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Abstract: This research focuses on the Ostrowski–Mercer inequalities, which are presented as vari-
ants of Jensen’s inequality for differentiable convex functions. The main findings were effectively
composed of convex functions and their properties. The results were directed by Riemann–Liouville
fractional integral operators. Furthermore, using special means, q-digamma functions and modified
Bessel functions, some applications of the acquired results were obtained.
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1. Introduction

We will begin by introducing the Ostrowski inequality, which produces an upper
bound for the approximation of the integral average 1

v−u
∫ v
u W(k)dk by the value ofW(k)

at the point k ∈ [u, v] and has quite a lot of applications in the field of inequalities.
LetW : J ⊆ R → R be a differentiable mapping on J◦, the interior of the interval J,

such thatW ∈ L1[u, v], where u, v ∈ J with v > u. If |W ′(`)| ≤ M, for all ` ∈ [u, v], then
the following inequality holds:∣∣∣∣W(`)− 1

v− u

∫ v

u
W(k)dk

∣∣∣∣ ≤ M(v− u)

[
1
4
+

(
`− u+v

2
)2

(v− u)2

]
, (1)

New versions, generalizations and modifications of this unique inequality have been
produced by many researchers in the literature

(
see [1–12]

)
.

Now we will discuss a class of function that acts as one of the cornerstones of inequality
theory. This class of function, called convex function, has been introduced in numerous
variants and has applications in many disciplines, such as convex programming, statistics,
numerical analysis, and approximation theory.

Definition 1 ([13]). A functionW : I = [u, v] ⊂ R→ R, is called convex, if

W(ku+ (1− k)v) ≤ kW(u) + (1− k)W(v), (2)

for all u, v ∈ I, k ∈ [0, 1].

If the functionW is concave, then (−W) is convex.
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Many aesthetic inequalities on convex functions exist in the literature, among which
Jensen’s inequality has a special place. This inequality is proved under fairly simple
conditions, and is extensively used by researchers in fields such as information theory and
inequality theory. Jensen’s inequality is presented as follows:

Let 0 < χ1 ≤ χ2 ≤ ... ≤ χn and σ =
(
σ1, σ2, ..., σn

)
be non-negative weights such that

∑n
`=1 σ` = 1. The Jensen inequality (see [14]) in the literature states that ifW is a convex

function on the interval
[
u, v
]
, then

W
(

n

∑
`=1

σ` χ`

)
≤

n

∑
`=1

σ` W(χ`), (3)

holds for all χ` ∈ [ u, v], σ` ∈ [0, 1] and ` = 1, 2, ..., n. It is a crucial inequality in information
theory that aids in the extraction of bounds for useful distances (see [15–17]).

Although many researchers have focused on Jensen’s inequality, the version proposed
by Mercer is the most interesting and remarkable among them. Mercer [18], in 2003,
introduced a new variant of Jensen’s inequality given as follows:

IfW is a convex function on [u, v], then

W
(
u+ v−

n

∑
`=1

σ` χ`

)
≤ W(u) +W(v)−

n

∑
`=1

σ` W(χ`), (4)

holds for all χ` ∈ [ u, v], σ` ∈ [0, 1] and ` = 1, 2, ..., n.
Several refinements of Jensen–Mercer inequalities were put forth by Pečarić, J. et al. [19].

Mercer’s type inequalities later received many adaptations to higher dimensions by
Niezgoda [20]. Recently, it has made a significant addition to inequality theory, owing to
its well-known characterizations. The concept of the Jensen inequality for super quadratic
functions was considered by Kian [21].

The Jensen–Mercer inequality was credited to Kian and Moslehian [22], and the
following Hermite–Hadamard–Mercer inequality is as follows:

W
(
u+ v− s1 + s2

2

)
≤ 1

s2 − s1

∫ s2

s1

W(u+ v− k)dk (5)

≤ W(u+ v− s1) +W(u+ v− s2)

2
≤ W(u) +W(v)− W(s1) +W(s2)

2
,

whereW is the convex function on [u, v].
For more recent studies linked to the Jensen–Mercer inequality, one can refer to the

following articles [23–26]. Although fractional analysis has a history as long as classical
analysis, it has recently gained popularity among researchers. It is constantly striving
to advance with its use in real-world problems, contribution to engineering sciences and
opportunity for development in different dimensions. One aspect that keeps fractional
analysis up to date is the definition of fractional order derivatives and integrals, as well
as the contribution of each new operator to different fields. When the new operators
are closely examined, various features such as singularity, locality, generalization and
differences in their kernel structures become apparent. Although generalizations and
inferences are the foundations of mathematical methods, the new fractional operators add
new features to solutions, particularly for the time memory effect. Accordingly, various
operators such as Riemann–Liouville, Grünwald Letnikov, Raina, Katugampola, Prabhakar,
Hilfer, Caputo–Fabirizio and Atangana–Baleanu reveal the true potential of fractional
analysis. Now we will continue by introducing the Riemann–Liouville integral operators,
which have a special place among these operators.
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Let W ∈ L1[u, v]. Then, Riemann–Liouville fractional integrals of order α > 0 are
defined as follows:

Iα
u+W(x) =

1
Γ(α)

∫ x

u
(x− t)α−1 W(t) dt , x > u

and

Iα
v−W(x) =

1
Γ(α)

∫ v

x
(t− x)α−1 W(t) dt , x < v.

