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Abstract: Pulse-controlled non-adiabatic quantum state transmission (QST) was proposed many
years ago. However, in practice environmental noise inevitably damages communication quality in
the proposal. In this paper, we study the optimally controlled non-adiabatic QST in the presence
of quantum noise. By using the Adam algorithm, we find that the optimal pulse sequence can
dramatically enhance the transmission fidelity of such an open system. In comparison with the
idealized pulse sequence in a closed system, it is interesting to note that the improvement of the
fidelity obtained by the Adam algorithm can even be better for a bath strongly coupled to the system.
Furthermore, we find that the Adam algorithm remains powerful for different numbers of sites and
different types of Lindblad operators, showing its universality in performing optimal control of
quantum information processing tasks.

Keywords: non-Markovian dynamics; optimal control; Adam algorithm

1. Introduction

Information transfer capability lies at the heart of quantum information processing.
Likewise, quantum technology requires high-fidelity QST through different locations,
e.g., between remote microwave cavity memories [1], a quantum processor and quantum
communication nodes [2], matter and light [3], from an ion to a photon [4], from a single
photon to a distant quantum-dot electron spin [5], quantum processor and quantum
communication nodes [2], velocity confinement of quantum gates, and QST in disordered one-
dimensional lattices in multiple quantum bit systems [6,7]. For short-distance communication,
the quantum spin chain could be a perfect candidate for a communication channel [8–11].
Numerous schemes have been suggested to realize perfect or near-perfect state
transfer [8,12–14]. For example, perfect state transfer can be done by construction of the
coupling structure of the chain [8,12–14]. High-fidelity QST through spin chains is made by
applying an external field [15–17]. The high-fidelity QST based on the Floquet-engineered
method has been proposed in the many-body problems [18].

Adiabatic evolution has been used in various quantum information processing tasks.
QST based on the adiabaticity has also been suggested for years [2,16,19,20]. Recently,
adiabatic QST in a semiconductor quantum-dot spin chain was studied [21] by adiabatically
manipulating exchange couplings, and the spin states can be transferred between distant
electrons. Typically, adiabatic QST requires a long time. However, the environmental
noise will ruin the adiabaticity and this detrimental effect will increase with the evolution
time [22]. Consequently, expedited adiabatic processes are desired [23,24]. Of particular
interest is Ref. [25], which suggests to speedup adiabatic processes in terms of various
external pulses sequences [22], specifically the acceleration of adiabatic QST in a spin chain
under zero-energy-change pulse control [25]. High fidelity can be achieved with controls
even in noisy environments [26–28]. Adiabatic transmission of an arbitrary entangled state
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through an extended SSH chain is also discussed [29], where the topological protection can
help to fight against the temporal noise caused by the imperfection in the control field.

For practical quantum state transfer, the corresponding physical communication
channel will always suffer from its surrounding environmental noise. The interaction
between the system and environment leads to a decrease in transmission fidelity between
the idealized and the practical [30,31]. For an open system, the environment is Markovian
when the memory effects can be neglected. Additionally, the Lindblad equation can be used
to describe the system dynamics [32,33]. When the memory effects cannot be neglected,
a non-Markovian description is necessary. The non-Markovianity of the environment
has a significant influence on the open system [34,35]. For example, the memory effects
of a non-Markovian environment can be applied to an opto-mechanical system to make
it macroscopically entangled [36]. In general, solving the dynamics of the system in a
non-Markovian environment is difficult, and the quantum state diffusion (QSD) equation is
currently a newly developed method to confront this challenge [37–41]. The QST through
a spin chain between two zero-temperature [37] or finite-temperature non-Markovian
baths [42] has been studied using the QSD approach. The transmission fidelity decreases
with the strength of the system–bath coupling and temperature.

