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1. Introduction

A fuzzy set is a collection of objects with a continuum of grades of membership func-
tion that assigns to each object a value ranging between zero and one. In 1960, Schweizer
and Sklar [1] introduced the concept of continuous triangular norm. In 1965, fuzzy set
theory was scrutinized by Zadeh [2]. In 1975, Kramosil and Michálek [3] provided a basic
introduction to the concept of fuzzy metric space, which is an extension of the statistical
(probabilistic) metric space. This list provides the best foundation for the development of
fixed-point theorem in fuzzy metric spaces. Afterward, in 1988, Grabiec [4] described the
completion postulate of fuzzy metric space (now referred to as G-complete fuzzy metric
space [5]). The result of the Banach contraction was then extended into G-complete fuzzy
metric spaces. George and Veeramani [6] altered the definition of the Cauchy sequence
instigated by Grabiec [4] because even R is not complete according to Grabiec’s criterion
of completion. Mutlu and Gurdal [7] introduced bipolar metric space as a kind of partial
distance. We provide bipolar metric spaces, for the most part in the context of completeness,
and prove some adjunctions of known fixed-point theorems. Bartwal et al. [8] initiated the
definition of fuzzy bipolar metric space and proved some fixed-point theorems. In 2022,
Tanusri Senapati, Ankush Chanda, and Vladimir Rakocevic [9] promoted the concept of
weak orthogonal metric spaces as a generalization of orthogonal metric spaces.

Recently, Sezen [10] provided an idea regarded controlled fuzzy metric spaces and
proved some related fixed-point results. Rakesh Tiwari and Shraddha Rajput [11] intro-
duced the notion of bipolar-controlled fuzzy metric spaces. The above analysis shows that
there are several works on fixed-point theory based on the previous two types of complete
fuzzy metric space [12–20].
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2. Preliminaries

Now, let us recall some basic definitions and lemmas that are used in this article.
Schweizer and Sklar [1] introduced the notion of a continuous ℵ-norm as:

Definition 1. A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is said to be a continuous J-
norm(continuous triangular norm) such that

1. ∗ is commutative and associative;
2. ∗ is continuous;
3. a∗1 = a for every a ∈ [0, 1];
4. a∗b ≤ c∗d whenever a ≤ c, b ≤ d and a, b, c, d ∈ [0, 1].

Kramosil and Michalek [3] introduced the concept of fuzzy metric space as follows:

Definition 2 ([3]). Let Ψ 6= ∅. The triplet (Ψ, Γ, ∗) is called a fuzzy metric space (FMS) if a fuzzy
set (F set) Γ is on Ψ2 × (0,+∞), and ∗ represents a continuous J-norm, such that ∀ η, σ, ω ∈ Ψ
and ℵ, s > 0;

(i) Γ(η, σ,ℵ) > 0;
(ii) Γ(η, σ,ℵ) = 1 iff η = σ;
(iii) Γ(η, σ,ℵ) = Γ(σ, η,ℵ);
(iv) Γ(η, ω,ℵ+ s) ≥ Γ(η, σ,ℵ)∗Γ(σ, ω, s);
(v) Γ(η, σ, .) : (0,+∞) −→ (0, 1] is continuous.

The notion of a fuzzy bipolar metric space was introduced by A. Bartwal, R. C. Dimri
and G. Prasad [8] as follows:

Definition 3 ([8]). Let Θ and Ψ be two nonvoid sets. A quadruple (Θ, Ψ, Γb, ∗) is called a fuzzy
bipolar metric space (FBMS), where ∗ is a continuous J-norm and an F set Γb is on Θ × Ψ ×
(0,+∞), such that ∀ ℵ, s, r > 0:

(FB1) Γb(η, σ,ℵ) > 0 for all (η, σ) ∈ Θ×Ψ;
(FB2) Γb(η, σ,ℵ) = 1 iff η = σ for all η ∈ Θ and σ ∈ Ψ;
(FB3) Γb(η, σ,ℵ) = Γb(σ, η,ℵ) for all η, σ ∈ Θ ∩Ψ;
(FB4) Γb(η1, σ2,ℵ+ s+ r) ≥ Γb(η1, σ1,ℵ)∗Γb(η2, σ1, s)∗Γb(η2, σ2, r) for all η1, η2 ∈ Θ and

σ1, σ2 ∈ Ψ;
(FB5) Γb(η, σ, .) : R+ → [0, 1] is left continuous;
(FB6) Γb(η, σ, .) is nondecreasing for all η ∈ Θ and σ ∈ Ψ.

