
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH ARTICLE

Fernandez‑Gauna et al.
Int J Educ Technol High Educ (2023) 20:17
https://doi.org/10.1186/s41239‑023‑00386‑6

International Journal of Educational
Technology in Higher Education

Automatic feedback and assessment
of team‑coding assignments in a DevOps
context
Borja Fernandez‑Gauna1* , Naiara Rojo2 and Manuel Graña1

Abstract

We describe an automated assessment process for team‑coding assignments based on
DevOps best practices. This system and methodology includes the definition of Team
Performance Metrics measuring properties of the software developed by each team,
and their correct use of DevOps techniques. It tracks the progress on each of metric by
each group. The methodology also defines Individual Performance Metrics to measure
the impact of individual student contributions to increase in Team Performance Met‑
rics. Periodically scheduled reports using these metrics provide students valuable feed‑
back. This process also facilitates the process of assessing the assignments. Although
this method is not intended to produce the final grade of each student, it provides very
valuable information to the lecturers. We have used it as the main source of informa‑
tion for student and team assessment in one programming course. Additionally, we
use other assessment methods to calculate the final grade: written conceptual tests
to check their understanding of the development processes, and cross‑evaluations.
Qualitative evaluation of the students filling relevant questionnaires are very positive
and encouraging.

Keywords: Team‑coding, Automatic, Assessment, Assignments, DevOps

Introduction
Computer Science courses often include team-coding assignments during the learning
and student evaluation process. To overcome these assignments, students need to com-
plete (or write from scratch) code that satisfies a specification provided by the lecturers.
It is usual in introductory courses that students work in pairs over a single version of the
code, but in more advanced courses, it is often preferred that students work in groups
to develop of soft skills such as teamwork, that are highly desirable by future employ-
ers (De Prada et al., 2022). In these scenarios, each team member works on his/her own
personal computer, and makes changes to the team’s shared code-base. These changes
by different team members need to be integrated in a coordinated and orderly manner.
Version Control Systems (VCS) offer functionalities for this purpose such as tracking
changes, version control, code merging, and so on. Using a VCS in a coding assignment
provides a learning outcome to the student that can be assessed by itself. Some coding

*Correspondence:
borja.fernandez@ehu.eus

1 Computational Intelligence
Group, University of the Basque
Country (UPV/EHU), Po Manuel
Lardizabal, 1, 20018 Donostia‑San
Sebastian, Spain
2 Faculty of Engineering,
University of the Basque Country
(UPV/EHU), Nieves Cano 12,
01006 Vitoria‑Gasteiz, Spain

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41239-023-00386-6&domain=pdf
http://orcid.org/0000-0001-9233-2333

Page 2 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

courses go one step further and involve the use of some of the automated processes used
in DevOps for improved software quality. The current increasing interest on DevOps
(Khan et al., 2022) makes the resulting learning outcome very interesting.

The manual assessment of coding assignments can be very time-consuming for lectur-
ers. Thus, automated assessment methods are a current hot research track on computer
science education methodologies (Cai & Tsai, 2019; Gaona et al., 2021; Gonzalez-Car-
rillo et al., 2021; Gordillo, 2019; Hegarty-E & Mooney, 2021). Most of the works found
in the literature are based on software testing techniques (Strandberg et al., 2022), which
provide measurable metrics to assess the correctness of the code written by the students
(Gaona et al., 2021; Gonzalez-Carrillo et al., 2021; Hegarty-E & Mooney, 2021). Such
metrics can be used to assess the performance of a team as a whole, but grading students
by the overall performance of the team is ineffective for passive students, and can lead to
tensions within the team and lack of motivation of the most brilliant students (Petkova
et al., 2021). It is desirable to develop methods that assess individual contributions, so
that the contribution of individual students can be traced for personal grading (Planas-
Llado et al., 2021; Britton et al., 2017). Little progress has been reported in the litera-
ture toward this goal. We found only one metric based on the frequency of code edits
(Hamer et al., 2021), but this metric is very rough and inaccurate, because wrong edits
are counted positively.

The use of VCS in coding assignments offers opportunities to gather insightful infor-
mation about the coding process that has been exploited in the development of auto-
mated student assessment methods (Hamer et al., 2021; Macak et al., 2021). To the best
of our knowledge, no proposal has been made as to how to assess DevOps practices dur-
ing a team-coding assignment.

In this paper, we deal with with two main research questions:

• RQ 1: Can the individual student contributions in team-coding assignments be auto-
matically assessed? Accurate metrics would be desirable to measure how much of the
performance of a team is due to each of the members. This would provide means to
assess not only teams as a whole, but also to give better grades to students who con-
tribute more.

• RQ 2: Can we assess DevOps practices in team-coding assignments in an automated
manner? Modern software development involves the use of automated processes
to assure software quality. It would be very interesting to have metrics that help us
assess the use of these practices by the students in an automated way.

This paper is structured as follows. In "Background" we provide some background,
and in "Related work" we review related works from the literature. "Methodology" pre-
sents the proposed automated assessment process and, finally, "Discussion and conclu-
sions" presents our conclusions.

Background
Generally speaking, the process of developing software involves one or more develop-
ers modifying the source code files. These source code files are compiled to generate
executable instances. Keeping track of the changes in the source files is considered an

Page 3 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

absolute requirement in any serious software development project. Version Control Sys-
tems (VCS) provide mechanisms to store and restore snapshots of the code taken at dif-
ferent points in time. They store changes so that a developer can know who, when, and
why code was changed. They also offer the possibility to restore a previous snapshot,
or even create branches where developers can work over independent versions of the
code without interfering with each other. Changes in the code are stored in a repository
(database), which can be: (a) local (single repository hosted on the users machine), (b)
centralized (a server hosts the repository), or (c) distributed (each user works on a local
copy of the repository and synchronizes changes to the server when the user is satisfied
with his/her contribution).

Git version control

Git is the most popular distributed VCS. Its success is partly due to the free hosting ser-
vices offered by providers such GitHub1. GitHub alone claims to host over 200 million
repositories where over 73 million developers work on software development projects.

In Git systems, different versions of the software are saved as a set of incremen-
tal changes with respect to the previous version at a specific time. Code changes are
grouped and saved as commits whenever a developer wants to save the state of the pro-
ject. A commit is a collection of changes stored in a set of files that has the following
attributes:

• the author of the commit,
• a message describing the changes,
• a timestamp,
• the incremental changes in source files with respect to the previous commit (the par-

ent),
• the Id of the commit, which is the result of using a hash function on the commit’s

attributes, and
• the Id of the parent(s) commit(s).

special commits (merge commits) merge two versions of the code (maintained in two
separated branches) into a single version.

