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ABSTRACT: Spectroscopic properties of molecules hold great
importance for the description of the molecular response under the
effect of UV/vis electromagnetic radiation. Computationally
expensive ab initio (e.g., MultiConfigurational SCF, Coupled
Cluster) or TDDFT methods are commonly used by the quantum
chemistry community to compute these properties. In this work,
we propose a (supervised) Machine Learning approach to model
the absorption spectra of organic molecules. Several supervised ML
methods have been tested such as Kernel Ridge Regression (KRR), Multiperceptron Neural Networs (MLP), and Convolutional
Neural Networks. [Ramakrishnan et al. J. Chem. Phys. 2015, 143, 084111. Ghosh et al. Adv. Sci. 2019, 6, 1801367.] The use of only
geometrical-atomic number descriptors (e.g., Coulomb Matrix) proved to be insufficient for an accurate training. [Ramakrishnan et
al. J. Chem. Phys. 2015, 143, 084111.] Inspired by the TDDFT theory, we propose to use a set of electronic descriptors obtained
from low-cost DFT methods: orbital energy differences (Δϵia = ϵa − ϵi), transition dipole moment between occupied and
unoccupied Kohn−Sham orbitals (⟨ϕi|r|ϕa⟩), and when relevant, charge-transfer character of monoexcitations (Ria). We
demonstrate that with these electronic descriptors and the use of Neural Networks we can predict not only a density of excited states
but also get a very good estimation of the absorption spectrum and charge-transfer character of the electronic excited states, reaching
results close to chemical accuracy (∼2 kcal/mol or ∼0.1 eV).

1. INTRODUCTION
The absorption spectra hold great importance for discovering
photoelectric features in chemistry and materials science. The
design of new photosensitive devices and materials for the
energy industry as well as healthcare has become a hot topic in
the last decades. A fast and accurate method that enables
discrimination between hundreds or thousands of candidates
becomes crucial to speed up new material discoveries with
desired spectroscopic properties. The increase of the exper-
imental and ab initio theoretical databases1,3 onmaterials pushed
forward a new way for their design, but usually they do not
incorporate all the required spectroscopic information. Then,
researchers rely on quantum mechanics techniques, usually
Time-Dependent Density Functional Theory (TDDFT)4,5 or
multiconfigurational wave function methods,6 for a rather
confident prediction of properties and characterization.
However, these types of calculations are usually complex to
perform and to understand for nontrained researchers,
particularly when trying to get reliable predictions of absorption
spectra from an initial selection within several candidates.
Recently, Machine Learning (ML) algorithms have attracted

the interest of the research community because the plausible
results obtained predicted materials properties with good
accuracy.1,7 ML algorithms have been used, for example, for
property classifications and group discovery,8,9 as well as
ground-state material and molecular property predic-
tions.7,10−12 It could also be very useful for understanding the

nature of many molecular properties. The case of electronic
excitations is able to be understood beyond the usual and very
rough orbital descriptions, as they used to be based on rather
approximate one-electron wave functions.13 In addition, the so-
called “inverse molecular design” could be aided if similarities
among ML descriptors are appropriately used for such
purposes.14

Profound research on several ML methods to be chosen, such
as supervised or unsupervised models, kernel regression
methods, or neural networks, etc., is required for each type of
target property. Moreover, the choice of the appropriate
molecular descriptors has to be made carefully in order to fulfill
some desired criteria: 1) simplicity: must be easy to produce, 2)
representability: must contain the required information
correlated to the target property, and 3) specificity: must be
unique enough to distinguish between different molecules.15

Several descriptors have been proposed in the literature with
different levels of applications.8,16−45 Ouyang et al.8 propose
also the SISSO method for constructing these molecular or
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material descriptors based on algebraic combinations of atomic
properties.
Several attempts have been made to predict theoretical

spectroscopic properties for molecules1,12 and materi-
als.11,15,16,46 The seminal work done by Ramakrishnan et al.1

proposed a kernel ridge regression model that can predict the
first excited state with good results. Besides, they proposed a
method called ΔML for the estimation of the shift between two
databases obtained using different Exchange-Correlation (XC)
functionals. In that work, the authors used the so-called
Coulomb Matrix7 as a geometrical descriptor related to atomic
numbers of vertex elements, which has gained notoriety because
of its low computational requirements and its good performance
for predicting molecular properties.1,2 However, it proved to be
insufficient for the proper prediction of the transition
probability.1 In a recent work, Westermayr et al. found a
machine learning model based on the use of a complex Neural
Network that using many conformers of the same molecule as a
training set can be used to accurately predict its absorption
spectra.47