Following this definition is an extended version of Definition 2 from fuzzy bipolar
metric space to the fuzzy-controlled bipolar metric space setting.

Definition 4. Let Θ and Ψ be two nonvoid sets and µ : Θ× Ψ → [1,+∞). A quadruplicate
(Θ, Ψ, Γb, ∗) is called a fuzzy-controlled bipolar metric space (FCBMS), where ∗ is a continuous
J-norm and an F set Γb is on Θ×Ψ× (0,+∞), such that ∀ ℵ, s, r > 0:

(FCB1) Γb(η, σ,ℵ) > 0 for all (η, σ) ∈ Θ×Ψ;
(FCB2) Γb(η, σ,ℵ) = 1 iff η = σ for all η ∈ Θ and σ ∈ Ψ;
(FCB3) Γb(η, σ,ℵ) = Γb(σ, η,ℵ) for all η, σ ∈ Θ ∩Ψ;
(FCB4) Γb(η1, σ2,ℵ + s+ r) ≥ Γb(η1, σ1, ℵ

µ(η1,σ1)
)∗Γb(η2, σ1, s

µ(η2,σ1)
)∗Γb(η2, σ2, r

µ(η2,σ2)
)

for all η1, η2 ∈ Θ and σ1, σ2 ∈ Ψ;
(FCB5) Γb(η, σ, .) : R+ → [0, 1] is left continuous;
(FCB6) Γb(η, σ, .) is nondecreasing for all η ∈ Θ and σ ∈ Ψ.

We present two examples from fuzzy-controlled bipolar metric spaces as follows:
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Example 1. Let Θ = {1, 2, 3, 4}, Ψ = {2, 4, 5, 6} and a mapping µ : Θ×Ψ → [1,+∞) defined
by µ(η, σ) = η + σ + 1. Γb : Θ×Ψ× (0,+∞)→ [0, 1] is defined by

Γb(η, σ,ℵ) = min{η, σ}+ ℵ
max{η, σ}+ ℵ ,

for all η ∈ Θ and σ ∈ Ψ. Then (Θ, Ψ, Γb, ?) is an FCBMS with the continuous J-norm ? such
that x∗b = xb. Now, µ(1, 2) = 4, µ(1, 4) = 6, µ(1, 5) = 7, µ(1, 6) = 8, µ(2, 2) = 5, µ(2, 4) =
7, µ(2, 5) = 8, µ(2, 6) = 9, µ(3, 2) = 6, µ(3, 4) = 8, µ(3, 5) = 9, µ(3, 6) = 10, µ(4, 2) =
7, µ(4, 4) = 9, µ(4, 5) = 10 and µ(4, 6) = 11.

Axioms (FCB1) to (FCB3) and (FCB5), (FCB6) are easily verified; now, we prove (FCB4). Let
η1 = 1, σ2 = 4, σ1 = 2 and η2 = 3. Then

Γb(1, 4,ℵ+ s+ r) =
1 + ℵ+ s+ r

4 + ℵ+ s+ r
.

Then,

1 + ℵ+ s+ r

4 + ℵ+ s+ r
≥
(

4 + ℵ
8 + ℵ

)(
12 + s

18 + s

)(
24 + r

32 + r

)
, ∀ ℵ, s, r > 0.

So,

Γb(1, 4,ℵ+ s+ r) ≥ Γb(1, 2,
ℵ

µ(1, 2)
) ? Γb(3, 2,

s

µ(3, 2)
) ? Γb(3, 4,

r

µ(3, 4)
).

Proceeding this way, (Θ, Ψ, Γb, ?) is an FCBMS.

Example 2. If we use the minimal J-norm rather than the product J-norm in Example 1, then
(Θ, Ψ, Γb, ?) is not an FCBMS. For instance, let η1 = 1, σ2 = 4, σ1 = 2, η2 = 3 and ℵ =
0.02, s = 0.03, r = 0.04 with µ(η, σ) = η + σ + 1, then

Γb(1, 4, 0.02 + 0.03 + 0.04) =
1 + 0.09
4 + 0.09

= 0.2665,

and

Γb(1, 2,
0.02

µ(1, 2)
) = 0.50124, Γb(3, 2,

0.03
µ(3, 2)

) = 0.6672, Γb(3, 4,
0.04

µ(3, 4)
) = 0.7503.

