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Abstract: The generation of a virtual, personal, auditory space to obtain a high-quality sound
experience when using headphones is of great significance. Normally this experience is improved
using personalized head-related transfer functions (HRTFs) that depend on a large degree of personal
anthropometric information on pinnae. Most of the studies focus their personal auditory optimization
analysis on the study of amplitude versus frequency on HRTFs, mainly in the search for significant
elevation cues of frequency maps. Therefore, knowing the HRTFs of each individual is of considerable
help to improve sound quality. The following work proposes a methodology to model HRTFs
according to the individual structure of pinnae using multilayer perceptron and linear regression
techniques. It is proposed to generate several models that allow knowing HRTFs amplitude for
each frequency based on the personal anthropometric data on pinnae, the azimuth angle, and the
elevation of the sound source, thus predicting frequency magnitudes. Experiments show that the
prediction of new personal HRTF generates low errors, thus this model can be applied to new heads
with different pinnae characteristics with high confidence. Improving the results obtained with the
standard KEMAR pinna, usually used in cases where there is a lack of information.

Keywords: head related transfer function; virtual auditory space; artificial neural network; linear
regression; modeling methodology; multilayer perceptron

1. Introduction

The head-related transfer function (HRTF) is a personal function that describes the
propagation of the sound from a source to the auditory system of a human subject [1].
This function is particular to each individual because it largely depends on the anatomical
structure of each person and the location of the transmitting and receiving elements [2].
Thus, the use of generic HRTFs, which have not been adapted to each particular individual,
has been demonstrated to inhibit a high quality sound experience, and, in many cases,
generate disorientation and confusion [3]. This has led to a multitude of studies regarding
the generation of near-field HRTFs based on the binaural sound measurement in the
free field [4–8].

The head-related impulse response (HRIR) in the time domain or HRTF in the fre-
quency domain is defined by some authors such as Blauert [2] as an acoustic filter from a
sound source to the entrance of the ear canal. These functions define the relation between
the location of the source, the particular form of the listener’s auditory system, and the
final effect on the sound. For this reason, each individual’s HRIR must be measured in
order to improve the individual’s sound experience. The acoustic waves received by each
individual are reflected and refracted by the pinnae, generating notches and peaks in the
acoustic spectrum. Due to the variation of individuals’ pinnae, the HRIR and HRTF are
unique to each individual [9–12].

Previous works to characterize individual HRTFs have been mainly categorized into
two different approaches [13]. The first is the most precise method to obtain individual
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HRTFs. Acoustic signals are measured in an anechoic chamber by placing microphones
in the ear canals to perform the necessary measurements to characterize each individ-
ual [14,15]. The second approach is less precise but it is faster and uses fewer resources.
Acoustic signals are generated by predictive models, obtaining a good approximation of
the characteristics of each user [16–18].

The problem is that obtaining these functions for each individual requires the use of
special equipment and the cost of working time of experts. Machine learning methods
are a very useful tool to solve this problem, as they can generalize new information
based on historical data that defines the problem. Several studies in this field have used
machine learning techniques in relation to HRTFs [19–26], although they used different
methodologies and had different objectives in comparison to the current study. These
works demonstrated how these techniques can be used to optimize and customize HRTFs
with accurate results [11,27–29].

This work introduces a new approach to personalize HRTFs using machine learning
techniques. The process is explained in the flow chart shown in Figure 1. Here, several
models generalize the relation between HRTFs, source location, and individual ear shape.
Two models were developed: a linear model, based on linear regression, and a nonlinear
model, based on multilayer perceptron artificial neural network [30]. The applied prediction
methodology was based on a training and testing process which optimized and generalized
the model’s predictions while avoiding any possible overfitting. Initially, a multivariate
analysis was performed to analyze the available dataset with two goals: build a more
accurate model and have a better understanding of the problem. Later, a repeated cross-
validation training was conducted. During this process, the most significant parameters
of each algorithm were adjusted to improve the accuracy of the obtained models [31].
During this step, some robustness criteria were applied as help along the optimization
of the training process, with the goal of selecting the most accurate models. Finally, the
models with the best predictive behavior were selected and tested with information not
previously used during the training. Obtaining in this way the real regression capacity of
the model, preventing overfitting [32,33].