On the other hand, besides these previous adiabatic QST proposals, Ref. [25] suggests
non-adiabatic QST in terms of external pulses in a spin chain. It is interesting to note that the
external pulses can somehow wash out the quasi-crossing between different energy levels
during the change of the time-dependent Hamiltonian. In this paper, we will extend the
protocol used in [25] to the zero-energy-cost control pulses and optimize control sequences
in the presence of noise. We will use the QSD equation to investigate the non-adiabatic
transport of the quantum state in a one-dimensional spin chain in the presence of noise.
Zero-energy-cost control has been introduced theoretically [43] to realize almost exact state
transmission in a spin chain in an open system. For the numerical optimization, we also
study the stochastic learning control of adiabatic speedup in a non-Markovian open qutrit
system [44]. The stochastic search procedures are proved to be powerful tools to design
control pulses for combating the detrimental environment. We will compare the theoretical
and numerical results for optimal pulse control in the realization of non-adiabatic QST
proposals. Specifically, we will check the non-Markovian effects of the environment on the
state transmission fidelity.

2. The Models and The Hamiltonian

The total Hamiltonian of the open quantum system can be written as

Htot = Hs + Hb + Hint, (1)

where Hs and Hb are the Hamiltonian of the system and bath, respectively. Hint is the
system–bath interaction Hamiltonian. For a bosonic environment, Hb = Σkωkb†

k bk (for
convenience, setting h̄ = 1), where b†

k (bk) is the bosonic creation (annihilation) operator of
kth mode with frequency ωk. The interaction Hamiltonian Hint reads

Hint = ∑
k
(g∗k L†bk + gkLb†

k ), (2)

where gk is the coupling strength between the system and the kth mode of the bath. L is the
Lindblad operator.

Initially, suppose that the bath is prepared at the thermal equilibrium state, the
density operator is ρ(0) = e−βHb /Z with temperature Tem. Z = Tr[e−βHb ] is the partition
function and β = 1/Tem (setting KB = 1). According to Refs. [17,45], the non-Markovian
master equation of the system can be derived by the non-Markovian QSD equation
technique [46,47].

∂

∂t
ρs = −i[Hs, ρs] + [L, ρsO

†
z(t)]− [L†, Oz(t)ρs]
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[L†, ρsO
†
ω(t)]− [L, Oω(t)ρs], (3)

where Oz,(ω) =
∫ t

0 dsαz,(ω)(t− s)Oz, and αz,(ω)(t− s) is the bath correlation function. The
quantum master equation is a time-convolutionless form truncated from the environmental
correlations [48,49]. Note that in the above equation, the weak coupling is assumed and
the O operators are assumed to be independent of noises [50].

For the bath we choose the Lorentz spectrum, with the spectral density J(ω) = Γ
π

ω
1+( ω

γ )2 ,

where Γ and γ are real parameters, γ represents the characteristic frequency of the bath,
and Γ represents the strength of the system–bath coupling. With the Lorentz spectrum, the
bath correlation functions can be written as

αz(t− s) = ΓTemΛ(t, s) + iΓΛ(t, s), (4)

αω(t− s) = ΓTemΛ(t, s), (5)

where Λ(t, s) = γ
2 e−γ|t−s| is an Ornstein–Uhlenbeck correlation function. 1/γ represents

the memory time of the environment. For Equations (4) and (5), we have the relations,

∂αz(ω)(t− s)
∂t

= −γαz(ω)(t− s). (6)

The Oz,(ω) operator satisfies [47,51],

∂Oz

∂t
= (

ΓTemγ

2
− iΓγ2

2
)L− γOz + [−iHs − (L†Oz + LOω), Oz], (7)

∂Oω

∂t
=

ΓTemγ

2
L† − γOω + [−iHs − (L†Oz + LOω), Oω ]. (8)

In the Markov limit, Equations (4) and (5) become αz(t− s) = αω(t− s) = ΓTemδ(t− s).
Oz =

ΓTem
2 L and Oω = ΓTem

2 L†. The master equation in Equation (3) reduces to the Lindblad
form [39,42,46,51],

∂

∂t
ρs = −i[Hs, ρs] +

ΓTem

2
[(2LρsL† − L†Lρs − ρsL†L)

