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A B S T R A C T

Exact solutions of nonlinear equations have got formidable attraction of researchers because these solutions
demonstrate the physical behaviour of a model. In this paper, we focus on extracting some new exact solutions
of a (4+1)-dimensional Davey–Stewartson-Kadomtsev–Petviashvili (DSKP) equation. To find new travelling
wave solutions of the DSKP equation, we use ( 𝒢 ′

𝒢 ′+𝒢+A )-expansion technique. The obtained solutions are in the
form of the exponential and trigonometric functions. We obtain different kinds of waves solutions for specific
values of parameters. We simulate the achieved solutions in 3D and 2D plots.
Introduction

A partial differential equation (PDE) with time 𝑡 as one of the
independent variables is typically referred to as an evolution equation
(EE). Two basic examples of evolution equations are the wave equation
and the heat equation, which describe the vibration of a string or
heat conduction, respectively. But there are a lot of naturally occurring
nonlinear evolution equations in applied sciences and engineering that
need to be studied. In nonlinear systems research, exact solutions to
nonlinear EEs are crucial because these solutions can efficiently explain
a variety of actual phenomena, including oscillations, solitons, and
dispersion with a finite speed.

Researchers have used many analytical procedure to extract exact
solutions of nonlinear EEs. Alam et al. investigated travelling solutions
of nonlinear EEs using 𝐺′

𝐺 expansion approach [1]. Roshid studied
new exact solutions of a shallow water nonlinear equations using MSE
technique [2]. Saifullah et al. demonstrated interaction solutions for
a perturbed KdV equation using Hirota bilinear approach [3]. Hossieni
et al. investigated soliton solutions of chiral schrodinger equation using
MK technique [4]. Using symmetry analysis method, Kumar et al. stud-
ied multisoliton solutions of a Boussinesq equation [5]. Biswas et al.
demonstrated soliton solution of KdV–Caudrey–Dodd–Gibbon Equation
using modified F-expansion technique [6].

In the literature, researchers have analysed some well known NEEs
by using different analytical techniques. For instance, Wang inves-
tigated waves solutions of NEEs such as: Kadomtsov–Petviashvili–
Benjamin–Bona–Mahony equation [7], Camassa–Holm-Kadomtsev–Pe-
tviashvili equation [8], fractional wave equation [9], fractal Riemann
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wave equation [10], and short water wave equation [11], by using dif-
ferent techniques. The authors studied soliton solution of NEEs by using
Jacobi elliptic function method [12,13]. Ali et al. investigated waves
dynamics of coupled-Higgs equation via 𝜙6-expansion approach [14].
Ali et al. produced some soliton solutions of Bogoyavlenskii–Kadomt-
sev–Petviashvili using Hirot method [15]. We list some other NEEs in
[16–18].

In this research paper, we consider DSKP equation as:

4𝑥𝑡 − 𝑥𝑥𝑥𝑦 + 𝑥𝑦𝑦𝑦 + 12𝑥𝑦 + 12𝑥𝑦 − 6𝑧𝑤 = 0. (1)

This Fokas equation (1) represents a 4th-order nonlinear EEs in four
spatial and temporal coordinates. The well-known Greek mathemati-
cian A. S. Fokas initially obtained Eq. (1) by expanding the integrable
KP equation and the DS equation, which are the two basic nonlin-
ear evolution equations. It is possible to utilize this Fokas equation
to represent both non-elastic and elastic interactions between inter-
nal waves [19,20]. In light of this, it is possible to use the higher-
dimensional Fokas equation to model a variety of intricate nonlinear
phenomena, including shallow-water waves, plasma physics, and many
more. Eq. (1) has been investigated by using modified simple equa-
tion method [21]. The authors have studied kink, bell-shaped soliton,
cuspon and some other solitons of the Eq. (1). In this paper, we use
another expansion method which we called ( 𝒢 ′

𝒢 ′+𝒢+A )- method. This
method is rarely used for analysis of nonlinear EEs. Only few works
are available in the literature [22,23].

The primary goal of the proposed study is to derive the new so-
lutions in closed form of Eq. (1) utilizing the ( 𝒢 ′

𝒢 ′+𝒢+A )-expansion
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technique. In this context, the travelling wave solutions might be
expressed as ( 𝒢 ′

𝒢 ′+𝒢+A ) or 𝒢 = 𝒢 (𝜉), which satisfies the 𝒢 ′′(𝜉)+H1𝒢
′(𝜉)+

𝒰𝒢 (𝜉) + K where H1,𝒰 and K are constants and 𝒢 = 𝑑𝒢
𝑑𝜉 .

