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Abstract: In this paper, a new approach for instantaneous reactive power analysis in the geometric
algebra (GA) environment is presented. The different formulations of the instantaneous reactive
power theory (IRPT) proposed, to date, have been developed in three-phase systems. There, an
instantaneous power variable, and two/three reactive power variables, all handled independently,
were introduced. Thanks to GA, it is possible to carry out a global treatment where an instantaneous
power multivector is defined. Thus, in the same multidimensional entity all the power variables
are included. From the instantaneous power multivector, the instantaneous power current and
the instantaneous reactive current are determined. It should be noted that in this mathematical
framework there is no limitation on the number of phases, and the extension of the IRPT to the
analysis of multi-phase systems appears in a natural manner. In this study, a systematic approach
with the most relevant definitions and theorems corresponding to the proposed methodology has
been established. Two practical cases of five-phase and three-phase systems have been included to
apply the new established formulation.

Keywords: instantaneous reactive power; electric power quality; geometric algebra; harmonic
compensation; active power filter

1. Introduction

The development of the instantaneous reactive power theory (IRPT) has been linked
from the beginning to the control of active power line conditioners (APLCs). In fact, the
use of APLCs for the compensation of non-linear loads led to the proposal of a new power
theory in the time domain. This has allowed for new control strategies for these devices,
APLCs, which include in their constitution a dc/ac converter as a fundamental element of
their power circuit. In addition, the IRPT also established new paradigms regarding the
transfer of energy between source and load. This showed that instantaneous power was
not the only power variable needed to describe such a process; a new power variable (in
its original version) was postulated, the instantaneous imaginary power. Subsequently,
different formulations have appeared over time, in which new variables of instantaneous
reactive power were added, as collected in [1].

Originally, the so-named pq formulation was published, aimed at the analysis of
three-wire three-phase systems. There, the instantaneous active current and the instan-
taneous reactive current were defined, obtained from the instantaneous power and the
instantaneous imaginary power; this was revealed in [2]. Zero-sequence components were
treated separately. Later, what has come to be known as the modified pq formulation was
published, where the zero-sequence components were included in the global development.
For this, instantaneous power and three components of instantaneous reactive power were
considered as power variables; a complete exposition of both approaches can be found
in [3]. These formulations have been established both in αβ0 coordinates and in phase
coordinates [4,5]. Other developments, with less acceptance, have also been proposed,
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although all of them are based on the management of an instantaneous power variable, and
two/three instantaneous reactive power variables. In that setting, the current components
are obtained from the power variables in reference [6]. The implementation of different
compensation strategies for non-linear and unbalanced loads, through the use of active
compensation equipment (APF or APLCs), has been the largest field of the IRPT applica-
tion, which continues today; see [7–9]. Moreover, although references [10,11] perform an
analysis for multi-phase systems, it cannot be considered a unified theory that is generated
from a single generalized power variable.

On the other hand, geometric algebra (GA) has been configured as a very useful tool
for the analysis of multidimensional problems. It allows the introduction of an operation,
the geometric product, which includes in its definition the inner product and the cross
product. This means having multidimensional objects called multivectors that are indepen-
dent of any coordinate system. The GA has its origin in the 19th century, but it was not
until Hestenes [12] that it was systematically applied in different fields of science and tech-
nology [13–15]. One of the most widely applied disciplines today is cybernetics [16]. In this
context, the GA provides a suitable mathematical framework for the development of a de-
composition model for electrical power. One of the first works on the subject is [17], where
an electrical power multivector for distorted single-phase systems is proposed. In [18], the
same topic is advanced by introducing a complex GA. In both cases, an identification of the
power terms collected in the frequency theories adopted up to that moment is achieved. In
the same field, the works [19–21] can be considered, which reformulate circuit laws and
electrical power within the framework of GA in an original way. However, none of these
latter proposals support an extension to systems with more than one phase, which requires
a new review of the matter. In this regard, new papers published recently have raised
the issue from a new perspective [22–24]. In [23], a generalization of the transformations
commonly used in electrical engineering is introduced. There, the proposed model, called
Simple Kirchhoff Rotation (SKR), corresponds to an orthogonal transformation based on
elementary rotations and is valid for any n-dimensional space. The use of GA makes it pos-
sible to visualize this new model from a geometric perspective. This methodology enables
the generalization of the compensation process traditionally proposed by formulations
based on Clarke, Park or space-vector transformations to systems with n phases. On the
other hand, in [24] the analysis of power in n-phase systems in the GA environment is
addressed with the aid of the Hilbert transform (HT). In fact, the introduction of a geometric
vector defined as a combination of the signal and its HT for each phase current and voltage
requires a Euclidean space of 2n dimensions. This makes it possible to identify a parallel
geometric power and a quadrature geometric power for linear loads. However, the general
analysis of nonlinear loads also requires extending the Euclidean space to 3n dimensions in
order to include current harmonics not present in the voltage. This does not achieve an
identification with the representative power and current terms of the IRPT; that is, it does
not identify the instantaneous reactive power and the instantaneous reactive current of
the IRPT.