In this work, we propose for the first time the use of some
calculated electronic properties in order to well characterize the
spectroscopic fingerprint of small molecules. By using a simple
Convolutional Neural Network model trained by low-cost
theoretical electronic calculations obtained from a 21k
molecular database, we can predict excitation energies together
with their corresponding charge-transfer character and oscillator
strength. The results presented in this paper are obtained by
employing electronic descriptors from ground-state DFT
calculations using a simple LDA XC-functional to predict the
absorption spectra at a TDDFT level using the PBE0 hybrid XC-
functional. The validity of the selected model is contrasted with
different Neural Network schemes, and the limitations are
described on the basis of obtained results. Hence, the resulting
trained Neural Network can be used to predict one or a large
number of molecules with minimal computational cost.
1.1. Molecular Database and Descriptor Selection. In

this work, we take a subset of theGDB-8molecular database also
used by Ramakrishnan et al.1,3 It consists of 21k small organic
molecules with relaxed geometries computed at the DFT level
by using Gaussian09 with the B3LYP/6-31(2df,p) functional.42

The selected molecules contain up to 8 carbon (C), oxygen (O),
nitrogen (N), and/or fluor (F) atoms, being the number of
hydrogen atoms required to make neutral the molecular charges.
Hereon, we will refer to it as the 8CONF database.
Although the Sorted Coulomb Matrix and its variants have

previously shown good results for the prediction of excitation
energy levels and density of states,1 the use of only geometrical
molecular descriptors proved to be insufficient for the correct
prediction of transition moments and oscillator strengths.
For that reason, we propose to use electronic molecular

descriptors from low-cost theoretical calculations (ground-
state’s LDA) to predict accurate spectroscopic properties
computed at the TDDFT level with a hybrid exchange-
correlation functional (PBE0). We use the Octopus48 code to
compute all electronic descriptors. The current version of the
code includes all required features and utilities to obtain them.49

No further structural relaxation with the PBE0 functional for the
training set was carried out in order to get predictions of
spectroscopic information based on pure electronic descriptors.
The choice of the electronic descriptor has been made

regarding the linear-response time-dependent DFT formulation

(LR-TDDFT).4,5 This approach aims to solve the time-
dependent Shrödinger equation

= = + +H t t i
t

t
H t T V V t( ) ( )

( )
, ( ) ( )ee ext (1)

where H is the system Hamiltonian composed by a kinetic part
T( ), an electron−electron potential component V( )ee , and the all-
other types of interaction contained in the time-dependent
external potential term V t( )ext . Usually, the latter contains the
nuclei-electron and external field interaction.
In LR-TDDFT, the time-dependent evolution of the

noninteracting system under an external field is described by
the noninteracting density−density response function χs(r, r′, ω)

=
+

* *
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whereφj stands for Kohn−Sham (KS) orbitals, ϵj and f j stand for
their corresponding energies and occupations, respectively, and

k j
is a Kronecker delta for orbital j and k spin functions. Finally,

ω is the frequency of the perturbing external field, and η is a
positive infinitesimal.
This function has poles on the excitation energy of the KS

system. In order to obtain the excitation energies of the full
interacting system, we have to solve the Dyson-like equation.
Casida et al. proposed a matrix formulation to solve this
equation, and he obtained the well-known Casida’s equation.50

By solving this equation, the excitation energy levels and
oscillator strengths are obtained as a combination of the
biorbital function = *r r r( ) ( ) ( )ia i a where subindices a and i
correspond to unoccupied and occupied states, respectively.
In the present work, we use the excitation energies and

oscillator strengths of 15k molecules computed using Casida’s
equations at the PBE0 functional level in the ground state, both
to train our ML model and as targets to validate it.
Let us return to the LR-TDDFT formulation in order to

define the descriptors we will use. The time evolution of the
polarizability function is defined in LR-TDDFT as the dipole−
dipole response function, which in the space of frequencies takes
the form

= | | | |

=

l
moo
noo

|
}oo
~oo

r r
( )