We organize the paper as: Section ‘‘Solution strategy of the
𝒢 ′

𝒢 ′+𝒢+A )- expansion method’’ provides the general strategy of solution
by using the proposed method. The application of the proposed strategy
is given in Section ‘‘New exact solutions of the (4 + 1)-dimensional

SKP equation’’. The graphical analysis of the obtained solutions is
rovided in Section ‘‘Numerical Simulations’’. Section ‘‘Conclusion’’
eals with the conclusion of the manuscript.

olution strategy of the ( 𝓖′

𝓖′+𝓖+A ) - expansion method

The detail strategy are as follows:
Consider any non-linear PDE with ℳ = (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) in five inde-

pendent variables 𝑥, 𝑦, 𝒛, 𝑤 and t as,


(

 ,𝑥,𝑦,𝑡,𝑥𝑥,𝑥𝑦,𝑥𝑡,𝑦𝑦,…
)

= 0. (2)

The proposed method is described in the following steps:
Step-1: Let the solution of (2) is considered as:

(𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = ℳ(𝜉), (3)

where 𝜉 = 𝑛𝑥+𝑚𝑦+𝑘𝑤+ 𝑟𝑤− 𝑝𝑡 such that 𝑛, 𝑚, 𝑘, 𝑟 and 𝑝 are constants.
Now substituting Eq. (3) in Eq. (2), this gives:

(ℳ,ℳ′,ℳ′′,…) = 0, (4)

where, ℳ′ = 𝑑ℳ
𝑑𝜉 ,ℳ

′′ = 𝑑2ℳ
𝑑𝜉2

,…
Step-2: For the proposed approach, we consider the solution of

q. (4) as:

(𝜉) =
𝑟
∑

𝑖=0
𝑎𝑖(

𝒢 ′

𝒢 ′+𝒢 + A
)𝑖, (5)

where 𝑟 provides the polynomial’s degree, which has to be find out
by utilizing the homogeneous balancing principle (HBP) and the co-
efficients of ( 𝒢 ′

𝒢 ′+𝒢+A )
𝑖 𝑎𝑖(𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑟); are evaluated by utilizing

system of algebraic equations generated from the proposed method.
Also, 𝒢 = 𝒢 (𝜉) satisfies:

𝒢 ′′ +𝒰𝒢 ′ + K𝒢 + H1K = 0, (6)

where, 𝑎𝑖(𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑝), H1,𝒰 ,K represents real numbers. By utilizing
the values of H1, 𝒰 , K, the ODE (6) is solved.

Step-3: Now substituting Eq. (5) into Eq. (4). The coefficients of
( 𝒢 ′

𝒢 ′+𝒢+A ) may be collected and equating them to zero, which we
will solve for the variables 𝑎𝑖, 𝜂 and H1,𝒰 ,K.

New exact solutions of the (4 + 1)-dimensional DSKP equation

In this portion, we give application of the suggested method. We
find some new solitary wave solution by using the developed strategy.
Now, we apply the proposed technique to figure out new exact solutions
of the Eq. (1). Recall the Eq. (1) as

4𝑥𝑡 − 𝑥𝑥𝑥𝑦 + 𝑥𝑦𝑦𝑦 + 12𝑥𝑦 + 12𝑥𝑦 − 6𝑧𝑤 = 0.

Let (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = ℳ(𝜉) where 𝜉 = 𝑛𝑥 + 𝑚𝑦 + 𝑘𝑤 + 𝑟𝑤 − 𝑝𝑡.
According to the above transformation, we have

𝑡𝑥 = −𝑝𝑛ℳ′′;𝑥𝑥𝑥𝑦 = 𝑛3𝑚ℳ′′′′;𝑥𝑦𝑦𝑦 = 𝑛𝑚3ℳ′′′′;𝑥𝑦 = 𝑛𝑚ℳ
′2
;

𝑥𝑦 = 𝑛𝑚 ′′;𝑧𝑤 = 𝑟𝑘ℳ′′.