In this work, the GA framework is used to formulate the IRPT in a unified way, without
the need to resort to any type of coordinate transformation or mathematical transform,
applicable to power systems with any number of phases. The latter can be considered of
great importance, since drives with more than three phases have emerged in recent years.
In effect, the control of 5-phase, 12-phase, or 16-phase motors in wind turbine or electric
vehicle applications is an ongoing field of research [25,26].

The original contributions of this research are the following:

• GA is used to carry out a unified analysis of the IRPT where it is only necessary to
introduce a multidimensional power variable, the instantaneous power multivector.
As in single-phase systems, the energy transfer between supply and load in an n-phase
circuit can be analyzed from a single power variable.

• IRPT is naturally extended within the GA framework to systems with any number of
phases. Thus, three-phase systems emerge as a particular case of multi-phase analysis.
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• The compensation process is systematized from the new multivector power variable.
Thus, a compensator power multivector makes it possible to establish instantaneous
compensation and/or time-averaged compensation.

Further elaboration of the previous paragraph is followed by clarification of the key
idea of the paper. Instantaneous power is the only power variable necessary to describe
the energy transfer between source and load in a single-phase system. The IRPT showed
that, to explain the energy transfer between source and load in a system with more than
one phase, the instantaneous power is not enough. This is true if an n-phase circuit is
to be treated as an entire system and not as a combination of n independent circuits. In
this paper it is shown that it is possible to analyze the power transfer between source and
load in n-phase systems from a single power variable defined in the GA framework. The
consistency with the power and current terms of the IRPT is shown.

The paper is organized as follows. In Section 2, the basic definitions and theorems for
the analysis of the IRPT in three-phase systems are presented, first establishing the most
convenient instantaneous power terms, and then the current terms obtained from the power
variables. In Section 3, the unified process used for three-phase systems is extended to
systems with more than three phases. In Section 4, the basics of instantaneous and average
value compensation under the GA are established. Section 5 includes two selected case
studies corresponding to a five-phase system and a real engineering three-phase system.
Finally, the main conclusions are given in Section 6.

2. Instantaneous Reactive Power Theory in Three-Phase Systems: A New Approach
2.1. Instantaneous Power Multivector

Let the three-phase system exist as shown in Figure 1; the voltage vector u and current
vector i are defined in the form:

u =
[

u1 u2 u3
]T

i =
[

i1 i2 i3
]T

(1)Appl. Sci. 2023, 13, 1796 4 of 23 

 

Figure 1. Phase-neutral voltages and line currents in a three-phase power system. 
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In (5), it is observed that the multivector s is constituted by the combination of two 
parts or blades, a 0-vector p, that is, a blade of degree zero, and a 2-vector q, that is, a blade 
of degree two. In general, a multivector will be constituted by the combination of k-vector 
parts, with k from 0 to 2n, where n is the dimension of the linear support space of the 
voltage and current vectors. In GA it is also common to use the symbol < >k to designate 
each one of the blades of degree k of a multivector. Thus, (5) would be expressed as: 

0 2p= = + = +s u i q s s (8) 

The reverse of any multivector M, denoted as M†, is defined from expression (9): 

( ) ( 1)/2† 1 k k

kk

−= −M M (9) 

From there, the reverse of the instantaneous power multivector s† is given by (10): 

† p= −s q (10) 

Since (11) is verified: 

Figure 1. Phase-neutral voltages and line currents in a three-phase power system.

Both vectors include line-to-neutral voltage waveforms and line current waveforms.
Each of the voltage and current waveforms are time dependent, although this is not
explicitly written in most of the expressions in the text that follows. The vectors u and
i can be considered elements of a three-dimensional Euclidean space generated by the
orthonormal basis ej with j = 1, 2, 3. Thus, the voltage and current vectors can be expressed
as (2):

u = u1e1 + u2e2 + u3e3

i = i1e1 + i2e2 + i3e3
(2)

For the system of Figure 1, from relations (1)–(2), the following definition of power
is established:

Definition 1. The instantaneous power multivector s is defined as the geometric product of the
voltage and current vectors (3),
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s = ui = u·i + u∧ i (3)

From (3) it follows that the geometric product of any two vectors is obtained from
the sum of their inner product (u·i) and their cross product (u∧i). Although a relation
such as the one established in (3) would not make sense in ordinary algebra, it is of special
relevance in the framework of geometric algebra (GA).

In the geometric algebra environment, each of its entities is called a multivector and is
obtained from the geometric products of the orthonormal basis vectors ej of the support
linear space. Thus, an operative expression for s(t) is possible by performing the term-
by-term geometric product of the vectors given in (2), taking into account the following
properties of the basis vectors ej, [16]:

eiej =

{
1 i = j
eij i 6= j

eij = ei·ej + ei ∧ ej = ei ∧ ej = −ej ∧ ei = −eji

(4)

That is, the geometric product of a basis vector with itself is a scalar or 0-vector, and
the geometric product of two different basis vectors is a bivector or 2-vector, since its inner
product is zero.