2

n

n n n

n1

0 0
2 2

(3)

where Ψ0 is the actual ground-state wave function of the
interacting system, Ψn is the n-th excited-state wave function, Ωn
is the excitation energy of the n-th excited state, μ and λ are
directions in the space, and r is the dipole operator in the ν
direction.
This function has also poles in the excitation energies of the

system, and the corresponding oscillation strengths are
proportional to the numerator. Therefore, it is also used to
compute the absorption spectra of molecular systems.
Based on eq 3 and the use of biorbital functions representing

monoelectronic excitations, we propose to use the following
electronic descriptors:

1. Orbital energy difference: Δϵia = ϵa − ϵi.
2. Kohn−Sham transition moment: = | | | |ria i a

2 2

Nevertheless, the only use of these two properties does not
fulfill the desired criteria of specificity described above. The
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calculated oscillator strengths depend on orbital overlapping
between unoccupied and occupied states and are hence
proportional to transition dipole moments. Besides, a work of
Guido et al.20 proposes an easy way to evaluate the charge-
transfer character of an excitation by defining a new index, Δr

=r
K R

K
i a ia ia

i a ia

,
2

,
2

(4)

= | | | | | |r rRia a a i i (5)

= +K X Yia ia ia (6)

where the intervening excitation Xia and de-excitation Yia
coefficients of the non-Hermitean solution correspond to the
TD formalism.
We would like to remark that, although Ria vanishes for

centrosymmetric molecules and, therefore, does not introduce
information in such cases, it remains relevant for all others. A
zero value of one of the descriptors for them means that they
remain only defined by those evaluated, keeping the full model
of descriptors for the rest of the database.
Following that index and knowing that only symmetrically

similar monoexcitation contributes to the real excited state
(Figure 1), we decided to also include the charge-transfer
character of KS monoexcitations as a descriptor, as well as the
TDDFT charge-transfer index of the excited state as a target
property to predict.
Consequently, in this work, we propose the use of the

combination of three electronic descriptors, namely (i)Δϵia, (ii)

ia
2, and (iii) Ria, computed at the ground-state LDA XC-

functional level and LCAO (LDA), for the 20 lowest-lying
monoelectronic transitions in order to predict three spectro-

scopic properties for the first ten excitations: a) excitation energy
(ΩI), b) oscillator strength ( f I), and c) charge-transfer character
(Δr) at the PBE0 accuracy level.
1.2. SupervisedMachine LearningModels. In this work,

we use Neural Networks (NNs) because of their recognized
versatility to find hidden correlations among several properties.
We explore different NN models such as the Multi-Layer
Perceptron (MLP) and the Convolution Neural Network
(CNN). Each model depends on a group of internal variables,
known as hyperparameters, such as the number of hidden layers,
the number of neurons per layer, the number of learning
iterations (also known as epochs), the activation functions, and
many others. Some of these variables need to be optimized to
fine-tune the NN.
Hyperparameter optimizations hold great importance for the

correct behavior of the NN. Their values can be empirically
selected, but the best combination can be only achieved by a
systematic search. Then, we applied a Bayesian Optimization as
implemented in scikit-learn51 to find the optimal values for the
number of hidden layers and the number of epochs.
Another important issue is how to feed the data to the NN.

The flexibility of the NN allows many configurations for
introducing the descriptors into the model. Consider dm,n an
element of the input tensorD, where n is the descriptor property
(Δϵia, ia

2, or Ria), andm is the considered a ← imonoexcitatiton
label. We used two strategies to introduce our data into the
neural network: (1) the 1D model, where each sample j is
described by an array of 3m elements (one-dimensional), where
a l l p r o p e r t i e s a r e i n t r o d u c e d s e q u e n t i a l l y :

=D R R( , , , ..., , , )j m m m1 1
2

1
2 , and (2) the 2D model,

where the descriptor properties for each m monoexcitation are
grouped forming a two-dimensional tensor of (m,3) dimension,

Figure 1. (a-d) Examples of four selected molecules from the 8CONF database. C, H, N, and O atoms are represented in gray, white, blue, and red,
respectively. (e) Correlation between orbital energy differences and LR-TDDFT calculated excitation energies I

