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Abstract: In this study, we consider the stochastic Konno–Oono system to investigate the soliton solu-
tions under the multiplicative sense. The multiplicative noise is considered firstly in the Stratonovich
sense and secondly in the Itô sense. Applications of the Konno–Oono system include current-fed
strings interacting with an external magnetic field. The F-expansion method is used to find the
different types of soliton solutions in the form of dark, singular, complex dark, combo, solitary,
periodic, mixed periodic, and rational functions. These solutions are applicable in the magnetic
field when we study it at the micro level. Additionally, the absolute, real, and imaginary physical
representations in three dimensions and the corresponding contour plots of some solutions are drawn
in the sense of noise by the different choices of parameters.

Keywords: stochastic Konno–Oono system; soliton solutions; Stratonovich sense; Itô sense;
F-expansion method
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1. Introduction

The magnetic field is a profile that is used as a tool to specify how the magnetic force
is distributed around and inside magnetic objects. The motional induction effect, which
results from the movement of the conducting crust via the Earth’s magnetic field, produces
an electromagnetic (EM) field during an earthquake. On the other hand, intriguing natural
phenomena, such as the seismic sea waves, are created as a result of these earthquakes.
These waves’ height and wavelength range are quite important. In particular, these waves
provide enormous power that can be transformed into a new type of energy that will
become essential in the coming years. Therefore, taking into account such natural difficulties
is crucial in mathematical physics. Nonlinear partial differential equations can be used
to represent the majority of natural occurrences (NPDEs) [1–3]. NPDEs act a key role
in describing complex natural phenomena [4]. The details of its solutions are frequently
discussed. The study of solitary solutions in the magnetic field is very important because it
helps improve our understanding of physical phenomena, such as the chiral soliton lattice
and the nematic liquid crystal in the magnetic field, among other things [5,6].

Every mathematical model has a random motion at the micro level instead of a linear
motion where it physically appears. Therefore, several researchers use multiplicative white
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noise in the mathematical model to add randomness [7–11]. Differential equations are
referred to as stochastic differential equations when this phrase appears. During the last
decade, when the epidemic starts, the classical models fails to describe the true behavior
of the disease dynamics. So, stochastic models are more suitable as compared to classical
models. Different researchers are working on the solutions of stochastic partial differential
equation [12–14]. In this study, we consider the stochastic coupled Konno–Oono (K–O)
system in the form [15]

φxt − 2φψ = νF(φ), (1)

ψt + 2φφx = 0, (2)

where φ and ψ are functions of x and t, ν is the noise strength, F(φ) is the noise term.
So, we study the two cases of multiplicative noise, as follows [16]:

1. F(φ) = φx · βt is taken for the Stratonovich sense;
2. F(φ) = φxβt is taken for the Itô sense.

We are limited to the case that noise is a constant in space. Applications of the Konno–
Oono equation system for current-fed strings interacting with an external magnetic field
have been studied [17–19], as well as the parallel transport of each curve point along the
direction of time where the connection is magnetic. Many researchers investigated the
coupled Konno–Oono equation, such as Mahmoud A. E. A., who investigated with the
help of the unified solver technique [20]; Jalil M. et al. used the extended trial equation
method [19]; Montri T. et al. used the extended simplest equation method [19]; Mirhosseini-
Alizamini S. M. used the new modified extended direct algebraic method [21]; Kang-Jia W.
used the simplified extended tanh-function method and variational direct method [22,23];
and some others are considered the Konno–Oono equation system for the sake of solitary
wave solutions. Wael W. M. [15] considered the stochastic version of the coupled Konno–
Oono model and investigated the solitary wave solution by using the generalized G′/G-
expansion method. He found the solutions in the form of trigonometric, hyperbolic and
rational solutions, but we extract the different forms of solutions, such as dark, singular,
complex dark, combo, solitary, periodic, mixed periodic, and rational functions. In this
study, we use the stochastic coupled model and investigate the soliton solution with the
help of the F-expansion method. This technique provides us the solutions in the forms
of dark, singular, complex dark, combo, solitary, periodic, mixed periodic, and rational
functions. This has not been used before to investigate the solutions of the Konno–Oono
system. In this study, this system is under consideration by the noise in two senses: the
first one is the Stratonovich sense, and secondly the Itô sense. These results are new and
very beneficial for the researcher when they consider the problem at the micro level. In the
next section, we consider the K–O system with Stratonovich sense to investigate the soliton
solution with the help of the F-expansion method [24–26].

