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1. Introduction and basic facts

Fractional differential equations are thought to be the most effective models for a variety of pertinent
events. This makes it possible to investigate the existence, uniqueness, controllability, stability, and
other properties of analytical solutions. For example, applying conservation laws to the fractional
Black-Scholes equation in Lie symmetry analysis, finding existence solutions for some conformable
differential equations, and finding existence solutions for some classical and fractional differential
equations on the basis of discrete symmetry analysis, for more details, see [1–5].

Atangana and Baleanu unified and extended the definition of Caputo-Fabrizio [5] by introducing
exciting derivatives without singular kernel. Also, the same authors presented the derivative containing
Mittag-Leffler function as a nonlocal and nonsingular kernel. Many researchers showed their interest in
this definition because it opens many and sober directions and carries Riemann-Liouville and Caputo
derivatives [6–13].

A variety of problems in economic theory, control theory, global analysis, fractional analysis, and
nonlinear analysis have been treated by fixed point (FP) theory. The FP method contributes greatly
to the fractional differential/integral equations, through which it is possible to study the existence and
uniqueness of the solution to such equations [14–17]. Also, this topic has been densely studied and
several significant results have been recorded in [18–21].

The concepts of mixed monotone property (MMP) and a coupled fixed point (CFP) for a contractive
mapping Ξ : χ × χ → χ, where χ is a partially ordered metric space (POMS) have been initiated by
Bhaskar and Lakshmikantham [22]. To support these ideas, they presented some CFP theorems and
determined the existence and uniqueness of the solution to a periodic boundary value problem [23–25].
Many authors worked in this direction and obtained some nice results concerned with CFPs in various
spaces [26–28].

Definition 1.1. [22] Consider a set χ , ∅. A pair (a, b) ∈ χ × χ is called a CFP of the mapping
Ξ : χ × χ→ χ if a = Ξ(a, b) and b = Ξ(b, a).

Definition 1.2. [22] Assume that (χ,≤) is a partially ordered set and Ξ : χ×χ→ χ is a given mapping.
We say that Ξ has a MMP if for any a, b ∈ χ,

a1, a2 ∈ χ, a1 ≤ a2 ⇒ Ξ(a1, b) ≤ Ξ(a2, b),

and
b1, b2 ∈ χ, b1 ≤ b2 ⇒ Ξ(a, b1) ≥ Ξ(a, b2).

Theorem 1.1. [22] Let (χ,≤, d) be a complete POMS and Ξ : χ × χ → χ be a continuous mapping
having the MMP on χ. Assume that there is a τ ∈ [0, 1) so that

d (Ξ(a, b),Ξ(k, l)) ≤
τ

2
(d(a, k) + d(b, l)) ,

for all a ≥ k and b ≤ l. If there are a0, b0 ∈ χ so that a0 ≤ Ξ (a0, b0) and b0 ≥ Ξ (b0, a0) , then Ξ has a
CFP, that is, there exist a0, b0 ∈ χ such that a = Ξ(a, b) and b = Ξ(b, a).

The same authors proved that Theorem 1.1 is still valid if we replace the hypothesis of continuity
with the following: Assume χ has the property below:
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(†) if a non-decreasing sequence {am} → a, then am ≤ a for all m;
(‡) if a non-increasing sequence {bm} → b, then b ≤ bm for all m.

The following auxiliary results are taken from [29,30], which are used efficiently in the next section.
Let Θ represent a family of non-decreasing functions θ : [0,∞) → [0,∞) so that

∑∞
m=1 θ

m(τ) < ∞
for all τ > 0, where θn is the n-th iterate of θ justifying:

(i) θ(τ) = 0⇔ τ = 0;
(ii) for all τ > 0, θ(τ) < τ;

(iii) for all τ > 0, lims→τ+ θ(s) < τ.

Lemma 1.1. [30] If θ : [0,∞)→ [0,∞) is right continuous and non-decreasing, then limm→∞ θ
m(τ) =

0 for all τ ≥ 0 iff θ(τ) < τ for all τ > 0.

Let L̃ be the set of all functions ˜̀ : [0,∞)→ [0, 1) which verify the condition:

lim
m→∞

˜̀(τm) = 1 implies lim
m→∞

τm = 0.

Recently, Samet et al. [29] reported exciting FP results by presenting the concept of α-θ-contractive
mappings.

Definition 1.3. [29] Let χ be a non empty-set, Ξ : χ → χ be a map and α : χ × χ → R be a given
function. Then, Ξ is called α-admissible if

α (a, b) ≥ 1⇒ α (Ξa,Ξb)) ≥ 1, ∀a, b ∈ χ.

Definition 1.4. [29] Let (χ, d) be a metric space. Ξ : χ → χ is called an α-θ-contractive mapping, if
there exist two functions α : χ × χ→ [0,+∞) and θ ∈ Θ such that

α (a, b) d (Ξ(a, b)) ≤ θ (d(a, b)) ,

for all a, b ∈ χ.