From (3) and (4) we obtain the expression for the multivector s:

s = ui = p + q12e12 + q31e31 + q23e23 = p + q (5)

In (5), the 0-vector part is the instantaneous power p:

p = u1i1 + u2i2 + u3i3 (6)

Furthermore, the 2-vector part q, which will be named the instantaneous reactive
power bivector, is formed by three instantaneous reactive power components q12, q31,
q23, [5]:

q = (u1i2 − u2i1)e12 + (u3i1 − u1i3)e31 + (u2i3 − u3i2)e23

= q12e12 + q31e31 + q23e23
(7)

In (5), it is observed that the multivector s is constituted by the combination of two
parts or blades, a 0-vector p, that is, a blade of degree zero, and a 2-vector q, that is, a blade
of degree two. In general, a multivector will be constituted by the combination of k-vector
parts, with k from 0 to 2n, where n is the dimension of the linear support space of the
voltage and current vectors. In GA it is also common to use the symbol < >k to designate
each one of the blades of degree k of a multivector. Thus, (5) would be expressed as:

s = ui = p + q = 〈s〉0 + 〈s〉2 (8)

The reverse of any multivector M, denoted as M†, is defined from expression (9):〈
M†
〉

k
= (−1)k(k−1)/2〈M〉k (9)

From there, the reverse of the instantaneous power multivector s† is given by (10):

s† = p− q (10)

Since (11) is verified: 〈
s†〉

0 = 〈s〉0〈
s†〉

2 = −〈s〉2
(11)
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The introduction of the reverse of a k-vector allows establishment of the instantaneous
magnitude or norm of a multivector; definition 2 defines the instantaneous norm of the
instantaneous power multivector:

Definition 2. The instantaneous norm s (‖s‖) of the instantaneous power multivector s is defined
according to the expression given by (12):

s = ‖s‖ =
(

s†s
)1/2

=

(
3

∑
k=0

〈
s†
〉

k
〈s〉k

)1/2

(12)

The summation in relation (12) extends to all the blades included in the multivector.
Note that both the multivector s and its norm are time-dependent entities.

Theorem 1. The instantaneous norm of the instantaneous power multivector s satisfies the rela-
tionship between the squares of the instantaneous power and the instantaneous reactive power given
by (13):

s2 = p2 + q2 (13)

In fact, from (8), (10), and (12) it follows that the square value of the instantaneous
power multivector norm can be obtained by:

‖s‖2 = s(t)2 =
〈
s†〉

0〈s〉0 +
〈
s†〉

2〈s〉2
= p2 +

(
q2

12 + q2
31 + q2

23
) (14)

Consider that, from (4), (9), and (12), for the instantaneous reactive power bivector, we
have the relationship:

‖q‖2 =
〈
s†〉

2〈s〉2 = −qq

= (q12e12 + q31e31 + q23e23)(−q12e12 − q31e31 − q23e23)

=
(
q2

12 + q2
31 + q2

23
)
= q2

(15)

Relation (14) determines the instantaneous apparent power partition, s. The first term
represents the square of the instantaneous power and the second term, obtained from
the norm of the instantaneous reactive power bivector, (15), represents the square of the
instantaneous reactive power q [1].

The model established by (3) and (14) describes three-phases systems in the same way
as followed in single-phase systems. Thus, the squared norm of the instantaneous power
multivector has an orthogonal decomposition in terms of the instantaneous power and
the instantaneous reactive power, of the same type as the decomposition of the apparent
power as a function of the active power and the reactive power, typical of the analysis of
the power in the sinusoidal steady state. In Section 3, this is generalized for the analysis of
multi-phase systems.

2.2. Instantaneous Power/Instantaneous Reactive Currents

In this section, from the power terms defined in the previous section, the current
components are determined. First, the inverse of the vector u is defined.

Definition 3. The inverse of the voltage vector, u−1, is determined from the relation (16):

u−1 =
u†

u†u
=

u
u†u

(16)

and, therefore, (17) is verified:
uu−1 = u−1u = 1 (17)
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The denominator of (16) identifies the square of the voltage vector norm:

u†u ≡ ‖u‖2 = u2
1 + u2

2 + u2
3 = u2 (18)

In the framework of the IRPT, expression (18) represents the square of the instanta-
neous norm of the voltage vector [1].

Theorem 2. The current vector i of a three-phase system with voltage u is determined from the
instantaneous power multivector according to expression (19):

i =
u†s
u†u

=
us

u†u
(19)

In fact, by multiplying the left side of (3) by the inverse of the voltage vector, it
follows that:

u−1ui = u−1s (20)

since by application of the associative property of the geometric product in (20), [11], and
the relation (17):

i = u−1s =
u†s
u†u

=
us

‖u‖2 =
us
u2 (21)

also taking into account that, for the 1-vectors, from (9), it is true that:

u† = u (22)

Theorem 3. The current i decomposes into two terms, the instantaneous power current ip, and the
instantaneous reactive current, iq:

i = ip + iq =
up

‖u‖2 +
uq

‖u‖2 (23)

Furthermore, both components are orthogonal and verify the relation (24):

‖i‖2 = i2 = ‖ip‖2 + ‖iq‖2 = i2p + i2q (24)

In fact, from (21) it follows that:

i =
u
u2 (〈s〉0 + 〈s〉2) =

u
u2 (p + q) (25)

The first term of (25) is the instantaneous power current, ip:

ip =
u
u2 p (26)

The second term is the instantaneous reactive current, iq:

iq =
u
u2 q (27)