2. Wiener Process

Suppose a non-differentiable Wiener process βt with the following properties [27]:

lim
∆t→0

∆βt = 0; (3)

lim
∆t→0

(∆βt)n

∆t
=

{
1, n = 2
0, n = 3, 4, · · · (4)

Definition 1. Stochastic process (βt)t≤0 is said to be a Brownian motion if the following conditions
are satisfied:

• βt is a continuous functionif t ≤ 0.
• β0 = 0.
• For τ1 < τ2, βτ2 − βτ1 is independent.
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• βτ2 − βτ1 has a Gaussian distribution κ(0, τ2 − τ1).

βt =
dβ
dt is the time derivative of Wiener process β(t).

3. Soliton Solutions for K–O System with Stratonovich Sense

In this section, we find the exact solutions for the K–O system with the Stratonovich
sense.

φxt − 2φψ = νφx · βt, (5)

ψt + 2φφx = 0. (6)

So, by choosing the wave transformation in the noise, such as [7,28,29],

φ(x, t) = U(ρ)e[νβ(t)−ν2t], ψ(x, t) = V(ρ), where ρ = x− ct

where U and V are deterministic functions, and c is the speed of light. βt is the time
derivative of Wiener process β(t). By substituting this transformation, Equations (5) and
(6) are converted to the SDEs, such as

−cU
′′
+ νβt − ν2U

′ − 2UV = νU
′ · βt, (7)

−cV
′
+ 2UU

′
e[νβ(t)−ν2t] = 0. (8)

Multiply (−2) by Equation (7) and obtain

2cU
′′ − 2νU

′
βt + 4UV = −2νU

′ · βt − 2ν2U
′
. (9)

Conversion between Itô and Stratonovich integrals, such as

νU
′ · βt = νU

′
βt + ν2U

′
, (10)

putting Equation (10) into Equation (9), obtain

cU
′′
+ 2UV = 0. (11)

Now, we take the expectation on both sides of Equation (8), and we obtain

−cU
′
+ 2UU

′E(e2νβ(t)) = 0. (12)

Here, we use the conditional expectation (conditioned by the filtration generated
by Wiener process), and E(e2νβ(t)) is identity element; for more detail, see [30–32]. So,
Equation (12) takes the form

−cU
′
+ 2UU

′
= 0, (13)

and integrating Equation (13) with respect to ρ, we obtain

V =
1
c
(U2 + γ), (14)

where γ is the constant of integration. Now putting Equation (14) into Equation (11),
we obtain

c2U
′′
+ 2U3 + 2γU = 0. (15)
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Now, we suppose that the solution is in the polynomial form from the improved
F-expansion method as follows:

U(ρ) = δ0 +
N

∑
i=−M

δ1Ωi(ρ), (16)

where δ0 and δi are constants that are determined later. The N is a positive integer that is
determined with the help of the homogeneous balancing principle. So, Ω(ρ) satisfies the
Riccati equation as follows:

Ω
′
(ρ) = P + QΩ(ρ) + RΩ2(ρ), (17)

where P, Q and R are constants. Substituting N = 1 in Equation (16), we obtain

U(ρ) = δ0 + δ1Ω(ρ) + δ−1Ω−1(ρ). (18)

Inserting Equation (18) in Equation (15) by the help of Equation (17), we obtain the
infinite series in Ωi(ρ). Setting all the same powers of Ωi(ρ) equal to zero yields a system
of equations. To find the values of the constant by the aid of Wolfram Mathematica 11.1
version, we gain the three cases, namely,
Case 1. When we take P = 0 we obtained

δ0 = i
√

γ, δ1 =
2i
√

γR
Q

, δ−1 = 0, c = −
2
√

γ

Q
,

Case 2. When we take Q = 0 we obtained

δ0 = 0, δ1 =
i
√

γ
√

R
√

2
√

P
, δ−1 =

i
√

γ
√

P
√

2
√

R
, c = −

√
γ

√
2
√

P
√

R
,

Case 3. When we take P = 0, Q = 0 but R 6= 0, then we obtained

δ0 = 0, δ1 = −icR, δ−1 = − iγ
3cR

,

Now, by substituting these values in Equation (18), then by the help of the wave
transformation, we obtain the different types of soliton, trigonometric and rational solutions
of Equation (5) as follows:

Family-I: When P = 0, Q = 1 and R = −1, then Ω(ρ) =

[
1
2 + 1

2 tanh
( ρ

2
)]

. So, we obtain

the soliton solutions of Equation (5) as follows:

φ1(x, t) =
[

i
√

γ− 2i
√

γ

(
1
2

tanh
(

1
2
(2
√

γt + x)
)
+

1
2

)]
e[βνt−ν2t]. (19)