Clearly,

Γb(1, 4, 0.02 + 0.03 + 0.04) � Γb(1, 2,
0.02

µ(1, 2)
) ? Γb(3, 2,

0.03
µ(3, 2)

)

? Γb(3, 4,
0.04

µ(3, 4)
).

(Θ, Ψ, Γb, ?) is not an FCBMS with a minimum J-norm.

Furthermore, let us recall the definitions of a bisequence, Cauchy bisequence (CBS), com-
plete bisequence, and some lemmas in the setting of fuzzy-controlled bipolar metric spaces:

Definition 5. Let (Θ, Ψ, Γb, ∗) be an FCBMS. Then:

(i) A sequence ({ηα}, {σα}) ∈ Θ×Ψ is named a bisequence on (Θ, Ψ, Γb, ∗).
(ii) A bisequence ({ηα}, {σα}) on FCBMS (Θ, Ψ, Γb, ∗) is called a CBS if for each ε > 0, we can

find α0 ∈ N satisfying Γb(ηα, σβ,ℵ)→ 1 as α, β→ ∞ for all α, β ≥ α0 (α, β ∈ N), ℵ > 0.
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Definition 6. The FCBMS (Θ, Ψ, Γb, ∗) is called complete if every CBS ({ηα}, {σα}) ∈ Θ×Ψ
is convergent.

Lemma 1 ([8]). Let (Θ, Ψ, Γb, ∗) be an FBMS such that

Γb(η, σ, hℵ) ≥ Γb(η, σ,ℵ)

for all η ∈ Θ, σ ∈ Ψ and h ∈ (0, 1). Then η = σ.

Lemma 2. Let (Θ, Ψ, Γb, ∗) be an FCBMS such that

Γb(η, σ, hℵ) ≥ Γb(η, σ,ℵ)

for all η ∈ Θ, σ ∈ Ψ and h ∈ (0, 1). Then η = σ.

Proof. We have

Γb(η, σ, hℵ) ≥ Γb(η, σ,ℵ). (1)

Since hℵ < ℵ for all ℵ > 0 and h ∈ (0, 1), by (FCB-6) we have

Γb(η, σ, hℵ) ≤ Γb(η, σ,ℵ). (2)

From (1) and (2) and definition of FCBMS, we get η = σ.

Definition 7. A point η ∈ Θ ∩ Ψ is called a fixed point for the mapping Π on η ∈ Θ ∩ Ψ if
η = Πη.

Sezen [10] proved the following fixed-point theorem for fuzzy-controlled metric space:

Theorem 1. Let (Θ, Γb, ∗) be a fuzzy-controlled metric space with b : Θ × Θ → [1, ∞) and
suppose that

lim
t→∞

Γb(a, c, t) = 1,

for all a ∈ Θ. If g : Θ→ Θ satisfies:

Γb(ga, gc, ht) ≥ Γb(a, c, t),

for all a, c ∈ Θ, t > 0, where h ∈ (0, 1). Additionally, assume that for every a ∈ Θ, we obtain
limn→∞b(an, c) and limn→∞b(c, an), exist and are finite. Then, g has a unique fixed point in Θ.

Mihet [16] introduced the Ψ class of mappings as follows:

Definition 8. Let Ψ be the class of all maps ψ : [0, 1]→ [0, 1] such that ψ is non-decreasing, contin-
uous, and ψ(ξ) > ξ, ∀ ξ ∈ (0, 1). If ψ ∈ Ψ, then limn→∞ ψn(ξ) = 1 and ψ(1) = 1, ∀ ξ ∈ (0, 1).

Theorem 2. Let (Θ, Γb, ∗) be a controlled fuzzy metric space and g : Θ→ Θ be a mapping satisfying

Γb(a, c, t) > 0⇒ Γb(ga, gc, t) ≥ ψ(Γb(a, c, t)),

for all a, c ∈ Θ and t > 0. Then, g has a unique fixed point in Θ.

In this study, motivated by the results of Mutlu, A., Gürdal, U. [7], Bartwal, A., Dimri,
R. C., Prasad, G. [8] and Sezen [10], we proved a fixed-point theorem for fuzzy-controlled
contraction mappings in bipolar metric spaces.
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3. Main Results

First, we generalize and improve upon Sezen’s [10] Theorem 1 for fuzzy-controlled
bipolar metric space.

