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Abstract: In a non-linear system, such as a biological system, the change of the output (e.g., behaviour)
is not proportional to the change of the input (e.g., exposure to stressors). In addition, biological
systems also change over time, i.e., they are dynamic. Non-linear dynamical analyses of biological
systems have revealed hidden structures and patterns of behaviour that are not discernible by
classical methods. Entropy analyses can quantify their degree of predictability and the directionality
of individual interactions, while fractal dimension (FD) analyses can expose patterns of behaviour
within apparently random ones. The incorporation of these techniques into the architecture of
precision fish farming (PFF) and intelligent aquaculture (IA) is becoming increasingly necessary
to understand and predict the evolution of the status of farmed fish. This review summarizes
recent works on the application of entropy and FD techniques to selected individual and collective
fish behaviours influenced by the number of fish, tagging, pain, preying/feed search, fear/anxiety
(and its modulation) and positive emotional contagion (the social contagion of positive emotions).
Furthermore, it presents an investigation of collective and individual interactions in shoals, an
exposure of the dynamics of inter-individual relationships and hierarchies, and the identification
of individuals in groups. While most of the works have been carried out using model species, we
believe that they have clear applications in PFF. The review ends by describing some of the major
challenges in the field, two of which are, unsurprisingly, the acquisition of high-quality, reliable raw
data and the construction of large, reliable databases of non-linear behavioural data for different
species and farming conditions.

Keywords: entropy; fractal dimension; fish behaviour; fish welfare; precision fish farming; intelligent
aquaculture; pain; fear/anxiety; positive emotional contagion; hierarchies

1. Introduction

Aquaculture is expected to play a key role in supplying high-value protein and
micronutrients [1] to a human population estimated to reach about 9700 million by 2050
(United Nations World Population Prospects https://population.un.org/wpp/, accessed
on 21 March 2023). Indeed, in Asia and some African countries, seafood already makes
up over 50% of the animal protein in their diets [1]. Although most seafood is expected
to originate from aquaculture [1], the fish farming industry faces some serious challenges,
including climate change, environmental contaminants, and the need to ensure fish health
and welfare, which will require the development of alternative disease treatments and the
identification of novel sources of feed and nutrients [2]. In response to these challenges, a
paradigm shift is mandatory [3]; thus, the European aquaculture industry [2] and European
policy [4] are targeting green and resilient production systems and emerging technologies
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such as Environmental Intelligence and Monitoring Systems, both of which include Precision
Farming as a key area [5]. Føre et al. [6] introduced the concept of Precision Fish Farming
((PF) which is comparable to Intelligent Aquaculture (IA)) to apply control-engineering
principles to improve farmers’ ability to monitor, control, and document farm production.
PFF consists of several cyclical operational processes performed in four phases [6]: Phases
1 and 2 constitute the observation and interpretation, respectively, of fishes’ responses,
which form the basis for Phase 3, decision making, which, in turn, governs the actions
implemented in Phase 4.

Observation requires the deployment of sensors and the implementation of moni-
toring methods, which were recently reviewed by [6,7]. The most common monitoring
methods are based on the analysis of video images, while newer ones target sound/acoustic
signals [8–10]. However, the sensors themselves may influence an animal’s behaviour; for
instance, acoustic telemetry requires tagging [9,11], sonar affects a fish’s hearing [12], and
the presence of robots or divers’ videorecording also alter fishes’ behaviour [13,14]. Fixed
sensors interfere the least, but they can only record fish within a certain region. Phase 2,
which is addressed in the present review, deals with the handling and interpretation of
the large amount of data generated by automatic monitoring. However, the automatic
interpretation of the data demands the application of machine learning, artificial intelli-
gence (AI) algorithms, and decision support systems, whose addressal is outside the scope
of the present work (see reviews by [7,15–19]). Phase 3 also benefits from AI algorithms
and decision support systems, and both Phases 3 and 4 (implementation) will most likely
ultimately rest on the farmer’s experience, and it will, in all probability, be the farmer, and
not an automated system, who will make the ultimate decisions.