Theorem 1.2. [29] Let (χ, d) be a metric space, Ξ : χ→ χ be an α-ψ-contractive mapping justifying
the hypotheses below:

(i) Ξ is α-admissible;
(ii) there is a0 ∈ χ so that α (a0,Ξa0) ≥ 1;

(iii) Ξ is continuous.

Then Ξ has a FP.

Moreover, the authors in [29] showed that Theorem 1.2 is also true if we use the following condition
instead of the continuity of the mapping Ξ.

• If {am} is a sequence of χ so that α (am, am+1) ≥ 1 for all m and limm→+∞ am = a ∈ χ, then for all
m, α (am, a) ≥ 1.
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The idea of an α-admissible mapping has spread widely, and the FPs obtained under this idea are
not small, for example, see [31–34].

Furthermore, one of the interesting directions for obtaining FPs is to introduce the idea of Geraghty
contractions [30]. The author [30] generalized the Banach contraction principle and obtained some
pivotal results in a complete metric space. It is worth noting that a good number of researchers have
focused their attention on this idea, for example, see [35–37]. In respect of completeness, we state
Geraghty’s theorem.

Theorem 1.3. [30] Let Ξ : χ → χ be an operator on a complete metric space (χ, d). Then Ξ has a
unique FP if Ξ satisfies the following inequality:

d(Ξa,Ξb) ≤ ˜̀(d(a, b)) d(a, b), for any a, b ∈ χ,

where ˜̀∈ L̃.

We need the following results in the last part.

Definition 1.5. [5] Let σ ∈ H1(s, t), s < t, and ν ∈ [0, 1). The Atangana–Baleanu fractional derivative
in the Caputo sense of σ of order ν is described by

(
ABC
s Dνσ

)
(ζ) =

Q(ν)
1 − ν

ζ∫
s

σ′(ϑ)Mν

(
−ν

(ζ − ϑ)ν

1 − ν

)
dϑ,

where Mν is the Mittag-Leffler function given by Mν(r) =
∞∑

m=0

rm

Γ(mν+1) and Q(ν) is a normalizing positive

function fulfilling Q(0) = Q(1) = 1 (see [4]). The related fractional integral is described as(
AB
s Iνσ

)
(ζ) =

1 − ν
Q(ν)

σ(ζ) +
ν

Q(ν)
(sIνσ) (ζ), (1.1)

where sIν is the left Riemann-Liouville fractional integral defined by

(sIνσ) (ζ) =
1

Γ(ν)

ζ∫
s

(ζ − ϑ)ν−1 σ(ϑ)dϑ. (1.2)

Lemma 1.2. [38] For ν ∈ (0, 1), we have(
AB
s IνABCDνσ

)
(ζ) = σ(ζ) − σ(s).

The outline for this paper is as follows: In Section 1, we presented some known consequences about
α-admissible mappings and some useful definitions and theorems that will be used in the sequel. In
Section 2, we introduce an η`θ-contraction type mapping and obtain some related CFP results in the
context of POMSs. Also, we support our theoretical results with some examples. In Section 5, an
application to find the existence of a solution for the Atangana-Baleanu coupled fractional differential
equation (CFDE) in the Caputo sense is presented.
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2. Main results

Let L be the set of all functions ` : [0,∞)→ [0, 1) satisfying the following condition:

lim
m→∞

`(τn) = 1 implies lim
m→∞

τn = 1.

We begin this part with the following definitions:

Definition 2.1. Suppose that Ξ : χ × χ→ χ and η : χ2 × χ2 → [0,∞) are two mappings. The mapping
Ξ is called η-admissible if

η ((a, b), (k, l)) ≥ 1⇒ η ((Ξ(a, b),Ξ(b, a)) , (Ξ(k, l),Ξ(l, k))) ≥ 1, ∀a, b, k, l ∈ χ.

Definition 2.2. Let (χ,$) be a POMS and Ξ : χ × χ → χ be a given mapping. Ξ is termed as an
η`θ-coupled contraction mapping if there are two functions η : χ2 × χ2 → [0,∞) and θ ∈ Θ so that

η ((a, b), (k, l))$ (Ξ(a, b),Ξ(k, l)) ≤ `
(
θ

(
$(a, k) +$(b, l)

2

))
θ

(
$(a, k) +$(b, l)

2

)
, (2.1)

for all a, b, k, l ∈ χ with a ≥ k and b ≤ l, where ` ∈ L.

Remark 2.1. Notice that since ` : [0,∞)→ [0, 1), we have

η ((a, b), (k, l))$ (Ξ(a, b),Ξ(k, l))

≤ `

(
θ

(
$(a, k) +$(b, l)

2

))
× θ

(
$(a, k) +$(b, l)

2

)
< θ

(
$(a, k) +$(b, l)

2

)
, for any a, b, k, l ∈ χ with a , b , k , l.

Theorem 2.1. Let (χ,≤, $) be a complete POMS and Ξ be an η`θ-coupled contraction which has the
mixed monotone property so that

(i) Ξ is η-admissible;
(ii) there are a0, b0 ∈ χ so that

η ((a0, b0), (Ξ (a0, b0) ,Ξ (b0, a0))) ≥ 1 and η ((b0, a0), (Ξ (b0, a0) ,Ξ (a0, b0))) ≥ 1;

(iii) Ξ is continuous.

