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Simple Summary: In recent years, awareness of laboratory animals’ wellbeing and the refinement of
their house conditions have increased considerably. Mice (Mus musculus) are the most widely used
animal species in research in the European Union and are sociable and hierarchical creatures. It is
important to determine whether experimental conditions may affect research results and whether
housing conditions (isolated or grouped) may be one such condition. The aim of this study was,
therefore, to determine whether 4 weeks of social isolation (usual practice in our animal facility
and some laboratory procedures) could induce changes in different physiological parameters (body
weight, number of blood cells, and stress hormones) in adult mice. Although we did not observe
changes in body weight, red blood cells, and platelets, mice that were socially isolated for 4 weeks
did have a decreased count of some white blood cells. Moreover, levels of the main stress hormone
were higher in single-housed mice after 1 week, although they decreased after 4 weeks to the same
levels as those recorded for grouped mice. We can, therefore, conclude that social isolation affects
some physiological parameters, and that this should be taken into account in the interpretation of
research data.

Abstract: In the last years, different research groups have made considerable efforts to improve the
care and use of animals in research. Mice (Mus musculus) are the most widely used animal species
in research in the European Union and are sociable and hierarchical creatures. During experiments,
researchers tend to individualize males, but no consideration is given to whether this social isolation
causes them stress. The aim of this study was, therefore, to explore whether 4 weeks of social isolation
could induce changes in different physiological parameters in adult Crl:CD1(ICR) (CD1) males,
which may interfere with experimental results. Body weight, blood cells, and fecal corticosterone
metabolites levels were the analyzed parameters. Blood and fecal samples were collected at weeks
1 and 4 of the experimental procedure. Four weeks of single housing produced a significant time-
dependent decrease in monocytes and granulocytes. Fecal corticosterone metabolite levels were
higher in single-housed mice after 1 week and then normalized after 4 weeks of isolation. Body
weight, red blood cells, and platelets remained unchanged in both groups during this period. We can,
therefore, conclude that social isolation affects some immune and endocrine parameters, and that this
should be taken into account in the interpretation of research data.

Keywords: CD1 male; single-housed; stress; white blood cells; fecal corticosterone metabolites

1. Introduction

People working with laboratory animals display a high level of awareness of and
sensitivity to their wellbeing [1]. Indeed, perceived animal stress/pain has been found
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to negatively affect their professional quality of life [2]. In the last few years, different
research groups have made considerable efforts to improve the care and use of animals in
research, regardless of receiving specific funding for that purpose [3]. In the near future,
this new scientific knowledge will provide new evidence to improve the welfare and
housing conditions of animals used in scientific procedures. Current European legislation
on the protection of animals used for scientific purposes (Directive 210/63/EU) establishes
suitable environmental conditions and minimum enclosure measures by age and animal
species. It likewise indicates that social laboratory animals must be socially housed in
stable groups of compatible individuals. Moreover, procedures in which social animals
(e.g., dogs and monkeys) are completely isolated for prolonged periods are classified as
“severe” [4]. However, the legislation does not specify what exactly is considered to be a
“prolonged period”, and it does not mention other social species.

Despite the current debate about their predictive value in basic and regulatory stud-
ies [5–10], mice (Mus musculus) continue to be the most widely used animal species in
research in the European Union [11]. Mice are sociable and hierarchical animals that, in
nature, live in small groups. These groups are usually composed of a dominant male,
along with various females with their offspring, both young and juvenile. The size of the
territory occupied by a mouse family varies according to different factors. These include the
availability of different resources such as water and food, as well as the density of the group.
Occasionally, depending on the aggressiveness of the dominant male and the density of the
group, young males are found in the aforementioned family groups. Generally, however,
males are usually rejected from the group when they reach sexual maturity and can be
found in the wild alone or in groups of young males. As for the females, they usually
become part of the family group once they reach sexual maturity [12].

Unfortunately, in animal facilities, mice are not housed as in their natural environment,
thus interfering with their natural ethogram. Standard laboratory protocols stipulate that
mice’s weaning and maternal separation should occur 21 days after birth. Thereafter, it
is recommended that animals should be housed separately by sex and strain in stable
groups of 2–5 members, a step that fosters the formation of affiliate relationships between
individuals in the same group [13] and reduces aggression between males [14]. The
main reason for housing male mice individually is aggression between cage mates [15,16].
Recently, a series of recommendations were published to minimize aggression between
males [17].