+(2L†ρsL− LL†ρs − ρsLL†)]. (9)

For the system Hamiltonian, in this paper we choose the time-dependent one-dimensional
spin chain model as in Ref. [25],

Hs(t) = A(t)Hxy + B(t)Hz, (10)

where Hxy = J ∑N−1
i=1 (σx

i σx
i+1 + σ

y
i σ

y
i+1) is the hopping term, and Hz = ∑N

i=1 h(i)σz
i is the

on-site energy term. J represents the coupling between the nearest two sites, and now
we set J = −1.0 throughout. N is the number of sites. σx

i , σ
y
i , σz

i are the Pauli matrices
acting on spin i. i is the location of the sites, i = 1, 2, . . . , N. h(i) represents a non-zero
gradient field along the z-direction of the spin chain [25,52]. For h(i), h(i) < h(i + 1). T is
the total evolution time. For A(t) and B(t), they satisfy the conditions A(0) = A(T) = 0
and B(0) = 1, B(T) = −1. For simplicity, let h(i) = hmi. This model can be realized in
an optics lattice [53,54]. In this case, A(t) = sin(Ωt), B(t) = cos(Ωt), and Ω = π/T. The
model physically describes ultracold atoms in a one-dimensional optical lattice modulated
by laser beam [55].



Photonics 2023, 10, 274 4 of 12

Now suppose the initial state of the system is prepared as |Φs(0)〉 = |1 · · · 00〉. The
target is to transfer the state |1〉 at the first site to the other end of the chain at some time T
with |Φs(T)〉 = |0 · · · 01〉. The fidelity can be defined as

F(t) =
√
〈Φs(T)|ρs(t)|Φs(T)〉, (11)

where ρs(t) is the system’s reduced density matrix obtained in Equation (3).

3. Quantum State Transfer under Control

Normally, the existence of the environmental noise will destroy the quantum information
processing tasks, e.g., decreasing the state transmission fidelity [42] or adiabaticity [44].
Quantum control has been applied to resist the detrimental effects of the environment. A
recursive method [56] has been used to calculate the state transmission fidelity of arbitrary-
length X-X spin chains boundary-driven by non-Markovian environments. Quantum optimal
control [57] by adding a leakage elimination operator Hamiltonian to the system [44] has
been suggested to realize adiabatic speedup in a non-Markovian open qutrit system. The
leakage elimination operator Hamiltonian can be realized by a sequence of pulses, which can
be constructed as [22,58,59]

H(t) = [1 + c(t)]H0(t), (12)

where c(t) represents the control function. In Ref. [25], c(t) is chosen to be an arbitrary
function but always positive, as a result, the system average energy will be increased. In
this paper, the pulse is chosen as a zero area pulse as in Ref. [17,44] with a positive in the
first half period and a negative in the second half period. In this case, the average energy of
the system is not increased. Additionally, the type of the pulses has little influence on the
fidelity [60], so we take the rectangular pulse as an example [61,62]:

c(t) =

{
I, 2nτ < t < (2n + 1)τ,

−I, (2n + 1)τ < t < (2n + 2)τ,
(13)

where n = 0, 1, 2, . . ., I is the pulse strength and τ is half period of the pulses. For this
kind of pulse, it has been theoretically derived that if the pulses satisfy the condition
Iτ = 2πm, m = 1, 2, 3, . . . [22,59,63], the adiabatic speedup can be realized. Note that this
condition is only valid for a fixed energy gap and closed system. In our model, the energy
gap4E01 between the ground state and the first excited state is time-dependent. In this
case, the pulse strength can be tuned as I(t) = I/4E01 [63,64]. In our model, the energy
level crossing occurs at t = T/2, which leads to an infinite pulse intensity at that point. We
then use a suitable value instead at the crossing point. The Lindblad operation L = Σiσ

−
i is

used if not especially specified. σ−i = σx
i − iσy

i is the spin lowering operator.
In Figure 1, we plot the fidelity as a function of the rescaled time t/T with and without

control. For the control, the ideal pulse condition Iτ = 2π is used with I = 20, τ = π/10.
If we do not consider the environment (Γ = 0), the ideal pulse control can be used to
dramatically improve the fidelity. Near-perfect QST (F = 0.99837) can be obtained at
t/T = 1. However, when considering the environment (Γ = 0.01), the fidelity is low even
under control (F = 0.56041).