Theorem 3. Let (Θ, Ψ, Γb, ∗) be a complete FCBMS with µ : Θ×Ψ → [1,+∞) such that

lim
ℵ→∞

Γb(η, σ,ℵ) = 1, ∀η ∈ Θ, σ ∈ Ψ. (3)

Let Π : Θ ∪Ψ → Θ ∪Ψ be a mapping satisfying

(i) Π(Θ) ⊆ Θ and Π(Ψ) ⊆ Ψ;
(ii) Γb(Π(η), Π(σ), hℵ) ≥ Γb(η, σ,ℵ), ∀η ∈ Θ, σ ∈ Ψ and ℵ > 0, where h ∈ (0, 1).

Additionally, assume that for every η ∈ Θ,

lim
α→∞

µ(ηα, σ) and lim
α→∞

µ(σ, ηα) exist and are finite.

Then Π has a unique fixed point.

Proof. Let η0 ∈ Θ and σ0 ∈ Ψ. Then Π(ηα) = ηα+1 and Π(σα) = σα+1, ∀ α ∈ N ∪ {0}.
Therefore, ({ηα}, {σα}) is a bisequence on FCBMS (Θ, Ψ, Γb, ∗). Now,

Γb(η1, σ1,ℵ) = Γb(Π(η0), Π(σ0),ℵ) ≥ Γb(η0, σ0,
ℵ
h
),

for all ℵ > 0 and α ∈ N. Then,

Γb(ηα, σα,ℵ) = Γb(Π(ηα−1), Π(σα−1),ℵ) ≥ Γb(η0, σ0,
ℵ
hα

) (4)

and

Γb(ηα+1, σα,ℵ) = Γb(Π(ηα), Π(σn−1),ℵ) ≥ Γb(η1, σ0,
ℵ
hα

), (5)

for all ℵ > 0 and α ∈ N.
Let α < β ∈ N. Then,

Γb(ηα, σβ,ℵ) ≥Γb(ηα, σα,
ℵ

3µ(ηα, σα)
) ? Γb(ηα+1, σα,

ℵ
3µ(ηα+1, σα)

)

? Γb(ηα+1, σβ,
ℵ

3µ(ηα+1, σβ)
)

...

≥ Γb(ηα, σα,
ℵ

3µ(ηα, σα)
) ? Γb(ηα+1, σα,

ℵ
3µ(ηα+1, σα)

) ? · · ·

? Γb(ηβ−1, σβ−1,
ℵ

3β−1µ(ηα, σα)µ(ηα+1, σα+1) · · · µ(ηβ−1, σβ−1)
)

? Γb(ηβ, σβ−1,
ℵ

3β−1µ(ηα+1, σα)µ(ηα+2, σα+1) · · · µ(ηβ, σβ−1)
)

? Γb(ηβ, σβ,
ℵ

3β−1µ(ηα+1, σβ)µ(ηα+2, σβ) · · · µ(ηβ, σβ)
).
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Now applying (4) and (5) on each term of the RHS of the above inequality, we obtain

Γb(ηα, σβ,ℵ) ≥ Γb(η0, σ0,
ℵ

3hαµ(ηα, σα)
) ? Γb(η0, σ1,

ℵ
3hα+1µ(ηα+1, σα)

)

? · · · · · · ? Γb(η0, σ0,
ℵ

3β−1hβ+1µ(ηα+1, σβ)µ(ηα+2, σβ) · · · µ(ηβ, σβ)
).

From (3), as α, β→ ∞, we get

Γb(ηα, σβ,ℵ) ≥ 1, for all ℵ > 0.

Therefore, the bisequence ({ηα}, {σα}) is a CBS. Because (Θ, Ψ, Γb, ∗) is a complete space,
the bisequence ({ηα}, {σα}) → v. Then, {ηα} → v and {σα} → v, where v ∈ Θ ∩ Ψ.
From (FCB4), we derive

Γb(Π(v), v,ℵ) ≥ Γb(Π(v), Π(σα),
ℵ

3µ(v, σα)
)∗Γb(Π(ηα), Π(σα),

ℵ
3µ(ηα, σα)

)

∗Γb(Π(ηα), v,
ℵ

3µ(ηα, v)
),

for all α ∈ N and ℵ > 0 and as α→ ∞,

Γb(Π(v), v,ℵ)→ 1∗1∗1 = 1.

Therefore, Π(v) = v. Let v ∈ Θ ∩Ψ is another fixed point of Π. Because

Γb(v, v,ℵ) = Γb(Π(v), Π(v),ℵ) ≥ Γb(v, v,
ℵ
h
)

for h ∈ (0, 1) and ∀ ℵ > 0. Hence, v = v.