Keeping newly weaned animals in the company of other animals is important for
the correct development of their brains. It has been shown that post-weaning social
deprivation by isolating mice induces neurochemical and morphological alterations, which
have a behavioral impact in adulthood [13,18–23]. Indeed, the lack of social experiences
before adulthood has been used in mice as a model to study some impaired behavioral
phenotypes, such as depression and anxiety-like behavior types [21–23], as well as social
and cognitive deficits [19,22]. In light of the above, in our animal facility, we implemented
two different strategies in order to minimize the number of single-housed newly weaned
male mice [24,25].

There is still an ongoing debate about whether adult male mice should be housed
individually [15,26]. Years ago, “isolation syndrome” was described, with authors argu-
ing that the inability to interact socially is likely to have a harmful effect on the animal’s
emotional state [27]. Indeed, it has been proven that adult male mice prefer the proximity
of another male over individual housing [28], which is considered a stressor. The gold
standard to measure the immediate physiological responses to stress is the activation of the
hypothalamic–pituitary–adrenal (HPA) axis, which induces the secretion of corticosterone
from the adrenal gland [29]. The effect of solitary versus social housing on corticosterone
levels has been explored with varying results. Some studies observed that single-housed
male mice had increased corticosterone levels after 14 days [30] and 15 months [31], whereas
others found that corticosterone levels remained stable up to 42 days of individual hous-
ing [32–36], and two studies reported that single housing caused less stress for mice than
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group housing [37,38]. Other indications of stress include changes in body weight and a
decrease in circulating leukocytes. A meta-analysis of the effects of individual housing
on body weight found considerable heterogeneity in different mice strains, with higher,
unchanged, or lower body weights being reported after social isolation [39]. Although it is
well documented that chronic stress results in immunosuppression [40], differences in the
total number of white blood cells have also been observed [36,41]. Among other factors,
these discrepancies may be due to differing isolation periods.

In our animal facility, researchers tend to individualize males during experiments for
a maximum period of 4 weeks, mainly for reasons of convenience and habit. However, no
consideration is given to whether individually housing animals may cause them stress. The
aim of the present study was, therefore, to determine if 4 weeks of social isolation could
induce changes in body weight, blood cells, or fecal corticosterone metabolite levels in
adult Crl:CD1(ICR) (CD1) males, which may interfere with experimental results.

2. Materials and Methods
2.1. Animals

Mice born in our specific pathogen-free (SPF) breeding zone were housed in pressur-
ized and individually ventilated 1145T (403 × 165 × 174 mm; 435 cm2 floor area; Tecniplast)
(PIV) cages (70 air changes/h). We used black poplar/aspen shavings (Lignocel Selectfine;
Rettenmaier Ibérica S.L.) as litter bedding, two sheets of tissue (Tork®; Essity Spain S.L)
irradiated by Ionisos Iberica as nesting material, and an in-house autoclaved cardboard
cylinder (12.5 × 9 × 0.5 cm; Sodispan Research S.L.) as enrichment. Once a week, socially
housed mice (four mice per cage), together with their nesting material, were transferred to
clean cages by picking them up at the base of their tails. This same procedure was carried
out with individually housed mice every other week. New irradiated tissue was added if
the nest was dirty or did not have enough material. Similarly, if the cardboard was broken,
a new cylinder was provided. Mice had ad libitum access to water and diet (irradiated
Special Diet Services RM1). Rooms were maintained under standard environmental con-
ditions (humidity: 55 ± 10%; temperature: 20–24 ◦C) with a 12 h light/dark cycle (lights
on at 8:00 a.m.). Animals were monitored every day. The animal care and use program
was accredited by AAALAC International. The Catalan Government and the PRBB Ethics
Committees approved the experimental protocol (DAAM 10576).

2.2. General Procedure

Eight-week-old CD1 mice were randomly assigned to two groups (grouped or single;
n = 8 per group, 16 in total) and housed in the same room in which they were born. We
selected CD1 adult male mice because they are outbred, are the most commonly used strain
in toxicology studies [42], and have a high propensity to fight, resulting in suggestions
that they may benefit from individual housing [15]. This does not apply to females, since
chronic social isolation is used to model separation-induced depression [43].

Animals were weighed on the same day of the week for 5 weeks (weeks 0–4; 9:00–11:00
a.m.). Sampling was carried out in a laboratory adjacent to the room where they were
housed, and the animals were transferred there 1 h before sampling, around 8:00 a.m.,
because the technician started their working day at this time. Sampling was carried out
at two different time points to minimize the influence of handling as much as possible.
Thus, on weeks 1 and 4 (9:00–11:00 a.m.), whole blood and fecal samples were obtained
from each animal (Figure 1). No signs of fighting were observed during the experimental
period. None of the animals had adverse events, and all completed the procedure. Animals
became part of our colony once the experiment was completed.