Now from Equation (14), we obtain the solution of Equation (6) as

ψ1(x, t) = − 1
2
√

γ

(
γ +

(
i
√

γ− 2i
√

γ

(
1
2

tanh
[

1
2
(2
√

γt + x)
]
+

1
2

))2
)

. (20)

Family-II: When P = 0, Q = −1 and R = 1, then Ω(ρ) =

[
1
2 −

1
2 coth

( ρ
2
)]

. So, we obtained

the Soliton solutions of Equation (5) as follow,

φ2(x, t) =
[

i
√

γ− 2i
√

γ

(
1
2
− 1

2
coth

(
1
2
(x− 2

√
γt)
))]

e[βνt−ν2t], (21)

Now from Equation (14), we obtain the solution of Equation (6) as
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ψ2(x, t) =
1

2
√

γ

(
γ +

(
i
√

γ− 2i
√

γ

(
1
2
− 1

2
coth

(
1
2
(x− 2

√
γt)
)))2

)
. (22)

Family-III: When P = 1
2 , Q = 0 and R = − 1

2 , then Ω(ρ) =

[
tanh(ρ)± i sec h

]
or Ω(ρ) =[

coth(ρ)± csc h
]

. So, we obtain the soliton solutions of Equation (5) as follows:

φ3(x, t) =

 √
γ

√
2
(

tanh
(

x− i
√

2
√

γt
)
+ isech

(
x− i
√

2
√

γt
))

−
√

γ
(

tanh
(

x− i
√

2
√

γt
)
+ isech

(
x− i
√

2
√

γt
))

√
2

e[βνt−ν2t], (23)

Now, from Equation (14), we obtain the solution of Equation (6) as

ψ3(x, t) = − i√
2
√

γ

γ +

 √
γ

√
2
(

tanh
(

x− i
√

2
√

γt
)
+ isech

(
x− i
√

2
√

γt
))

−
√

γ
(

tanh
(

x− i
√

2
√

γt
)
+ isech

(
x− i
√

2
√

γt
))

√
2

2. (24)

or

φ4(x, t) =

 √
γ

√
2
(

coth
(

x− i
√

2
√

γt
)
+ csch

(
x− i
√

2
√

γt
))

−
√

γ
(

coth
(

x− i
√

2
√

γt
)
+ csch

(
x− i
√

2
√

γt
))

√
2

e[βνt−ν2t], (25)

Now, from Equation (14), we obtain the solution of Equation (6) as,

ψ4(x, t) = − i√
2
√

γ

γ +

 √
γ

√
2
(

coth
(

x− i
√

2
√

γt
)
+ csch

(
x− i
√

2
√

γt
))

−
√

γ
(

coth
(

x− i
√

2
√

γt
)
+ csch

(
x− i
√

2
√

γt
))

√
2

2. (26)

Family-IV: When P = 1, Q = 0 and R = −1, then Ω(ρ) = tanh[ρ] or Ω(ρ) = coth(ρ). So,
we obtain the soliton solutions of Equation (5) as follows:

φ5(x, t) =

√γ coth
(

x− i
√

γt√
2

)
√

2
−
√

γ tanh
(

x− i
√

γt√
2

)
√

2

e[βνt−ν2t], (27)

Now from Equation (14), we obtain the solution of Equation (6) as

ψ5(x, t) = − i
√

2√
γ

γ +

√γ coth
(

x− i
√

γt√
2

)
√

2
−
√

γ tanh
(

x− i
√

γt√
2

)
√

2

2, (28)
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or

φ6(x, t) =

√γ tanh
(

x− i
√

γt√
2

)
√

2
−
√

γ coth
(

x− i
√

γt√
2

)
√

2

e[βνt−ν2t], (29)

Now from Equation (14), we obtain the solution of Equation (6) as

ψ6(x, t) = − i
√

2√
γ

γ +

√γ tanh
(

x− i
√

γt√
2

)
√

2
−
√

γ coth
(

x− i
√

γt√
2

)
√

2

2. (30)

Family-V: When P = 1
2 , Q = 0 and R = 1

2 , then Ω(ρ) =

[
tan(ρ) + sec

]
or Ω(ρ) =[

cot(ρ) + csc(ρ)
]

. So, we obtain the trigonometric solutions of Equation (5) as follows:

φ7(x, t) =

 i
√

γ
(

tan
(√

2
√

γt + x
)
+ sec

(√
2
√

γt + x
))

√
2

+
i
√

γ
√

2
(

tan
(√

2
√

γt + x
)
+ sec

(√
2
√

γt + x
))
e[βνt−ν2t], (31)