Finally, an analysis of the results was performed to know the reliability of the predic-
tion and the efficiency of the applied models. Additionally, in this analysis, the obtained
results were compared with the HRTFs measured using standard pinnae in order to verify
if the models had a more accurate behavior than the standard HRTFs and thus could be
used to improve the quality sound experience.

The remainder of this paper is as follows. Section 2 describes the Viking2 dataset
which was used for the study and the new features under analyses. In addition, Section 2
describes the analyses that were performed, the results of which are presented in Section 3.
Finally, Section 4 contains some concluding remarks.



Acoustics 2023, 5 256Acoustics 2023, 5 4 FOR PEER REVIEW  3 
 

 

 
Figure 1. Flow diagram of the process performed in this work. 

Finally, an analysis of the results was performed to know the reliability of the pre-
diction and the efficiency of the applied models. Additionally, in this analysis, the ob-
tained results were compared with the HRTFs measured using standard pinnae in order 
to verify if the models had a more accurate behavior than the standard HRTFs and thus 
could be used to improve the quality sound experience. 

The remainder of this paper is as follows. Section 2 describes the Viking2 dataset 
which was used for the study and the new features under analyses. In addition, Section 2 
describes the analyses that were performed, the results of which are presented in Section 
3. Finally, Section 4 contains some concluding remarks. 

2. Materials and Methods 
This work was performed based on the Viking2 dataset [34], which contains both 

acoustic and anthropometric data for 20 individuals. Section 2.1 describes the acoustic 
measurements and Section 2.2 describes the anthropometric features used in this study. 

Then, in Sections 2.4–2.8, the followed methodology is explained. How two tech-
niques, one linear and one nonlinear, were applied to the problem under consideration, 
obtaining the prediction of HRTF based on personal anthropometric data of the pinnae 
and the position of the sound source. For this purpose, a multivariate analysis and a train-
ing/testing methodology were used, with the aim of developing a better understanding of 
the problem and predicting the amplitude of each frequency in the HRTF. 

2.1. Acoustic Measurements 
The acoustic data in the Viking2 dataset consists of a series of HRIR measurements 

for each of the individuals. Each HRIR signal is measured on a KEMAR mannequin 
equipped with a replica of the corresponding individual’s left pinna. The mannequin is 

Figure 1. Flow diagram of the process performed in this work.

2. Materials and Methods

This work was performed based on the Viking2 dataset [34], which contains both
acoustic and anthropometric data for 20 individuals. Section 2.1 describes the acoustic
measurements and Section 2.2 describes the anthropometric features used in this study.

Then, in Sections 2.4–2.8, the followed methodology is explained. How two techniques,
one linear and one nonlinear, were applied to the problem under consideration, obtaining
the prediction of HRTF based on personal anthropometric data of the pinnae and the
position of the sound source. For this purpose, a multivariate analysis and a training/testing
methodology were used, with the aim of developing a better understanding of the problem
and predicting the amplitude of each frequency in the HRTF.

2.1. Acoustic Measurements

The acoustic data in the Viking2 dataset consists of a series of HRIR measurements for
each of the individuals. Each HRIR signal is measured on a KEMAR mannequin equipped
with a replica of the corresponding individual’s left pinna. The mannequin is mounted
on a 360◦ rotating cylindrical stand and a Genelec 8020CPM-6 loudspeaker mounted on
an L-shaped rotating arm. These signals were gathered at the University of Iceland in an
anechoic environment with a focus on extra median plane measurements. The dataset
includes full-sphere HRIRs measured on a dense spatial grid (1513 positions). These
1513 positions mark the location of the sound source, which is defined by the azimuth angle
θ and elevation angle φ in vertical-polar coordinates. Elevations are uniformly sampled
in 5◦ steps from −45◦ to 90◦. Azimuths are sampled based on Table 1 in order to obtain a
uniform density of the sphere. An overview of the methods and procedures of how HRIR
signals were measured can be found in Spagnol et al. [4] and Onofrei et al. [35].
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Table 1. Parameters that define the position of the source in each HRIR measurement.

Elevations [◦] [−45, 45] [50, 70] [75, 85] 90

Step [◦] 5 15 45 360
No. of azimuths 72 24 8 1

Starting from these measured HRIR signals, the corresponding HRTFs were obtained,
from which the amplitude in dB was generated to be added to the final dataset. Sixty-five
instances per ear type and per position were calculated, covering the frequency range from
0 to 24 kHz (Figure 2).
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Figure 2. Relation between HRIR and HRTF. Example: ‘A’ pinna, θ = 190◦, φ = −45◦.