Commit messages are useful to describe the actions taken, and the goal of a specific
set of changes. The common practice is to reference an issue using the syntax #nmessage ,
where n ∈ N is the id number of the referenced issue, and message is the actual descrip-
tion of the changes. An issue is a task within the software development task. This task
can be a bug that needs to be fixed, a feature that needs to be added to the code, or any
other related task. Issues (Perez-Verdejo et al., 2021) are often managed from outside the
VCS, i.e., from the project management system offered by GitHub.

Branches in a repository consist on sequences of labels linked to a single commit.
Although branches may have different interpretations, they are most commonly used to
work simultaneously on different aspects of a project. The initial branch in a repository

1 https:// github. com.

https://github.com

Page 4 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

is labeled master, and developers may create additional branches to work without chang-
ing the source code used by other developers. When a commit is added to a branch, the
pointer is updated to this commit. Branches can be merged.

It is common practice to have a develop branch (Cortes Rios et al., 2022) shared by all
the developers, and a different branch for each of the current lines of work. These can
be related to a specific issue. Once the goal of a branch is accomplished, it is merged
into the code-base shared with the rest of the developers (i.e. the develop branch). When
branch a is merged into branch b, the changes done in branch a since the time both
branches diverged, are added to branch b as a new commit. This new merge commit
consists basically on a selection of the changes performed on each of the branches being
merged.

Figure 1 shows a sample repository represented as a directed graph G = (N ,V) , where
nodes in N represent commits and vertices in V represent a parent-child relationship
(the arrow points at the child). From the initial commit C1 on develop, a branch labeled
feature-1 was created, two commits (C2 and C4) were added to this branch, and then
merged to develop in commit C9, which, by the time both branches were merged had
been added three new commits (C3, C5 and C8). A third branch, labeled feature-2, was
created from develop after commit C3 and, similarly, merged to develop in commit C10.
At any time, branches point to the latest commit added (head commit). The head com-
mits of the three branches have an orange outline in the graph.

Distributed teamwork

In a Distributed Version Control System (DVCS) (i.e. Git), each developer has a local
repository that will be synchronized with the shared repository using two operations:
pull and push. The former integrates into the local repository any new changes found in
the shared remote repository, whereas the latter integrates into the remote repository
local changes that have not been pushed into the shared remote repository.

This distributed architecture allows for quite a lot of different workflows and integra-
tion strategies, but for simplicity, we will use Gitflow (Cortes Rios et al., 2022) in the
remaining of this paper. Figure 2 illustrates this workflow showing four consecutive
snapshots of a distributed repository with two developers contributing changes.

Fig. 1 Visual representation of a Git commit tree. Nodes in the graph represent commits and arrows
represent parenthood between commits (arrows go from parent to children). The head commits of three
branches (develop, feature-1 and feature-2) are highlighted with an orange outline

Page 5 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

• In the initial snapshot (Fig. 2a), only one commit has been added to the shared
develop branch (C1). Developers 1 and 2 each have a local repository. Developer 1
has created a new branch labeled feature-1 from develop and added two commits (C2
and C4), while Developer 2 has worked directly on the develop branch and has added
3 commits (C3, C5 and C8).

• Figure 2b shows the next step in the sequence: no new commits were available on the
remote repository and Developer 2 has pushed its new commits to the shared reposi-
tory.

• In the next snapshot shown in Fig. 2c, Developer 1 has finished the work on feature-1
and wants to integrate his/her changes into the shared branch develop. Before merg-
ing, the developer needs to integrate the new changes on the shared remote reposi-
tory (pull).

• Finally, once the local repository is up to date, local changes in branch feature-1 can
be merged into the develop branch and pushed to the remote machine (Fig. 2d).

Fig. 2 An illustration of DVCS working in a four‑step sequence of operations

Page 6 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

DevOps

DevOps is a culture within the software development community that aims to facilitate
collaboration between two teams that traditionally have operated separately: software
development and IT operations. Although there is no formal definition for this term
(Almeida et al., 2022), this movement is generally considered to be complementary
with Agile software development (i.e., extreme programming). The most salient feature
of DevOps is the use of automation processes that simplify the software development
workflow:

• Continuous Integration (CI): developers are encouraged to integrate often their local
changes into the shared remote code-base (Holck and Jorgensen, 2012). These fre-
quent integrations prevent merge conflicts, diverging code branches, and duplicated
code. When changes are integrated in the shared remote code-base, executable
instances are automatically built so that automated tests can be run in order that
possible bugs are detected as soon as possible. The maturity of the CI tests is directly
related to the quality of the software (Wang et al., 2022). If a version of the code fails
to compile into an executable instance, we say that “it does not build”.

• Continuous Delivery (CD): after a successful integration, additional automated steps
are performed, including more testing, staging and deployment. The output of this
process (if all steps are successful) is a release ready to be shipped to end-users.

• Continuous Deployment (CD): this automated process is related to the former, but
focuses on making new releases available to end-users automatically and continu-
ously. This allows for faster releases.

These automated processes are usually automatically triggered on a remote machine
when changes are pushed to a shared branch in a repository. When one of these pro-
cesses is triggered, an agent creates a virtual environment for each of the different tar-
get platforms. In these virtual environments, the processes listed above are executed.
The design, construction and implementation of DevOps management systems is highly
sophisticated, demanding professionals with a set of competencies that are mostly lack-
ing in current computer engineering studies (Assyne et al., 2022).

Related work
Manually assessing assignments in coding courses is a time-consuming task that can
become overwhelming with large groups of students and/or large-sized code. This has
motivated recent scientific efforts with the aim to automatically assess coding assign-
ments. The different approaches to automatically assess coding assignments can be clus-
tered in two groups: static and dynamic analysis.

Static analysis methods do not need to actually build or run the artifacts (Jurado, 2021)
and, instead, directly analyze the source code. Different applications of this type of anal-
ysis have been proposed: from assessing the design in Object Oriented Programming
coding assignments (Le Minh, 2021; von Wangenheim et al., 2018), to establishing simi-
larity between solutions so that they can be clustered for the purpose of sending and

Page 7 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

shared feedback sent to the authors (Rubinstein et al. 2019; Clune et al., 2020). Static
analysis can also be used to provide insight into interesting aspects of the quality model
defined by the ISO 9126 (ISO, 2001) (i.e. maintainability). Metrics such as the Maintain-
ability Index (Oman and Hagemeister, 1994; Coleman et al., 1994) or the SIG Maintain-
ability Index (Heitlager et al., 2007) can be evaluated using static analysis.

On the other hand, dynamic analysis builds and runs the code and assesses the cor-
rectness of its behavior. This type of analysis is best suited for close-ended assignments
where the input/output relationship is known in advance. Most usually, this assessment
is based on running pre-defined (Gaona et al., 2021; Hegarty-E & Mooney, 2021; Gon-
zalez-Carrillo et al., 2021), or automatically generated automated software tests (Insa
et al., 2021) against the solution provided by the students. A formal specification-based
approach has also been proposed (Liu et al., 2019): the students’ executable is executed
capturing traces and comparing those with traces generated by a reference solution. This
technique is only suitable for small coding assignments. Unit testing-based methods
have been proposed for assessing graphical coding assignments (Wunsche et al., 2018),
using pre-computed images as reference for comparison with images captured from the
students’ code. Assessing software correctness using tests assumes that the source code
can be built and executed. An alternative approach that allows to grade non-building
code (Parihar et al., 2017) is to use program reparing, automatically estimating how
many repairs the code needs to build, and then using this estimation to deduct points
from the grade. This might be preferable to a null grade in introductory courses.