The following example supports Theorem 3.

Example 3. Let Θ = [0, 1], Ψ = {0} ∪N−{1} and µ : Θ×Ψ → [1,+∞) be a mapping defined
by µ(η, σ) = η + σ + 1. Define

Γb(η, σ,ℵ) = e−
(η−σ)2
ℵ , ∀ η ∈ Θ, σ ∈ Ψ,ℵ > 0.

Clearly, (Θ, Ψ, Γb, ∗) is a complete FCBMS, where ∗ is a continuous J-norm defined as x∗b = xb.
Define Π : Θ ∪Ψ → Θ ∪Ψ by

Π(v) =

{
v
2 , if v ∈ [0, 1],
0, if v ∈ N− {1},

for all v ∈ Θ ∪Ψ. Clearly, Π(Θ) ⊆ Θ and Π(Ψ) ⊆ Ψ. Let η ∈ [0, 1] and σ ∈ N− {1}, then

Γb(Π(η), Π(σ), hℵ) = Γb

(
η

2
, 0, hℵ

)

= e−
(

η
2

)2

hℵ

≥ e−
(η−σ)2
ℵ

= Γb(η, σ,ℵ).
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Now,

lim
α→∞

µ(ηα, σ) = lim
α→∞

(
η

2α
+ σ + 1) and lim

α→∞
µ(σ, ηα) = lim

α→∞
(σ +

η

2α
+ 1) exist and are finite.

Therefore, all the conditions of Theorem 3 are satisfied. Hence, Π has a unique fixed point, i.e.,
v = 0.

We prove the following result to modify the hypothesis (i) of Theorem 3 as follows:

Theorem 4. Let (Θ, Ψ, Γb, ∗) be a complete FCBMS with µ : Θ×Ψ → [1,+∞) such that

lim
ℵ→∞

Γb(η, σ,ℵ) = 1, ∀η ∈ Θ, σ ∈ Ψ. (6)

Let Π : Θ ∪Ψ → Θ ∪Ψ be a mapping satisfying

(i) Π(Θ) ⊆ Ψ and Π(Ψ) ⊆ Θ;
(ii) Γb(Π(σ), Π(η), hℵ) ≥ Γb(η, σ,ℵ), ∀η ∈ Θ, σ ∈ Ψ and ℵ > 0, here h ∈ (0, 1).

Additionally, assume that for every η ∈ Θ,

lim
α→∞

µ(ηα, σ) and lim
α→∞

µ(σ, ηα) exist and are finite.

Then Π has a unique fixed point.

Proof. Let η0 ∈ Θ and σ0 ∈ Ψ. Then, Π(ηα) = σα and Π(σα) = ηα+1 for all α ∈ N ∪ {0}.
Therefore, ({ηα}, {σα}) is a bisequence on FCBMS (Θ, Ψ, Γb, ∗). Now,

Γb(η1, σ0,ℵ) = Γb(Π(σ0), Π(η0),ℵ) ≥ Γb(η0, σ0,
ℵ
h
),

for all ℵ > 0 and α ∈ N. Then,

Γb(ηα, σα,ℵ) = Γb(Π(σα−1), Π(ηα),ℵ) ≥ Γb(η0, σ0,
ℵ

h2α
) (7)

and

Γb(ηα+1, σα,ℵ) = Γb(Π(σα), Π(ηα),ℵ) ≥ Γb(η0, σ0,
ℵ

h2α+1 ), (8)

for all ℵ > 0 and α ∈ N. Let α < β ∈ N. Then,

Γb(ηα, σβ,ℵ) ≥Γb(ηα, σα,
ℵ

3µ(ηα, σα)
) ? Γb(ηα+1, σα,

ℵ
3µ(ηα+1, σα)

)

? Γb(ηα+1, σβ,
ℵ

3µ(ηα+1, σβ)
)

...