LDA (first row from top to bottom).
The second row shows the calculated discrete absorption spectra for those molecules corresponding to such excitation energies. Transparency is
proportional to Casida’s coefficient, and color is proportional to the charge-transfer character.
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since all these properties are required to describe a particular
excitation: =D R R(( , , ), ..., ( , , ))j m m m1 1

2
1

2 .
The use of different properties, units, and ranges of magnitude

may affect the learning process. It is always recommended to
perform data preprocessing in order to give the same weight for
all properties and hence to ease the learning process. In this
work, we decided to scale all the data between [0, 1] using the
tool MinMaxScaler provided by the preprocessing package of
scikit-learn.51 Since the range of transition dipole moments is
always positive and presents a high density distribution for
values between 0 and 1, we transformed this property to a
logarithmic scale.
Alongside with the preprocessing methods several NN

models have been tested to find which will best perform for
predicting properties. Figure 2 represents the different ML
models tested in this work.
We construct our models using Keras and TensorFlow52,53

with the hyperparameters shown in Table 1 resulting from a

BayesianOptimization against the accuracy values obtained over
the test set. Since the number of hyperparameters is large, only
two have been optimized: 1) the number of layers and 2) the
number of epochs. The activation function, which transforms
the values between neurons across layers, has been selected
empirically resulting from the use of the eLU54 and ReLU55

functions. Both activation functions were alternated starting
with eLU. The full description of the models used in this work
can be found in the Supporting Information.
By using this configuration, the training process with 10k

molecules as a learning set and the prediction of 1k molecules
from the test set takes 1528 s for the slowest NN (CNN-2D
model) on a commercial laptop with an Intel i7 and 12 Gb of
RAM.
Table 2 shows the required times for the training and

predicting processes. It is important here to remark that once the
model is trained, the prediction of the spectroscopic properties is

almost instantaneously obtained. Comparing this performance
with the arduous task of solving the complex TDDFT equations
shows the potential of using such an ML tool.
The learning process is obviously biased by the learning data

set. In order to validate the input data distribution, the optimized
model, and its uncertainty, Musi et al. proposed to systematically
perform a stability test.56 The learning data set is validated by
repeating the neural network construction process (training and
predicting process) over 10 experiments, by randomly selecting
10k learning molecules out of 15k PBE0 available calculations.
We used 1k of the remaining 3k molecules as a control, which
will remain unchanged across all experiments.
Figure 3 shows the mean average errors (MAEs) for the first

10 excited states of 1k 8CONF small molecules used in the

control set. For each state, the mean value of the error over the
10 experiments is represented, and its standard deviation is
depicted as a bar line.
We can see that CNN-2D and MPL-1D models reach errors

of the excitation energy predictions that are close to chemical
accuracy ( 0.1 eV). Besides, they can also correctly predict the
charge-transfer character of the low-lying excited state. Notice
that Figure 1 shows Δr property as ranging from 0 to 4 Å. It

Figure 2. Simplified view of the topology built on top of Keras52 and Tensorf low.53 From left to right, MLP-1D, where the input data is treated
independently, and MLP-2D and CNN-2D, where the input data is treated as a combination of descriptors in both cases. See text.

Table 1. Relevant Hyperparameters Used to Build Our
Modelsa

model epochs
n. hidden
layers activation function

MLP-1D 1756 17 eLU/ReLU(negative slope =
0.01)54,55

MLP-2D 1419 4 eLU/ReLU(negative slope =
0.01)54,55

CNN-2D 1500 2 eLU/ReLU
aThe second and third columns show the number of Epochs and
Hidden Layers, respectively, as optimized for the model shown in the
first column. The fourth column specifies the type of activation
function and properties. For a complete list, see the Supporting
Information.

Table 2. Approximate Training and Predicting Times in
Seconds (s) for Each Model Using 10k Molecules and 1k
Molecules, Respectivelya

model
name

use
log

training process
(s)

predicting process
(s)

total time
(s)

MLP-1D yes 919 <1 919
MLP-2D yes 319 <1 319
CNN-2D yes 1521 <1 1522

aEven if CNN-2D takes 1521 s to train, which is the slowest one, the
response when predicting the properties is almost instantaneous.