VCS offer very interesting opportunities toward facilitating the evaluation of coding
assignments. The most immediate advantage is that they allow to easily distribute and
collect assignments (Hegarty-E & Mooney, 2021; Clifton et al., 2007). More interesting
opportunities raise from exploiting the information stored in the commits. Specifically,
commits are often considered as a unit to measure contributions to a repository (Hamer
et al., 2021), and thus, measure inequalities in commits by the members of each team to
help evaluate the individual contribution to the group effort. The most clear shortcom-
ing of this approach is that not all commits contribute the same toward the project’s
goal, and it can be easily distorted by trivial changes. On the other hand, complexity
metrics such as the Contribution Complexity (Hamer et al., 2021) can be used to assess
how complex a commit is. This is based on the assumption that complex contributions
may be more relevant for the finalization of the assignment than simpler ones. Some
authors have focused their work on providing enhanced visualization of the sequence
of commits in different branches. Visual analysis allows lecturers to quickly understand
the branching process used in a repository (Youngtaek et al., 2021). Process mining tech-
niques (Macak et al., 2021) have also been used to observe and understand the underly-
ing committing process.

The literature shows an increasing interest in DevOps and the underlying automated
processes (Khan et al., 2022; Saidani et al., 2022; Theunissen et al., 2022) but, to the best
of our knowledge, no working proposals have been made as to how to assess the prac-
tices involved by DevOps processes in team-coding assignments. We have found only
one article (Cai & Tsai, 2019) where the authors use DevOps processes for team-coding

Page 8 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

assignments. In this work, the automatic grading system assesses the performance of a
group by the percentage of automated tests passed by each team. This allows students
to get immediate feedback, but the use of the DevOps processes by the students is not
evaluated.

Methodology
In this section, we present our approach to assess team-coding assignments automati-
cally. This method uses an automated process written in C# that periodically generates
and updates reports assessing team and individual student progress. This software is
distributed as an open-source project (GitRepoTracker) that can be downloaded2 from
GitHub.

Our approach offers two main advantages with respect to more traditional approaches:

• Students are provided feedback in a timely manner and they can plan their work bet-
ter, and

• lecturers can effortlessly track the progress made by each team and each student,
allowing them to better guide students toward the assignment goals.

In the following, we will present this method exemplified on a specific programming
course, but the principles and techniques can be adapted and tailored to a broad variety
of courses featuring team-coding assignments.

Academic context

We have applied the proposed methodology using an in-house built working DevOps
system support for two years while teaching the course Software Quality Control and
Assurance, which is an optional course in the fourth year of the Computer Management
and Information Systems Engineering degree of the University of the Basque Country
(UPV/EHU) in the Faculty of Engineering of Vitoria-Gasteiz. This subject is centered
around a team-coding assignment, whose goal is to develop software that satisfies the
specification provided by the lecturers while using DevOps practices during develop-
ment, including the use of Continuous Integration and Continuous Delivery (CI/CD).
Teams must write their own software tests (we will refer to these as control tests) along
with the code in their own repository. The ultimate goal of the assignment is to pass sev-
eral sets of automated tests written by the lecturers (assessment tests). Each set of tests
has an associated date (deadline), and students must pass by this date a minimum per-
centage of the automated tests in the set.

The Learning Outcomes (LO) of this team project include the following:

• Working in an organized development team following directives set by the team
leader (LO1).

• Defining and setting a quality assurance system guided by ISO 9126 (LO2).
• Developing software that satisfies the specification given in the assignment (LO3).

2 https:// github. com/ borja fdezg auna/ GitRe poTra cker.

https://github.com/borjafdezgauna/GitRepoTracker

Page 9 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

• Keeping track of changes in the source code using a distributed Version Control Sys-
tem (LO4).

• Using DevOps processes to improve the quality of the software (LO5).

In this course, students are graded using three different assessment tools. The final grade
of a student is calculated as the weighted sum of these:

• The grade calculated by the automated process that we will describe below in this
section (60% of the final grade),

• individual conceptual tests that evaluate individual understanding of the work done
by the group and the processes involved in the teamwork (20%), and

• cross-evaluations (20%), so that students can evaluate the contribution of each mem-
ber of the team (including themselves).

Assessment metrics

To assess the learning outcomes in an automated manner, we defined a set of quantita-
tive assessment metrics that are aligned with the learning outcomes, and can be used to
generate automatic feedback in order to help the lecturers to assess the assignments pro-
gress. We distinguish two types of metrics: Team Performance Metrics (TPM), and Indi-
vidual Performance Metrics (IPM). While TPM are designed to assess the performance
of the team as a whole, IPM measure individual performance as a the contribution made
by an individual to the team’s performance. The grade calculated by the automated pro-
cess is calculated as the weighted sum of the student’s group’s TPM (60%), and his/her
own IPMs (40%).

Team performance metrics

We will start defining Team Performance Metrics that allow to measure the performance
of a group as a whole.

Build/test status of the shared branches (TPM1). Breaking the build and/or bring-
ing back previously fixed errors to the shared code can lead to considerable amounts
of wasted time. For this reason, not breaking the build is considered a primary goal in
software development environments (Holck & Jorgensen, 2012). Thus, we consider this
a requirement, and penalize teams with shared branches whose current version does not
build and/or does not pass the control tests. This metric is used to assess the learning
outcomes LO4 and LO5.

Percentage of time that shared branches were in a valid status (TPM2). Whereas TPM1
only checks the current status of shared branches, TPM2 checks the status of every com-
mit pushed to the shared branches. Because each commit has its date/time, it can be
easily calculated how much time each shared branch has been in a valid state. The use
of this metric encourages students to keep a valid status at all times by checking that the
source code can be built and pass control tests before pushing it to the shared branches.
As TPM1, this metric is used to assess LO4 and LO5.