≥ Γb(ηα, σα,
ℵ

3µ(ηα, σα)
) ? Γb(ηα+1, σα,

ℵ
3µ(ηα+1, σα)

) ? · · ·

? Γb(ηβ−1, σβ−1,
ℵ

3β−1µ(ηα, σα)µ(ηα+1, σα+1) · · · µ(ηβ−1, σβ−1)
)

? Γb(ηβ, σβ−1,
ℵ

3β−1µ(ηα+1, σα)µ(ηα+2, σα+1) · · · µ(ηβ, σβ−1)
)

? Γb(ηβ, σβ,
ℵ

3β−1µ(ηα+1, σβ)µ(ηα+2, σβ) · · · µ(ηβ, σβ)
).
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Now, applying (7) and (8) on each term of the RHS of the above inequality, we obtain

Γb(ηα, σβ,ℵ) ≥ Γb(η0, σ0,
ℵ

3h2αµ(ηα, σα)
) ? Γb(η0, σ0,

ℵ
3h2α+1µ(ηα+1, σα)

)

? · · · · · · ? Γb(η0, σ0,
ℵ

3β−1h2β+1µ(ηα+1, σβ)µ(ηα+2, σβ) · · · µ(ηβ, σβ)
).

From (6), as α, β→ ∞, we obtain

Γb(ηα, σβ,ℵ) ≥ 1 for all ℵ > 0.

Therefore, the bisequence ({ηα}, {σα}) is a CBS. Because (Θ, Ψ, Γb, ∗) is a complete space,
the bisequence ({ηα}, {σα}) is a convergent bisequence. Then, {ηα} → v and {σα} → v,
where v ∈ Θ ∩Ψ. Because

Γb(Π(v), v,ℵ) ≥ Γb(Π(v), Π(ηα),
ℵ

3µ(Π(v), Π(ηα))
)

∗Γb(Π(σα), Π(ηα),
ℵ

3µ(Π(σα), Π(ηα))
)

∗Γb(v, Π(ηα),
ℵ

3µ(v, Π(ηα))
),

for all α ∈ N and ℵ > 0 and as α→ ∞,

Γb(Π(v), v,ℵ)→ 1∗1∗1 = 1.

Therefore, Π(v) = v. Let v ∈ Θ ∩Ψ is another fixed point of Π. Because

Γb(v, v,ℵ) = Γb(Π(v), Π(v),ℵ) ≥ Γb(v, v,
ℵ
h
)

for h ∈ (0, 1) and ∀ ℵ > 0. Hence v = v.

We demonstrate our results with an example.

Example 4. Let Θ = [0, 1], Ψ = [1, 2], and µ : Θ × Ψ → [1,+∞) be a mapping defined by
µ(η, σ) = 2(η + σ) + 1. Define

Γb(η, σ,ℵ) = e−
(η−σ)2
ℵ , ∀ η ∈ Θ, σ ∈ Ψ,ℵ > 0.

Then, (Θ, Ψ, Γb, ∗) is a complete FCBMS with product J-norm. Define Π : Θ ∪Ψ → Θ ∪Ψ by
Π(v) = 1+v

2 for all v ∈ Θ ∪Ψ. Π(Θ) ⊆ Ψ and Π(Ψ) ⊆ Θ. Let η ∈ Θ and σ ∈ Ψ, then

Γb(Π(η), Π(σ), hℵ) = Γb

(
1 + η

2
,

1 + σ

2
, hℵ

)
= e−

(η−σ)2
4hℵ

≥ e−
(η−σ)2
ℵ

= Γb(η, σ,ℵ).

Now,

lim
α→∞

µ(ηα, σ) = lim
α→∞

(
2α − 1 + η

2α
+ σ + 1) and lim

α→∞
µ(σ, ηα) = lim

α→∞
(σ +

2α − 1 + η

2α
+ 1)

exist and are finite. Therefore, all the hypotheses of Theorem 4 are fulfilled. Hence, Π has a unique
fixed point, i.e., v = 1.
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Here, we prove the following theorem to modify the condition (ii) of Theorem 3 with
an increasing function. This theorem is an extension of Theorem 2 of Sezen [10] as follows:

Theorem 5. Let (Θ, Ψ, Γb, ∗) be a complete FCBMS with µ : Θ × Ψ → [1,+∞) and Π :
Θ ∪Ψ → Θ ∪Ψ a mapping satisfying

(i) Π(Θ) ⊆ Θ and Π(Ψ) ⊆ Ψ;
(ii) For η ∈ Θ, σ ∈ Ψ and ℵ > 0, Γb(η, σ,ℵ) > 0 ⇒ Γb(Π(η), Π(σ),ℵ) ≥ Ψ(Γb(η, σ,ℵ)),

where Ψ : (0, 1] → (0, 1] is an increasing mapping such that limα→∞ Ψα(h) = 1 and
Ψ(h) ≥ h ∀ h ∈ (0, 1].