2.2. Anthropometric Data

A second source of information, based on these same 20 artificial pinnae, was also used.
Measurements of 15 pinna anthropometric parameters, including 11 linear and 4 angular
parameters (Table 2) were gathered for this work. There is currently no standard definition
for these parameters; the parameters selected for this study are focused on obtaining a
relatively integral representation of pinna features, following previous works found in
the literature [8,36–38]. The anthropometric parameters of each pinna were measured
from the 3D models used to manufacture silicone replicas of the pinnae (Figure 3). Table 3
summarizes the distribution of these anthropometric parameters, which indicates the
parameter space covered by the final model.
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Table 2. Parameters measured in the pinnae.

Parameter Definition Units

d1 Cavum conchae height Millimeters
d2 Cymba conchae height Millimeters
d3 Cavum conchae width Millimeters
d4 Fossa height Millimeters
d5 Pinna height Millimeters
d6 Pinna width Millimeters
d7 Intertragal incisures width Millimeters
d8 Cavum conchae depth Millimeters
d9 Physiognomic pinna length Millimeters
d10 Pinna flaring distance Millimeters
d11 Pinna posterior to tragus distance Millimeters
θ1 Pinna rotation angle Euler degree
θ2 Cavum conchae angle Euler degree
θ3 Pinna flare angle Euler degree
θ4 Pinna deflection angle Euler degree
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Table 3. Statistics of the anthropometric parameters measured for this study.

Mean SD Min Max
Percentiles

5th 10th 25th 50th 75th 90th 95th

d1 18.71 3.06 10.96 22.96 14.34 15.11 17.47 18.78 20.33 22.69 22.88
d2 8.83 2.43 5.36 14.53 5.76 6.08 7.42 8.33 9.72 12.44 12.97
d3 18.59 3.37 13.43 25.91 13.83 14.07 16.31 18.09 19.95 23.12 23.90
d4 20.87 4.90 11.23 30.39 13.40 14.96 17.74 21.17 24.09 26.20 28.51
d5 68.03 6.15 54.66 81.95 60.90 61.53 64.28 68.23 70.40 73.42 79.18
d6 33.75 3.88 27.20 41.84 28.94 29.11 30.78 34.09 36.70 37.17 40.11
d7 7.25 1.38 5.32 10.19 5.52 5.70 6.03 7.07 8.00 9.23 9.32
d8 11.27 1.95 7.65 15.00 7.97 8.73 10.38 110.24 12.47 13.76 14.18
d9 66.64 6.03 53.16 79.33 58.65 58.98 63.74 67.28 69.07 71.88 77.94
d10 20.07 3.81 14.14 26.92 15.72 15.88 17.22 19.21 22.10 25.83 26.29
d11 27.92 5.33 17.98 37.06 20.61 20.79 24.32 28.93 30.58 34.96 35.22
θ1 7.85 4.41 0.00 18.00 0.00 2.70 4.75 9.00 10.00 12.20 14.20
θ2 25.95 6.64 14.00 42.00 15.90 19.60 21.75 25.50 30.00 32.50 37.25
θ3 52.50 10.93 38.00 74.00 39.90 40.00 42.00 49.50 59.50 69.00 69.25
θ4 38.70 9.93 24.00 59.00 24.95 25.00 31.00 40.00 43.00 49.60 55.20
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2.3. Final Dataset

The final dataset was formed by a total of 21 features, of which 20 were independent
variables that defined the only output variable, which was the amplitude of each of the
frequencies that defined the HRTF. This study only considered the left pinna, and with this
premise, the total number of instances that form the dataset was 1966900.

2.4. Multivariate Analysis

Initially, a general multivariate analysis was performed to obtain a better under-
standing of the problem and about the available data in order to make the most accurate
prediction. For this purpose and to improve the precision of the built models, a study of
the possible outliers, a correlation analysis, variance and covariance analysis, as well as a
multivariate graphical analysis were performed [39].

2.5. Simple Linear Regression

The linear regression technique (LR) is applied to predict numerical variables using
a model that statistically relates a dependent feature with several independent features
through a linear relationship such as that shown in Equation (1).

y = ω1x1 + ω2x2 + · · ·+ ωnxn + ε (1)

where xi are the independent features, y is the dependent feature, ωi are the weight
coefficients of each independent feature obtained in based at the least squares method, n is
the number of features, and ε is the bias of this relationship.