Now, from Equation (14), we obtain the solution of Equation (6) as

ψ7(x, t) = − i
√

2√
γ
(γ

+

 √
γ

√
2
(

tan
(

x− i
√

γt√
2

)
+ sec

(
x− i

√
γt√
2

)) − √γ
(

tan
(

x− i
√

γt√
2

)
+ sec

(
x− i

√
γt√
2

))
√

2

2, (32)

or

φ8(x, t) =

 i
√

γ
√

2
(

csc
(√

2
√

γt + x
)
− cot

(√
2
√

γt + x
))

+
i
√

γ
(

csc
(√

2
√

γt + x
)
− cot

(√
2
√

γt + x
))

√
2

e[βνt−ν2t], (33)

Now, from Equation (14), we obtain the solution of Equation (6) as

ψ8(x, t) = − 1√
2
√

γ
(γ

+

 i
√

γ
√

2
(

cot
(√

2
√

γt + x
)
+ csc

(√
2
√

γt + x
)) +

i
√

γ
(

cot
(√

2
√

γt + x
)
+ csc

(√
2
√

γt + x
))

√
2

2. (34)

Family-VI: When P = − 1
2 , Q = 0 and R = − 1

2 , then Ω(ρ) =

[
sec(ρ) − tan(ρ)

]
or

Ω(ρ) =

[
csc(ρ) − cot(ρ)

]
. So, we obtain the trigonometric solutions of Equation (5)

as follows:
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φ9(x, t) =

 i
√

γ
(

sec
(

x−
√

2
√

γt
)
− tan

(
x−
√

2
√

γt
))

√
2

+
i
√

γ
√

2
(

sec
(

x−
√

2
√

γt
)
− tan

(
x−
√

2
√

γt
))
e[βνt−ν2t], (35)

Now, from Equation (14), we obtain the solution of Equation (6) as

ψ9(x, t) =
1√

2
√

γ
(γ

+

 i
√

γ
(

sec
(

x−
√

2
√

γt
)
− tan

(
x−
√

2
√

γt
))

√
2

+
i
√

γ
√

2
(

sec
(

x−
√

2
√

γt
)
− tan

(
x−
√

2
√

γt
))
2, (36)

or

φ10(x, t) =

 i
√

γ
√

2
(

csc
(

x−
√

2
√

γt
)
− cot

(
x−
√

2
√

γt
))

+
i
√

γ
(

csc
(

x−
√

2
√

γt
)
− cot

(
x−
√

2
√

γt
))

√
2

e[βνt−ν2t], (37)

Now from Equation (14), we obtain the solution of Equation (6) as

ψ10(x, t) =
1√

2
√

γ
(γ

+

 i
√

γ
√

2
(

csc
(

x−
√

2
√

γt
)
− cot

(
x−
√

2
√

γt
)) +

i
√

γ
(

csc
(

x−
√

2
√

γt
)
− cot

(
x−
√

2
√

γt
))

√
2

2. (38)

Family-VII: When P = 1, Q = 0 and R = 1, then Ω(ρ) =

[
tan(ρ)

]
. So, we obtain the

trigonometric solutions of Equation (5) as follows:

φ11(x, t) =

 i
√

γ tan
(√

γt√
2
+ x
)

√
2

+
i
√

γ cot
(√

γt√
2
+ x
)

√
2

e[βνt−ν2t], (39)

Now, from Equation (14), we obtain the solution of Equation (6) as

ψ11(x, t) = −
√

2√
γ

γ +

 i
√

γ tan
(√

γt√
2
+ x
)

√
2

+
i
√

γ cot
(√

γt√
2
+ x
)

√
2

2. (40)

Family-VIII: When P = −1, Q = 0 and R = −1, then Ω(ρ) =

[
cot(ρ)

]
. So, we obtain the

trigonometric solutions of Equation (5) as follows:

φ12(x, t) =

 i
√

γ tan
(

x−
√

γt√
2

)
√

2
+

i
√

γ cot
(

x−
√

γt√
2

)
√

2

e[βνt−ν2t], (41)
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Now, from Equation (14), we obtain the solution of Equation (6) as

ψ12(x, t) = −
√

2√
γ

γ +

 i
√

γ tan
(√

γt√
2
+ x
)

√
2

+
i
√

γ cot
(√

γt√
2
+ x
)

√
2

2. (42)

Family-IX: When P = 0, Q = 0 and R 6= 0, then Ω(ρ) =

[
− 1

Rρ+A

]
. So, we obtain the

rational solutions of Equation (5) as follows:

φ13(x, t) =
[

iγ(−A− R(x− ct))
3cR

− icR
A + R(x− ct)

]
e[βνt−ν2t], (43)

Now, from Equation (14), we obtain the solution of Equation (6) as

ψ13(x, t) =
γ +

(
iγ(−A−R(x−ct))

3cR − icR
A+R(x−ct)

)2

c
. (44)

4. Soliton Solutions for K–O System with Itô Sense

In this section, we find the exact solutions for the K–O system with the Stratonovich
sense.