Animals 2023, 13, 1026 4 of 12Animals 2023, 13, x FOR PEER REVIEW 4 of 12 
 

 
Figure 1. Experimental procedure. 

2.3. Hematological Parameters 
Blood samples were obtained by facial vein puncture with a 21 G sterile hypodermic 

needle. We collected blood from the facial vein because this procedure has been found to 
have the least adverse effects on welfare parameters in mice [44,45]. Samples (15 μL) were 
collected using a Microvette® 200K3E with potassium salt of ethylenediaminetetraacetic 
acid (EDTA) as an anticoagulant. After sampling, mice were returned to their home cage. 
No residual bleeding was noted in any of the animals. The blood was immediately ana-
lyzed for complete blood count: white blood cells (WBC), lymphocytes, monocytes, gran-
ulocytes, red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT), mean corpuscular 
volume (MCV), hemoglobin (MCH) and hemoglobin concentration (MCHC), red cell dis-
tribution width (RDW), platelets (PLT), mean platelet volume (MPV), platelet distribution 
width (PDW), and platelet crit (PCT), using the fully automated CVM-Procell analyzer 
(CVM Diagnóstico Veterinario SL). Since the provider could not give us information about 
the exact mouse strain, age, or sex where the values were obtained, we first determined if 
the blood value range of male and female adult mice of different commonly used strains 
were within the normal range indicated by the analyzer. Our results indicated that the 
normal range provided for mice by the CVM-Procell analyzer can be used for adult male 
and female inbred C57BL/6J, outbred CD1, and immunodeficient CB17.Cg-PrkdcscidLystbg-

J/Crl (SCID Beige) mice (see Supplementary Materials). 

2.4. Fecal Corticosterone Metabolites 
Fecal samples were obtained by placing each animal on a grid. The fecal boluses were 

obtained directly, without possible contamination, placed in an Eppendorf, and stored at 
−80 °C to determine corticosterone metabolite levels. After sampling, mice were returned 
to their home cage. This sampling method may allow a more accurate interpretation of 
chronic stress [46]. Moreover, since there is no need to restrain the animals when collecting 
the samples, this is a good method for enabling repeated sampling without affecting the 
animal, meaning that fecal samples are less affected by hormone secretion fluctuation or 
pulsatility. Each fecal sample was homogenized, and an aliquot of 0.05 g was shaken with 
1 mL of 80% methanol in Tris/HCl 20 mM, pH 7.5, for 30 min on a multi-vortex. After 
centrifugation, each aliquot was frozen at −80 °C until analysis. Fecal corticosterone me-
tabolite levels were quantified in duplicate using an enzyme immunoassay (Corti-
costerone Elisa Kit, Enzo Life Sciences; ADI-900-097), in accordance with the manufac-
turer’s recommendations, and a Synergy HT microplate reader (BioTek Instruments, Inc., 
Winooski, VT, USA). Data were analyzed by means of a four-parameter logistic curve fit 
using MyAssays (Data Analysis Tools and Services for Bioassays; available at 
https://www.myassays.com/ accessed on 10 March 2023). The sensitivity of the assay was 
27.0 pg/mL, and the intra- and inter-assay variation coefficients were between 7% and 8%. 
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2.3. Hematological Parameters

Blood samples were obtained by facial vein puncture with a 21 G sterile hypodermic
needle. We collected blood from the facial vein because this procedure has been found to
have the least adverse effects on welfare parameters in mice [44,45]. Samples (15 µL) were
collected using a Microvette® 200K3E with potassium salt of ethylenediaminetetraacetic
acid (EDTA) as an anticoagulant. After sampling, mice were returned to their home cage.
No residual bleeding was noted in any of the animals. The blood was immediately analyzed
for complete blood count: white blood cells (WBC), lymphocytes, monocytes, granulocytes,
red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume
(MCV), hemoglobin (MCH) and hemoglobin concentration (MCHC), red cell distribution
width (RDW), platelets (PLT), mean platelet volume (MPV), platelet distribution width
(PDW), and platelet crit (PCT), using the fully automated CVM-Procell analyzer (CVM
Diagnóstico Veterinario SL). Since the provider could not give us information about the
exact mouse strain, age, or sex where the values were obtained, we first determined if the
blood value range of male and female adult mice of different commonly used strains were
within the normal range indicated by the analyzer. Our results indicated that the normal
range provided for mice by the CVM-Procell analyzer can be used for adult male and
female inbred C57BL/6J, outbred CD1, and immunodeficient CB17.Cg-PrkdcscidLystbg-J/Crl
(SCID Beige) mice (see Supplementary Materials).