Both current terms are orthogonal, since:

i†
p =

u
u2 p

=
p

u2 (u1e1 + u2e2 + u3e3)
(28)

and:
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iq =
u
u2 q

=
(u1e1 + u2e2 + u3e3)(q12e12 + q31e31 + q23e23)

u2

(29)

That is:

iq =
(u3q31 − u2q12)e1 + (u1q12 − u3q23)e2 + . . .

u2

. . . + (u2q23 − u1q31)e3

u2

(30)

and from (4), (28), and (30) we obtain (31):

i†
piq = i†

qip = 0 (31)

Thus, from the distributive property of the geometric product, [11], the relation (32)
is fulfilled:

i2 = i†i =
(
ip + iq

)†(ip + iq
)
= i2p + i2q (32)

As a corollary to Theorem 3, it follows from (26) that:

‖ip‖2 = i2p = i†
pip =

p2

u2 (33)

and from (27):

‖iq‖2 = i2q = i†
qiq =

q2

u2 (34)

Finally, from (13) and (32) the instantaneous apparent power partition is obtained in
the form:

‖s‖2 = s†s = i†u†ui = u2i2

= u2
(

i2p + i2q
)
= u2i2p + u2i2q = p2 + q2

(35)

where:
p = uip
q = uiq

(36)

in agreement with (33) and (34).

2.3. Instantaneous Reactive Power versus Reactive Power

The term reactive power has been used since the dawn of alternating current to take
into account the phenomena of phase shift between voltage and current. The IRPT took the
name of instantaneous reactive power to designate new time-dependent power variables
that, in principle, had nothing to do with classical reactive power. The coincidence in the
denomination could lead to confusion. However, instantaneous reactive power variables
are, in fact, an extension of the sinusoidal steady-state reactive power concept. To show
this idea, and in order not to be exhaustive, we will consider the case where the voltages
and currents of a three-phase system do not include zero-sequence components, that is, u1
+u2 +u3 = 0; i1 +i2 +i3 = 0. Under these conditions it can be easily verified that the three
components of the instantaneous reactive power bivector, q, (7), have the same value:

q =
q√
3
(e12 + e31 + e23) (37)

where q is the bivector norm q.
The instantaneous reactive current vector is, therefore, from (30):

iq = − q
u2 (

u23√
3

e1 +
u31√

3
e2 +

u12√
3

e3) (38)
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in which line to line voltages appear uij = ui –uj. A comparison with reactive current, and
from there with classic reactive power, requires a transition to the sinusoidal steady state.

A sinusoidal direct sequence voltage and an asymmetrical sinusoidal current of fre-
quency hω is considered here first. The extra subscript ‘h’ is used to characterize voltages,
currents, and reactive power for this situation. Let be the phase voltages be:

uh =


u1h

u2h

u3h

 =
√

2<e




Vh

Vhe−j2π/3

Vhej2π/3

ejhωt

 (39)

where Re means ‘take real part’. Line currents are considered in the same way:

ih =


i1h

i2h

i3h

 =
√

2<e




I+h ejϕ+
h

I+h ej(ϕ+
h −2π/3)

I+h ej(ϕ+
h +2π/3)

ejhωt

+
√

2<e




I−h ejϕ−h

I−h ej(ϕ−h +2π/3)

I−h ej(ϕ−h −2π/3)

ejhωt

 (40)

where a current component of the same phase sequence as the voltage and a current com-
ponent of opposite phase sequence to the voltage are distinguished. For these waveforms
the instantaneous reactive power (qh) is:

qh = 3Vh I+h sin ϕ+
h − 3Vh I−h sin(2hωt + ϕ−h ) = Qh + q̃h (41)

The average value of qh represents the classical reactive power corresponding to the
phase shift between voltages and currents of the same phase sequence. When the currents
(40) include only a positive sequence component, qh is a constant of value equal to the
reactive power Qh. The oscillatory part in (41) is related to the phase-sequence current
component opposite to the voltage. Instantaneous reactive power extends the concept of
classical reactive power.

From (29) we can find the instantaneous reactive current iqh:

iqh = −Qh

u2
h

uqh −
q̃h

u2
h

uqh (42)

where for convenience the orthogonal voltage vector uqh has been introduced as:

uqh =
1√
3


u23

u31

u12

 =
√

2<e

−j


Vh

Vhe−j2π/3

Vhej2π/3

ejhωt

 (43)

Thus, the first term of (42) corresponds to the reactive current component irh of the
current ih, which has the same sequence as the voltage:

irh =
√

2<e

j
Qh

u2
h


Vh

Vhe−j2π/3

Vhej2π/3

ejhωt

 (44)

In the above expression the instantaneous norm of the uh vector for a system of
balanced sinusoidal voltages is constant and corresponds to its rms value:

u2
h = U2

h = 3V2
h (45)

Thus, the norm squared (rms squared value) of the reactive current of the harmonic hωt is:



Appl. Sci. 2023, 13, 1796 9 of 23

‖irh‖2 = I2
rh =

Q2
h

U2
h

(46)

In the most general conditions of asymmetry and distortion there are difficulties in
obtaining a definition of steady-state reactive power, and, therefore, there is no unanimous
agreement about its computation. However, two definitions remain noteworthy either
because of their historical use or their practical usefulness. In fact, the Budeanu reactive
power, which computes the sum of the reactive power terms of each common harmonic
between voltage and current, was traditionally used for a long time. In contrast, the
definition used by Std 1459 takes only the reactive power of the fundamental harmonic [19].