If there are a0, b0 ∈ χ so that a0 ≤ Ξ (a0, b0) and b0 ≥ Ξ (b0, a0) , then Ξ has a CFP.

Proof. Let a0, b0 ∈ χ be such that η ((a0, b0), (Ξ (a0, b0) ,Ξ (b0, a0))) ≥ 1,
η ((b0, a0), (Ξ (b0, a0) ,Ξ (a0, b0))) ≥ 1, a0 ≤ Ξ (a0, b0) = a1 (say) and b0 ≥ Ξ (b0, a0) = b1 (say).
Consider a2, b2 ∈ χ so that Ξ (a1, b1) = a2 and Ξ (b1, a1) = b2. Similar to this approach, we extract two
sequences {am} and {bm} in χ so that

am+1 = Ξ (am, bm) and bm+1 = Ξ (bm, am) , for all m ≥ 0.

Now, we shall show that
am ≤ am+1 and bm ≥ bm+1, for all m ≥ 0. (2.2)

By a mathematical induction, we have
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(1) At m = 0, because a0 ≤ Ξ (a0, b0) and b0 ≥ Ξ (b0, a0) and since Ξ (a0, b0) = a1 and Ξ (b0, a0) = b1,

we obtain a0 ≤ a1 and b0 ≥ b1, thus (2.2) holds for m = 0.
(2) Suppose that (2.2) holds for some fixed m ≥ 0.
(3) Attempting to prove the validity of (2.2) for any m, by assumption (2) and the mixed monotone

property of Ξ, we get

am+2 = Ξ (am+1, bm+1) ≥ Ξ (am, bm+1) ≥ Ξ (am, bm) = am+1,

and
bm+2 = Ξ (bm+1, am+1) ≤ Ξ (bm, am+1) ≤ Ξ (bm, am) = bm+1.

This implies that
am+2 ≥ am+1 and bm+2 ≤ bm+1.

Thus, we conclude that (2.2) is valid for all n ≥ 0.

Next, if for some m ≥ 0, (am+1, bm+1) = (am, bm) , then am = Ξ (am, bm) and bm = Ξ (bm, am) , i.e., Ξ

has a CFP. So, let (am+1, bm+1) , (am, bm) for all m ≥ 0. As Ξ is η-admissible, we get

η ((a0, b0), (a1, b1)) = η ((a0, b0), (Ξ (a0, b0) ,Ξ (b0, a0))) ≥ 1,

implies
η ((Ξ(a0, b0),Ξ (b0, a0)) , (Ξ(a1, b1),Ξ (b1, a1))) = η ((a1, b1), (a2, b2)) ≥ 1.

Thus, by induction, one can write

η ((am, bm), (am+1, bm+1)) ≥ 1 and η ((bm, am), (bm+1, am+1)) ≥ 1 for all m ≥ 0. (2.3)

Using (2.1) and (2.3) and the definition of `, we have

$ (am, am+1) = $ (Ξ (am−1, bm−1) ,Ξ (am, bm))

≤ η ((am−1, bm−1), (am, bm))$ (Ξ (am−1, bm−1) ,Ξ (am, bm))

≤ `

(
θ

(
$(am−1, am) +$(bm−1, bm)

2

))
θ

(
$(am−1, am) +$(bm−1, bm)

2

)
≤ θ

(
$(am−1, am) +$(bm−1, bm)

2

)
. (2.4)

Analogously, we get

$ (bm, bm+1) = $ (Ξ (bm−1, am−1) ,Ξ (bm, am))

≤ η ((bm−1, am−1), (bm, am))$ (Ξ (bm−1, am−1) ,Ξ (bm, am))

≤ θ

(
$(bm−1, bm) +$(am−1, am)

2

)
. (2.5)

Adding (2.4) and (2.5) we have

$ (am, am+1) +$ (bm, bm+1)
2

≤ θ

(
$(am−1, am) +$(bm−1, bm)

2

)
.

AIMS Mathematics Volume 8, Issue 4, 8633–8649.



8639

Continuing in the same way, we get

$ (am, am+1) +$ (bm, bm+1)
2

≤ θm

(
$(a0, a1) +$(b0, b1)

2

)
, for all m ∈ N.

For ε > 0, there exists m(ε) ∈ N so that∑
m≥m(ε)

θm

(
$(a0, a1) +$(b0, b1)

2

)
<
ε

2
,

for some θ ∈ Θ. Let m, j ∈ N be so that j > m > m(ε). Then based on the triangle inequality, we obtain

$
(
am, a j

)
+$

(
bm, b j

)
2

≤

j−1∑
i=m

$(ai, ai+1) +$(bi, bi+1)
2

≤

j−1∑
i=m

θi

(
$(a0, a1) +$(b0, b1)

2

)
≤

∑
m≥m(ε)

θm

(
$(a0, a1) +$(b0, b1)

2

)
<
ε

2
,

this leads to $
(
am, a j

)
+$

(
bm, b j

)
< ε. Because

$
(
am, a j

)
≤ $

(
am, a j

)
+$

(
bm, b j

)
< ε,

and
$

(
bm, b j

)
≤ $

(
am, a j

)
+$

(
bm, b j

)
< ε,

hence {am} and {bm} are Cauchy sequences in χ. The completeness of χ implies that the sequences {am}

and {bm} are convergent in χ, that is, there are a, b ∈ χ so that

lim
m→∞

am = a and lim
m→∞

bm = b.