2.6. Artificial Neural Networks

A multilayer perceptron artificial neural network (MLP ANN) is a feedforward single-
hidden-layer neural network (given by Equation (2)); it has the ability to accurately
predict complex nonlinear mappings inspired by the behavior of the biological neural
system [40,41].

y =
s

∑
k=1

ωkgk

(
bk +

n

∑
j=1

xjβ j
[k]

)
+ ε (2)

where ε ∼ N
(
0, σ2

ε

)
, s is the number of neurons, n is the number of features, ωk is the

weight assigned to each neuron, bk is the bias assigned to each neuron, β j
[k] is the weight

assigned to each variable that defines the network, and gk(·) express the activation function.
In this case, the activation function is a sigmoid function for the hidden layer, gk(x) = 1

1+e−x ,
and a linear function for the output layer. Finally, the method uses the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm to optimize the network and to find the internal weight
constants, and also the decay parameter to avoid overfitting.

2.7. Validation Method

A validation process was necessary to analyze the precision with which the models
define the problem. Several candidate models were built and trained based on different
techniques and this evaluation must determine which one was the most accurate to solve
the problem under study; the remaining models were discarded. In order to have the same
weight for all the variables within the built models when making the prediction of the
dependent variable, the first step in this process was to normalize the features that define
the problem, in this case between 0 and 1. Subsequently, the dataset was divided into three
blocks, the training dataset, the testing dataset, and the validation dataset.

The training dataset consisted of 17 pinnae (1,671,865 instances) and it was used to
build and train the models. Two of the remaining three pinnae (196,690 instances) made up
the testing dataset and were not otherwise used during training, with what they served to
evaluate the real prediction capacity of the models. The last pinna was the standard KEMAR
pinna (98,345 instances), which was used to validate the selected models. This validation
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was focused on analyzing how the predicted HRTFs improved the sound experience that
can be obtained using the information of the standard pinna.

During the training stage, in order to avoid overtraining, a 50 repeated 10-fold cross-
validation process was applied, where the parameters that defined the algorithms were
tuned to optimize the precision of the models (Table 4). The process was repeated several
times, since the MLP ANN algorithm uses randomly initialized weights that define their
structure and the accuracy assigned to the models can vary depending on the values
selected in each initialization.

Table 4. Tuned parameters during the training stage for each of the regression techniques applied in
the analysis: brief definition and applied range.

Regression Technique Parameters Range

LR no tuning parameters -

MLP ANN
size: number of units in the hidden layer 1–20
decay: regularization parameter to avoid over-fitting 0–0.1

Finally, the most accurate models, when predicting the amplitude of each of the
frequencies obtained for each technique, were selected from among the built models: one
based on LR as a linear model, and one based on MLP ANN as a non-linear model. Using
the selected two models, the behavior of how the prediction generalizes the problem was
studied, along with the accuracy of the obtained results.

The whole process defined by this methodology was performed using an R statistical
software environment v4.1.1 [42].

2.8. Robustness Criteria

To compare the different candidate models, an accuracy measure must be defined.
In this work, the mean absolute error (MAE) and the root mean square error (RMSE)
(Equations (3) and (4)) were used for this purpose, two of the most applied computational
validation errors in supervised machine learning.

MAE =
1
n

d

∑
k=1
|mk − pk| (3)

RMSE =

√√√√ 1
n

d

∑
k=1

(mk − pk)
2 (4)

where m are the measured values, p are the predicted values, and d is the number of
instances applied into the validation process.

3. Results and Discussion

A multivariate analysis was performed to have a better understanding of the problem
and to detect possible useless variables or instances in the final dataset for the problem
under study. Within this analysis, the dependent variable was studied, and in this case it
was the amplitude of each of the measured frequencies (Figure 4). It was found that the
distribution was not completely Gaussian since it has a skewness of −1.56, and therefore
the original dataset is slightly unbalanced. That means that the low amplitude values are
more complex to predict.
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Then, an analysis of variance (ANOVA) was performed to assess the uncertainty in
the experimental measurements performed on the anechoic environment chamber. The am-
plitude of each of the studied frequencies were analyzed against the independent variables.
The p-values obtained show low values for the most of the variables, indicating that the
observed relationships are statistically significant (Table 5). Thus, when the p-value is lower
than 0.1, it is considered, with a low level of uncertainty, that the null hypothesis can be
confidently rejected, and the independent variables give significant information to predict
the independent variables. A low residual standard error of 0.08768 on 1671846 degrees of
freedom is obtained. Finally, a correlation analysis was performed to identify and measure
the relation among pairs of variables. For example, in Figure 5, the correlation found
between the elevation angle, azimuth angle, frequency, and amplitude is shown. This
correlation analysis confirmed what it could be observed with the analysis of variance, that
the most influential variable for knowing the amplitude was the value of its frequency.