Figure 3. Mean absolute error (MAE) on the prediction of the excited-
state energies Ω (top), charge-transfer character index Δr (middle),
and transitionmoments μ2 (down) for 10 low-lying states averaged over
the 10 repetitions of the sameMLmodel. The MAE standard deviation
of those experiments is also represented by the bar amplitude.
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means that a resulting error being smaller than 0.50 Å clearly
distinguishes between short- and long-range charge-transfer
characters. Regarding the transition moment prediction, we see
that the models can just fairly predict the first excitation
probability.
In the following section, we discuss the spectroscopic

properties obtained using the more promising models, and we
will remark on their strength and drawbacks.

2. RESULTS AND DISCUSSION
As already described above, the main goal of this work is to find
an adequate molecular-electronic descriptor that enables us to
obtain accurate spectroscopic properties using machine learning
techniques. From the analysis of accuracy and stability (Figure
3), we see that CNN-2D and MLP-2D produce the lowest error
for predictions. Therefore, we selected these models to perform
a deeper analysis.
In order to easily visualize the agreement of the models for

predicting the optical response of a molecule, we must also look

at the absorption spectra. Figure 4 shows some examples of
reconstruction for discrete and broadened absorption spectra
(More examples can be found in the Supporting Information.).
The discrete spectra is represented as impulses positioned at

the specific excitation energy of a given state. Their heights are
proportional to the calculated oscillator strength. The shown
color of each impulse represents the index for charge-transfer
character according to the color scales of Δr on the left side. It is
well-known that LDA functionals tend to underestimate
excitation energies between Kohn−Sham’s orbitals when they
involve a charge-transfer process. This is avoided in TDDFT
calculations because of the consideration of a fraction of the
exact Hartree exchange potential for hybrid functionals, such as
PBE0. If we look at the spectra of C5H9NO, the first excited-state
energy and nature in Figure 1, that was obtained with simpler
LDA calculation results used for NN learning, they can be
compared with the predicted results of Figure 4. A switch on the
charge-transfer character of the first excited state appears
together with a blue shift of the energy in the prediction. It

Figure 4. Discrete and broadened excitation spectra obtained with CNN-2D (a) and MLP-2D (b) for some example molecules contained in the
control group. On the X axis are the calculated excited-state energies Ω, and on the Y axis appear their oscillator strengths, f I. Green curves represent
reconstructed spectra from NN predictions, while the red ones represent those from PBE0-CASIDA calculations.

Figure 5. Distribution of the different metrics used to evaluate the prediction of the broadened spectra: (A, red) cross-correlation, (B, green) area
under the curve, and (C, blue) curve shift for (a) CNN-2D and (b) MLP-2D.
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means that even though our models were fed with rough LDA
calculated properties, the learning process appears to add the
effect of the exchange-correlation, being this is one of the more
time demanding parts when computing spectroscopic properties
by TDDFT routines. It could be very significant to save
computational resources and time for excited-state predictions
of large molecules.
Besides, the broadened spectra shown in Figure 4 have been

reconstructed as a sum of Gaussians centered at the excitation
energy which area is proportional to the oscillator strength. The
broadening factor has been chosen to be 0.15 eV at the half
width at the half-maximum (HWHM). We used the cross-
correlation between the normalized spectra, the curve shift, and
the curve area difference for comparison metrics between
reference and predicted broadened spectra, because the relevant
property in spectroscopy is usually the relative intensity instead
of its absolute value. Our models sometimes have difficulties in
distinguishing between closely lying excitations and can produce
a switch between states. However, the broadening procedure
enables us to mitigate this error by producing a good estimation
of the continuum absorption spectra.
Figure 5 shows the distribution of the parameters used to

evaluate the obtained broadened spectra. Both models show a
very good distribution of the cross-correlation values having
more than 93% situated above a value of 0.90. In addition,
almost all tests produce an area under the curve close to the 0
values, which indicates that the number of electrons is conserved
in the prediction. Regarding the shift of the predicted broadened
spectra, we observe that in spite of the fact the great majority
presents just a slight shift, both models tend to produce a small
red-shift of the absorption spectra when comparing with the
PBE0-CASIDA results.
Figure 6 shows the correlation graphics between the predicted

values and the reference for each of the spectroscopic properties
analyzed in this work.We can see that ourmodels produce a very