Plugging these values in Eq. (1), we get

(𝑛𝑚3 − 𝑛3𝑚)ℳ′′′′ − (4𝑛𝑝 + 6𝑟𝑘)ℳ′′ + 12𝑛𝑚ℳ
′2
+ 12𝑛𝑚 ′′ = 0. (7)

Let 𝜂 = 𝑛𝑚3−𝑛3𝑚. and 𝑞 = 4𝑛𝑝+6𝑟𝑘. Then, the above ODE becomes:
′′′′ ′′ ′2 ′′
2

𝜂ℳ − 𝑞ℳ + 12𝑛𝑚ℳ + 12𝑛𝑚 = 0. (8)
Integrate the Eq. (8) two times, we obtain

𝜂ℳ′′ + 6𝑛𝑚ℳ2 − 𝑞ℳ = 0. (9)

With the aid of HBP, we have 𝑝 = 2. So, the solution of the above
equation becomes:

(𝜉) = 𝑎0 + 𝑎1(
𝒢 ′

𝒢 ′+𝒢 + A
) + 𝑎2(

𝒢 ′

𝒢 ′+𝒢 + A
)2. (10)

Using Eq. (10) into Eq. (9) and collect the coefficients of ( 𝒢 ′

𝒢 ′+𝒢+A )
and equate them to zero, we have:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

6𝑛𝑚𝑎20 + 𝜂𝒰K𝑎1 − 2𝜂K2𝑎1 + 2𝜂K2𝑎2 − 𝑞𝑎0 = 0,

𝜂𝒰2𝑎1 + 2𝜂K𝑎1 − 6𝜂𝒰K𝑎1 + 6𝜂K2𝑎1 + 6𝜂𝒰K𝑎2 − 12𝜂K2𝑎2
+12𝑛𝑚𝑎0𝑎1 − 𝑞𝑎1 = 0,

3𝜂𝒰𝑎1 − 3𝜂𝒰2𝑎1 − 6𝜂K𝑎1 + 9𝜂𝒰K𝑎1 − 6𝜂K2𝑎1 + 4𝜂𝒰2𝑎2 + 8𝜂K𝑎2
−24𝜂𝒰K𝑎2 + 24𝜂K2𝑎2+

6𝑛𝑛𝑎21 + 12𝑛𝑚𝑎0𝑎2 − 𝑞𝑎2 = 0,

2𝜂𝑎1 − 4𝜂𝒰𝑎1 + 2𝜂𝒰2𝑎1 + 4𝜂K𝑎1 − 4𝜂𝒰K𝑎1 + 2𝜂K2𝑎1 + 10𝜂𝒰𝑎2
−10𝜂𝒰2𝑎2 − 20𝜂K𝑎2 + 30𝜂𝒰K𝑎2−

20𝜂K2𝑎2 + 12𝑛𝑚𝑎1𝑎2 = 0,

6𝜂𝑎2 − 12𝜂𝒰𝑎2 + 6𝜂𝐵2𝑎2 + 12𝜂K𝑎2 − 12𝜂𝒰K𝑎2 + 6𝜂K2𝑎2 + 6𝑛𝑚𝑎22 = 0.

(11)

Solving Eq. (11), the following sets are achieved:
𝑆𝑒𝑡 − 1 ∶ For this set, we get

𝑞 = (−𝑛𝑚3 + 𝑛3𝑚)(𝒰2 − 4K), 𝑎0 = −(𝑚2 − 𝑛2)(K2 + K −𝒰K),

1 = (𝑚2 − 𝑛2)(𝒰2 −3K−𝒰 +2K2 +2K), 𝑎2 =
−𝑚2+𝑛2

6 (𝒰2 −2𝒰K−2𝒰 +
2 + 2K + 1). For this set, we consider two cases:

CASE#1: ( = 𝒰2 − 4K > 0)

1(𝜉) = − (𝑚2 − 𝑛2)(K2 + K −𝒰K) + (𝑚2 − 𝑛2)

× (𝒰2 − 3K −𝒰 + 2K2 + 2K)

×

[

1 +
2K1 + 2K2𝑒

√

𝜉

K1(−2 +𝒰 +
√

 ) + K2(−2 +𝒰 −
√

 )𝑒
√

𝜉

]

× −𝑚2+𝑛2
6 (𝒰2 − 2𝒰K

−2𝒰 + K2 + 2K + 1)

×

[

1 +
2K1 + 2K2𝑒

√

𝜉

K1(−2 +𝒰 +
√

 ) + K2(−2 +𝒰 −
√

 )𝑒
√

𝜉

]2

.