Since Ξ is continuous, am+1 = Ξ (am, bm) and bm+1 = Ξ (bm, am) , we obtain after taking the limit as
m→ ∞ that

a = lim
m→∞

am = lim
m→∞

Ξ (am−1, bm−1) = Ξ(a, b),

and
b = lim

m→∞
bm = lim

m→∞
Ξ (bm−1, am−1) = Ξ(b, a).

Therefore, Ξ has a CFP and this ends the proof.

In the above theorem, when omitting the continuity assumption on Ξ, we derive the following
theorem.

Theorem 2.2. Let (χ,≤, $) be a complete POMS and Ξ be an η`θ-coupled contraction and having the
mixed monotone property so that

(a) Ξ is η-admissible;
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(b) there are a0, b0 ∈ χ so that

η ((a0, b0), (Ξ (a0, b0) ,Ξ (b0, a0))) ≥ 1 and η ((b0, a0), (Ξ (b0, a0) ,Ξ (a0, b0))) ≥ 1;

(c) if {am} and {bm} are sequences in χ such that

η ((am, bm), (am+1, bm+1)) ≥ 1, η ((bm, am), (bm+1, am+1)) ≥ 1

for all m ≥ 0, limm→∞ am = a ∈ χ and limm→∞ bm = b ∈ χ, then

η ((am, bm), (a, b)) ≥ 1 and η ((bm, am), (b, a)) ≥ 1.

If a0, b0 ∈ χ are that a0 ≤ Ξ (a0, b0) and b0 ≥ Ξ (b0, a0) , then Ξ has a CFP.

Proof. With the same approach as for the proof of Theorem 2.1, the sequences {am} and {bm} are Cauchy
sequences in χ. The completeness of χ implies that there are a, b ∈ χ so that

lim
m→∞

am = a and lim
m→∞

bm = b.

According to the assumption (c) and (2.3), one can write

η ((am, bm), (a, b)) ≥ 1 and η ((bm, am), (b, a)) ≥ 1, for all m ∈ N. (2.6)

It follows by (2.3), the definition of ` and the property of θ(τ) < τ for all τ > 0, that

$ (Ξ(a, b), a) ≤ $ (Ξ(a, b),Ξ(am, bm)) +$ (Ξ(am, bm), a)

≤ η ((am, bm), (a, b))$ (Ξ(am, bm),Ξ(a, b)) +$ (am+1, a)

≤ `

(
θ

(
$(am, a) +$(bm, b)

2

))
θ

(
$(am, a) +$(bm, b)

2

)
+$ (am+1, a)

≤ θ

(
$(am, a) +$(bm, b)

2

)
+$ (am+1, a)

<
$(am, a) +$(bm, b)

2
+$ (am+1, a) . (2.7)

Similarly, we find that

$ (Ξ(b, a), b) ≤ $ (Ξ(b, a),Ξ(bm, am)) +$ (Ξ(bm, am), b)

≤ η ((bm, am), (b, a))$ (Ξ(bm, am),Ξ(b, a)) +$ (bm+1, b)

≤ `

(
θ

(
$(bm, b) +$(am, a)

2

))
θ

(
$(bm, b) +$(am, a)

2

)
+$ (bm+1, b)

≤ θ

(
$(bm, b) +$(am, a)

2

)
+$ (bm+1, b)

<
$(bm, b) +$(am, a)

2
+$ (bm+1, b) . (2.8)

As m→ ∞ in (2.7) and (2.8), we have

$ (Ξ(a, b), a) = 0 and $ (Ξ(b, a), b) = 0.

Hence, a = Ξ(a, b) and b = Ξ(b, a). Thus, Ξ has a CFP and this completes the proof.

AIMS Mathematics Volume 8, Issue 4, 8633–8649.



8641

In order to show the uniqueness of a CFP, we give the theorem below. If (χ,≤) is a partially ordered
set, we define a partial order relation ≤ on the product χ × χ as follows:

(a, b) ≤ (k, l)⇔ a ≤ k and b ≥ l, for all (a, b), (k, l) ∈ χ × χ.

Theorem 2.3. In addition to the assertions of Theorem 2.1, assume that for each (a, b), (y, z) in χ × χ,
there is (k, l) ∈ χ × χ so that

η ((a, b), (k, l)) ≥ 1 and η ((y, z), (k, l)) ≥ 1.

Suppose also (k, l) is comparable to (a, b) and (y, z). Then Ξ has a unique CFP.