Additionally, assume that for every η ∈ Θ,

lim
α→∞

µ(ηα, σ) and lim
α→∞

µ(σ, ηα) exist and are finite.

Then Π has a fixed point.

Proof. Let η0 ∈ Θ and σ0 ∈ Ψ. Then Π(ηα) = ηα+1 and Π(σα) = σα+1 for all α ∈ N∪ {0}.
Therefore, ({ηα}, {σα}) is a bisequence on FCBMS (Θ, Ψ, Γb, ∗). From (FCB2) for all ℵ > 0
and condition (ii) from Theorem 5, we obtain

Γb(ηα, σα,ℵ) ≥ Ψα(Γb(η0, σ0,ℵ)) (9)

and

Γb(ηα+1, σα,ℵ) ≥ Ψα(Γb(η1, σ0,ℵ)). (10)

Letting α < β, for α, β ∈ N, then

Γb(ηα, σβ,ℵ) ≥Γb(ηα, σα,
ℵ

3µ(ηα, σα)
) ? Γb(ηα+1, σα,

ℵ
3µ(ηα+1, σα)

)

? Γb(ηα+1, σβ,
ℵ

3µ(ηα+1, σβ)
)

...

≥ Γb(ηα, σα,
ℵ

3µ(ηα, σα)
) ? Γb(ηα+1, σα,

ℵ
3µ(ηα+1, σα)

) ? · · ·

? Γb(ηβ−1, σβ−1,
ℵ

3β−1µ(ηα, σα)µ(ηα+1, σα+1) · · · µ(ηβ−1, σβ−1)
)

? Γb(ηβ, σβ−1,
ℵ

3β−1µ(ηα+1, σα)µ(ηα+2, σα+1) · · · µ(ηβ, σβ−1)
)

? Γb(ηβ, σβ,
ℵ

3β−1µ(ηα+1, σβ)µ(ηα+2, σβ) · · · µ(ηβ, σβ)
).

Now, applying (9) and (10) on each term of the RHS of the above inequality, we have

Γb(ηα, σβ,ℵ) ≥ Ψα(Γb(η0, σ0,
ℵ

3µ(ηα, σα)
)) ? Ψα(Γb(η1, σ0,

ℵ
3µ(ηα+1, σα)

))

? · · · · · · ? Ψα(Γb(η0, σ0,
ℵ

3β−1µ(ηα+1, σβ)µ(ηα+2, σβ) · · · µ(ηβ, σβ)
)).

As α, β → ∞, Γb(ηα, σβ,ℵ) → 1 ∀ ℵ > 0. Applying the same lines of the proof of The-
orem 3, then v is a fixed point of Π. Because Γb(ηα, v,ℵ) → ℵ, for all ℵ > 0 and
Γb(ηα+1, Π(v),ℵ) = Γb(Π(ηα), Π(v),ℵ) ≥ Ψ(Γb(ηα, (v),ℵ)) ≥ Γb(ηα, (v),ℵ). Therefore,
ηα+1 → Π(v), which means that Π(v) = v.
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The following example is provided to demonstrate Theorem 5.

Example 5. Let Θ = {2, 4, 5, 6}, Ψ = {1, 2}, x∗b = xb for all x, b ∈ [0, 1], and µ : Θ× Ψ →
[1,+∞) be a mapping defined by µ(η, σ) = η + σ + 1. Define

Γb(η, σ,ℵ) = min{η, σ}+ ℵ
max{η, σ}+ ℵ for all η ∈ Θ, σ ∈ Ψ and for all ℵ > 0.

Then, (Θ, Ψ, Γb, ∗) is a complete FCBMS. A self-map Ψ on (0, 1] is defined by Ψ(h) =
√

h. Let
Π : Θ ∪ Ψ → Θ ∪ Ψ be a mapping such that Π(2) = Π(4) = Π(1) = 2, Π(5) = Π(6) = 4.
Then, all the hypotheses of Theorem 5 are fulfilled. Hence, η = 2 is a fixed point of Π.

Finally, we prove the following theorem to modify the condition (i) of Theorem 5
as follows:

Theorem 6. Let (Θ, Ψ, Γb, ∗) be a complete FCBMS with µ : Θ × Ψ → [1,+∞), and Π :
Θ ∪Ψ → Θ ∪Ψ a mapping satisfying

(i) Π(Θ) ⊆ Ψ and Π(Ψ) ⊆ Θ;
(ii) For η ∈ Θ, σ ∈ Ψ and ℵ > 0, Γb(η, σ,ℵ) > 0 =⇒ Γb(Π(σ), Π(η),ℵ) ≥ Ψ(Γb(η, σ,ℵ)).
Additionally, assume that for every η ∈ Θ,

lim
α→∞

µ(ηα, σ) and lim
α→∞

µ(σ, ηα) are exist and finite.