Table 5. Results obtained from the ANOVA analysis for the predicted feature. Significant codes
according to p-value: ‘***’ 0.001, ‘*’ 0.05, ‘ ’ 0.1.

Estimate Std. Error t Value p Value

Intercept 0.8738976 0.0012773 684.192 < 2× 10−16 ***
d1 −0.0114785 0.0013543 −8.476 < 2× 10−16 ***
d2 −0.0077947 0.0005956 −13.087 < 2× 10−16 ***
d3 −0.0084882 0.0007583 −11.193 < 2× 10−16 ***
d4 0.0190734 0.0009394 20.304 < 2× 10−16 ***
d5 −0.0045556 0.0055041 −0.828 0.4079
d6 −0.0064500 0.0008496 −7.592 3.15× 10−14 ***
d7 0.0082313 0.0006021 13.672 < 2× 10−16 ***
d8 0.0288839 0.0015689 18.411 < 2× 10−16 ***
d9 −0.0131845 0.0051347 −2.568 0.0102 *
d10 −0.0168657 0.0005806 −29.050 < 2× 10−16 ***
d11 −0.0027780 0.0006965 −3.989 < 6.65× 10−5 ***
θ1 −0.0261202 0.0015868 −16.461 < 2× 10−16 ***
θ2 0.0062978 0.0010993 5.729 < 1.01× 10−8 ***
θ3 −0.0140979 0.0008816 −15.991 < 2× 10−16 ***
θ4 0.0142957 0.0007572 18.881 < 2× 10−16 ***

azimut 0.1339585 0.0002315 578.635 < 2× 10−16 ***
elevation −0.0034120 0.0002842 −12.005 < 2× 10−16 ***
frequency −0.2717950 0.0002313 −1174.992 < 2× 10−16 ***
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Figure 5. Graphical correlation analysis between elevation angle, azimuth angle and frequency with
the output, in this case, the amplitude of each frequency.

Once the multivariate analysis was completed and based on its results, it was ob-
served that the independent variables adequately defined the dependent variable, and
consequently with the available dataset it was possible to build and train accurate models
based on the proposed methodology. However, attention should especially be focused on
the residuals obtained by the models at low amplitude values, since the dataset was not
totally balanced.

The first analyzed prediction method was a linear regression. The obtained results
were promising since the calculated errors were low (Tables 6 and 7) and the predictions fit
quite well with the trends of the original curves (Figure 6). This linear method also allowed
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knowing the relationship between the independent variables and the dependent variable
(Equation (5)), giving a clear idea of the influence of each variable in the prediction of the
amplitude at each frequency.

Amplitude = 0.873898− 0.011479·d1 − 0.007795·d2 − 0.008488·d3 + 0.019073

·d4 − 0.004556·d5 − 0.006450·d6 + 0.008231·d7 + 0.028884

·d8 − 0.013185·d9 − 0.016866·d10 − 0.002778·d11 − 0.026120

·θ1 + 0.006298·θ2 − 0.014098·θ3 + 0.014296·θ4 + 0.133958

·azimut− 0.003412·elevation− 0.271795· f requency

(5)

Table 6. Obtained results during the training and testing stage for the total dataset.

Training Testing

MAE (%) RMSE (%) MAE (%) RMSE (%)
LR 6.52 8.76 5.82 7.57
MLP ANN 2.66 3.66 3.54 4.58

Table 7. Obtained results during the testing stage for the pinnae ‘R’ and ‘S’, pinnae that form the
test dataset. Additionally, it is shown the error committed in the case of using the standard KEMAR
pinnae (Pinna ‘T’) instead of the models.