The expression for reactive power in non-sinusoidal asymmetrical regimes in the fre-
quency domain that is most commonly used today, is that suggested by Shepherd-Sharon and
adopted by Czarnecki in the current’s physical components (CPC) theory [19]. An identifi-
cation with IRPT can be established by considering a system of non-sinusoidal voltages and
non-sinusoidal unbalanced currents. That is, let the voltage and current vectors be:

u = ∑
h

uh; i = ∑
h

ih (47)

where the sum extends to all harmonics of interest. In accordance with the results obtained
for a generic harmonic of order h, the current vector i will include a reactive component
resulting from the computation of the reactive currents of each individual harmonic, (41):

ir = ∑
h

irh = ∑
h
−Qh

U2
h

uqh = ∑
h

√
2<e

j
Qh

U2
h


Vh

Vhe−j2π/3

Vhej2π/3

ejhωt

 (48)

and its rms value is:

‖ir‖2 = I2
r = ∑

h

Q2
h

U2
h

(49)

The definition of reactive power in non-sinusoidal regimes in the classical sense, i.e.,
that which admits compensation with only the use of reactive passive elements, and which
gives rise to a maximum power factor is, therefore:

Qr = UIr = ∑
h

U2
h∑

h

Q2
h

U2
h

(50)

In which the average value of the instantaneous reactive power corresponding to each
of the harmonics appears. The following analysis allows a comparison of the current terms
in the IRPT and the frequency domain theories.

3. The New Approach to Multi-Phase Systems

In this section, the development of the IRPT in multi-phase systems is addressed
according to the same pattern that is followed in Section 2, that is, by establishing definitions
and properties concerning the power terms and current components.

3.1. Instantaneous Power Multivector in Multi-Phase Systems

For a multi-phase power system of n+1 conductors, as illustrated in Figure 2, the
voltage vector u constituted by the instantaneous voltages u1, . . . un of each conductor
relative to the neutral conductor is defined. Likewise, the current vector i consisting of
instantaneous line currents i1, . . . in flowing through the conductors, is defined:
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u =
[

u1 . . . un
]T

i =
[

i1 . . . in
]T

(51)
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The voltage and current vectors can be considered as elements of a n-dimensional
linear space and be expressed as a linear combination of the vectors of an orthonormal
basis ej, j = 1, . . . , n, that is:

u = u1e1 + . . . + unen

i = i1e1 + . . . + inen
(52)

From an alternative perspective, the vectors u and i can be considered as tensors of
order 1, in the same way that a scalar can be considered a zero-order tensor.

Definition 4. In a multi-phase system, the instantaneous power p is defined as the inner product of
voltage and current vectors:

p = u·i = u1i1 + . . . + unin (53)

Definition 5. In a multi-phase system, the instantaneous reactive power tensor is defined as the
second order hemi-symmetrical tensor determined by the relationship (54):

q = u∧ i = u⊗ i− i⊗ u (54)

where the symbol ‘∧’ means outer product and the symbol ’⊗’ means tensor product.

The definition of cross product only makes sense in a three-dimensional space; the
tensor product, through the relationship (54), allows a definition of outer product in an
n-dimensional space.

The tensor product of the voltage vector to the current vector is:

u⊗ i =


u1
u2
. . .
un

[i1 i2 . . . in
]
=


u1i1 u1i2 . . . u1in
u2i1 u2i2 . . . u2in
. . . . . . . . . . . .

uni1 uni2 . . . unin

 (55)

and the tensor product of the current vector to the voltage vector is:

i⊗ u =


i1
i2
. . .
in

[u1 u2 . . . un
]
=


i1u1 i1u2 . . . i1un
i2u1 i2u2 . . . i2un
. . . . . . . . . . . .

inu1 inu2 . . . inun

 (56)

Thus, the instantaneous reactive power tensor takes the following form:
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q = u∧ i =


0 i1u2 − u1i2 . . . i1un − u1in

u1i2 − i1u2 0 . . . i2un − u2in
. . . . . . . . . . . .

u1in − i1un u2in − i2un . . . 0

 (57)

The terms on each side of the main diagonal are opposite, so it is a hemisymmetric
tensor. Thus, the tensor q is composed of n(n − 1)/2 different terms [9].

Definition 6. For a multi-phase power system, the instantaneous power multivector s is defined as
the geometric product between the voltage vector u and the current vector i in the form (58):

s = ui = u·i + u∧ i (58)

The instantaneous power multivector s is obtained from the inner product of voltage
and current vectors (53), that is, the instantaneous real power p, and the outer product of
voltage and current vectors (54), which is the instantaneous reactive power tensor q.

Nevertheless, in the context of GA, the multivector s consists of a 0-vector part identi-
fying the instantaneous real power p, and a 2-vector part q, which corresponds to a bivector
of instantaneous reactive power. The 2-vector part consists of n(n − 1)/2 instantaneous
reactive power components (59):

q = (u1i2 − u2i1)e12 + . . . + (u1in − uni1)e1n + . . .

+(u2in − uni2)e2n + . . .

= q12e12 + . . . + q1ne1n + . . . + q2ne2n + . . .