φxt − 2φψ = νφxβt, (45)

ψt + 2φφx = 0. (46)

So, by choosing the wave transformation in the noise, such as

φ(x, t) = U(ρ)e[νβ(t)−ν2t], ψ(x, t) = V(ρ), where ρ = x− ct

where U and V are deterministic function, c is the speed of light. By substituting this
transformation into Equations (5) and (6) when F(φ) = φxβt, we converted to the stochastic
ODEs, such as

−cU
′′
+ νβt − ν2U

′ − 2UV = νU
′
βt, (47)

−cV
′
+ 2UU

′
e[νβ(t)−ν2t] = 0. (48)

We take the expectation E(e2νβ(t)) for the Equation (48), integrating once to obtain V
as

V =
1
c
(U2 + γ). (49)

Now, substituting Equation (49) into (47), we obtain

−cU
′′
+ cνU

′
+ 2U3 + 2γU = 0. (50)

Substituting N = 1 in Equation (16), we obtain

U(ρ) = δ0 + δ1Ω(ρ) + δ−1Ω−1(ρ). (51)

Inserting Equation (51) in Equation (50) with the help of Equation (17), we obtain the
infinite series in Ωi(ρ). Setting all the same powers of Ωi(ρ) equal to zero yields a system
of equations. To find the values of the constant with the aid of Wolfram Mathematica 11.1
version, we gain the three cases, namely:
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Case 1. When we take P = 0, we obtain

δ0 = −
√
−c2Q2 + cν2Q− 2γ√

6
, δ1 = 0, δ−1 =

√
−c2Q2 + cν2Q− 2γ

(
−c2Q2 + cν2Q + 4γ

)
3
√

6cR(cQ− ν2)
,

Case 2. When we take Q = 0, we obtain

δ0 = −
√
−c2PR− γ√

3
, δ1 = 0, δ−1 =

cP
√
−c2PR− γ√
c2PR + γ

, ν = −
√

2
√

c2PR− 2γ 4
√

c2PR + γ

33/4c
√

P
√

R
,

Case 3. When we take P = 0, Q = 0 but R 6= 0, then we obtain

δ0 =
i
√

γ√
3

, δ1 = 0, δ−1 =
4iγ3/2

3
√

3cν2R
,

Now, by substituting these values in Equation (51), then by the help of wave trans-
formation, we obtain the different types of soliton, trigonometric and rational solutions of
Equation (6) as follows:

Family-I: When P = 0, Q = 1 and R = −1, then Ω(ρ) =

[
1
2 + 1

2 tanh
( ρ

2
)]

. So, we obtain

the soliton solutions of Equation (45) as follows:

φ14(x, t) =

−√−c2 + cν2 − 2γ√
6

−
(
−c2 + cν2 + 4γ

)√
−c2 + cν2 − 2γ

3
√

6c(c− ν2)
(

1
2 tanh

(
1
2 (x− ct)

)
+ 1

2

)
e[βνt−ν2t], (52)

Now from Equation (49), we obtain the solution of Equation (46) as,

ψ14(x, t) =
1
c

−√−c2 + cν2 − 2γ√
6

−
(
−c2 + cν2 + 4γ

)√
−c2 + cν2 − 2γ

3
√

6c(c− ν2)
(

1
2 tanh

(
1
2 (x− ct)

)
+ 1

2

)
2

+
γ

c
. (53)

Family-II: When P = 0, Q = −1 and R = 1, then Ω(ρ) =

[
1
2 −

1
2 coth

( ρ
2
)]

. So, we obtain

the soliton solutions of Equation (45) as follows:

φ15(x, t) =

−√−c2 + cν2 − 2γ√
6

−
(
−c2 + cν2 + 4γ

)√
−c2 + cν2 − 2γ

3
√

6c(c− ν2)
(

1
2 −

1
2 coth

(
1
2 (x− ct)

))
e[βνt−ν2t], (54)

Now, from Equation (49), we obtain a solution of Equation (46) as

ψ15(x, t) =
1
c

 √
−c2 − cν2 − 2γ

(
−c2 − cν2 + 4γ

)
3
√

6c(−c− ν2)
(

1
2 −

1
2 coth

(
1
2 (x− ct)

)) − √−c2 − cν2 − 2γ√
6

2

+
γ

c
. (55)