2.4. Fecal Corticosterone Metabolites

Fecal samples were obtained by placing each animal on a grid. The fecal boluses were
obtained directly, without possible contamination, placed in an Eppendorf, and stored at
−80 ◦C to determine corticosterone metabolite levels. After sampling, mice were returned to
their home cage. This sampling method may allow a more accurate interpretation of chronic
stress [46]. Moreover, since there is no need to restrain the animals when collecting the
samples, this is a good method for enabling repeated sampling without affecting the animal,
meaning that fecal samples are less affected by hormone secretion fluctuation or pulsatility.
Each fecal sample was homogenized, and an aliquot of 0.05 g was shaken with 1 mL of 80%
methanol in Tris/HCl 20 mM, pH 7.5, for 30 min on a multi-vortex. After centrifugation,
each aliquot was frozen at −80 ◦C until analysis. Fecal corticosterone metabolite levels
were quantified in duplicate using an enzyme immunoassay (Corticosterone Elisa Kit, Enzo
Life Sciences; ADI-900-097), in accordance with the manufacturer’s recommendations, and
a Synergy HT microplate reader (BioTek Instruments, Inc., Winooski, VT, USA). Data were
analyzed by means of a four-parameter logistic curve fit using MyAssays (Data Analysis
Tools and Services for Bioassays; available at https://www.myassays.com/ accessed on 10
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March 2023). The sensitivity of the assay was 27.0 pg/mL, and the intra- and inter-assay
variation coefficients were between 7% and 8%.

2.5. Statistical Analyses

Experimental data were analyzed using GraphPad Prism software (6.01, GraphPad
Software, Inc, San Diego, CA, USA). Group comparisons were performed using a two-way
repeated-measures ANOVA, followed by Bonferroni’s post hoc test. Values of p < 0.05
were considered statistically significant (95% confidence). Data are expressed as the
mean ± standard deviation (SD). The results are described in accordance with the AR-
RIVE guidelines [47].

3. Results
3.1. Body Weight

Both groups of animals gained weight over the duration of the experiment
(F(4,56) = 34,78, p < 0.0001). Grouped mice weighed 36.27 ± 2.46 g at week 0 and
39.46 ± 2.99 g at week 4. Single-housed mice weighed 38.20 ± 3.55 g at week 0 and
41.19 ± 4.29 g at week 4 (Figure 2). No significant differences were observed between
grouped or single-housed mice.
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3.2. Hematological Parameters

The results indicated no significant differences between grouped and single mice in the
number of cells in the white series at either week 1 or week 4. However, significant differences
were observed as a function of time (F(1,14) = 5.52; p < 0.05; Table 1). The post hoc analysis
indicated a significant decrease in WBC after 4 weeks of single housing (t = 2.21; p < 0.05).
When white cell type was analyzed in more detail, significant time-dependent differences
were observed in monocytes (F(1,14) = 10.45; p < 0.01), and the post hoc analysis indicated a
significant drop in monocytes in single-housed mice after 4 weeks (t = 2.714 p < 0.05). Similarly,
significant time-dependent differences were observed in granulocytes (F(1,14) = 7.63; p < 0.05),
which dropped in single-housed mice after 4 weeks (t = 2.46, p < 0.05).
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Table 1. White blood cell population values. Data are expressed as the mean ± SD; n = 8 per group; *
p < 0.05 (week 1 single vs. week 4 single).

Week 1 Week 4 Normal
Range Unit

Grouped Single Grouped Single

WBC 8.45 ± 3.33 8.15 ± 4.59 7.18 ± 2.59 4.50 ± 1.83 * 0.8–6.8 109/L

Lymph 5.81 ± 2.42 5.73 ± 3.08 4.76 ± 0.81 4.13 ± 0.52 0.7–5.7 109/L

Mon 0.33 ± 0.14 0.34 ± 0.31 0.26 ± 0.11 0.10 ± 0.08 * 0.0–0.3 109/L

Gran 2.33 ± 0.93 1.96 ± 1.50 1.70 ± 0.48 1.07 ± 0.56 * 0.1–1.8 109/L
* White blood cell (WBC), lymphocyte (Lymph), monocyte (Mon), and granulocyte (Gran).