(59)

To obtain (59), (4) was taken into account. The n(n − 1)/2 terms constituting the
instantaneous reactive power bivector q are given by:

qij =
(
uiij − iiuj

)
∀i, j = 1, . . . , n; i ≺ j (60)

The terms of instantaneous reactive power (60) verify relation (61):

n

∑
i, j, k = 1
i 6= j 6= k

ukqij = 0 (61)

That is, only (n(n − 1)/2) − 1 instantaneous reactive power variables are independent.
By definition of the bivector q, it is perpendicular to the vector u, and therefore the inner
product of both (obtained as the semi-sum of the geometric products ‘qu’ and ‘qu’) is zero.
Thus, from the latter relationship it follows that a multi-phase energy system is charac-
terized by n(n − 1)/2 power variables; the instantaneous power p and (n(n − 1)/2) − 1
variables of instantaneous reactive power qij.

Theorem 4. The norm of the instantaneous power multivector represents the instantaneous
apparent power s, and verifies the relationship between instantaneous real power and instantaneous
reactive power given by (62):

s2 = p2 + q2 (62)

The proof is identical to that presented for Theorem 1. Thus, (63) is verified:

‖s‖2 = s2 = 〈s〉0
〈
s†〉

0 + 〈s〉2
〈
s†〉

2

= p2 +
n

∑
i, j = 1
i < j

q2
ij

(63)
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Relation (63) determines the partition of instantaneous apparent power. The first
term represents the instantaneous power and the second, obtained from the norm of
instantaneous reactive power bivector, (15), represents the instantaneous reactive power
q [9].

The model established by (62) describes multi-phase systems according to the same
approach followed in single phase systems. In the same way that was fixed for three-phase
systems, the squared norm of the instantaneous power multivector has an orthogonal
decomposition in terms of the instantaneous real power and instantaneous reactive power,
of the same type as the decomposition of the apparent power depending on active power
and reactive power, characteristic of the power analysis at a sinusoidal steady state.

3.2. Instantaneous Power Current and Instantaneous Reactive Current in Multi-Phase Systems

After defining the power terms in a multi-phase system, in this section the current
components are obtained. From the definition of the instantaneous power multivector (44),
it is possible to determine, for a given voltage u, the current vector i.

Theorem 5. The current vector i of a multi-phase system supplied with a voltage u is obtained from
the instantaneous power multivector according to expression (64):

i =
u†s
u†u

=
us

u†u
(64)

In fact, if the left side of (44) is multiplied by u−1, it gives:

u−1ui = u−1s (65)

and from (17) it follows that (66):

i = u−1s =
u†s
u†u

=
us(t)

‖u‖2 =
us
u2 (66)

since it is always verified that:
u† = u (67)

Theorem 6. The current i is decomposed into two terms, the instantaneous power current ip and
the instantaneous reactive current, iq:

i = ip + iq =
up

‖u‖2 +
uq

‖u‖2 (68)

Furthermore, both components are orthogonal and verify the relationship (69):

‖i‖2 = i2 = ‖ip‖2 + ‖iq‖2 = i2p + i2q (69)

The proof is identical to that presented for Theorem 3.
Both current components, instantaneous power current and instantaneous reactive

current, verify the relationship (70):

i2 = i2p + i2q (70)

where:

‖ip‖2 = i2p =
p2

u2 (71)

and:

‖iq‖2 = i2q =
q2

u2 (72)
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Finally, from (70), the partition of the instantaneous apparent power for multi-phase
systems is:

‖s‖2 = u2i2 = u2i2p + u2i2q = p2 + q2 (73)

where:
p = uip
q = uiq

(74)

according to (71) and (72).

4. Instantaneous/Average Compensation

In previous sections, general power terms are derived within the GA framework. In
addition, those expressions are used to decompose the current vector into two orthogonal
components. In this section, different compensation strategies and compensation currents
are established from the point of view of the exposed development.

From the new formulation, two compensation approaches are presented: time instan-
taneous compensation (TIC) and time average compensation (TAC). Regarding the second
approach, different specific compensation objectives can be proposed: constant supply
active power, a unity power factor, and current in phase with the fundamental component
of the supply voltage. In addition, the operative expressions of the reactive power variables
allow the imposition of other compensation objectives [1–6].

Figure 3 presents the schematic of a compensated power system. The supply, the load,
and the shunt compensation system are highlighted.
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Thus, according to the fact that the instantaneous power multivector is additive, it
follows that:

sS = sL + sC (75)

where sS is the source instantaneous power multivector, sL the load instantaneous power
multivector, and sC the compensator instantaneous power multivector.

If the load instantaneous power multivector, sL, is considered to be:

sL = uiL = pL + qL (76)

then the load current takes the expression:

iL =
u
u2 (pL + qL) = iLp + iLq (77)

The time instantaneous compensation process (TIC) is a compensation procedure
without energy storage and corresponds to reducing |iq| or |q|, without altering the
instantaneous power transfer.
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Definition 7. The time instantaneous compensation method, TIC, consists of connecting a compen-
sator without energy storage in shunt with the load, so that it transfers the instantaneous reactive
power of the load with the opposite sign.