Proof. Theorem 2.1 asserts that the set of CFPs is non-empty. Let (a, b) and (y, z) be CFPs of the
mapping Ξ, that is, a = Ξ(a, b), b = Ξ(b, a) and y = Ξ(y, z), z = Ξ(z, y). By hypothesis, there is
(k, l) ∈ χ × χ so that (k, l) is comparable to (a, b) and (y, z). Let (a, b) ≤ (k, l), k = k0 and l = l0. Choose
k1, l1 ∈ χ×χ so that k1 = Ξ(k1, l1), l1 = Ξ(l1, k1). Thus, we can construct two sequences {km} and {lm} as

km+1 = Ξ(km, lm) and lm+1 = Ξ(lm, km).

Since (k, l) is comparable to (a, b), in an easy way we can prove that a ≤ k1 and b ≥ l1. Hence, for
m ≥ 1, we have a ≤ km and b ≥ lm. Because for every (a, b), (y, z) ∈ χ × χ, there is (k, l) ∈ χ × χ so that

η ((a, b), (k, l)) ≥ 1 and η ((y, z), (k, l)) ≥ 1. (2.9)

Because Ξ is η-admissible, then by (2.9), we get

η ((a, b), (k, l)) ≥ 1 implies η ((Ξ(a, b),Ξ(b, a)) , (Ξ (k, l) ,Ξ (l, k))) ≥ 1.

Since k = k0 and l = l0, we obtain

η ((a, b), (k, l)) ≥ 1 implies η ((Ξ(a, b),Ξ(b, a)) , (Ξ (k0, l0) ,Ξ (l0, k0))) ≥ 1.

Hence,
η ((a, b), (k, l)) ≥ 1 implies η ((a, b), (k1, l1)) ≥ 1.

So, by induction, we conclude that
η ((a, b), (km, lm)) ≥ 1, (2.10)

for all m ∈ N. Analogously, one can obtain that η ((b, a), (lm, km)) ≥ 1. Therefore, the obtained results
hold if (a, b) ≤ (k, l). Based on (2.9) and (2.10), we can write

$ (a, km+1) = $ (Ξ(a, b),Ξ(km, lm))

≤ η ((a, b), (km, lm))$ (Ξ(a, b),Ξ(km, lm))

≤ `

(
θ

(
$(a, km) +$(b, lm)

2

))
θ

(
$(a, km) +$(b, lm)

2

)
≤ θ

(
$(a, km) +$(b, lm)

2

)
. (2.11)
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Similarly, we get

$ (b, lm+1) = $ (Ξ(b, a),Ξ(lm, km))

≤ η ((b, a), (lm, km))$ (Ξ(b, a),Ξ(lm, km))

≤ `

(
θ

(
$(b, lm) +$(a, km)

2

))
θ

(
$(b, lm) +$(a, km)

2

)
≤ θ

(
$(b, lm) +$(a, km)

2

)
. (2.12)

Adding (2.11) and (2.12), we have

$ (a, km+1) +$ (b, lm+1)
2

≤ θ

(
$(b, lm) +$(a, km)

2

)
.

Thus,
$ (a, km+1) +$ (b, lm+1)

2
≤ θm

(
$(b, l1) +$(a, k1)

2

)
, (2.13)

for each n ≥ 1. As m→ ∞ in (2.13) and by Lemma 1.1, we have

lim
m→∞

($ (a, km+1) +$ (b, lm+1)) = 0,

which yields that
lim

m→∞
$ (a, km+1) = lim

m→∞
$ (b, lm+1) = 0. (2.14)

Similarly, one obtains
lim

m→∞
$ (y, km+1) = lim

m→∞
$ (z, lm+1) = 0. (2.15)

It follows from (2.14) and (2.15), we find that a = y and b = z. This proves that the CFP is unique.

Examples below support the theoretical results.

Example 2.1. (Linear case) Let $ : χ × χ → R be a usual metric on χ = [0, 1]. Define the mappings
Ξ : χ × χ→ χ and η : χ2 × χ2 → [0,∞) by Ξ(a, b) =

(a−b)
32 and

η ((a, b), (k, l)) =

{ 3
2 , if a ≥ b, k ≥ l,
0 otherwise,

for all a, b, k, l ∈ χ, respectively. Consider

`

(
θ

(
$(a, k) +$(b, l)

2

))
θ

(
$(a, k) +$(b, l)

2

)
− η ((a, b), (k, l))$ (Ξ(a, b),Ξ(k, l))

= `

(
θ

(
$(a, k) +$(b, l)

2

))
θ

(
$(a, k) +$(b, l)

2

)
−

3
2
$ (Ξ(a, b),Ξ(k, l))

=

 1
|a−k|

4 + |b−l|
4

 ( |a − k|
4

+
|b − l|

4

)
−

3
2
|Ξ(a, b) − Ξ(k, l)|

= 1 −
3
2

∣∣∣∣∣ 1
32

(a − b) −
1

32
(k − l)

∣∣∣∣∣
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= 1 −
3

64
|(a − b) − (k − l)| ≥ 0,

which implies that

η ((a, b), (k, l))$ (Ξ(a, b),Ξ(k, l)) ≤ `
(
θ

(
$(a, k) +$(b, l)

2

))
θ

(
$(a, k) +$(b, l)

2

)
.