Page 10 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

Code coverage of the control tests (TPM3). Code coverage measures the fraction of
the code being run by a set of tests. Tests with a higher code coverage value are more
exhaustive than tests with lower values. This metric is widely used by all kinds of soft-
ware development teams, but has been neglected by previous published works. It is
aligned with learning outcome LO2, and it can only be measured if the code can be built.
To calculate the coverage, we use a tool called Coverlet3

Percentage of assessment tests passed (TPM4). By means of assessing the degree of
conformity to the specification, we test each team’s code against our assessment tests.
This measure is clearly aligned with learning outcome LO3, but also with LO5 because
automated testing lies at the core of DevOps processes. This metric can only be meas-
ured if the code can be built into a running executable. Any programming project usu-
ally involves tasks of different orders of complexity. In order to make this metric fair,
students who solve harder tasks should be given a higher mark than students solving
easier ones. Our approach to do this consists on assessing the complexity of the tasks
manually when we design the assignment, and then, writing the number of assessment
tests related to each of the tasks proportional to their complexity. The more complex a
task, the more assessment tests we write related to this task. This way, students that solve
more complex tasks obtain a higher reward than students solving more simple tasks.

Adherence to the coding style rules (TPM5). In software development teams, it is
usual to define and enforce basic common coding style rules that may include com-
ments, indentations, white spaces, or naming conventions. Using a uniform coding style
improves code readability, and reduces the time to understand code written by a differ-
ent developer. In our team-coding assignments, we provide the students some coding
style rules at the beginning. We use regular expressions to detect broken rules in a team’s
source code, and calculate the score as a function of the times these rules are broken.
This metric is aligned with LO1.

Individual performance metrics

Next, we will define the Individual Performance Metrics that measure the contribution
of each individual to the performance of the group.

Bonus to team leaders (IPM1). Each team chooses a leader at the beginning of the
assignment and, we bonus their extra work coordinating the group.

Percentage of commit messages that satisfy some objective criteria (IPM2). Commits
store messages describing changes done in the source and references to issues related
to these changes. This allows developers to perform string searches for specific changes.
We set a minimum number of characters and look for issue references using regular
expressions and determine what percentage of the commit messages written by each
student meets the criteria. This measure is part of the assessment of the learning out-
come LO4.

3 https:// github. com/ cover let- cover age, that calculates two main statistics: the rate of code lines (rl : [0, 1]), and the rate
of branches covered by the tests (rb : [0, 1]). We use a heuristic calculation to capture these two statistics as a single
numerical value: c = (rl + rb) ∗ 50 . This calculation gives a metric in range [0, 100] that works well for our purposes.

https://github.com/coverlet-coverage

Page 11 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

Contribution to the code coverage of the control tests (IPM3). As part of a student’s
individual performance, we calculate the contribution of the student to improve the
team’s code coverage (TPM3). Roughly, this is the percentage of the team’s code cover-
age (measured the same way as TPM3) that was due to a particular student’s changes in
code. "Incremental metric calculation" explains how this metric is calculated incremen-
tally. Naturally, this metric needs code to built into a running executable, and it is related
to LO2 (as TPM3).

Contribution to pass control tests (IPM4). Conceptually akin to IPM2, this metric
calculates the percentage of the team’s control tests passed that is due to the student’s
changes in code. It also requires code to be built and it is calculated using the method in
"Incremental metric calculation", and this metric is linked with LO4 and LO5.

Contribution to pass assessment tests (IPM5). Also similar to IPM3, this metric calcu-
lates the percentage of the assessment tests passed (TPM4) due to the student’s changes
in code. The calculation also requires buildable code and is calculated with the method
described in "Incremental metric calculation", and this metric is linked with LO3 and
LO5.

Percentage of commits pushed to the shared branch that build and pass control tests
(IPM6). This metric is designed to measure the individual contribution to TPM1: being
the team’s goal to keep shared branches in a valid state, we calculate the percentage of
commits pushed by each student to the shared repository branches that build and pass
control tests. Git repositories do not store information about which commits are pushed
to a remote server. We used the GitHub API to gather this information from GitHub
push events. This metric is used to assess learning outcomes LO4 and LO5.

Contribution to adherence to style rules (IPM7). In a similar fashion to how IPM3 and
IPM4 are calculated, we calculate the score indicating the degree of adherence to coding
style rules for each commit. Then, we use the same procedure described in "Incremental
metric calculation" to attribute each student their due contribution to the team’s score.
In our implementation, we use regular expressions to calculate the adherence score,
meaning this metric can be measured on non-building code too. This metric is related
to LO1.

Commit regularity (IPM8). One of the issues in team-coding assignments is the lack of
a timely effort by all members of a team. Most students tend to work harder near dead-
lines (Hamer et al., 2021). This becomes a problem in team assignments, because stu-
dents find themselves unable to be helpful to the team after a period of less involvement
on the project. This metric divides the duration of the assignment in periods and calcu-
lates the percentage of periods the author has committed changes. The length of these
periods can be configured depending on the particular assignment or preferences. We
use 3.5 day periods because our course has two sessions every week. Students are not
forced to commit the same days these sessions occur, but they can also commit changes
from home some days before and after the sessions. While this metric is arguably insuf-
ficient to determine the amount of effort or improvement contributed, it encourages stu-
dents to be constant, which in turn, improves the performance of the teams and also
helps students progressively acquire the learning outcomes. This metric assesses LO1.

Page 12 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

Other metrics. We considered and tried some other metrics but decided not to use
them:

• Contribution to the team performance could be approximated by counting the num-
ber of commits done by each student (Hamer et al., 2021). In our opinion, it is not a
good metric because it doesn’t quantify the actual contribution. Some students may
add significant contributions in a single commit, while other may do a lot of commits
with relatively irrelevant changes. This assessment metric can be easily distorted by
commits of innocuous changes.

• An alternative approach would be to calculate which percent of the final code has
been written by each student. This metric can be calculated from the output of the
command git blame , that establishes who wrote each of the line of codes in each
file. We consider this metric a good measurement of individual contribution to team
performance, but it is a poor indicator of the contribution in the sense that some
students may solve the same problem with much more code than others. The contri-
bution would be the same, but those writing longer code would be attributed more
credit than the rest.

Incremental metric calculation

The proposed system and methodology for automated assessment builds all the
snapshots of the source code, calculating the assessment metrics for each of those
snapshots. This allows us to distribute credit among the team members calcu-
lating their contribution to some of the metrics proposed in the previous subsec-
tion. We will illustrate this process and comment on the decisions we took in our
implementation.

Figure 3 illustrates the process on a trivial case: a sequence of three commits where
all three consecutive versions of the code can be built. The first commit (C1) obtained
a score of 40% for some of the metrics, and the following commit (C2) by Student 2,
obtained a 60% score. The last commit (C3 by Student 1) lowered the measure to 55% . In
this case, contributions (or attributed changes to the measures) to the measured metric
can be calculated with respect to the parent commit:

• Student 2 is attributed a +20% change for commit C2 (60−40%), and
• Student 1 is attributed a −5% change for authoring commit C3 (55−60%).