The Riemann–Liouville fractional integral operator is further expanded to many new
intrgral operators, i.e., k-Riemann–Liouville fractional integral [27], ψ-Riemann–Liouville
fractional integrals [28], Katugampola fractional integrals [29], k, s-Riemann–Liouville
fractional integrals [30] and many such new definitions. Inspired by the Riemann–Liouville
fractional integral operators, Ahmad et al. [31] introduced a new fractional integral operator
involving an exponential function in its kernel and established a few generalizations of
the Hermite–Hadamard type and its inequalities. It has applications in the Schrödinger
Equation [32], electrical screening effect [33] and delayed nonlinear oscillator [34].

For further details, we refer to the following papers
(
see [35–40]

)
.

Recently, the effect of fractional analysis has begun to be felt more in the theory of
inequality. Many new inequalities and new approaches for some well-known inequalities
have been introduced using fractional operators. The Hermite–Hadamard inequality
has been generalized with the Riemann–Liouville integral operators, which is the most
important result of this effort. This generalization is presented by Sarikaya et al. as follows
(see [35]).

Theorem 1. LetW : [u, v] → R be a positive function with 0 ≤ u < v andW ∈ L1[u, v]. IfW
is a convex function on [u, v], then the following inequality for fractional integral holds:

W
(
u+ v

2

)
≤ Γ(α + 1)

2(v− u)α [I
α
u+W(v) + Iα

v−W(u)] ≤ W(u) +W(v)

2
(6)

with α > 0.

The Ostrowski inequality was generalized by numerous mathematicians in various
ways. In particular, a number of academic studies that consider various convexities have
been published in this area. Alomari et al. [1], for instance, employed the concept of
s-convexity, and Icscan et al. [41] used the concept of harmonically s-convex function.
The fractional variant of the Ostrowski-type inequality was first proposed by Set [42] using
Riemann–Liouville fractional operators. Liu [43] developed new iterations of Ostrowski-
type inequality for the MT-convex function using the equality proved in [42]. By using
the Raina fractional integral operator, Agarwal et al. [44] examined a more generalised
Ostrowski-type inequality. To create novel generalizations of the Ostrowski-type inequal-
ity, Sarikaya et al. [45] used local fractional integrals. For an extended form of the Os-
trowski inequality, Gurbuz et al. [46] employed the Katugampola fractional operator.
Atangana–Baleanu fractional operator for differentiable convex functions was used by
Ahmad et al. [47] to show some innovative generalization of the Ostrowski inequality.
As an advancement of this inequality, Sial et al. [48] presented Ostrowski–Mercer type
inequalities for differentiable convex functions, and Ali et al. [49] used harmonically convex
functions to prove new versions of Ostrowski–Mercer-type inequalities.

The major objective of this study is to create some novel Mercer–Ostrowski-type
inequalities for convex functions by using Riemann–Liouville fractional integral operators
with the help of a novel integral identity. Applications of the results were also presented
considering numerous particular cases of the primary findings.
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2. Main Results

In this section, we present Mercer–Ostrowski inequalities for the first differentiable
functions on (u, v) for the Riemann–Liouville integral operators. For this, we introduce a
new fractional identity that will act as an aid in establishing future findings.

Lemma 1. Suppose W : I = [u, v] → R be a differentiable function on (u, v) with v > u. If
W ′ ∈ L1[u, v], then for all ` ∈ [s1, s2], s1, s2 ∈ [u, v] and α > 0, the following identity holds true:{

(`− s1)
αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}
= (`− s1)

α+1
∫ 1

0
kαW ′(`+ u− [ks1 + (1− k)`])dk− (s2 − `)α+1

∫ 1

0
kαW ′(`+ v− [ks2 + (1− k)`])dk. (7)

Proof. Let us start with

I = (`− s1)
α+1

∫ 1

0
kαW ′(`+ u− [ks1 + (1− k)`])dk (8)

− (s2 − `)α+1
∫ 1

0
kαW ′(`+ v− [ks2 + (1− k)`])dk.

I = (`− s1)
α+1 I1 − (s2 − `)α+1 I2, (9)

where

I1 =
∫ 1

0
kαW ′(`+ u− [ks1 + (1− k)`])dk

=
kαW(`+ u− [ks1 + (1− k)`])

`− s1

∣∣∣∣1
0
−
∫ 1

0

kα−1W(`+ u− [ks1 + (1− k)`])
`− s1

· α dk.