Therefore, (2.1) is fulfilled with `(τ) = 1
τ

and θ(τ) = τ
2 , for all τ > 0. Also, all the hypotheses of

Theorem 2.1 are satisfied and (0, 0) is the unique CFP of Ξ.

Example 2.2. (Nonlinear case) Let $ : χ × χ → R be the usual metric on χ = [0, 1]. Define the
mappings Ξ : χ × χ→ χ and η : χ2 × χ2 → [0,∞) by Ξ(a, b) = 1

32 (ln(1 + a) − ln(1 + b)) and

η ((a, b), (k, l)) =

{ 4
3 , if a ≥ b, k ≥ l,
0 otherwise,

for all a, b, k, l ∈ χ, respectively. Then, we have

`

(
θ

(
$(a, k) +$(b, l)

2

))
θ

(
$(a, k) +$(b, l)

2

)
− η ((a, b), (k, l))$ (Ξ(a, b),Ξ(k, l))

= `

(
θ

(
$(a, k) +$(b, l)

2

))
θ

(
$(a, k) +$(b, l)

2

)
−

4
3
$ (Ξ(a, b),Ξ(k, l))

=

 1

θ
(
$(a,k)+$(b,l)

2

) θ ($(a, k) +$(b, l)
2

)
−

4
3
|Ξ(a, b) − Ξ(k, l)|

= 1 −
4

3 × 32
|(ln(1 + a) − ln(1 + b)) − (ln(1 + k) − ln(1 + l))|

= 1 −
1

24

∣∣∣∣∣∣
(
ln

(
1 + a
1 + k

)
+ ln

(
1 + l
1 + b

))∣∣∣∣∣∣ ≥ 1 −
1

24
(ln (1 + |a − k|) + ln (1 + |l − b|)) ≥ 0.

Note that we used the property ln
(

1+a
1+k

)
≤ ln(1 + (a − k)). Hence,

`

(
θ

(
$(a, k) +$(b, l)

2

))
θ

(
$(a, k) +$(b, l)

2

)
≥ η ((a, b), (k, l))$ (Ξ(a, b),Ξ(k, l)) .

Therefore, (2.1) holds with `(τ) = 1
τ

and θ(τ) = τ
2 , for all τ > 0. Furthermore, all the hypotheses of

Theorem 2.1 are fulfilled and (0, 0) is the unique CFP of Ξ.

3. CFDEs with Mittag-Leffler kernel

In this section, we apply Theorem 2.2 to discuss the existence solution for the following Atangana–
Baleanu fractional differential equation in the Caputo sense:

(
ABC
0 Dνσ

)
(ζ) = ϕ(ζ, σ(ζ), ρ(ζ)), ζ ∈ I = [0, 1],(

ABC
0 Dνρ

)
(ζ) = ϕ(ζ, ρ(ζ), σ(ζ)), 0 ≤ ν ≤ 1,

σ(0) = σ0 and ρ(0) = ρ0,

(3.1)
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where Dν is the Atangana-Baleanu derivative in the Caputo sense of order ν and ϕ : I × χ × χ→ χ is a
continuous function with ϕ(0, σ(0), ρ(0)) = 0.

Let $ : χ × χ→ [0,∞) be a function defined by

$(σ, ρ) = ‖σ − ρ‖∞ = sup
ζ∈I
|σ(ζ) − ρ(ζ)| ,

where χ = C(I,R) represents the set of continuous functions. Define a partial order ≤ on χ by

(a, b) ≤ (k, l)⇔ a ≤ k and b ≥ l, for all a, b, k, l ∈ χ.

It is clear that (χ,≤, $) is a complete POMS.
Now, to discuss the existence solution to the problem (3.1), we describe our hypotheses in the

following theorem:

Theorem 3.1. Assume that:

(h1) there is a continuous function ϕ : I × χ × χ→ χ so that

|ϕ(ℵ, σ(ℵ), ρ(ℵ)) − ϕ(ℵ, σ∗(ℵ), ρ∗(ℵ))|

≤
Q(ν)Γ(ν)

(1 − ν)Γ(ν) + 1
`

(
θ

(
|σ(ℵ) − σ∗(ℵ)| + |ρ(ℵ) − ρ∗(ℵ)|

2

))
×

θ

(
|σ(ℵ) − σ∗(ℵ)| + |ρ(ℵ) − ρ∗(ℵ)|

2

)
,

for ℵ ∈ I, ` ∈ L, θ ∈ Θ and σ, ρ, σ∗, ρ∗ ∈ χ. Moreover, there exists = : C2(I) ×C2(I)→ C(I) such
that =((σ (ℵ) , ρ (ℵ)) , (σ∗ (ℵ) , ρ∗ (ℵ))) ≥ 0 and =((ρ (ℵ) , σ (ℵ)) , (ρ∗ (ℵ) , σ∗ (ℵ))) ≥ 0, for each
σ, ρ, σ∗, ρ∗ ∈ C(I) and ℵ ∈ I;