We have stressed that the ideal pulse conditions are derived for a closed system. Now
from Figure 1, we see that it loses its effectiveness in an open system. Stochastic learning
control of adiabatic speedup in a non-Markovian open qutrit system has been studied in
Ref. [44]. The stochastic search procedures are proved to be powerful tools for the design
of control pulses in an open system. Here we will use the Adam algorithm [65], which
is the extended version of stochastic gradient descent, to design the optimal pulse for
high-fidelity state transmission in the presence of an environment.
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F

t/T

 , with control
 , without control
 .01, with control
 , without control

Figure 1. The fidelity F versus the rescaled time t/T. The total evolution time T = π. With control
the parameters I = 20, τ = π/10. In the presence of an environment, the parameters are taken as
Γ = 0.01, γ = 20, Tem = 20. The number of sites N = 5.

Now the optimization objective can be denoted as minimizing the loss function, or
fidelity error. It is usually defined as

Loss(IN) = 1− F(IN) + λcmax. (14)

Here cmax is the maximum value of the control function c(t). λ is a constant, in this paper we
choose λ = 0.01. We introduce this term to constrain the control pulse. Equation (14) allows
for the competition between the infidelity 1− F(IN) and the maximum applied control
intensity cmax, thus avoiding the generation of an optimized pulse with too large intensity.

The Adam algorithm can be denoted as follows.

Step 1. Calculate the gradient vector g of the loss function Loss with respect to the selected
variable I

g = OI Loss(I). (15)

Step 2. Calculate the new exponential moving average

m = β1m + (1− β1)g. (16)

v = β2v + (1− β2)(g)2. (17)

Step 3. Compute the new bias-corrected moment vectors

m̂ = m/(1− β1). (18)

v̂ = v/(1− β2). (19)

Step 4. Update the variables I according to

I = I − αm̂/(
√

v̂ + ε). (20)

Step 5. Repeat the above steps until Loss < ξ or k > kmax (ξ and kmax denote the given
threshold and the maximum number of iterations, respectively).
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For the Adam algorithm, I indicates pulse intensity, g is the gradient, β is a fixed
parameter, α is the learning rate, and ε is a constant set to avoid the denominator being
zero. ξ is the given threshold.

The complete algorithm description of Adam is shown in (Algorithm 1).

Algorithm 1 Adam.

Initial pulse intensity Ii.
Parameter: EMA parameters β1 and β2, learning rate α and the epsilon ε.
for iteration k = 1, kmax, mi = 0, υi = 0.
• Randomly choose a spin pulse.
• Calculate the gradient gk = 5Ik Loss(Ik).
• Calculate the exponential moving averages

mk = β1mk−1 + (1− β1)gk,
υk = β2υk−1 + (1− β2)(gk)2.

• Calculate the bias-corrected moment vectors.

m̂k = mk/[1− (β1)
k], υ̂k = υk/[1− (β2)

k]

• Update the pulse Ik = Ik−1 − αm̂k/(
√

υ̂k + ε).
• Break if 1− F(JN) < ξ or k > kmax.
end for

The selection of the initial control pulse I(t) is either by experience or guessing. β1 (β2)
is the decay exponent of the first (second) moment estimate. This method is computationally
efficient and requires less memory. By updating gt, mt, vt, we can optimize the pulses
to improve the fidelity. The iteration is terminated if the loss function Loss(Ik) after the
iteration is less than a given threshold ξ (ξ = 0.001) or the iteration times k > kmax. If the
fidelity F is improved, we keep the updated pulse Ik. Otherwise, we discard it. In this way,
the pulse I is gradually optimized and finally, the optimal solution is obtained.