Theorem 7. In a multi-phase system consisting of a load with an instantaneous power multivector,
sL, and a shunt compensator without energy storage with an instantaneous power multivector, sC,
the time instantaneous compensation process assumes that:

iS =
u
u2 pL; iC =

−u
u2 qL (78)

In fact, the TIC means that the compensator transfers all the instantaneous reactive
power; that is, for the references in Figure 3:

sC = −qL (79)

then the compensator current is:

iC =
usC

‖u‖2 =
u(−qL)

‖u‖2 (80)

The application of the Kirchhoff Current Law (KCL) to the system in Figure 3 allows
the source current to be determined after compensation:

iS = iL + iC =
usL

‖u‖2 +
−uqL

‖u‖2 =
u

‖u‖2 (sL − qL) =
upL

‖u‖2 ≡ iLp (81)

which matches with the load instantaneous power current. Thus, the source current only
transfers the load instantaneous power.

The time average compensation process (TAC) corresponds to a reduction in the losses
averaged over time, without altering the active power from source to load. That is, for a
voltage u, and a given average power transferred to the load (82):

P =
1
T

∫ T

0
pdt (82)

it is sought to modify ip or p, so that the average losses are reduced as much as possible.
This approach corresponds to the mitigation of the variable part of the instantaneous power
that is transferred between source and load [6]:

p(t) = P + p̃ (83)

where P is the dc component and p̃ the ac component of the instantaneous power p; it is
clear that this compensation process requires devices with energy storage capacity.

Definition 8. The time average compensation (TAC) method consists of the connection in shunt
with the load of a compensator that injects the load instantaneous reactive power and the oscillations
with zero mean value of the instantaneous power.

Theorem 8. In a multi-phase system consisting of a load with an instantaneous power multivector,
sL, and a compensator with an instantaneous power multivector, sC, the time average compensation
process assumes that:

iS =
u
u2 PL; iC =

−u
u2 ( p̃L + qL) (84)
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In fact, the time average compensation means that the compensator transfers all the
instantaneous reactive power and the ac component of the load instantaneous power; that
is, for the references in Figure 3:

sC = −qL − p̃L (85)

then the incoming current to the compensator is:

iC =
usC

‖u‖2 =
u(−qL)

‖u‖2 +
u(− p̃L)

‖u‖2 (86)

The application of KCL to the system in Figure 3 allows us to obtain the source current
after compensation:

iS = iL + iC =
u

‖u‖2 (sL − qL − p̃L) =
uPL

‖u‖2 ≡ iLa (87)

Thus, the source current only transfers the average (or active) power of the load.

5. Application Cases

In this section, two systems with different number of phases are considered in order
to illustrate the proposed methodology.

5.1. Case 1: A Five-Phase System Example

In this section, a five-phase system with unbalanced and distorted voltages and cur-
rents is used. The voltages include the 50 Hz fundamental harmonic and a fifth-order
harmonic. In order to provide details of the simulation example, the following nomencla-
ture has been used. Thus, (88) represents a generic expression for the voltage waveform of
one of the phases j = 1, . . . , 5:

vsj(t) =
√

2 ∑
h=1,5

5

∑
j=1

Vhj cos
(
h
(
ωt + θj

))
(88)

To express unbalance and distortion, VUj and VHFh factors, respectively, are intro-
duced as indicated by (89):

Vhj = VUj ×VHFh (89)

Tables 1 and 2 present the values of each of these factors.

Table 1. Factors used to express voltage and current unbalance.

j VUj CUj

1 1 1
2 1.05 1.1
3 0.95 0.9
4 1.1 1.05
5 0.9 0.95

Table 2. Factors used to express harmonics of voltage and current.

h VHFh CHFh

1 1 1
5 0.1 0.5
7 - 0.2
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Similarly, for the supply current, the 50 Hz fundamental harmonic, and fifth- and
seventh-order harmonics, are considered. The subscript h is reserved to indicate the order
of the harmonic. A generic waveform for one of the phases is:

isj(t) =
√

2 ∑
h=1,5,7

5

∑
j=1

Ihj cos
(
h
(
ωt + θj

)
+ ϕj

)
(90)

with:
Ihj = CUj × CHFh (91)

where the CUj and CHFh factors are introduced to account for unbalanced and distorted
currents. Likewise, Tables 1 and 2 record the values that are adopted for these factors in this
application example. The phase angles for the voltage and current waveforms are listed in
Table 3.

Table 3. Phase angles of line voltages and currents.

j θj ϕj

1 0 −π/6
2 −2π/5 −2π/6
3 −4π/5 −1.5π/6
4 −6π/5 −1.8π/6
5 −8π/5 −1.2π/6

Figure 4 shows the five-phase voltage system (unbalanced and distorted) in which the
voltage of phase 1 is highlighted. The two types of compensation indicated in Section 4 are
considered. The time instant t = 0.02 s is established as the one where the compensation
is applied. Figure 5a shows the current waveforms before and after TIC. In the same way,
Figure 5b presents the current waveforms before and after TAC. Figure 5a shows how
the source current after TIC is the instantaneous power current, and therefore does not
transfer instantaneous reactive power. In the same way, Figure 5b shows how, after TAC,
the source current does not transfer instantaneous reactive power nor does it transfer the
oscillatory part of the instantaneous power. The current transfers only the average power
and reproduces the unbalance and distortion of the voltage.
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The balance of the power variables before and after TIC is presented in Figure 6.
Figure 6a shows how the instantaneous power is the same before/after TIC. In contrast,
Figure 6b shows how the instantaneous reactive power after TIC cancels out. Thus, the
instantaneous power multivector norm coincides with the instantaneous power after TIC;
Figure 6c.
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The balance of the power variables before and after TAC is presented in Figure 7.
Figure 7a shows how the instantaneous power after TAC is constant: average power (active
power). Figure 7b presents how the instantaneous reactive power is null after TAC, the