good correlation of the excitation energies for all excited states. A
better correlation is observed for higher excitation energies,
which can be attributed to a higher density of states found in the
database at such frequencies. Regarding the charge-transfer
index, we see that the CNN-2D model produces better
correlation for the low-lying states, while it loses this correlation
for higher states. It seems that both models hardly reproduce the
proper transition dipole moments, being the CNN-2D model is
slightly better for the low-lying states. A possible source of error
can be attributed to the diverse distribution of the values that
increases the complexity of the learning process and/or to
intrinsic inconsistencies of the theoretical calculations of
transition dipole moments when Kohn−Sham’s virtual orbitals
are involved. Other tests performed by increasing the size of our
learning set including up to 15k molecules suggest that enlarging
the database can improve the correlation of the Δr for higher
excitations but just produces a slight improvement in the
transition dipole moments.

3. CONCLUSIONS
Accurate knowledge of the spectroscopic properties of
molecules has been of great interest since long ago for
academical as well as industrial sectors. The high computational
cost of the quantum chemistry/physics techniques, mostly for
large molecules, and the lack of an extended experimental
database, as well as the increase on the reliability of the machine
learning and artificial intelligence methods, are inviting
researchers to apply those techniques for predicting such
physical properties. Nevertheless, the major difficulty usually
relies on finding the proper descriptors being able to correlate
with properties of interest.
As mentioned above, the main objective of this work is to find

adequate molecular-electronic descriptors to be used with
proper NN models to predict the theoretical absorption spectra
for a group of small organic molecules. We prove that the

Figure 6. Correlation graphics between predicted and calculated values for best models (CNN-2D (a) and MLP-2D (b)). From left to right, the
following are represented: excitation energies (Ω), charge-transfer coefficients (Δr), and transition moments (μ2). The color of the points corresponds
to the state number as ordered from the lowest energy according to the scale on the right-hand side.
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combination of certain selected electronic properties (Δϵia, Ria,

ia
2) resulting from low cost ground state LDA calculations

appears as good descriptors for the prediction of such
spectroscopic properties at a higher level of theory (e.g.,
TDDFT with the PBE0 functional without a geometry
relaxation). Besides, we demonstrate that a simple optimized
Convolutional Neural Network (CNN-2D) as well as a Multi
Layer Perceptron (MLP-2D) network can learn to supply the
exchange correlation correction required for predictions going
from LDA to PBE0 levels of theory.
Many others advantages arise as (i) the trained NNmodel can

be reused for further predictions on previously unknown
molecules; (ii) geometry optimizations are not required
although could be recommended; and (iii) the trained NN
model expects as input the ground state LDA electronic data,
and it can be obtained from any (TD)DFT code that managed
to produce this output.
Previous works were focused on the prediction of the first

excited state1 or on the density of states near to the LUMO2 by
using only geometrical or spacial descriptors. In this work, we
demonstrate the need of an electronic descriptor not only to
extend the prediction of the excitation energies at chemical
accuracy but also to give information about their charge-transfer
character. Oscillator strength values proved to be the most
challenging property for our models. Although we demonstrate
an enhancement on the prediction of the low-lying excitation
probabilities when the training set is augmented, the transition
dipole moments for high energy excitation remained poorly
correlated. Different sources of error that can be addressed for
this problem are discussed.
We can conclude that by constructing a large database which

would include all types of molecules (small, medium, and large
sized molecules), the presented method would be able to
precisely obtain spectroscopic properties for any unknown
molecule by just computing a low-cost DFT ground state using
the LDA functional. This goal can be achieved by using, for
example, the Novel Materials Discovery Laboratory (NOMAD)
open database.57

The natural next step is to provide even more fundamental
properties as descriptors to the Neural Network. However, in
progress work reveals that the use of the same properties coming
from unoptimized Linear Combination of Atomic Orbitals
(LCAO) calculations, typically used to begin a ground state
calculation, requires a more complex network optimization to
overcome the big gap between an LCAO level of theory and that
of PBE0 hybrid functional calculations. Besides, we are also
working on the use of the simplest ML techniques to predict
optimized geometries, that could avoid the tedious task of
geometry relaxations.58

All data from the calculations done in this work have been
stored in the database of the Novel Material Discovery
Laboratory (NOMAD) project57 and can be downloaded:
LDA from 10.17172/NOMAD/2021.10.18-2 and PBE0 from
10.17172/NOMAD/2021.10.18-3.
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