By substituting the variables, we obtain

I1 =
W(`+ u− s1)

`− s1
− Γ(α + 1)

(`− s1)
α+1 I

α
(`+u−s1)

−W(u), (10)

and similarly, we get

I2 =
∫ 1

0
kαW ′(`+ v− [ks2 + (1− k)`])dk

= − W(`+ v− s2)

s2 − `
+

Γ(α + 1)

(s2 − `)α+1 I
α
(`+v−s2)

+W(v). (11)

By placing the I1 and I2 with (9), we obtain (7).

Remark 1. Taking s1 = u, s2 = v in Lemma 1, one has Lemma 2 in [42].

Remark 2. Choosing s1 = u, s2 = v and α = 1 in Lemma 1, one has Lemma 1 in [1].

Theorem 2. SupposeW : I = [u, v]→ R be a differentiable mapping on (u, v) with v > u such
thatW ′ ∈ L1[u, v]. If |W ′| is a convex function on [u, v], then under the assumptions of Lemma 1,
the following inequality
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∣∣∣∣{(`− s1)
αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤ (`− s1)

α+1
{

1
α + 1

(∣∣W ′(`)∣∣+ ∣∣W ′(u)∣∣)− [ 1
α + 2

∣∣W ′(s1)
∣∣+ 1

(α + 1)(α + 2)

∣∣W ′(`)∣∣]}
+ (s2 − `)α+1

{
1

α + 1
(∣∣W ′(`)∣∣+ ∣∣W ′(v)∣∣)− [ 1

α + 2

∣∣W ′(s2)
∣∣+ 1

(α + 1)(α + 2)

∣∣W ′(`)∣∣]}, (12)

holds true for all α > 0.

Proof. From Lemma 1 and the Jensen–Mercer inequality with |W ′| is a convex function on
[u, v], we obtain∣∣∣∣{(`− s1)

αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤ (`− s1)

α+1
∫ 1

0
kα
∣∣W ′(`+ u− [ks1 + (1− k)`])

∣∣dk
+ (s2 − `)α+1

∫ 1

0
kα
∣∣W ′(`+ v− [ks2 + (1− k)`])

∣∣dk
≤ (`− s1)

α+1
∫ 1

0
kα{

∣∣W ′(`)∣∣+ ∣∣W ′(u)∣∣− [k
∣∣W ′(s1)

∣∣+ (1− k)
∣∣W ′(`)∣∣]}dk

+ (s2 − `)α+1
∫ 1

0
kα{

∣∣W ′(`)∣∣+ ∣∣W ′(v)∣∣− [k
∣∣∣W ′

(s2)
∣∣∣+ (1− k)

∣∣W ′(`)∣∣]}dk
= (`− s1)

α+1
{

1
α + 1

(∣∣W ′(`)∣∣+ ∣∣W ′(u)∣∣)− [ 1
α + 2

∣∣W ′(s1)
∣∣+ 1

(α + 1)(α + 2)

∣∣W ′(`)∣∣]}
+ (s2 − v)α+1

{
1

α + 1
(∣∣W ′(`)∣∣+ ∣∣W ′(v)∣∣)− [ 1

α + 2

∣∣W ′(s2)
∣∣+ 1

(α + 1)(α + 2)

∣∣W ′(`)∣∣]}, (13)

which completes the proof.

Remark 3. Taking s1 = u, s2 = v in Theorem 2, one has Theorem 7 in [42] for s = 1.

Corollary 1. If we set s1 = u, s2 = v with α = 1 in Theorem 2, then we have∣∣∣∣W(`)− 1
v− u

∫ v

u
W(k)dk

∣∣∣∣
≤ (`− u)2

3(v− u)

{
1
2

∣∣W ′(u)∣∣+ ∣∣W ′(`)∣∣}+
(v− `)2

3(v− u)

{
1
2

∣∣W ′(v)∣∣+ ∣∣W ′(`)∣∣}.

Corollary 2. Choosing α = 1 in Theorem 2, we obtain∣∣∣∣{ `− s1

s2 − s1
W(`+ u− s1) +

s2 − `

s2 − s1
W(`+ v− s2)

}
− 1

s2 − s1

{ ∫ `+u−s1

`+u−`
W(k)dk+

∫ `+v−`

`+v−s2

W(k)dk
}∣∣∣∣

≤ (`− s1)
2

s2 − s1

{
1
2
(∣∣W ′(`)∣∣+ ∣∣W ′(u)∣∣)− [1

3

∣∣W ′(s1)
∣∣+ 1

6

∣∣W ′(`)∣∣]}
+

(s2 − `)2

s2 − s1

{
1
2
(∣∣W ′(`)∣∣+ ∣∣W ′(v)∣∣)− [1

3

∣∣W ′(s2)
∣∣+ 1

6

∣∣W ′(`)∣∣]}.

Corollary 3. Under the assumption of |W ′| ≤ M, Theorem 2 gives
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∣∣∣∣{(`− s1)
αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤ M

(s2 − s1)(α + 1)

{
(v− s1)

α+1 + (s2 − v)α+1
}

.

Remark 4. Taking s1 = u, s2 = v in Corollary 3, one has Corollary 1 in [42].