We first check the effectiveness of the Adam. In Figure 2 we plot the convergence behavior
of the algorithm. In the optimization, we set the final fidelity F to 0.999, correspondingly
the parameter ξ = 0.001. As an example, the environmental parameters are taken as
Γ = 0.003, 0.005, 0.007, γ = 2, Tem = 10, T = π, N = 5, and τ = π/10. In this case,
the learning rate α in the Adam algorithm is chosen to be 1, parameters β1 = 0.9 and
β2 = 0.999.

0 600 1200 1800 2400 3000
0.98

0.99

1.00

F(
T)

iteration times

 =0.003

 =0.005

 =0.007

Figure 2. The variation of the fidelity F(T) vs the number of iteration times for different Γ. γ = 2 and
Tem = 10.
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From Figure 2 we see that the algorithm converges quickly: after about 3000 iterations
the steady value is obtained. Therefore, the maximum number of iterations of 3000 is
chosen in this paper. We also find that when Γ becomes larger, the final fidelity F(T) is
smaller, which will be discussed later.

4. Results and Discussion

In this section, we will use the Adam algorithm to design the zero-area pulses for
high-fidelity non-adiabatic QST. We will also compare the performances of the ideal pulses
which are derived from the closed system [20,60] and Adam-optimized pulses. We use the
rectangular pulses as in Equation (13) and define them as ideal pulses. For Adam-optimized
pulses, we take I = 10 as our initial guess, which is different from the ideal pulses.

At first, we analyze the effects of the environment on transmission fidelity. In Figure 3,
we plot the final fidelity F(T) via Adam optimization as a function of the environmental
parameters Γ, γ, and T, respectively. To show the performance of the control, we also plot
F(T) without the control. Clearly, the optimal pulses designed by the Adam algorithm
show its effectiveness: the near-perfect QST can be realized even for a stronger bath (bigger
Γ, Tem, and γ). From Figure 3b, F(T) decreases with increasing γ, this is in accordance with
previous results: a non-Markovian bath will be helpful to realize an effective transmission
control that the fidelity can be boosted [43]. We also plot the pulse intensity I(t) as a function
of the rescaled time t/T in Figure 3c. For the ideal pulses, I(t) is tuned by the energy gap.
Although the intensities of the Adam pulses are different in different periods, it is constant
in the half period. So the Adam pulses might be easier to realize in the experiment.

To show the superiority of the Adam pulses to the ideal pulses, we calculate the fidelity
improvement Im, which is defined by

Im = F(T)Adam − F(T)ideal . (21)

where F(T)Adam and F(T)ideal are the final fidelity obtained from the Adam pulses and the
ideal pulses, respectively.

Figure 4 plots the fidelity improvement Im for different environemntal parameters
Γ, Tem, and γ, respectively. For different Γ, γ = 2, Tem = 10. For different γ, Γ = 0.04,
Tem = 10. For different Tem, Γ = 0.005, γ = 2. From Figure 4a, Im increases with increasing
Γ or Tem. A stronger bath will destroy the system more and as a result, the idea pulses lose
their effectiveness because it is only valid in a closed system. Then the Adam algorithm
shows its advantage in an open system. Figure 4b shows that Im first increases then
decreases with increasing γ. That is to say, for a more Markovian bath, the control loses its
effectiveness for both Adam and ideal pulses, then Im correspondingly becomes smaller.
The inset plot in Figure 4b shows the variation of fidelity with time for the three cases in the
Markov limit. The final fidelity after optimization of the Adam algorithm is F(T) = 0.4472.
The fidelities under ideal pulse and without control are F(T) = 0.4388 and F(T) = 0.4029,
respectively. In the Markovian limit, the control is ineffective and Im tends to be zero [43].
In sum, once the environmental parameters are ascertained, the corresponding pulses can
be designed.