Appl. Sci. 2023, 13, 1796 18 of 23

same situation as shown in Figure 6b. Figure 7c shows how the norm of the instantaneous
power multivector, after TAC, coincides with the active power.
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5.2. Case 2: An Industrial Three-Phase System

In the following, a real engineering system is presented. This shows more clearly
the effectiveness of the proposed method. An unbalanced and distorted three-phase
system with neutral conductor is considered. An asymmetrical nonlinear load is formed
by three bridge rectifiers connected in a star with an accessible neutral. For this purpose,
each RL branch on the dc side of each rectifier has different parameter values according to
Table 4. Figure 8 shows a schematic of the implemented power system.

Table 4. RMS values of the supply voltage and RL branch parameters on the dc side of the rectifiers.

RMS Voltage Values (V) Rectifiers

Phase j Harmonic h = 1 Harmonic h = 5 Rj (Ω) Lj (H)

1 230 230 × 1 × 0.05 20 0.01
2 230 × 1.05 230 × 1.05 × 0.05 25 0.01
3 230 × 0.95 230 × 0.95 × 0.05 15 0.01
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The two types of compensation established in Section 4 are applied. As previously
established, in TIC the compensation occurs instantaneously from the very moment the
APLC operates. In TAC there will be a delay since it is necessary to obtain the averaged
value of the load active power. It is common practice for the APLC control circuit to include
a low-pass filter (LPF) to perform this task, [1]. Here, a second-order Butterworth filter is
used; this implies a delay in the response to TAC which, in this case, is of the order of one
and a half cycles.

Results of the waveforms of interest are presented below. Figure 10a presents the
waveforms corresponding to the supply current before/after TIC; the compensator is
switched on at instant t = 0.06 s. From that moment on, the currents transport only the
instantaneous power; they do not transfer instantaneous reactive power between them,
reducing, therefore, the value of their instantaneous norm. Figure 10b shows the supply
current waveforms before/after TAC. The compensated currents can be seen after the
LPF settling time has elapsed. In this case, the currents transport only the average power
absorbed by the load.

Figure 11 shows the power balance before/after compensation from the norm of the
instantaneous power multivector, ss. Figure 11a presents ss before/after TIC; from 0.06 s,
ss is identified with instantaneous power (does not include instantaneous reactive power
component). Figure 11b shows ss before/after TAC; from the APLC connection and after the
LPF settling time, ss is identified with the average power (does not include instantaneous
reactive power and does not include the oscillatory part of the instantaneous power).

Finally, Figure 12 shows the waveforms of the neutral current. Figure 12a presents the
neutral current before/after TIC, and Figure 12b shows the neutral current before/after
TAC. In both cases there is a significant mitigation of the current after compensation; the
small value observed in the figure corresponds to the harmonics still present in the sum of
the supply currents after compensation.
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Figure 11. (a) Norm of instantaneous power multivector, ss, before/after instantaneous compensation
(TIC); ss only includes the instantaneous power after compensation. (b) Norm of instantaneous power
multivector, ss, before/after average compensation (TAC); ss only includes the average power after
compensation once the settling time has elapsed. Compensation at t = 0.06 s.
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6. Conclusions

In this study, a systematic development of the IRPT in the framework of geometric
algebra (GA) was carried out. The most relevant definitions and theorems about power
variables, current terms, and compensation principles in the IRTP environment were
established. For this, the GA mathematical tool was used, which introduces a unified
methodology to a multidimensional problem such as that of electrical power. In this way, a
single mathematical object called an instantaneous power multivector was defined, which
encompasses both the instantaneous power and the different variables of instantaneous
reactive power. From there, it was possible to obtain the current and each of its orthog-
onal components: instantaneous power current and instantaneous reactive current. The
approach followed here requires neither coordinate transformations nor mathematical
transformations; the waveforms of voltages and line currents are handled directly.

The approach followed was to first carry out an analysis of three-phase systems, to
later obtain their subsequent generalization to multi-phase systems. Thus, it was shown
that an IRPT development is possible for any number of phases, where the power variables
are contained as components of the same mathematical entity.

Logically, the power variables and the current terms presented coincide with those
included in the technical literature in the traditional proposals. In the same way, the
fundamentals of compensation—instantaneous time compensation (TIC) and time average
compensation (TAC)—within the framework of the proposed formulation, were established.
Finally, the methodology developed was applied to two practical examples. First, the case
of a five-phase system was considered. The currents before and after the use of both types of
compensation (TIC and TAC), and the power balance, were shown. Then, in order to show
the effective use of the proposed methodology in a real engineering case, a non-sinusoidal
unbalanced three-phase system with neutral conductor was presented.
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