Remark 5. Choosing s1 = u, s2 = v and α = 1 in Corollary 3, one has Theorem 2 in [1] that
yields the same result with s = 1.

Theorem 3. SupposeW : I = [u, v]→ R be a differentiable mapping on (u, v) with v > u such
thatW ′ ∈ L1[u, v]. If |W ′|q is a convex function on [u, v], q > 1, then under the assumptions of
Lemma 1, the following inequality∣∣∣∣{(`− s1)

αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤ (`− s1)

α+1
(

1
αp + 1

) 1
p
{(∣∣W ′(`)∣∣q + ∣∣W ′(u)∣∣q)− 1

2
[
∣∣W ′(s1)

∣∣q + ∣∣W ′(`)∣∣q]} 1
q

+ (s2 − `)α+1
(

1
αp + 1

) 1
p
{(∣∣W ′(`)∣∣q + ∣∣W ′(v)∣∣q)− 1

2
[
∣∣W ′(s2)

∣∣q + ∣∣W ′(`)∣∣q]} 1
q

, (14)

holds true for all α > 0, where q−1 + p−1 = 1.

Proof. Under the hypothesis of the Hölder integral inequality and the Jensen–Mercer
inequality with a convexity of |W ′|q for Lemma 1, we obtain∣∣∣∣{(`− s1)

αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤ (`− s1)

α+1
∫ 1

0
kα
∣∣W ′(`+ u− [ks1 + (1− k)`])

∣∣dk+ (s2 − `)α+1
∫ 1

0
kα
∣∣W ′(`+ v− [ks2 + (1− k)`])

∣∣dk
≤ (`− s1)

α+1
(∫ 1

0
kαpdk

) 1
p
(∫ 1

0

∣∣W ′(`+ u− [ks1 + (1− k)`])
∣∣qdk

) 1
q

+ (s2 − `)α+1
(∫ 1

0
kαpdk

) 1
p
(∫ 1

0

∣∣W ′(`+ v− [ks2 + (1− k)`])
∣∣qdk

) 1
q

≤ (`− s1)
α+1
(∫ 1

0
kαpdk

) 1
p
(∫ 1

0
{
∣∣W ′(`)∣∣q + ∣∣W ′(u)∣∣q − [k

∣∣W ′(s1)
∣∣q + (1− k)

∣∣W ′(`)∣∣q]}dk) 1
q

+ (s2 − `)α+1
(∫ 1

0
kαpdk

) 1
p
(∫ 1

0
{
∣∣W ′(`)∣∣q + ∣∣W ′(v)∣∣q − [k

∣∣W ′(s2)
∣∣q + (1− k)

∣∣W ′(`)∣∣q]}dk) 1
q

= (`− s1)
α+1
(

1
αp + 1

) 1
p
{(∣∣W ′(`)∣∣q + ∣∣W ′(u)∣∣q)− 1

2
[
∣∣W ′(s1)

∣∣q + ∣∣W ′(`)∣∣q]} 1
q

+ (s2 − `)α+1
(

1
αp + 1

) 1
p
{(∣∣W ′(`)∣∣q + ∣∣W ′(v)∣∣q)− 1

2
[
∣∣W ′(s2)

∣∣q + ∣∣W ′(`)∣∣q]} 1
q

.

The proof is completed.

Remark 6. Taking s1 = u, s2 = v in Theorem 3, one has Theorem 8 in [42] for s = 1.

Corollary 4. Choosing s1 = u, s2 = v with α = 1 in Theorem 3, then we have
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∣∣∣∣W(`)− 1
v− u

∫ v

u
W(k)dk

∣∣∣∣
≤ 1

2
1
q (v− u)

(
1

p + 1

) 1
p
[
(`− u)2

{∣∣W ′(u)∣∣q + ∣∣W ′(`)∣∣q} 1
q

+ (v− `)2
{∣∣W ′(v)∣∣q + ∣∣W ′(`)∣∣q} 1

q
]

.

Corollary 5. Choosing α = 1 in Theorem 3, we obtain∣∣∣∣{(`− s1
)
W(`+ u− s1) +

(
s2 − `

)
W(`+ v− s2)

}
−
{ ∫ `+u−s1

u
W(k)dk+

∫ v

`+v−s2

W(k)dk
}∣∣∣∣

≤ (`− s1)
2
(

1
p + 1

) 1
p
{(∣∣W ′(`)∣∣q + ∣∣W ′(u)∣∣q)− 1

2
[
∣∣W ′(s1)

∣∣q + ∣∣W ′(`)∣∣q]} 1
q

+ (s2 − `)2
(

1
p + 1

) 1
p
{(∣∣W ′(`)∣∣q + ∣∣W ′(v)∣∣q)− 1

2
[
∣∣W ′(s2)

∣∣q + ∣∣W ′(`)∣∣q]} 1
q

.

Corollary 6. Theorem 3 with |W ′| ≤ M, we get∣∣∣∣{(`− s1)
αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤ M

(
1

αp + 1

) 1
p
{
(`− s1)

α+1 + (s2 − `)α+1
}

.