Family-III: When P = 1
2 , Q = 0 and R = − 1

2 , then Ω(ρ) =

[
tanh(ρ)± i sec h

]
or Ω(ρ) =[

coth(ρ)± csc h
]

. So, we obtain the soliton solutions of Equation (45) as follows:

φ16(x, t) =

 c
√
− c2

2 − γ

2
√

c2

2 + γ(− coth(ct− x)− csch(ct− x))
−

√
− c2

2 − γ
√

3

 (56)

e

[
−

2βt

√
c2
2 −2γ

4
√

c2
2 +γ

33/4c
−

4t
(

c2
2 −2γ

)√
c2
2 +γ

3
√

3c2

]
, (57)
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Now, from Equation (49), we obtain a solution of Equation (46) as

ψ16(x, t) =
γ

c
+

1
c

−
√

c2

4 − γ
√

3
+

c
√

c2

4 − γ

2
√

γ− c2

4 (− tanh(ct− x) + isech(ct− x))

2

, (58)

or

φ17(x, t) =

−
√

c2

4 − γ
√

3
+

c
√

c2

4 − γ

2
√

γ− c2

4 (− tanh(ct− x) + isech(ct− x))

 (59)

e

[
−

2βt

√
c2
2 −2γ

4
√

c2
2 +γ

33/4c
−

4t
(

c2
2 −2γ

)√
c2
2 +γ

3
√

3c2

]
, (60)

and now from Equation (49), we obtain a solution of Equation (46) as

ψ17(x, t) =
γ

c
+

1
c

−
√

c2

4 − γ
√

3
+

c
√

c2

4 − γ

2
√

γ− c2

4 (coth(ct− x)± csch(ct− x))

2

. (61)

Family-IV: When P = 1, Q = 0 and R = −1, then Ω(ρ) = tanh[ρ] or Ω(ρ) = coth(ρ). So,
we obtain the soliton solutions of Equation (45) as follows:

φ18(x, t) =

−
√

c2

4 − γ
√

3
−

c
√

c2

4 − γ coth(ct− x)

2
√

γ− c2

4

e

 8t
(
− c2

4 −2γ

)√
γ− c2

4

3
√

3c2 +
2i
√

2βt

√
− c2

4 −2γ
4
√

γ− c2
4

33/4c


, (62)

and now from Equation (49), we obtain a solution of Equation (46) as

ψ18(x, t) =
1
c

(
−
√

c2 − γ√
3
− c
√

c2 − γ coth(ct− x)√
γ− c2

)2

+
γ

c
. (63)

or

φ19(x, t) =

−
√

c2

4 − γ
√

3
−

c
√

c2

4 − γ tanh(ct− x)

2
√

γ− c2

4

e

 8t
(
− c2

4 −2γ

)√
γ− c2

4

3
√

3c2 +
2i
√

2βt

√
− c2

4 −2γ
4
√

γ− c2
4

33/4c


, (64)

now from Equation (49), we obtain the solution of Equation (46) as

ψ19(x, t) =
1
c

(
−
√

c2 − γ√
3
− c
√

c2 − γ tanh(ct− x)√
γ− c2

)2

+
γ

c
. (65)

Family-V: When P = 1
2 , Q = 0 and R = 1

2 , then Ω(ρ) =

[
tan(ρ) + sec(ρ)

]
or Ω(ρ) =[

csc(ρ)− cot(ρ)
]

. So, we obtain the trigonometric solutions of Equation (45) as follows:

φ20(x, t) =

 c
√
− c2

4 − γ

2
√

c2

4 + γ(tan(ρ) + sec(ρ))
−

√
− c2

4 − γ
√

3

e
−

2
√

2βt

√
c2
4 −2γ

4
√

c2
4 +γ

33/4c
−

8t
(

c2
4 −2γ

)√
c2
4 +γ

3
√

3c2 , (66)
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now from Equation (49), we obtain the solution of Equation (46) as,

ψ20(x, t) =
1
c

 c
√
− c2

4 − γ

2
√

c2

4 + γ(cot(ct− x)− csc(ct− x))
−

√
− c2

4 − γ
√

3

2

+
γ

c
, (67)

or

φ21(x, t) =

 c
√
− c2

4 − γ

2
√

c2

4 + γ(csc(ρ)− cot(ρ))
−

√
− c2

4 − γ
√

3

e

[
−

2
√

2βt

√
c2
4 −2γ

4
√

c2
4 +γ

33/4c
−

8t
(

c2
4 −2γ

)√
c2
4 +γ

3
√

3c2

]
, (68)

now from Equation (49), we obtain the solution of Equation (46) as,

ψ21(x, t) =
1
c

 c
√
− c2

4 − γ

2
√

c2

4 + γ(tan(ct− x) + sec(ct− x))
−

√
− c2

4 − γ
√

3

2

+
γ

c
. (69)