Fig. 3 Sample sequence of commits by two different authors showing a measure expressed as a percentage
value. Green check symbols indicate that all three versions of the code can be built

Page 13 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

Next, let us consider branch merges. These can be done either by using merge or rebase
Git commands for merging branches. Figure 5 shows a sequence of commits, where
commit C3 (with a 60% measure) merges commits C1 (40%) and C1 (50%). The obvious
question here is: what metric change do we attribute to the author of the merge com-
mit?. Merging commits is an operation that basically consists on selecting changes from
the two versions of the code being merged. No new code as such is created in merge
commits. This operation is so trivial that sometimes Git is capable of merging branches
automatically without human interaction from the developer when there are no conflict-
ing changes. There is no reliable way to predict how merging will affect metrics in the
branches merged. For example, if compliance with new tests had been added in both
of the merged branches, the merged code could have a higher code coverage than any
of the predecessors. With this in mind, an option would be to disregard any changes in
metrics between merge commits and their predecessors. The downside of this choice
becomes apparent in another example: consider a student manually merging two
branches and wrongly choosing not to integrate some of the changes. If this merge is
fixed in the following commit, the student may be attributed raises in some of the met-
rics that were originally fixed in a different commit (potentially by a different author)
and, due to resetting metrics in merge commits, the student may gain artificially gener-
ated credit. This could be exploited by students to increase their grade. Nevertheless, we
consider this potential risk worth the benefits, and we decided to ignore metric changes
in merge commits.

Another interesting situation raises if we consider measures that can only be calcu-
lated on code that builds correctly (i.e., IPM3). Consider the sequence of commits in
Fig. 4. The second commit (C2 by Student 2) does not build. The trivial solution would
be to assign the measured value in commit C2 to 0% . This would attribute a +40%

Fig. 4 Sample sequence of commits by two different authors showing a measure expressed as a percentage
value. The code in the first and the last commits can be built (green check symbols), but the second cannot
(red cross symbol). The measure in this sample can only be taken from building code, and thus, the second
commits shows a Not available (N/A) label

Fig. 5 Sample sequence of commits by two different authors showing a measure expressed as a percentage
value. Commit C3 merges commits C1 and C2. All four commits build

Page 14 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

change to Student 2 (0−40%) and a −55% change to Student 1 (55−0%). We performed
some tests with real assignments and found out that doing this led to disproportionate
differences between students, because some students repeatedly fixed errors introduced
by others. Another option would be, for those metrics that required building code to be
calculated, to compare not with the immediate predecessor, but with the first one that
can be built (going backward in history). Again, this technique has a downside too. We
will illustrate it with an example based on Fig. 4: in C2, Student 2 may have increased
the coverage of the tests but accidentally introduced an error that prevented building
the source code. Student 1 may have fixed then this error in C3, and thus, would attrib-
uted the +15% metric change (in this example, code coverage) that was actually done by
Student 2. We weighted both options and decided to use the second one: compare with
the first building predecessor. We believe that letting students know about this decision
actually encourages them to double-check that they only push building code that passes
control tests.

Another variation of this situation is shown in Fig. 6: a merge commit (C3) breaks
the build. What predecessor do we consider in order to calculate metric changes due
to C4? There is no clear way to select one, so we decided to ignore changes in met-
rics requiring building code for commits with no building predecessor before the first
merge commit. This decision has a downside: any metric change introduced in C4 will

Fig. 6 Sample sequence of commits by two different authors showing a measure expressed as a percentage
value. Commit C3 merges commits C1 and C2. The author made some mistake in the merge operation and
this caused commit C3 to not build

Fig. 7 Scheme of the proposed automated assessment process

Page 15 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

not be attributed to the author. Our tests have shown that this potential error is negli-
gible if students are encouraged to commit changes frequently enough.

Automated assessment process

The assignment assessing automated process we propose is based on automated pro-
cesses similar to those used in DevOps. In our coding courses, we schedule this pro-
cess to run every hour, but it could also be triggered automatically each time changes
are pushed to a team’s repository. The architecture of this process is graphically rep-
resented in Fig. 7. Projects are stored in Git repositories hosted in GitHub, and the
assessment process also uses the GitHub API to query information that is not stored
in the repository itself (i.e. which commits have been pushed to the server). Initially,
each team creates a new private repository using the public template provided by the
lecturer. The members of the team and the lecturers are the only users allowed to
access these private repositories to discourage plagiarism. Teams work on their own
repository, that will include their solution to the assignment, and their own tests
(control tests). In order to run the assessment tests on the code developed by a team,
it is necessary to define the interfaces (classes and methods) that will be used from
the testing code. These cannot be changed during the duration of the assignment.

Every time the automated assessment process is triggered, changes from each of
the team repositories in the configuration file are pulled. The automated assess-
ment process performs incremental updates, so that only changes committed from
last update need to be processed. Using the configuration parameters, Team Perfor-
mance Reports (TPR) and Individual Performance Reports (IPR) are generated. These
reports are uploaded to the GitHub Pages service, which allows to publish web pages
using the same VCS that code projects do. Figure 7 shows a graphical representa-
tion of how the components of this architecture interact. The inputs of the automated
process are: a) the repositories with the code written by each team, b) the repository
with the assessment tests, c) the configuration file with the parameters of the process,
d) the information returned by the GitHub API queries. The output is HTML code
that is periodically uploaded to the GitHub Pages repository (technically, changes are
pushed because it is managed as a repository).

Algorithm The team-coding assignments of n teams of m members each are pro-
cessed and assessed in a two-step procedure:

1. First, changes committed to the repositories are processed, generating a set of statis-
tics (statsi , where i = 1, n is the index of the team) that contains the following infor-
mation for every commit: author, id, date, parent(s) commit(s), build result, control
test result, code coverage result, assessment test result, and code analysis result. This
first step is described by Algorithm 1.

2. Then, using as input the statistics from the previous step (statsi), Team Performance
Metrics are calculated and the incremental metric calculation described in "Incre-
mental metric calculation" is used to calculate Individual Performance Metrics. With

Page 16 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

these measures and the assessment parameters set in the configuration file, teams
and students are evaluated, generating the Team Performance Reports (TPRi) and
Individual Performance Reports (IPRi,j , where j = 1,m is the index of the team
member). These are made accessible to the students using the GitHub Pages service.
This process is described by Algorithm 2.

For the sake of reproducibility, we describe here the most important commands used
in used in the algorithms:

• ParseGitLog: We used the command

This command outputs all the commits in the given branch from older to newer,
showing the parent(s) commit(s) of each commit, its Id, author, date and message.

• RunControlTests: We used the command

 to run the control tests from within a team repository’s folder. The collect flag is used
to collect code coverage information.

• RunAssessmentTests: In order to run our assessment tests with the code developed
by the students, we first add to the assessment test project a reference to the team’s
project. Then, we build and run the assessment tests with the command

 (there is no reason to measure the code coverage of the assessment tests). Finally, we
removed the reference to their code restoring the previous version of our assessment
test code using git restore .

git log [branch] −−reverse −−parents

dotnet test −−collect : “XPlatCodeCoverage′′ − v normal

dotnet test − v normal

Page 17 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

Reports Students receive feedback in the form of reports published via GitHub Pages
that include their Team Performance Report and their own Individual Performance
Report. The assessments in these reports are based on the metrics defined in "Assess-
ment metrics".