Remark 7. Choosing s1 = u, s2 = v in Corollary 6, one has Corollary 2 in [42].

Remark 8. Taking s1 = u, s2 = v and α = 1 in Corollary 6, one has Theorem 3 in [1] for s = 1.

Theorem 4. SupposeW : I = [u, v]→ R be a differentiable mapping on (u, v) with v > u such
thatW ′ ∈ L1[u, v]. If |W ′|q is a convex function on [u, v], q ≥ 1, then under the assumptions of
Lemma 1, the following inequality∣∣∣∣{(`− s1)

αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤ (`− s1)

α+1
(

1
α + 1

)1− 1
q
{

1
α + 1

(∣∣W ′(`)∣∣q + ∣∣W ′(u)∣∣q)− [ 1
α + 2

∣∣W ′(s1)
∣∣q + 1

(α + 1)(α + 2)

∣∣W ′(`)∣∣q]} 1
q

+ (s2 − `)α+1
(

1
α + 1

)1− 1
q
{

1
α + 1

(∣∣W ′(`)∣∣q + ∣∣W ′(v)∣∣q)− [ 1
α + 2

∣∣W ′(s2)
∣∣q + 1

(α + 1)(α + 2)

∣∣W ′(`)∣∣q]} 1
q

, (15)

holds true for all α > 0.

Proof. Under the assumption of the power–mean integral inequality and the Jensen–Mercer
inequality with a convexity of |W ′|q for Lemma 1, we have
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∣∣∣∣{(`− s1)
αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤ (`− s1)

α+1
∫ 1

0
kα
∣∣W ′(`+ u− [ks1 + (1− k)`])

∣∣dk
+ (s2 − `)α+1

∫ 1

0
kα
∣∣W ′(`+ v− [ks2 + (1− k)`])

∣∣dk
≤ (`− s1)

α+1
(∫ 1

0
kαdk

)1− 1
q
(∫ 1

0
kα
∣∣W ′(`+ u− [ks1 + (1− k)`])

∣∣qdk
) 1

q

+ (s2 − `)α+1
(∫ 1

0
kαdk

)1− 1
q
(∫ 1

0
kα
∣∣W ′(`+ v− [ks2 + (1− k)`])

∣∣qdk
) 1

q

≤ (`− s1)
α+1
(∫ 1

0
kαdk

)1− 1
q
(∫ 1

0
kα{

∣∣W ′(`)∣∣q + ∣∣W ′(u)∣∣q − [k
∣∣W ′(s1)

∣∣q + (1− k)
∣∣W ′(`)∣∣q]}dk) 1

q

+ (s2 − `)α+1
(∫ 1

0
kαdk

)1− 1
q
(∫ 1

0
kα{

∣∣W ′(`)∣∣q + ∣∣W ′(v)∣∣q − [k
∣∣W ′(s2)

∣∣q + (1− k)
∣∣W ′(`)∣∣q]}dk) 1

q

= (`− s1)
α+1
(

1
α + 1

)1− 1
q
{

1
α + 1

(∣∣W ′(`)∣∣q + ∣∣W ′(u)∣∣q)− [ 1
α + 2

∣∣W ′(s1)
∣∣q + 1

(α + 1)(α + 2)

∣∣W ′(`)∣∣q]} 1
q

+ (s2 − `)α+1
(

1
α + 1

)1− 1
q
{

1
α + 1

(∣∣W ′(`)∣∣q + ∣∣W ′(v)∣∣q)− [ 1
α + 2

∣∣W ′(s2)
∣∣q + 1

(α + 1)(α + 2)

∣∣W ′(`)∣∣q]} 1
q

,

which completes the proof.

Remark 9. Taking s1 = u, s2 = v in Theorem 4, one has Theorem 9 in [42] for s = 1.

Corollary 7. Choosing s1 = u, s2 = v with α = 1 in Theorem 4, then we obtain∣∣∣∣W(`)− 1
v− u

∫ v

u
W(k)dk

∣∣∣∣
≤ 1

(v− u)

(
1
2

)1− 1
q 1

3

[
(`− u)2

{
1
2

∣∣W ′(u)∣∣q + ∣∣W ′(`)∣∣q} 1
q

+ (v− `)2
{

1
2

∣∣W ′(v)∣∣q + ∣∣W ′(`)∣∣q} 1
q
]

.

Corollary 8. Choosing α = 1 in Theorem 4, we have∣∣∣∣{(`− s1)W(`+ u− s1) + (s2 − `)W(`+ v− s2)

}
−
{ ∫ `+u−s1

u
W(k)dk+

∫ v

`+v−s2

W(k)dk
}∣∣∣∣

≤ (`− s1)
2
(

1
2

)1− 1
q
{

1
2

(∣∣W ′(`)∣∣q + ∣∣W ′(u)∣∣q)− [1
3

∣∣W ′(s1)
∣∣q + 1

6

∣∣W ′(`)∣∣q]} 1
q

+ (s2 − `)2
(

1
2

)1− 1
q
{

1
2

(∣∣W ′(`)∣∣q + ∣∣W ′(v)∣∣q)− [1
3

∣∣W ′(s2)
∣∣q + 1

6

∣∣W ′(`)∣∣q]} 1
q

.