Understanding the status of fish and detecting the presence of stressors is important to
improve animal welfare and optimize production yield and quality. Intensive fish farming
includes all life stages from the broodstock to the marketable fish. The hatchery phase usu-
ally takes place indoors (and under completely controlled conditions), while the ongrowing
phase usually occurs in recirculating aquaculture systems (RAS) or outdoor ponds or cages.
Outdoor rearing exposes fish to predators, variable environmental conditions, contami-
nants (heavy metals, pesticides, drugs, etc.), diseases and infections (including parasites,
bacterial and viral infections), micro- and nanoplastics, and anthropogenic noise pollution,
which have all been shown to alter fish behaviour [20–32]. Changes in aquatic organisms’
behaviour have been proposed to serve as Biological Early Warning Systems (BEWS) to
monitor both the presence of environmental contaminants in water resources [31,33,34] and
the fish production in aquaculture [3,6,23,35]. We have recently reviewed the potential of
entropy and fractal dimension (FD) analyses of individual and collective fish behaviours to
establish Biological Early Warning Systems for the presence of environmental contaminants
(Eguiraun and Martinez, submitted); therefore, it will not be addressed in the present work.

Unfortunately, there are numerous additional stressors that remain unknown or that
are not easily measurable, such as social interactions. The existence of collective behaviour
and potential social stressors must also be considered in both experimental settings and
on farms. Fish have been shown to be truly social creatures with social structures and
dominance hierarchies whose very complex and largely unknown formation [36] needs to
be mapped on real-life farms to achieve optimal production. The fact that social structures
and hierarchies under real farming conditions are largely unknown due to the difficulty of
their documentation does not mean that they are irrelevant or that they do not influence
the health, welfare, and other phenotypical/quality aspects of production. Methodologies
for the fast detection of abnormal fish behaviours, which may be critical for the early
detection of deficiencies during farming, have already been successfully tested applying
a convolution 3D deep (C3D) network model optimized by cross-entropy loss to analyse
real-life aquaculture video surveillance [37].

Laboratory studies with zebrafish have shown that the organizational patterns of
dominance hierarchies are heavily influenced by individual interactions, indicating that fish
systems are both self-structuring and self-organizing and that the evolution of behaviour in
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the formation of a dominance hierarchy is influenced by networks of individuals rather than
independent interacting pairs of individuals ([38]; see [39] for a more general discussion
on swarm behaviours). The formation of hierarchies is particularly interesting because it
has been shown that too few fish in such a system (under about 15 individuals) will alter
the normal behaviour of naturally gregarious species as shown by the system’s Shannon
Entropy (SE) [35]. Studying the connectiveness of swarm behaviour, which can also be
applied to fish shoals, Komareji et al. [39] identified a relationship between the size of the
swarm/shoal (the number of individuals) and the number of topological nearest neighbours
influencing any individual’s behaviour and dynamics. Importantly, the connectedness of
the swarm and the structural properties of the swarm network are generally not constant,
which is relevant if we wish to monitor the collective behaviour of fish on farms. A second
important point is that the probability of the entire swarm being connected is a function
of both the number of individuals in the swarm and the number of interacting nearest
neighbours; thus, the larger the number of individuals, the larger the number of interacting
nearest neighbours needed for the swarm to display a dynamic collective behaviour [39].
This means that to obtain information about production based on the collective behaviour
of the fish system, the farming conditions must allow for the interaction (albeit not the
necessarily direct interaction) of all the fish in the cage. In addition, the available space for
the fish to swim must be proportional to the number of fish; for example, the interactions
that occur when there are too few fish in a large cage may hinder the development of
collective behaviour.

Anthropogenic noise pollution is a less-studied source of stress for fish that negatively
affects the physiology and behaviour of individuals as it induces temporary or permanent
hearing loss, stress and behavioural reactions to noise [32], and changes in shoaling be-
haviour (discussed in the study by [25] and references therein). In addition, anthropogenic
noise seems to increase the number of fish killed by predation [40]. The identification of
stressful noises requires the use of passive acoustic monitoring devices to first identify the
normal noises produced by the monitored species, followed by the noises precipitating the
stress and, finally, the noises the fish produce in response to the stress. This approach is
still in its infancy.