(h2) there exist σ1, ρ1 ∈ C(I) with = ((σ1(ℵ), ρ1(ℵ)) , (Ξ (σ1(ℵ), ρ1(ℵ)) ,Ξ (ρ1(ℵ), σ1(ℵ)))) ≥ 0 and
= ((ρ1(ℵ), σ1(ℵ)) , (Ξ (ρ1(ℵ), σ1(ℵ)) ,Ξ (σ1(ℵ), ρ1(ℵ)))) ≥ 0, for ℵ ∈ I, where Ξ : C(I) × C(I) →
C(I) is defined by

Ξ(ρ, σ)(ℵ) = σ0 +AB
0 Iνϕ (ℵ, σ(ℵ), ρ(ℵ)) ;

(h3) for σ, ρ, σ∗, ρ∗ ∈ C(I) and
ℵ ∈ I, = ((σ(ℵ), ρ(ℵ)) , (σ∗(ℵ), ρ∗(ℵ))) ≥ 0 and = ((ρ(ℵ), σ(ℵ)) , (ρ∗(ℵ), σ∗(ℵ))) ≥ 0 implies

= ((Ξ (σ(ℵ), ρ(ℵ)) ,Ξ (ρ(ℵ), σ(ℵ))) , (Ξ (σ∗(ℵ), ρ∗(ℵ)) ,Ξ (ρ∗(ℵ), σ∗(ℵ)))) ≥ 0

and
= ((Ξ (ρ(ℵ), σ(ℵ)) ,Ξ (σ(ℵ), ρ(ℵ))) , (Ξ (ρ∗(ℵ), σ∗(ℵ)) ,Ξ (σ∗(ℵ), ρ∗(ℵ)))) ≥ 0;

(h4) if {σm}, {ρm} ⊆ C(I), lim
m→∞

σm = σ, lim
m→∞

ρm = ρ in C(I), =((σm, ρm) , (σm+1, ρm+1)) ≥ 0 and

=((ρm, σm) , (ρm+1, σm+1)) ≥ 0, then =((σm, ρm) , (σ, ρ)) ≥ 0 and =((ρm, σm) , (ρ, σ)) ≥ 0, for all
m ∈ N.

Then there is at least one solution for the problem (3.1).
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Proof. Effecting the Atangana-Baleanu integral to both sides of (3.1) and applying Lemma 1.2, we
have

σ(ℵ) = σ0 +AB
0 Iνϕ (ℵ, σ(ℵ), ρ(ℵ)) ,

and
ρ(ℵ) = ρ0 +AB

0 Iνϕ (ℵ, ρ(ℵ), σ(ℵ)) .

Now, we shall prove that the mapping Ξ : C(I)×C(I)→ C(I) has a CFP. From (1.1) and (1.2) and (h1),
we get

|Ξ(ρ, σ)(ℵ) − Ξ(ρ∗, σ∗)(ℵ)|
=

∣∣∣AB
0 Iν

[
ϕ (ℵ, σ(ℵ), ρ(ℵ)) − ϕ (ℵ, σ∗(ℵ), ρ∗(ℵ))

]∣∣∣
=

∣∣∣∣∣1 − νQ(ν)
[
ϕ (ℵ, σ(ℵ), ρ(ℵ)) − ϕ (ℵ, σ∗(ℵ), ρ∗(ℵ))

]
+

ν

Q(ν) 0Iν
[
ϕ (ℵ, σ(ℵ), ρ(ℵ)) − ϕ (ℵ, σ∗(ℵ), ρ∗(ℵ))

]∣∣∣∣∣
≤

1 − ν
Q(ν)

|ϕ (ℵ, σ(ℵ), ρ(ℵ)) − ϕ (ℵ, σ∗(ℵ), ρ∗(ℵ))|

+
ν

Q(ν) 0Iν |ϕ (ℵ, σ(ℵ), ρ(ℵ)) − ϕ (ℵ, σ∗(ℵ), ρ∗(ℵ))|

≤
1 − ν
Q(ν)

×
Q(ν)Γ(ν)

(1 − ν)Γ(ν) + 1
`

(
θ

(
|σ(ℵ) − σ∗(ℵ)| + |ρ(ℵ) − ρ∗(ℵ)|

2

))
×

θ

(
|σ(ℵ) − σ∗(ℵ)| + |ρ(ℵ) − ρ∗(ℵ)|

2

)
+

ν

Q(ν)
×

Q(ν)Γ(ν)
(1 − ν)Γ(ν) + 1 0Iν(1)`

(
θ

(
|σ(ℵ) − σ∗(ℵ)| + |ρ(ℵ) − ρ∗(ℵ)|

2

))
×

θ

(
|σ(ℵ) − σ∗(ℵ)| + |ρ(ℵ) − ρ∗(ℵ)|

2

)
=

{
Q(ν)Γ(ν)

(1 − ν)Γ(ν) + 1
`

(
θ

(
|σ(ℵ) − σ∗(ℵ)| + |ρ(ℵ) − ρ∗(ℵ)|

2

))
×

θ

(
|σ(ℵ) − σ∗(ℵ)| + |ρ(ℵ) − ρ∗(ℵ)|

2

)} (
1 − ν
Q(ν)