Family-VI: When P = − 1
2 , Q = 0 and R = − 1

2 , then Ω(ρ) =

[
sec(ρ) − tan(ρ)

]
or

Ω(ρ) =

[
csc(ρ) + cot(ρ)

]
. So, we obtain the trigonometric solutions of Equation (45)

as follows:

φ22(x, t) =

 c
√
− c2

4 − γ

2
√

c2

4 + γ(cot(ρ) + csc(ρ))
−

√
− c2

4 − γ
√

3

e

− 2
√

2βt

√
c2
4 −2γ

4
√

c2
4 +γ

33/4c
−

8t
(

c2
4 −2γ

)√
c2
4 +γ

3
√

3c2


, (70)

and now from Equation (49), we obtain the solution of Equation (46) as,

ψ22(x, t) =
1
c

−
√
− c2

4 − γ
√

3
−

c
√
− c2

4 − γ

2
√

c2

4 + γ(tan(ct− x) + sec(ct− x))

2

+
γ

c
, (71)

or

φ23(x, t) =

 c
√
− c2

4 − γ

2
√

c2

4 + γ(tan(ct− x) + sec(ct− x))
−

√
− c2

4 − γ
√

3

e

− 2
√

2βt

√
c2
4 −2γ

4
√

c2
4 +γ

33/4c
−

8t
(

c2
4 −2γ

)√
c2
4 +γ

3
√

3c2


, (72)

and now from Equation (49), we obtain the solution of Equation (46) as,

ψ23(x, t) =
1
c

−
√
− c2

4 − γ
√

3
−

c
√
− c2

4 − γ

2
√

c2

4 + γ(− cot(ct− x)− csc(ct− x))

2

+
γ

c
. (73)

Family-VII: When P = 1, Q = 0 and R = 1, then Ω(ρ) =

[
tan(ρ)

]
. So, we obtain the

trigonometric solutions of Equation (5) as follows:

φ24(x, t) =

[
−
√
−c2 − γ√

3
− c
√
−c2 − γ cot(ct− x)√

c2 + γ

]
e

[
−
√

2βt
√

c2−2γ
4√c2+γ

33/4c
−

2t(c2−2γ)
√

c2+γ

3
√

3c2

]
, (74)
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now from Equation (49), we obtain the solution of Equation (46) as

ψ24(x, t) =
1
c

 c
√
− c2

4 − γ cot(ct− x)

2
√

c2

4 + γ
−

√
− c2

4 − γ
√

3

2

+
γ

c
. (75)

Family-VIII: When P = −1, Q = 0 and R = −1, then Ω(ρ) =

[
cot(ρ)

]
. So, we obtain the

trigonometric solutions of Equation (5) as follows:

φ25(x, t) =

[
c
√
−c2 − γ tan(ct− x)√

c2 + γ
−
√
−c2 − γ√

3

]
e

[√
2βt
√

c2−2γ
4√c2+γ

33/4c
−

2t(c2−2γ)
√

c2+γ

3
√

3c2

]
, (76)

and now from Equation (49), we obtain the solution of Equation (46) as,

ψ25(x, t) =
1
c

(
c
√
−c2 − γ tan(ct− x)√

c2 + γ
−
√
−c2 − γ√

3

)2

+
γ

c
. (77)

Family-IX: When P = 0, Q = 0 and R 6= 0, then Ω(ρ) =

[
− 1

Rρ+A

]
. So, we obtain the

rational solutions of Equation (5) as follows:

φ26(x, t) =

[
4iγ3/2(−A− R(x− ct))

3
√

3cν2R
+

i
√

γ√
3

]
e[βνt−ν2t], (78)

and now from Equation (49), we obtain the solution of Equation (46) as,

ψ26(x, t) =
1
c

γ +

(
i
√

γ√
3
− 2icγ3/2(−A− ct + x)

(c2 − 2γ)
√

c2 + γ

)2
. (79)