The results indicated no significant differences between groups or timepoints in terms
of the number of red blood cells and platelets (Table 2).

Table 2. Red blood cell and platelet values.

Week 1 Week 4 Normal
Range Unit

Grouped Single Grouped Single

RBC 8.79 ± 1.18 8.32 ± 1.42 8.76 ± 0.95 8.53 ± 0.93 6.36–9.42 1012/L

HGB 14.59 ± 1.85 13.81 ± 2.79 14.73 ± 1.67 13.71 ± 1.42 11–14.3 g/dL

HCT 43.20 ± 5.24 42.15 ± 6.79 44.08 ± 4.64 42.09 ± 4.65 34.6–44.6 %

MCV 49.30 ± 1.09 50.83 ± 0.98 50.20 ± 1.69 49.41 ± 1.88 48.2–58.3 fL

MCH 16.58 ± 1.42 16.38 ± 0.42 16.46 ± 0.36 14.79 ± 0.78 15.8–19 pg

MCHC 337.13 ± 4.78 325.63 ± 5.06 328.86 ± 18.8 325.63 ± 11.4 302–353 g/L

RDW 13.30 ± 0.77 14.74 ± 0.33 13.55 ± 1.13 12.86 ± 1.27 13–17 %

PLT 1021.8 ± 582.3 762.4 ± 498.0 1140.0 ± 226.6 892.4 ± 273.7 450–1590 109/L

MPV 4.91 ± 0.35 5.39 ± 0.15 5.31 ± 0.430 5.13 ± 0.53 3.8–6 fL

PDW 16.88 ± 1.10 17.31 ± 1.47 16.67 ± 1.14 17.21 ± 1.28 - -

PCT 0.41 ± 0.20 0.30 ± 0.27 0.44 ± 0.25 0.31 ± 0.23 - %

Hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume (MCV), hemoglobin (MCH) and hemoglobin
concentration (MCHC), red cell distribution width (RDW), platelets (PLT), mean platelet volume (MPV), platelet
distribution width (PDW), and platelet crit (PCT).

3.3. Fecal Corticosterone Metabolites

The statistical study of fecal corticosterone metabolite levels revealed a significant
interaction between variables (F(1,14) = 11,40, p < 0.01). The post hoc analysis indicated
significantly higher corticosterone metabolite levels in single-housed (0.225 ± 0.05 ng/mg)
than in grouped animals (0.132 ± 0.02 ng/mg) after 1 week (t = 4.523; p < 0.001). At 4 weeks,
no differences were observed between groups (grouped: 0.165 ± 0.06 ng/mg vs. single:
0.168 ± 0.04 ng/mg; t = 0.488, p > 0.05), and single-housed corticosterone metabolite levels
were normalized (Figure 3).
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4. Discussion

It is well known that animal welfare has an effect on the outcome of experiments. We
must, therefore, always consider this factor when designing and carrying out experimental
procedures. However, many researchers systematically tend to individualize animals in
their experiments. Thus, the question we aimed to answer in this study was whether
a lack of social interaction may modify physiological parameters, which may in turn
interfere with experimental results. Our findings indicate that social isolation modifies
some physiological parameters.

As previously reported for CD1 male mice [48–50], social isolation for 4 weeks did
not affect body weight gain. Similarly, our results revealed that social isolation did not
modify RBC parameters. As far as we are aware, this is the first study in mice to analyze
RBC parameters; thus, we cannot compare our results with previous findings.

Mice that were changed from sharing a cage with littermates to living alone showed
higher fecal corticosterone metabolites than those maintained in the group after the first
week, although levels normalized after 1 month. These same results were recently observed
in adult CD1 mice housed in the same conditions as our animals, in a ventilated rack with
environmental enrichment [50], which may indicate habituation to the new situation. Due
to the nature of our experimental design, we were unable to determine when exactly corti-
costerone metabolite levels normalized, and this is one of our study’s limitations. However,
data from a previous study [33] indicated that fecal corticosterone metabolite levels start to
decrease and remain stable from the second week onward. These data are consistent with
those described previously in relation to the return of plasma glucocorticoids to baseline
values during the first week after transport or translocation [51–54]. Among the grouped
animals, no significant changes were observed across individuals, and the standard devia-
tion within groups was very small. Our data, therefore, seem to suggest that, in contrast
to observations by some authors [37,38], remaining grouped together does not appear to
cause the animals any stress. We believe the main reason for this is that, as has indeed
been pointed out previously [32], our mice were littermates and were grouped together
from weaning.