We only consider a fixed number of sites N = 5 and the Lindblad operator L = Σiσ
−
i

in our previous discussion. Next, we consider different N and L. Figure 5a plots F(T)
versus N for ideal pulses and Adam pulses. As expected, F(T) decreases with increasing
N. However, the fidelity obtained by Adam pulses is always higher than the ideal case.
For the Adam pulses, F(T) decreases slowly with increasing N. Figure 5b plots the time
evolution of the fidelity F for L = Σiσ

−
i , Σiσ

x
i and Σiσ

z
i with Adam and ideal pulses. The

fidelity improvement of the Adam pulses can still be obtained for different L. In other
words, the control scheme is still powerful. For L = Σiσ

z
i , the final fidelity F(T) with Adam

pulses is the biggest, L = Σiσ
−
i is in the middle, and L = Σiσ

x
i is the smallest.
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0.01 0.02 0.03 0.04
0.5

0.6

0.7

0.8

0.9

1.0

(a)
Tem

F(
T)

 , Adam
 , Free evolution
 Tem, Adam
 Tem, Free evolution

5 10 15 20

2 5 8 11 14

0.4

0.6

0.8

1.0

(b)

F(
T)

 Adam
 Free evolution

  Adam
  ideal

0 2 4 6 8 10

Figure 3. The fidelity F(T) with and without optimal pulses for different parameters. Only one
environmental parameter is changed per line, the rest of the environmental parameters are the same.
L = Σiσ

−
i . (a) γ = 2, Tem = 10 for Γ. Γ = 0.005, γ = 2 for Tem. (b) Γ = 0.04, Tem = 10 for γ. (c) The

profile of the ideal pulses and Adam pulses. The environmental parameters Γ = 0.04, γ = 14, and
Tem = 10.
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Im
Figure 4. The fidelity improvement Im for different environmental parameters. L = Σiσ

−
i . (a) Γ and

Tem. For different Γ, γ = 2, Tem = 10. For different Tem, Γ = 0.005, γ = 2. (b) γ. Γ = 0.04, Tem = 10.

2 3 4 5 6 7

0.98

0.99

1.00

F(
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N

  Adam
  ideal

(a)

0.0 0.2 0.4 0.6 0.8 1.0
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 L= i
-
i ,Adam
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-
i ,ideal
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i ,Adam

 L= i
z
i ,ideal

 L= i
x
i ,Adam

 L= i
x
i ,ideal

Figure 5. (a) Variation of the fidelity F(T) vs the number of sites. Here Γ = 0.005, γ = 2, and
Tem = 10. (b) Change in fidelity F vs time t/T with the ideal pulses and the Adam pulses when
L = Σiσ

−
i , Σiσ

z
i , Σiσ

x
i . N = 5, Γ = 0.01, γ = 8, Tem = 15.

5. Conclusions

Optimal control has been widely applied in different fields of physics. In this paper, we
use the Adam algorithm, the extended version of the stochastic gradient descent algorithm,
to find the optimal pulses for the enhancement of the non-adiabatic QST fidelity in a non-
Markovian environment. The model is a time-dependent one-dimensional spin chain in a
finite-temperature heat bath. We use the non-Markovian quantum master equation, which
is derived from the QSD technique, to calculate the dynamics of the chain. We find that the
state transmission fidelity can be dramatically enhanced by the Adam pulses. Furthermore,
we compare two kinds of pulses: Adam pulses and ideal pulses. Though the fidelity can
be enhanced by the ideal pulses, it is always lower than the Adam pulses because it is
only valid in a closed system. The fidelity improvement Im for these two cases (Γ and γ)
becomes larger for a stronger bath, demonstrating the advantage of the Adam algorithm.
Furthermore, we consider different lengths of the chain and types of the Lindblad operator.
Our calculation results show that the Adam algorithm is still effective. Our investigation
shows that the optimal control algorithm is a powerful tool to design pulses in performing
quantum information processing tasks.
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