A sample Team Performance Report is shown in Fig. 10. Each of the evaluation
items corresponds to one of the performance metrics, and the values measured are
mapped to a score using the parameters from the configuration file (minimum/maxi-
mum value, weight, and so on). For some of the items in the report, additional infor-
mation is shown to help the students understand the score. For example, for each set
of assessment control tests, students can view the name of the failed tests. This is pro-
vided as a hint to help them identify what the possible source of the errors are, but we
would not recommend showing the actual error message. That would miss the point,
which is that their tests should be exhaustive enough to guarantee quality.

Page 18 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

Figure 11, on the other hand, shows two sample Individual Performance Reports.
The format is very similar to the Team Performance Report, and the additional infor-
mation includes in which commits they made which changes to the metrics measured.

The reports also include two plots that help them visualize their effort and progress
over time: (a) heat-map showing the distribution of each team member’s commits,
and (b) the assessment test score obtained in each commit over time.

Two samples of the former are shown in Fig. 8. The heat-maps show the distribution
of the commits done by each team member over time. Commits by each participant
are colored using the same color, and they are positioned on the same vertical posi-
tion along the y axis. The x axis represents time, where the left border of the image is
the start of the project and the y axis is the current date.

On the other hand, Fig. 9 shows two samples of the latter. These show the percent-
age of passed tests for each set of assessment tests defined in the assignment over
time: the green line represents the percentage of tests passed in a first set of assess-
ment tests (labeled Parser), and the orange line represents the results in a second set
of assessment tests (Queries). Each set of assessment tests is configured with a dead-
line date (deadline) and a minimum score (min), and these are represented with a ver-
tical line from 0% to min% at y = deadline . In the example, the deadline of the Parser

Fig. 8 Two samples of the heat‑maps used to represent the temporal distribution of the commits done by
each participant in a real team‑coding assignment. The names of the students have been anonymized for
personal data privacy reasons

Page 19 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

Fig. 9 Two sample plots showing the percentage of the assessment tests passed by each team in a real
team‑coding assignment. In this project, two deadlines have been defined: the first one (labeled Parser) in
green, and the second one (labeled Queries) in orange

Fig. 10 Sample team report from a real team‑coding assignment. The team name has been anonymized for
data privacy reasons

Page 20 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

set of tests is represented as a blue line, whereas the deadline of the Queries set of
tests is represented as a red line. The team goal is to make the green (or orange) line
go over the vertical blue (red) line, which is a quite intuitive way to express progress
with respect to a goal.

Qualitative results: student satisfaction and grades

The students enrolled in the 2021/22 course were asked to assess the degree of agree-
ment as a numerical value from 1 to 5 to four different affirmative sentences regarding
their opinion on the automated assessment method:

1. I was motivated by the automated assessment method to actively participate on the
assignment.

2. My team was motivated by the automated assessment method to collaborate on the
assignment.

3. The automated assessment method helped me decide how to orient my work and
improve my grade.

4. I prefer automated assessment methods with continuous feedback than manual
assessments with eventual feedback.

Fig. 11 Two sample individual reports from a real team‑coding assignment. The student names have been
anonymized for data privacy reasons

Page 21 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

The average answer to Sentence 1 was 4.1 (all answers were in range [3, 5]). This indi-
cates that students felt positively motivated as individuals to contribute to the team
effort. Students gave a higher score to Sentence 2 by 4.3, which indicates they perceive
a positive effect on the work of the team as a result of the assessment method. Regard-
ing Sentence 3, the score was a bit lower (3.6). Our future work includes providing even
more information in the reports so they can better identify ways to improve their per-
formance. Finally, the agreement to Sentence 4 achieved an score of 4.1. These results are
encouraging and we conclude that students are satisfied with this assessment system and
methodology.

The average grade obtained by the students (all grades are expressed out of 10) of the
2021/22 course was 7.51(±2.92) . This is a substantial improvement with respect to the
scores given by manually assessing the assignments of the students of the two previous
courses: 7.02(±3.31) in 2019/20 and 6.93(±3.18) in 2020/21. In all three courses, the
same team of lecturers supervised the students and assessed the assignments.

We also conducted an internal manual grading of the 2021/22 assignments for com-
parison purposes. Our manual grading, using the same criteria we used in previous
courses, produced an average grade was 7.37(±3.23) . This is 0.14 lower than the average
grade calculated by the automatic process. This difference is almost negligible and may
be in any case corrected by adjusting the weights and parameters of the assessment pro-
cess. When compared to previous courses, the manual grading of this course’s assign-
ments gave considerably higher grades. Our hypothesis is that the automatic feedback
system challenges the students and motivates them to work on the assignment.

Discussion and conclusions
Regarding the research questions in "Introduction", the incremental metric calculation
method presented in "Incremental metric calculation" provides an answer to RQ1. We
can distribute credit between team members by measuring performance metrics in each
of the snapshot in the code repository and then, attributing a commit’s author the differ-
ences in metrics with respect to the previous snapshot. This method is easily understood
by the students and, although it is not completely accurate, it provides a way to organize
work between members so that everyone gets credit for what they do.

"Assessment metrics" presents some novel performance metrics that aim to answer
the second research question, RQ2, namely, Team Performance Metrics TPM1, TPM2
and TPM4, and Individual Performance Metrics IPM3, IPM4, and IPM5. These metrics
measure adherence to some of the practices involved in DevOps. By no means do they
cover all the aspects of DevOps processes, but they offer an adequate start point for
team-coding courses. They can be further extended and tailored to other courses with
specific needs.

An important component of the assessment method is the use of assessment tests,
hidden to the teams, that measure how many of the goals teams have reached. In order
to run these tests, common interfaces need to be defined in the initial code handed to
the students. Our approach requires that these interfaces are kept unchanged through-
out the assignment. We also note here that special care must be taken when these tests
are designed, because the assessment is based on the number of tests passed. This means
that, for example, tests that use a lot of different functionalities will not pass until each

Page 22 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

of those functionalities are correctly implemented. This makes the task of distributing
credit between students harder, and the credit may be distributed in an unfair way to the
student completing the last required functionality. We believe it is best to write small
tests for specific functionalities, so that changes by a single member can lead to direct
rewards that encourage to work further.

Conclusions

We have presented an automated assessment process for team-coding assignments. This
method defines some Team Performance Metrics to measure properties of the soft-
ware developed by each team, and also the correct use of DevOps techniques. It tracks
the progress on each of the metrics by each group, and it also defines Individual Per-
formance Metrics to distributes credit among team members of any change in Team
Performance Metrics. These metrics are used in a periodically scheduled process to gen-
erate reports that provide students valuable feedback. This process also facilitates the
process of assessing the assignments. Although this method is not intended to produce
the final grade of each student, it provides very valuable information to the lecturers and
we have used it as the main source of assessment in one subject. Additionally, we use
other assessment methods to calculate the final grade: written conceptual tests to check
their understanding of the development processes, and cross-evaluations.