It is well known that increased glucocorticoid levels suppress cellular immunity [55].
No changes in monocytes and granulocytes were observed in single-housed animals after
7 days, although changes were found after 4 weeks. A previous study found no significant
differences in the overall number of blood-circulating leukocytes between CD1 male mice
that were socially isolated for 2 weeks and their socially housed counterparts [36]. However,
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C57BL6/J adult mice separated into individual cages for 2 h every day for 25 days were
found to have a decrease in T cells, B cells, monocytes, and neutrophils [41]. Unfortunately,
our system is not able to distinguish between the different types of lymphocytes and
granulocytes; however, overall, our results are consistent with these findings and highlight
the fact that isolation time is a factor to be considered. Another limitation of the study is that
we did not study humoral immunity; previous studies found that fecal immunoglobulin
A (IgA) excretion (a marker of long-term stress) takes at least 4 weeks to normalize [53].
It is important to note that CD1 adult males isolated for 21 days and subjected to mild
psychological stress had lower splenocyte proliferation and lower IL-2 and IL-4 cytokine
plasma levels than their grouped counterparts [32]. The same results were reported using
shock as a stressor [55].

In addition to the limitations outlined above, our study had some further limitations.
When designing the experiment, we wanted it to be as realistic as possible in terms of the
day-to-day management of our animal facility technicians and researchers. Therefore, the
animals were moved from dirty to clean cages by picking them up by the tail. In recent
years, less aversive handling methods (e.g., tunnel or cup handling) have been shown to
mitigate anxiety and depressive-like behaviors [56–58]. However, a recent study showed
that picking mice up by their tail may not be a significant source of chronic husbandry
stress [59]. In view of the results of this study and our daily practice, we decided to change
the location of animals in this experiment by picking them up by their tail. We are all
aware that efforts have to be made to implement less aversive methods of handling in
daily practice in animal facilities. Nevertheless, it should also be kept in mind that this
procedure takes more time; hence, the amount of work assigned to each technician when
changing cages should also be reviewed. In our work, we did not study whether social
isolation induced behavioral changes in our animals, because we were more interested
in peripheral biomarkers than behavioral parameters. In a recent study performed on
C57BL/6JRj mice housed singly for 10 weeks, no behavioral changes were observed in
exploratory activity, anxiety, working memory, and fear memory [60]. However, a previous
study using C57BL/6J and DBA/2 kept in individual housing for 7 weeks revealed that
individual housing has strong strain- and test-specific effects on emotional behavior and
impaired memory in certain tasks. Single-housed mice were hyperactive and displayed
reduced habituation to novel environments. Reduced anxiety was established in the
elevated plus-maze, but not in the dark/light test. Immobility in the forced swimming
test was reduced by social isolation. Novel object recognition and fear conditioning were
impaired in the single-housed mice, whereas water-maze learning was not affected [61].
In the same way, 2 weeks of single housing plus acute injection stress induced anxiety-
like behavior in C57BL6/J mice [30]. Mouse strain and social environment also influence
depression-like behavior caused by an immune challenge. In this sense, group-housed
CD1 mice exhibited depression-like behavior 1 day after bacterial lipopolysaccharide (LPS)
injection, while the behavior of single-housed CD1 mice was little affected during the
4 weeks of the experiment. In contrast, both grouped and single-housed C57BL/6 mice
responded to LPS with an increase in depression-like behavior [62]. It would be interesting
to conduct future behavioral studies to determine if, under our conditions, single-housed
CD1 male mice show any behavioral changes. Another parameter we did not measure
was body temperature. In recent years, it has been observed that laboratory mice suffer
from thermal stress, and that this affects their immune system, among other physiological
parameters [63,64]. In this sense, huddling, a form of social thermoregulation, is a major
contributor to mice’s thermal physiology. Thus, single-housed mice are usually more
affected by cold temperatures than grouped mice [65]. In order to mitigate this effect,
two sheets of tissue were added to their home cage, and we ensured that they made a
proper nest.

In light of all these data, we recommend keeping males in stable groups from weaning
onward. Researchers should be aware that the change from grouping to living alone
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induces stress and mild immunosuppression in CD1 male mice; hence, if the mice need to
be separated for experimental reasons, these factors should be taken into consideration.

5. Conclusions

We conclude that social isolation has an effect on the immune–endocrine system.
Consequently, the stress associated with the new social situation should be taken into
consideration in the interpretation of research data.
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