Corollary 9. Theorem 4 with |W ′| ≤ M, we get∣∣∣∣{(`− s1)
αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤ M

(α + 1)

{
(`− s1)

α+1 + (s2 − `)α+1
}

.

Remark 10. Taking s1 = u, s2 = v in Corollary 9, one has Corollary 3 in [42].
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Remark 11. Choosing s1 = u, s2 = v and α = 1 in Corollary 9, one has Theorem 4 in [1] for
s = 1.

Theorem 5. SupposeW : I = [u, v]→ R be a differentiable mapping on (u, v) with v > u such
thatW ′ ∈ L1[u, v]. If |W ′|q is a convex function on [u, v], then under the assumptions of Lemma
1, the following inequality∣∣∣∣{(`− s1)

αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤ (`− s1)

α+1
{

1
(αp + 1)p

+
1
q

(∣∣W ′(`)∣∣q + ∣∣W ′(u)∣∣q − 1
2
[
∣∣W ′(s1)

∣∣q + ∣∣W ′(`)∣∣q])}
+ (s2 − `)α+1

{
1

(αp + 1)p
+

1
q

(∣∣W ′(`)∣∣q + ∣∣W ′(v)∣∣q − 1
2
[
∣∣W ′(s2)

∣∣q + ∣∣W ′(`)∣∣q])}, (16)

holds true for all α > 0, where p, q > 1 are conjugate exponents, i.e., 1
p + 1

q = 1.

Proof. Under the assumption of Lemma 1, we have∣∣∣∣{(`− s1)
αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤ (`− s1)

α+1
∫ 1

0
kα
∣∣W ′(`+ u− [ks1 + (1− k)`])

∣∣dk+ (s2 − `)α+1
∫ 1

0
kα
∣∣W ′(`+ v− [ks2 + (1− k)`])

∣∣dk. (17)

Using Young’s inequality, i.e.,

xy ≤ 1
p

xp +
1
q

yq,

(equality holds if xp = yq)∣∣∣∣{(`− s1)
αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤ (`− s1)

α+1
{

1
p

∫ 1

0
kαpdk+

1
q

∫ 1

0

∣∣W ′(`+ u− [ks1 + (1− k)`])
∣∣qdk

}
+ (s2 − `)α+1

{
1
p

∫ 1

0
kαpdk+

1
q

∫ 1

0

∣∣W ′(`+ v− [ks2 + (1− k)`])
∣∣qdk

}
. (18)

Under the assumption of Jensen–Mercer inequality and a convexity of |W ′|q, we obtain∣∣∣∣{(`− s1)
αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤ (`− s1)

α+1
{

1
p

∫ 1

0
kαpdk+

1
q

∫ 1

0
{
∣∣W ′(`)∣∣q + ∣∣W ′(u)∣∣q − [k

∣∣W ′(s1)
∣∣q + (1− k)

∣∣W ′(`)∣∣q]}dk}
+ (s2 − `)α+1

{
1
p

∫ 1

0
kαpdk+

1
q

∫ 1

0
{
∣∣W ′(`)∣∣q + ∣∣W ′(v)∣∣q − [k

∣∣W ′(s2)
∣∣q + (1− k)

∣∣W ′(`)∣∣q]}dk}
= (`− s1)

α+1
{

1
(αp + 1)p

+
1
q

(∣∣W ′(`)∣∣q + ∣∣W ′(u)∣∣q − 1
2
[
∣∣W ′(s1)

∣∣q + ∣∣W ′(`)∣∣q])}
+ (s2 − `)α+1

{
1

(αp + 1)p
+

1
q

(∣∣W ′(`)∣∣q + ∣∣W ′(v)∣∣q − 1
2
[
∣∣W ′(s2)

∣∣q + ∣∣W ′(`)∣∣q])}.

This concludes the proof.

Corollary 10. Theorem 5 with |W ′| ≤ M, we have
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∣∣∣∣{(`− s1)
αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤
{

1
(αp + 1)p

+
1
q

Mq
}[

(`− s1)
α+1 + (s2 − `)α+1

]
.

Theorem 6. SupposeW : I = [u, v]→ R be a differentiable mapping on (u, v) with v > u such
thatW ′ ∈ L1[u, v]. If |W ′|q is a convex function on [u, v], q > 1, then under the assumptions of
Lemma 1, the following inequality∣∣∣∣{(`− s1)

αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤
(

1
αp + 1

) 1
p
{
(`− s1)

α+1
∣∣∣∣W ′(`+ u− s1 + `

2

)∣∣∣∣+ (s2 − `)α+1
∣∣∣∣W ′(`+ v− s2 + `

2

)∣∣∣∣}, (19)

holds true for all α > 0, where q−1 + p−1 = 1.