Our future work will include using automatized code complexity metrics. This will
allow us to measure other aspects we do not yet consider (i.e, readability of the code or
cyclomatic complexity). We expect that using such metrics will encourage students not
only to complete their tasks, but also to improve already working code.
Acknowledgements
Not applicable.

Author contributions
All authors read and approved the final manuscript.

Funding
Open Access funding provided thanks to the CRUE‑CSIC agreement with Springer Nature.

Availability of data and materials
The software written by the authors as part of this work is publicly available in https://github.com/borjafdezgauna/GitRe‑
poTracker. On the other hand, the code written by the students and their grades are not available due to data privacy
reasons.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 13 December 2022 Accepted: 22 February 2023

References
Almeida, F., Simoes, J., & Lopes, S. (2022). Exploring the benefits of combining devops and agile. Future Internet, 14(2), 63.

https:// doi. org/ 10. 3390/ fi140 20063
Assyne, N., Ghanbari, H., & Pulkkinen, M. (2022). The state of research on software engineering competencies: a system‑

atic mapping study. Journal of Systems and Software, 185, 111183. https:// doi. org/ 10. 1016/j. jss. 2021. 111183
Britton, E., Simper, N., Leger, A., & Stephenson, J. (2017). Assessing teamwork in undergraduate education: a measurement

tool to evaluate individual teamwork skills. Assessment & Evaluation in Higher Education, 42(3), 378–397. https:// doi.
org/ 10. 1186/ s41155‑ 022‑ 00207‑1

https://doi.org/10.3390/fi14020063
https://doi.org/10.1016/j.jss.2021.111183
https://doi.org/10.1186/s41155-022-00207-1
https://doi.org/10.1186/s41155-022-00207-1

Page 23 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

Cai, Y. & Tsai, M. (2019). Improving programming education quality with automatic grading system. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11937
LNCS:207–215. https:// doi. org/ 10. 1007/ 978‑3‑ 030‑ 35343‑8_ 22.

Clifton, C., Kaczmarczyk, L., & Mrozek, M. (2007). Subverting the fundamentals sequence: Using version control to
enhance course management. SIGCSE Bull, 39(1), 86–90. https:// doi. org/ 10. 1145/ 12275 04. 12273 44

Clune, J., Ramamurthy, V., Martins, R., & Acar, U. (2020). Program equivalence for assisted grading of functional programs.
Proceedings of the ACM on Programming Languages, 4(OOPSLA). https:// doi. org/ 10. 1145/ 34282 39.

Coleman, D., Ash, D., Lowther, B., & Oman, P. (1994). Using metrics to evaluate software system maintainability. IEEE Com-
puter, 27(8), 44–49. https:// doi. org/ 10. 1109/2. 303623

Cortes Rios, J., Embury, S., & Eraslan, S. (2022). A unifying framework for the systematic analysis of git workflows. Informa-
tion and Software Technology, 145, 106811. https:// doi. org/ 10. 1016/j. infsof. 2021. 106811

De Prada, E., Mareque, M., & Pino‑Juste, M. (2022). Teamwork skills in higher education: is university training contributing
to their mastery? Psicologia: Reflexao e Critica, 35(5). https:// doi. org/ 10. 1016/j. ijme. 2021. 100538.

Gaona, E., Perez, C., Castro, W., Morales Castro, J. C., Sanchez Rodriguez, A., & Avila‑Garcia, M. (2021). Automatic grading of
programming assignments in moodle. pp. 161–167. https:// doi. org/ 10. 1109/ CONIS OFT52 520. 2021. 00031.

Gonzalez‑Carrillo, C., Calle‑Restrepo, F., Ramirez‑Echeverry, J., & Gonzalez, F. (2021). Automatic grading tool for jupyter
notebooks in artificial intelligence courses. Sustainability (Switzerland), 13(21), 12050. https:// doi. org/ 10. 3390/ su132
112050

Gordillo, A. (2019). Effect of an instructor‑centered tool for automatic assessment of programming assignments on stu‑
dents’ perceptions and performance. Sustainability (Switzerland), 11(20), 5568. https:// doi. org/ 10. 3390/ su112 05568

Hamer, S., Lopez‑Quesada, C., Martinez, A., & Jenkins, M. (2021). Using git metrics to measure students’ and teams’ code
contributions in software development projects. CLEI Eletronic Journal (CLEIej), 24(2). https:// doi. org/ 10. 19153/ cleiej.
24.2.8.

Hegarty‑E, K. & Mooney, D. (2021). Analysis of an automatic grading system within first year computer science program‑
ming modules. pp. 17–20. https:// doi. org/ 10. 1145/ 34379 14. 34379 73.

Heitlager, I., Kuipers, T., & Visser, J. (2007). A practical model for measuring maintainability. In 6th International Conference
on the Quality of Information and Communications Technology (QUATIC 2007), pp. 30–39. https:// doi. org/ 10. 1109/
QUATIC. 2007.8.

Holck, J. & Jorgensen, N. (2012). Continuous integration and quality assurance: A case study of two open source projects.
Australasian Journal of Information Systems, 40–53. https:// doi. org/ 10. 3127/ ajis. v11i1. 145.

Insa, D., Perez, S., Silva, J., & Tamarit, S. (2021). Semiautomatic generation and assessment of java exercises in engineering
education. Computer Applications in Engineering Education, 29(5), 1034–1050. https:// doi. org/ 10. 1002/ cae. 22356

ISO, IEC,. (2001). ISO/IEC 9126. Software engineering—Product quality: ISO/IEC. https:// doi. org/ 10. 1016/j. ijme. 2021. 100538
Jurado, F. (2021). Teacher assistance with static code analysis in programming practicals and project assignments.https:// doi.

org/ 10. 1109/ SIIE5 3363. 2021. 95836 35
Khan, M., Khan, A., Khan, F., Khan, M., & Whangbo, T. (2022). Critical challenges to adopt devops culture in software organi‑

zations: A systematic review. IEEE Access, 10, 14339–14349. https:// doi. org/ 10. 1109/ ACCESS. 2022. 31459 70
Le Minh, D. (2021). Model‑based automatic grading of object‑oriented programming assignments. Computer Applications

in Engineering Education. https:// doi. org/ 10. 1002/ cae. 22464
Liu, X., Wang, S., Wang, P., & Wu, D. (2019). Automatic grading of programming assignments: An approach based on

formal semantics. pp. 126–137. https:// doi. org/ 10. 1109/ ICSE‑ SEET. 2019. 00022.
Macak, M., Kruzelova, D., Chren, S., & Buhnova, B. (2021). Using process mining for git log analysis of projects in a

software development course. Education and Information Technologies, 26(5), 5939–5969. https:// doi. org/ 10. 1007/
s10639‑ 021‑ 10564‑6

Oman, R., & Hagemeister, J. R. (1994). Construction and testing of polynomials predicting software maintainability. Jour-
nals of Systems and Software, 24(3), 251–266. https:// doi. org/ 10. 1016/ 0164‑ 1212(94) 90067‑1

Parihar, S., Das, R., Dadachanji, Z., Karkare, A., Singh, P., & Bhattacharya, A. (2017). Automatic grading and feedback using
program repair for introductory programming courses. volume Part F128680, pp. 92–97. https:// doi. org/ 10. 1145/
30590 09. 30590 26.