Pinna R Pinna S

MAE (%) RMSE (%) MAE (%) RMSE (%)
LR 5.84 7.62 5.81 7.52
MLP ANN 4.11 5.28 2.98 3.88
Pinna T 15.35 20.66 15.33 20.02
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Figure 6. Graphic representation of one random selected HRTF of the used to test the models (Pinna
‘S’, φ = 250◦, θ = −45◦ ). Comparison between the real HRTF of the selected case, the predicted HRFT
using LR, the predicted HRFT using MLP ANN, and the real HRTF measured with the standard
pinna (Pinna ‘T’).

Although with the use of the LR technique, it was also observed that the model predicts
with greater error the amplitudes that have lower values, and especially when there were
abrupt variations in amplitude values between nearby frequencies (Figures 6 and 7). As
can be seen in Figure 7, the study of the residuals obtained supported this conclusion,
obtaining a minimum value of −103.13, in the 1Q of −6.35, a median value of 0.03, a
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3Q equal to 8.39 and a maximum value of 42.76. In addition, based on this analysis and
focused on the Q-Q plot, it was observed that the samples within the quantile that defined
the lowest amplitude values did differ significantly from the line that compares the real
distribution with the predicted distribution.
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The study of LR results led to conduct another analysis using a non-linear model, in
this case one model built based on MLP ANN. This new task was focused on improving
the weaknesses of the linear model. To do this, during the training, a tuning of the most
significant variables of the algorithm was performed at the same time as 50 times repeated
cross validation (Figure 8). For this algorithm, it was concluded that the chosen neural
network structure was formed by 20 neurons in its hidden layer and a weight decay value
of 0.005, values that provided a model with accurate prediction results.
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Figure 8. RMSE obtained during the training stage for the nonlinear model. Number of neurons and
weight decay were tuned.

The use of this nonlinear model led to observe a more accurate prediction at low
amplitudes and also, a better adjustment when there is an abrupt amplitude variation of
nearby frequencies (Figures 6 and 9). Additionally, in Figure 9, the study of the residuals
obtained showed a minimum value of −87.05, in the 1Q of −8.23, a median value of 4.71, a
3Q equal to 12.83, and a maximum value of 54.14. In this last case, the residual plots showed
a fairly random pattern with positive and negative residuals, indicating that the model
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provided accurate fit to the data. Furthermore, the residual histogram had a symmetric bell
shape, and the normal probability plot followed the straight line in a more accurate way,
mainly at the extremes of the graph where the linear model failed. It was also observed in
Figure 9, a more marked difference in the residuals generated depending on each of the
testing pinnae.
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Finally, to check the methodology and the progress it provides in the field, the error
obtained by the predictions was compared with the error that would be obtained in the
case of using the HRTFs measured on the standard KEMAR pinna (Table 7). In this case, it
was verified that both model predictions improved the results obtained with the standard
pinna, but especially when the ANN-based model was applied. Although these models still
did not very accurately predict possible frequency notches, they showed accurate results
predicting the HRTFs trend and showed especially important improvements in comparison
with the results obtained using the standard pinna. It can be concluded that these models
supply useful information to obtain a higher quality sound experience, improving the
information given by the standard pinna.

4. Conclusions

Based on the study performed on this work, two major problems have been observed
when working with virtual personal auditory space. The first HRTFs that define the space
change considerably with the morphological features of each individual. Additionally,
the second HRTFs that perform all the measurements to obtain these functions for a new
individual is a complex and expensive task. Faced with these problems, it has been
observed that the use of multivariate analysis techniques can help considerably when
studying how these functions vary, and also to understand their relationship with the
morphological attributes of different individuals. It has also been proven that the use
of supervised machine learning techniques applied to datasets adapted to the problem
under study, allows predicting HRTFs with relatively low errors of new individuals with
its personal morphological features, even if these differ from the individuals studied in the
dataset used to train the models. It was also observed that to model a complex problem
as HRTFs, linear techniques get greater errors despite generating important information
related to the problem, for example an easy-to-understand-and-interpret mathematical
equation that relates the features to each other. Furthermore, non-linear techniques better
fit and generalize the problem in order to predict these functions. In addition, when the
results obtained with these models and the results generated based on a standard pinna
are compared, it is observed that the adjustment of HRTFs based on the morphological
attributes of each individual is significantly improved. Application of more advanced
algorithms in future enhancement could generate more accurate predictions and even
detect frequency notches more clearly.
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