Proof. Under the assumption of Hölder’s inequality and Lemma 1, we have∣∣∣∣{(`− s1)
αW(`+ u− s1) + (s2 − `)αW(`+ v− s2)

}
− Γ(α + 1)

{
Iα
(`+u−s1)

−W(u) + Iα
(`+v−s2)

+W(v)

}∣∣∣∣
≤ (`− s1)

α+1
∫ 1

0
kα
∣∣W ′(`+ u− [ks1 + (1− k)`])

∣∣dk+ (s2 − `)α+1
∫ 1

0
kα
∣∣W ′(`+ v− [ks2 + (1− k)`])

∣∣dk
≤ (`− s1)

α+1
(∫ 1

0
kαpdk

) 1
p
(∫ 1

0

∣∣W ′(`+ u− [ks1 + (1− k)`])
∣∣qdk

) 1
q

+ (s2 − `)α+1
(∫ 1

0
kαpdk

) 1
p
(∫ 1

0

∣∣W ′(`+ v− [ks2 + (1− k)`])
∣∣qdk

) 1
q
. (20)

Since |W ′|q is a convex function, from (5), we get

∫ 1

0

∣∣W ′(`+ u− [ks1 + (1− k)`])
∣∣qdk ≤

∣∣∣∣W ′(`+ u− s1 + `

2

)∣∣∣∣q (21)

and ∫ 1

0

∣∣W ′(`+ v− [ks2 + (1− k)`])
∣∣qdk ≤

∣∣∣∣W ′(`+ v− s2 + `

2

)∣∣∣∣q. (22)

We obtain the following inequality (19) by placing inequalities (21) and (22) in (20).
The proof is completed.

Remark 12. Choosing s1 = u, s2 = v and α = 1 in Theorem 6, one has Theorem 5 in [1] for s = 1.

3. Applications
3.1. Special Means

In the literature, the following means are well known for 0 < Φ1 < Φ2.
The arithmetic mean:

A(Φ1, Φ2) =
Φ1 + Φ2

2
.

The logarithmic-mean:

L(Φ1, Φ2) =
Φ2 −Φ1

log Φ2 − log Φ1
.
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The generalized logarithmic-mean:

Lm(Φ1, Φ2) =

[
Φm+1

2 −Φm+1
1

(m + 1)(Φ2 −Φ1)

] 1
m

; m ∈ R \ {−1, 0}.

Proposition 1. Let u, v ∈ R, 0 < u < v and n ∈ Z. Then, for all ` ∈ [s1, s2], and s1, s2 ∈ [u, v],
we obtain ∣∣∣∣{(`− s1)(2A(`, u)− s1)

n + (s2 − `)(2A(`, v)− s2)
n
}

−
{
(`− s1)Ln

n(`+ u− s1, u) + (s2 − `)Ln
n(v, `+ v− s2)

}∣∣∣∣
≤ n(`− s1)

2
(

1
p + 1

) 1
p
{

2A
(
`(n−1)q, u(n−1)q

)
− A

(
s
(n−1)q
1 , `(n−1)q

)} 1
q

+ n(s2 − `)2
(

1
p + 1

) 1
p
{

2A
(
`(n−1)q, v(n−1)q

)
− A

(
s
(n−1)q
2 , `(n−1)q

)} 1
q

.

Proof. Under the assumptions of Corollary 5 and forW(`) = `n, we obtain the desired result.

Proposition 2. Let u, v ∈ R, 0 < u < v and n ∈ Z. Then, for all ` ∈ [s1, s2], and s1, s2 ∈ [u, v],
we have ∣∣∣∣{(`− s1)(2A(`, u)− s1)

n + (s2 − `)(2A(`, v)− s2)
n
}

−
{
(`− s1)Ln

n(`+ u− s1, u) + (s2 − `)Ln
n(v, `+ v− s2)

}∣∣∣∣
≤ n(`− s1)

2
{

A
(
`n−1, un−1

)
− 1

3
A
(

2sn−1
1 , `n−1

)}
+ n(s2 − `)2

{
A
(
`n−1, vn−1

)
− 1

3
A
(

2sn−1
2 , `n−1

)}
.

Proof. Under the assumptions of Corollary 2 and forW(`) = `n, we obtain the desired result.

3.2. q-Digamma Function

The q−analog of the digamma function ϕ
(
see [50,51]

)
, i.e., q−digamma function ϕq,

for 0 < q < 1, is given as follows:

ϕq = − ln(1− q) + ln q
∞

∑
k=0

qk+ω

1− qk+ω

= − ln(1− q) + ln q
∞

∑
k=0

qkω

1− qkω
.