Then, Π has a fixed point.

Proof. The Theorem proof follows from Theorems 4 and 5.

4. Application

In this section, we prove the existence of solution for the integral equation. In the
literature, the solution of fixed-point theorem through integral equation in fuzzy bipolar
metric space was initiated by Gunaseelan Mani, Arul Joseph Gnanaprakasam, Haq Absar
Ul, Jarad Fahd, and Baloch Imran Abbas [13,15]. Motivated by the above work, we obtained
the solution to the integral equation in the fuzzy-controlled bipolar metric space setting by
using Theorem 3.

Consider the integral equation

η(p) = b(p) +
∫
O1∪O2

G(p, s, η(s))ds, p ∈ O1 ∪O2,

where O1 ∪O2 is a Lebesgue measurable set, and

(T1) G : (O2
1 ∪O2

2)×R+ → R+ and b ∈ L∞(O1) ∪ L∞(O2),
(T2) There is a continuous function θ : O2

1 ∪O2
2 → R+ and h ∈ (0, 1) such that

|G(p, s, η(s))− G(p, s, σ(s))| ≤ hθ(p, s)(|η(p)− σ(p)|),

for all p, s ∈ O2
1 ∪O2

2 ,
(T3) supp∈O1∪O2

∫
O1∪O2

θ(p, s)ds ≤ 1.

Define the mapping Γb : Θ×Ψ× (0,+∞)→ [0, 1] by

Γb(η, σ,ℵ) = e−
supp∈O1∪O2

|η(p)−σ(p)|
ℵ ,

for all η ∈ Θ, σ ∈ Ψ. Define µ : Θ × Ψ → [1,+∞) as a mapping defined by µ(η, σ) =
η + σ + 1. Then, (Θ, Ψ, Γb, ?) is a complete FCBMSs.



Axioms 2023, 12, 396 11 of 12

Theorem 7. Under assumptions (T1)–(T3), the integral equation has a unique solution in
L∞(O1) ∪ L∞(O2).

Proof. Let Θ = L∞(O1) and Ψ = L∞(O2) be two normed linear spaces, where O1,O2 are
Lebesgue measurable sets, and m(O1 ∪O2) < ∞.

Define the mappings Π : L∞(O1) ∪ L∞(O2)→ L∞(O1) ∪ L∞(O2) by

Π(η(p)) = b(p) +
∫
O1∪O2

G(p, s, η(s))ds, p ∈ O1 ∪O2.

Now,

Γb(Πη(p), Πσ(p), hℵ) = e− supp∈O1∪O2
|Πη(p)−Πσ(p)|

hℵ

= e− supp∈O1∪O2

|b(p)+
∫
O1∪O2

G(p,s,η(s))ds−b(p)−
∫
O1∪O2

G(p,s,σ(s))ds)|
hℵ

= e− supp∈O1∪O2

∣∣∣∣b(p)+∫O1∪O2
G(ℵ,s,η(s))ds−

(
b(p)+

∫
O1∪O2

G(ℵ,s,σ(s))ds

)∣∣∣∣
hℵ

≥ e− supp∈O1∪O2

∫
O1∪O2

|G(p,s,η(s))−G(p,s,σ(s))|ds
hℵ

≥ e− supp∈O1∪O2

∫
O1∪O2

hθ(p,s)(|η(p)−σ(p)|)ds
hℵ

≥ e− supp∈O1∪O2
|η(p)−σ(p)|

ℵ

= Γb(η, σ,ℵ).

Hence, all the hypotheses of Theorem 3 are verified; consequently, the integral equation
has a unique solution.

5. Conclusions

In this study, we introduced a new class of controlled bipolar metric spaces in a
fuzzy environment, in which the triple-controlled bipolar metric space was used. On the
foundation of this variety of controlled bipolar metric spaces, we additionally proved some
fixed-point theorems in FCBMSs. In order to strengthen the main results, an additive
example and supportive application was also presented. In [20], fixed-point theorems
without continuity were provied by using triangular property in FMSs by Shamas et al.
It is an interesting open problem to study the triangular property in FCBMSs and obtain
fixed-point results on the triangular property in FCBMSs.
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