Perez‑Verdejo, J., Sanchez‑Garcia, A., Ocharan‑Hernandez, J., Mezura‑E, M., & Cortes‑Verdin, K. (2021). Requirements and
github issues: An automated approach for quality requirements classification. Programming and Computer Software,
47(8), 704–721. https:// doi. org/ 10. 1134/ S0361 76882 10801 93

Petkova, A. P., Domingo, M. A., & Lamm, E. (2021). Let’s be frank: Individual and team‑level predictors of improvement
in student teamwork effectiveness following peer‑evaluation feedback. The International Journal of Management
Education, 19(3), 100538. https:// doi. org/ 10. 1016/j. ijme. 2021. 100538

Planas‑Llado, A., Feliu, L., Arbat, G., Pujol, J., Sunol, J. J., Castro, F., & Marti, C. (2021). An analysis of teamwork based on self
and peer evaluation in higher education. Assessment & Evaluation in Higher Education, 46(2), 191–207. https:// doi.
org/ 10. 1080/ 02602 938. 2020. 17632 54

Rubinstein, A., Parzanchevski, N., & Tamarov, Y. (2019). In‑depth feedback on programming assignments using pattern
recognition and real‑time hints. pp. 243–244. https:// doi. org/ 10. 1145/ 33042 21. 33255 52.

Saidani, I., Ouni, A., & Mkaouer, M. (2022). Improving the prediction of continuous integration build failures using deep
learning. Automated Software Engineering, 29(1), 21. https:// doi. org/ 10. 1007/ s10515‑ 021‑ 00319‑5

Strandberg, P., Afzal, W., & Sundmark, D. (2022). Software test results exploration and visualization with continuous inte‑
gration and nightly testing. International Journal on Software Tools for Technology Transfer. https:// doi. org/ 10. 1007/
s10009‑ 022‑ 00647‑1

Theunissen, T., van Heesch, U., & Avgeriou, P. (2022). A mapping study on documentation in continuous software devel‑
opment. Information and Software Technology, 142, 10633. https:// doi. org/ 10. 1016/j. infsof. 2021. 106733

von Wangenheim, C.G., Hauck, J.C.G., Demetrio, M.F., Pelle, R., da Cruz Alvez, N., Barbosa, H., Azevedo, L.F. (2018).
Codemaster‑automatic assessment and grading of app inventor and snap! programs. Informatics in Education, 17(1),
117–150. https:// doi. org/ 10. 15388/ INFEDU. 2018. 08.

https://doi.org/10.1007/978-3-030-35343-8_22
https://doi.org/10.1145/1227504.1227344
https://doi.org/10.1145/3428239
https://doi.org/10.1109/2.303623
https://doi.org/10.1016/j.infsof.2021.106811
https://doi.org/10.1016/j.ijme.2021.100538
https://doi.org/10.1109/CONISOFT52520.2021.00031
https://doi.org/10.3390/su132112050
https://doi.org/10.3390/su132112050
https://doi.org/10.3390/su11205568
https://doi.org/10.19153/cleiej.24.2.8
https://doi.org/10.19153/cleiej.24.2.8
https://doi.org/10.1145/3437914.3437973
https://doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.3127/ajis.v11i1.145
https://doi.org/10.1002/cae.22356
https://doi.org/10.1016/j.ijme.2021.100538
https://doi.org/10.1109/SIIE53363.2021.9583635
https://doi.org/10.1109/SIIE53363.2021.9583635
https://doi.org/10.1109/ACCESS.2022.3145970
https://doi.org/10.1002/cae.22464
https://doi.org/10.1109/ICSE-SEET.2019.00022
https://doi.org/10.1007/s10639-021-10564-6
https://doi.org/10.1007/s10639-021-10564-6
https://doi.org/10.1016/0164-1212(94)90067-1
https://doi.org/10.1145/3059009.3059026
https://doi.org/10.1145/3059009.3059026
https://doi.org/10.1134/S0361768821080193
https://doi.org/10.1016/j.ijme.2021.100538
https://doi.org/10.1080/02602938.2020.1763254
https://doi.org/10.1080/02602938.2020.1763254
https://doi.org/10.1145/3304221.3325552
https://doi.org/10.1007/s10515-021-00319-5
https://doi.org/10.1007/s10009-022-00647-1
https://doi.org/10.1007/s10009-022-00647-1
https://doi.org/10.1016/j.infsof.2021.106733
https://doi.org/10.15388/INFEDU.2018.08

Page 24 of 24Fernandez‑Gauna et al. Int J Educ Technol High Educ (2023) 20:17

Wang, Y., Mantyla, M., Liu, Z., & Markkula, J. (2022). Test automation maturity improves product quality‑quantitative study
of open source projects using continuous integration. Journal of Systems and Software, 188, 11259. https:// doi. org/
10. 1016/j. jss. 2022. 111259

Wunsche, B., Suselo, T., Van Der W, M., Chen, Z., Leung, K., Reilly, L., Shaw, L., Dimalen, D., & Lobb, R. (2018). Automatic
assessment of opengl computer graphics assignments. pp. 81–86. https:// doi. org/ 10. 1145/ 31970 91. 31971 12.

Youngtaek, K., Jaeyoung, K., Hyeon, J., Young‑Ho, K., Hyunjoo, S., Bohyoung, K., & Jinwook, S. (2021). Githru: Visual analytics
for understanding software development history through git metadata analysis. IEEE Transactions on Visualization
and Computer Graphics, 27(2), 656–666. https:// doi. org/ 10. 1109/ TVCG. 2020. 30304 14

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jss.2022.111259
https://doi.org/10.1016/j.jss.2022.111259
https://doi.org/10.1145/3197091.3197112
https://doi.org/10.1109/TVCG.2020.3030414

	Automatic feedback and assessment of team-coding assignments in a DevOps context
	Abstract
	Introduction
	Background
	Git version control
	Distributed teamwork
	DevOps

	Related work
	Methodology
	Academic context
	Assessment metrics
	Team performance metrics
	Individual performance metrics

	Incremental metric calculation
	Automated assessment process
	Qualitative results: student satisfaction and grades

	Discussion and conclusions
	Conclusions

	Acknowledgements
	References