The q−digamma function ϕq can also be written as follows:

ϕq = − ln(q− 1) + ln q

[
ω− 1

2
−

∞

∑
k=0

q−(k+ω)

1− q−(k+ω)

]
= − ln(q− 1) + ln q

[
ω− 1

2
−

∞

∑
k=0

q−kω

1− q−kω

]
,

for q > 1 and ω > 0.
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Proposition 3. Let 0 < u < v, q > 1, 0 < q < 1 and q−1 = 1 − p−1. Then, for all
` ∈ [s1, s2] and s1, s2 ∈ [u, v], we have∣∣∣∣{(`− s1)ϕq(`+ u− s1) + (s2 − `)ϕq(`+ v− s2)

}
− 1

s2 − s1

{ ∫ `+u−s1

u
ϕq(ω)dω +

∫ v

`+v−s2

ϕq(ω)dω

}∣∣∣∣
≤ (`− s1)

2
(

1
p + 1

) 1
p
{(∣∣∣ϕ′q(`)∣∣∣q + ∣∣∣ϕ′q(u)∣∣∣q)− 1

2
[
∣∣∣ϕ′q(s1)

∣∣∣q + ∣∣∣ϕ′q(`)∣∣∣q]} 1
q

+ (s2 − `)2
(

1
p + 1

) 1
p
{(∣∣∣ϕ′q(`)∣∣∣q + ∣∣∣ϕ′q(v)∣∣∣q)− 1

2
[
∣∣∣ϕ′q(s2)

∣∣∣q + ∣∣∣ϕ′q(`)∣∣∣q]} 1
q

.

Proof. The assertion can be obtained immediately by using Corollary 5 with the W :
ω → ϕq(ω) is a completely monotone function on (0, ∞) for all ω > 0 and consequently,
W ′(ω) := ϕ′q(ω) is convex.

4. Modified Bessel Function

The modified Bessel function of the first kind vr, (see [51], p.77) is given as follows:

vr(ω) = Σn≥0

(
ω
2
)r+2n

n!Γ(r+ n+ 1)
.

where ω ∈ R and r > −1.
The modified Bessel function of the second kind Υr (see [51], p.78) is defined as follows:

Υr(ω) =
π

2
v−r(ω)−vr(ω)

sin rπ
.

The function Br(ω) : R→ [1, ∞) can be defined as

Br(ω) = 2rΓ(r+ 1)ω−rΥr(ω),

where Γ is the gamma function.
The following derivative formulas of Br(ω) are presented in [51]:

B′r(ω) =
ω

2(r+ 1)
Br+1(ω). (23)

B′′r (ω) =
ω2Br+2(ω)

4(r+ 1)(r+ 2)
+

Br+1(ω)

2(r+ 1)
. (24)

Proposition 4. Suppose that r > −1 and 0 < u < v. Then, for all ` ∈ [s1, s2] and s1, s2 ∈ [u, v],
we have∣∣∣∣{(`− s1)

`+ u− s1

2(r+ 1)
Br+1(`+ u− s1) + (s2 − `)

`+ v− s2

2(r+ 1)
Br+1(`+ v− s2)

}
(25)

−
{
(Br(`+ u− s1)−Br(u)) + (Br(v)−Br(`+ v− s2))

}∣∣∣∣
≤ (`− s1)

2
{

1
2

(
`2Br+2(`)

4(r+ 1)(r+ 2)
+

Br+1(`)

2(r+ 1)
+

u2Br+2(u)

4(r+ 1)(r+ 2)
+

Br+1(u)

2(r+ 1)

)
−
[

1
3

(
s2

1Br+2(s1)

4(r+ 1)(r+ 2)
+

Br+1(s1)

2(r+ 1)

)
+

1
6

(
`2Br+2(`)

4(r+ 1)(r+ 2)
+

Br+1(`)

2(r+ 1)

)]}
+ (s2 − `)2

{
1
2

(
`2Br+2(`)

4(r+ 1)(r+ 2)
+

Br+1(`)

2(r+ 1)
+

v2Br+2(v)

4(r+ 1)(r+ 2)
+

Br+1(v)

2(r+ 1)

)
−
[

1
3

(
s2

2Br+2(s2)

4(r+ 1)(r+ 2)
+

Br+1(s2)

2(r+ 1)

)
+

1
6

(
`2Br+2(`)

4(r+ 1)(r+ 2)
+

Br+1(`)

2(r+ 1)

)]}
.
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Proof. Applying the inequality in Corollary 2 to the functionW : ω = B′r(ω), ω > 0 (Note
that all assumptions are satisfied) and the identities (23) and (24).

5. Conclusions

Recently, it has been seen that researchers working in the field of inequality theory
focus on obtaining new generalizations, introducing new inequalities with effective ap-
plications and extending existing inequalities to different spaces. This study focuses on
new generalizations of Ostrowski–Mercer-type inequalities by taking several of these ob-
jectives into account. Furthermore, the study has been enriched with applications for
special means, modified Bessel functions and q-digamma functions, which are a motivating
aspect. Researchers can contribute to the development of the results based on this study by
developing new integral identities. In the future, the results can be further generalized via
interval-valued analysis and quantum calculus. Furthermore, one can use the concept of
this paper to prove different versions of Mercer-type inequalities for subadditive functions.
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