+
ν

Q(ν)νΓ(ν)

)

≤

 Q(ν)Γ(ν)
(1 − ν)Γ(ν) + 1

`

θ

sup
ℵ∈I
|σ(ℵ) − σ∗(ℵ)| + sup

ℵ∈I
|ρ(ℵ) − ρ∗(ℵ)|

2


 ×

θ


sup
ℵ∈I
|σ(ℵ) − σ∗(ℵ)| + sup

ℵ∈I
|ρ(ℵ) − ρ∗(ℵ)|

2



(
1 − ν
Q(ν)

+
ν

Q(ν)νΓ(ν)

)

=

(
Q(ν)Γ(ν)

(1 − ν)Γ(ν) + 1
`

(
θ

(
$ (σ,σ∗) +$ (ρ, ρ∗)

2

))
θ

(
$ (σ,σ∗) +$ (ρ, ρ∗)

2

))
×(

1 − ν
Q(ν)

+
1

Q(ν)Γ(ν)

)
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= `

(
θ

(
$ (σ,σ∗) +$ (ρ, ρ∗)

2

))
θ

(
$ (σ,σ∗) +$ (ρ, ρ∗)

2

)
.

Hence, for σ, ρ ∈ C(I), ℵ ∈ I, with = ((σ(ℵ), ρ(ℵ)) , (σ∗(ℵ), ρ∗(ℵ))) ≥ 0 and
= ((ρ(ℵ), σ(ℵ)) , (ρ∗(ℵ), σ∗(ℵ))) ≥ 0, we get

$ (Ξ(ρ, σ)(ℵ),Ξ(ρ∗, σ∗)) ≤ `
(
θ

(
$ (σ,σ∗) +$ (ρ, ρ∗)

2

))
θ

(
$ (σ,σ∗) +$ (ρ, ρ∗)

2

)
.

Define η : C2(I) ×C2(I)→ [0,∞) by

η ((σ(ℵ), ρ(ℵ)) , (σ∗(ℵ), ρ∗(ℵ))) =

{
1, if = ((σ(ℵ), ρ(ℵ)) , (σ∗(ℵ), ρ∗(ℵ))) ≥ 0,
0, otherwise.

So

η ((σ(ℵ), ρ(ℵ)) , (σ∗(ℵ), ρ∗(ℵ)))$ (Ξ(ρ, σ)(ℵ),Ξ(ρ∗, σ∗))

≤ `

(
θ

(
$ (σ,σ∗) +$ (ρ, ρ∗)

2

))
θ

(
$ (σ,σ∗) +$ (ρ, ρ∗)

2

)
.

Then, Ξ is an η`θ-coupled contraction mapping. Now, for each ρ, σ, ρ∗, σ∗ ∈ C(I) and ℵ ∈ I, we have

η ((σ(ℵ), ρ(ℵ)) , (σ∗(ℵ), ρ∗(ℵ))) ≥ 1,

due to definition of = and η. So, hypothesis (h3) gives{
η ((Ξ (σ(ℵ), ρ(ℵ)) ,Ξ (ρ(ℵ), σ(ℵ))) , (Ξ (σ∗(ℵ), ρ∗(ℵ)) ,Ξ (ρ∗(ℵ), σ∗(ℵ)))) ≥ 1,
η ((Ξ (ρ(ℵ), σ(ℵ)) ,Ξ (σ(ℵ), ρ(ℵ))) , (Ξ (ρ∗(ℵ), σ∗(ℵ)) ,Ξ (σ∗(ℵ), ρ∗(ℵ)))) ≥ 1,

for ρ, σ, ρ∗, σ∗ ∈ C(I). Therefore, Ξ is η-admissible. From (h2), there are σ0, ρ0 ∈ C(I) with
η ((σ0(ℵ), ρ0(ℵ)) ,Ξ (σ0(ℵ), ρ0(ℵ))) ≥ 1 and η ((ρ0(ℵ), σ0(ℵ)) ,Ξ (ρ0(ℵ), σ0(ℵ))) ≥ 1. Using (h4) and
Theorem 2.2, we conclude that there is (σ̂, ρ̂) ∈ C(I) with σ̂ = Ξ(σ̂, ρ̂) and ρ̂ = Ξ(̂ρ, σ̂), that is, Ξ has a
CFP, which is a solution of the system (3.1).

4. Conclusions

Many physical phenomena can be described by nonlinear differential equations (both ODEs and
PDEs), so the study of numerical and analytical methods used in solving nonlinear differential
equations are an interesting topic for analyzing scientific engineering problems. From this
perspective, some coupled fixed point results for the class of η`θ-contractions in POMSs are obtained.
These results are reinforced by their applications in a study of the existence of a solution for a CFDE
with the Mittag-Leffler kernel. In the future, our findings may be applied to differential equations of
an arbitrary fractional order, linear and nonlinear fractional integro-differential systems, Hadamard
fractional derivatives, Caputo-Fabrizio’s kernel, and so on.
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