CASE#2: ( = 𝒰2 − 4K < 0)

𝜓2(𝜉) = −(𝑚2 − 𝑛2)(K2 + K −𝒰K) + (𝑚2 − 𝑛2)

× (𝒰2 − 3K −𝒰 + 2K2 + 2K)

×
⎡

⎢

⎢

⎣

(𝑣K1 −
√

−K2) cos(
√

−𝜉
2 ) + (𝒰K2 +

√

−K1) sin(
√

−𝜉
2 )

(𝒰 − 2)K1 −
√

−K2 cos(
√

−𝜉
2 + (𝒰 − 2)K2 +

√

−K1) sin(
√

−𝜉
2 )

⎤

⎥

⎥

⎦

(−𝑚
2+𝑛2
6 )(𝒰2 − 2𝒰K

−2𝒰 + K2 + 2K + 1)

×
⎡

⎢

⎢

⎣

(𝒰K1 −
√

−K2) cos(
√

−𝜉
2 ) + (𝒰K2 +

√

−K1) sin(
√

−𝜉
2 )

(𝒰 − 2)K1 −
√

−K2 cos(
√

−𝜉
2 + (𝒰 − 2)K2 +

√

−K1) sin(
√

−𝜉
2 )

⎤

⎥

⎥

⎦

2

.

𝑒𝑡 − 2 ∶ For this set, we have 𝑞 = (𝑛𝑚3 − 𝑛3𝑚)(𝒰2 − 4K) , 𝑎0 =
(−𝑚

2+𝑛2
6 )(𝒰2 − 6𝒰K + 6K2 + 2K),
𝑎1 = (𝑚2 − 𝑛2)(𝒰2 − 3K −𝒰 + 2K2 + 2K), 𝑎2 =

−𝑚2+𝑛2
6 (𝒰2 − 2𝒰K −

2𝒰 + K2 + 2K + 1). For this set, we take two cases:
CASE#1: ( = 𝒰2 − 4K > 0)

𝜓3(𝜉) = (−𝑚
2+𝑛2
6 )(𝒰2 − 6𝒰K + 6K2 + 2K) + (𝑚2 − 𝑛2)

× (𝒰2 − 3K −𝒰 + 2K2 + 2K)
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Fig. 1. The dynamics of the solution 𝜓1.
×

[

1 +
2K1 + 2K2𝑒

√

𝜉

K1(−2 +𝒰 +
√

 ) + K2(−2 +𝒰 −
√

 )𝑒
√

𝜉

]

+ (−𝑚
2+𝑛2
6 )(𝒰2 − 2𝒰K

−2𝒰 + K2 + 2K + 1)

×

[

1 +
2𝐶1 + 2𝐶2𝑒

√

𝜉

K1(−2 +𝒰 +
√

 ) + K2(−2 +𝒰 −
√

 )𝑒
√

𝜉

]2

.

CASE#2: ( = 𝒰2 − 4K < 0)

𝜓4(𝜉) = (−𝑚
2+𝑛2
6 )(𝒰2 − 6𝒰K + 6K2 + 2K) + (𝑚2 − 𝑛2)

× (𝒰2 − 3K −𝒰 + 2K2 + 2K)

×
⎡

⎢

⎢

⎣

(𝒰K1 −
√

−K2) cos(
√

−𝜉
2 ) + (𝒰K2 +

√

−K1) sin(
√

−𝜉
2 )

(𝒰 − 2)K1 −
√

−K2 cos(
√

−𝜉
2 + (𝒰 − 2)K2 +

√

−K1) sin(
√

−𝜉
2 )

⎤

⎥

⎥

⎦

+ (−𝑚
2+𝑛2
6 )(𝒰2 − 2𝒰K

−2𝒰 + K2 + 2K + 1)

×
⎡

⎢

⎢

(𝒰K1 −
√

−K2) cos(
√

−𝜉
2 ) + (𝒰K2 +

√

−K1) sin(
√

−𝜉
2 )

√

√

−𝜉 √

√

−𝜉

⎤

⎥

⎥

2

.