5. Graphical Discussion

Here, we demonstrate the physical interpretation of the results constructed above in
the presence of noise. These plots demonstrate the different soliton behaviors to illustrate
the noise in the physical interpretation of the solutions that are extracted with the help of
the F-expansion method. The absolute, real, and imaginary representations are presented
for some solutions with the help of of Wolfram Mathematica 11.1 version. In the presence
of noise ν, we plotted some graphs: Figure 1 is plotted for φ1(x, t) when we choose γ = 1.2
and ν = 0.9981, Figure 2 when γ = 1.9 and ν = 0.9871, Figure 3 when γ = 2.9 and ν = 0.9,
Figure 4 when γ = 0.9 and ν = 0.99, Figure 5 when γ = 1.9 and ν = 0.8, Figure 6 when
γ = 1.2 and ν = 0.8, Figure 7 when γ = 2.2, c = 1.7 and ν = 0.981, Figure 8 when γ = 0.9,
c = 1.5 and ν = 0.71, and Figure 9 when γ = 2.9, and ν = 0.9. For the function ψ, there
is no influence of noise here for ν = 0, and Figures 10 and 11 are plotted when γ = −2.2,
γ = −1.2, γ =. Figure 12 is drawn when γ = 0.52, and c = 1.9. Figure 13 is drawn
when γ = 3.2. Here, the selection of parameters is different because γ is an integrating
constantand c is the speed of light. However, the ν is the control parameter of the noise;
if we choose the smaller value of ν, the influence of noise in the plots is low and it does
not show the mush spikes.The solutions are extracted successfully in the form of the dark,
singular, complex dark, combo, solitary, periodic, mixed periodic, and rational functions
found in the presence of noise. The Konno–Oono system is a coupled model to show the
random behavior of the magnetic waves we involve noise in F(φ). These wave structures
are very helpful for the dynamical study of the Konno–Oono system. When we see the
problem at the micro level, the physical phenomena of the magnetic field appear randomly.
At the moment, this study is helpful for researchers. So, these wave structures are very
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beneficial in the study of the magnetic field when we consider the problem at the micro
level. The noise or randomness is clearly shown in the plots by the different choices of
parameters (Algorithm 1).

Figure 1. The absolute, real, and imaginary behavior in the shape of 3D and their corresponding
contour plots are dispatched for φ1(x, t).

Figure 2. The absolute, real, and imaginary behavior in the shape of 3D and their corresponding
contour plots are dispatched for φ2(x, t).
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Figure 3. The absolute, real, and imaginary behavior in the shape of 3D and their corresponding
contour plots are dispatched for φ4(x, t).

Figure 4. The absolute, real, and imaginary behavior in the shape of 3D and their corresponding
contour plots are dispatched for φ5(x, t).
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Figure 5. The absolute, real, and imaginary behavior in the shape of 3D and their corresponding
contour plots are dispatched for φ6(x, t).

Figure 6. The absolute, real, and imaginary behavior in the shape of 3D and their corresponding
contour plots are dispatched for φ7(x, t).
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Figure 7. The absolute, real, and imaginary behavior in the shape of 3D and their corresponding
contour plots are dispatched for φ14(x, t).

Figure 8. The absolute, real, and imaginary behavior in the shape of 3D and their corresponding
contour plots are dispatched for φ15(x, t).
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Figure 9. The absolute, real, and imaginary behavior in the shape of 3D and their corresponding
contour plots are dispatched for ψ17(x, t).

Figure 10. The absolute, real, and imaginary behavior in the shape of 3D and their corresponding
contour plots are dispatched for ψ2(x, t).
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Figure 11. The absolute, real, and imaginary behavior in the shape of 3D and their corresponding
contour plots are dispatched for ψ3(x, t).

Figure 12. The absolute, real, and imaginary behavior in the shape of 3D and their corresponding
contour plots are dispatched for ψ16(x, t).
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Figure 13. The absolute, real, and imaginary behavior in the shape of 3D and their corresponding
contour plots are dispatched for ψ17(x, t).

Algorithm 1 Pseudocode for WhiteNoise

1: procedure MY PROCEDURE
2: Define the function U(x, t)
3: Input all the constants ν, γ
4: Input time
5: Input space
6: noise = Interpolation[ Normal[RandomFunction[ WhiteNoiseProcess[ν], 0, input

time * samplesPerSec]][1]]
7: Compute the function

6. Conclusions

This study deals with the stochastic Konno–Oono system with multiplicative noise
under the Stratonovich sense and secondly the Itô sense. This model is applicable in
the magnetic field. The stochastic wave structures are constructed with the help of the
F-expansion technique. The different types of soliton solutions in the form of dark, singular,
complex dark, combo, solitary, periodic, mixed periodic, and rational functions are found in
the presence of noise. When we see the problem at the micro level, the physical phenomena
of the magnetic field appear randomly. At the moment, this study helps researchers. So,
these wave structures are very beneficial in the study of the magnetic field when we
consider the problem at the micro level. The noise or randomness is clearly shown in the
plots by the different choices of parameters. Additionally, the absolute, real, and imaginary
physical representation in three dimensions and their corresponding contour plots of some
solutions are drawn in the sense of noise by the different choices of parameters.
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