m/2. The algorithm finds a non-trivial factor of n if not all factors of n are hit in the same
step (in this case a = 0 and we assume that the probability is independent for the next x).
We call this randomized procedure only a heuristic (and not a randomized algorithm) because it is
unverified in two ways: not only that it assumes the existence of a fast exponential multiplication
scheme generator but moreover we are unable to prove that in fact enough (=exponentially many)
zeros remain when considering the polynomial as a polynomial modulo n.
Note that in the case a = 0 we would be able to find a factorization for sure if we could also calculate
any single integer in the tree and decend until factors come from different subtrees.

3 Open Question and Acknowledgements

The main open question is if there are exponential multiplication schemes of size n ≥ 5. And if they
exists, can they be computed fast modulo a given number?
A way to find a solution may be to understand the size 3 case better. Is every integer a ≥ 22 the
first component (a, , ) of an exponential multiplication scheme of size 3? Once this is understood
one may try to attack the size 4 case and higher size cases.
Thanks to Andreas Krebs for some discussions.

References

[Pa94] Chr. Papadimitriou. Computational Complexity. Wiley, 1994.

[Sti95] D. Stinson. Crytography - Theory and Practice. CRC Press, 1995.

5