3

⎣ (𝒰 − 2)K1 − −K2 cos( 2 + (𝒰 − 2)K2 + −K1) sin( 2 ) ⎦
Numerical simulations

In this part, we graphically present the derived solutions in 3D and
2D. The first solution of the considered DSKP equation is presented in
Fig. 1. The solution is represented for specific values of parameters.
For the Fig. 1(a), we take 𝑦 = 1, 𝑧 = 1, 𝑤 = 1, 𝑛 = −0.06, 𝑚 = −4.7, 𝑝 =
5,K = 0.3,K1 = −4,2 = 2, = 2, 𝑘 = 2, 𝑟 = 2. For this case, we have
 > 0. So, the solution is real. Moreover, the Fig. 1(a) displays the kink
behaviour of the obtained solution in the 𝑥 − −𝑡 plane. The Fig. 1(b)
provides single strip soliton solutions in 𝑥–𝑦 plane for the specific values
of the parameter such as: 𝑧 = 1, 𝑤 = 1, 𝑡 = 0.1, 𝑛 = −0.9, 𝑚 = 0.5, 𝑝 =
0.9,K = 0.1,K1 = −1,K2 = 0.3, = −2, 𝑘 = 0.1, 𝑟 = −0.3. The Fig. 1(c)
portrays the singular soliton solutions in the 𝑥−−𝑧 plane for the specific
values of the parameter such as: 𝑦 = 1, 𝑤 = 1, 𝑡 = 0.1, 𝑛 = −0.9, 𝑚 =
0.5, 𝑝 = 0.3,K = 0.1,K1 = −1,K2 = 0.3, = −2, 𝑘 = 0.1, 𝑟 = −0.3. The
Fig. 1(d) provides the singular soliton solutions in the 𝑥−−𝑤 plane for
the same values of the parameters.

The second solution is defined for  < 0. We present the second
solution in Fig. 2. It represents multistrip soliton solutions for various
values of parameters. The Figs. 2(a) and 2(b) gives two strip soliton
solutions for the specific values of parameters: 𝑦 = 1, 𝑧 = 1, 𝑤 = 1.1, 𝑛 =
−0.1, 𝑚 = 1, 𝑝 = 0.1,K = 6,K = 3,K = 0.8, = 0.3, 𝑘 = −7, 𝑟 = 0.3. The
1 2
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Fig. 2. The dynamics of the solution 𝜓2.
Figs. 2(c)–2(f) shows multi-strip soliton solutions for specific values of
parameters.

The third solution is defined for  > 0. The graph of the solution is
depicted in Fig. 3 for various values of parameters. The Figs. 3(a) and
3(b) show the kink behaviour for parameter values: 𝑦 = 1, 𝑧 = 1, 𝑤 =
3, 𝑛 = 3, 𝑚 = 2, 𝑝 = 1,K = 1,K1 = −2,K2 = 2, = 4, 𝑘 = 0.8, 𝑟 = 0.7. The
Figs. 3(c)–3(d) show the dark soliton solution for 𝑝 = 2, and K = 2. he
Figs. 3(e)–3(f) show the bright soliton solution for 𝑝 = 2, and K = 3.
4

The last exact solution is valid for  < 0. The solution is presented
in Fig. 4. The graphs represents periodic waves solutions in different
planes. The Fig. 4(a) show travelling wave solution for 𝑦 = −2, 𝑧 =
1, 𝑤 = 1.1, 𝑛 = 2, 𝑚 = 1, 𝑝 = 1.2,K = 0.3,K1 = 0.3,K2 = 6, = 3, 𝑘 =
0.5, 𝑟 = −2. The Fig. 4(b) displays the convex travelling solution for
same values of the parameters in 𝑥−−𝑧 plane. The Figs. 4(c) and 4(d)
show the convex type travelling waves solutions in the 𝑥−−𝑦 and 𝑥−−𝑤
plane.
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Fig. 3. The dynamics of the solution 𝜓3.
Conclusion

In this paper, the analytical study of (4 + 1)-dimensional DSKP
equation has been carried out. The considered equation has been solved
to extract some new travelling waves solutions. The newly proposed
( 𝒢 ′

𝒢 ′+𝒢+A )-expansion technique has been used for the investigation of
new exact solutions. The obtained solution have not been studied for
the considered equation in the literature. The solutions have been
depicted via Mathematica software to study their nature and behaviour
5

for different values of parameters. We have observed different waves
structure such kink, singular solitons, and travelling waves. In near
future, we will use the proposed method to solve more NEEs equations
of higher dimensions.
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