1.1. Applications of Entropy and Fractal Analyses to Fish Behaviour Studies

The interactions between individuals, including knowledge regarding who leads, i.e.,
“who follows whom”, is important in social species and requires the quantification of the
direction of information flow between individuals. Transfer entropy (TE) is a method
that is commonly used to identify the flow of information and thus detect leaders both in
interactions between pairs of individuals and in groups. Zebrafish have often been used
as a model system in studies using either real fish, robotic replicas, and/or mathematical
models based on its behaviour [41]. However, it must be borne in mind that many of
these studies are performed within a narrow time-window and assume that the leaders
are consistent over time. Yet, this may not be the case since individuals in interacting pairs
have been shown to swap roles occasionally and adjust their responses to one another as
they exchange roles [42].

Non-linear dynamical analyses are becoming increasingly relevant for understanding
biological systems. For instance, apparently random social and behavioural patterns in
several species’ activities, including the swimming patterns of fish [43–45], have been
shown to contain highly non-random components of a fractal nature (see the research
conducted by [46] and references therein), i.e., they display self-similarity [47]. Likewise,
the predictability of a system can be described by, for instance, Rényi, Shannon or Kol-
mogorov entropy measurements [48], while the interactions among its components have
been described mostly by TE [49], which has been successfully used to identify leaders in
interactions [50]. Mann and Garnett [51] postulated the causal entropic principle, according
to which individuals’ behaviours in a group tend to maximize the entropy of the entire
system. The causal entropic principle was indeed able to predict many social interactions
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in animal groups, including humans. According to these works, optimally functional
biological systems should maximize the entropy values, and it follows that stressors should
diminish them.

However, the reader must understand that non-linear analyses of fish behaviours
are not substitutes for classical methods. Rather, they must be considered providers of
valuable additional information that, as mentioned above, classical analyses do not always
readily expose.

1.2. Aim of the Work

By applying mathematical models and novel linear and non-linear algorithms [52,53],
it is possible to extract simplified, practical information from complex biological systems
(such as fish in aquaculture and in the wild), which inherently contain a large number
of stochastic and deterministic components [54]. Two often used such measurements
are the entropy of the system, i.e., the degree of predictability/chaoticity of the sys-
tem [48,51,55], and its FD, which is a characteristic of fractal structures describing their
complexity [43–45,56–59]. Indeed, Alados et al. [60] postulated that some exploratory bio-
logical structures and behavioural patterns have been naturally selected towards increasing
complexity. Since stress increases an organism’s metabolic rate and energy consumption, it
should provoke a consequent reduction in the complexity of exploratory behaviour even
though humans may not be able to perceive it by eye. However, the FD of the structures
and behavioural patterns, as a measure of their complexity, may serve as stress indicators
and allow for the quantification of changes in behaviour. The authors demonstrated that
the FD values of some behavioural complexity patterns in goats (Sarcoptes scabieis) (e.g.,
head lifts, feeding gaps, and vigilance behaviour) decreased with the two kinds of stress
tested: pregnancy and parasitic infection [60].

There is also an increasing wealth of research devoted to the development of deep
learning methods and neural network classification techniques using sophisticated mathe-
matical models that will undoubtably find applications in IA and PFF (for further details,
see a recent review by [7]). Many of these approaches use the entropy of the raw data
(including that of images [61]) to improve the accuracy of a model. Feeding status is often
selected as a targeted variable of clear interest for farmers [62,63]. As mentioned above,
these applications have not been included in the present review.

The purpose of this work is to provide an overview of recent publications indicating
the potential of entropy and FD analyses of fish behaviours to provide relevant information
to farmers when integrated into an PFF/IA architecture, particularly with respect to the
early detection of stress and critical behaviours (Figure 1).
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2. Methodology Followed for the Review

Initially, the Web of Science (WoS) and Scopus databases were used for the biblio-
graphic searches, but the WoS rendered a very large number of results, most of which
were not relevant for our purposes. Therefore, the searches were limited to Scopus. The
search strings and number of documents found (updated on the 26 January 2023) are
listed in Table 1. Reviewing all the documents, we found only 37 dealing with the exact
subject of our study, namely, relevant individual or collective behaviours whose FD and/or
entropy analyses have the potential to provide relevant information applicable in a PFF/IA
framework. A summary of the contents of those publications is presented in Appendix A.

Table 1. Search strings used in the Scopus database and number of results obtained on 26 Jan-
uary 2023.

Queries Documents

(TITLE-ABS-KEY (fish AND behav*) AND TITLE-ABS-KEY (fractal* OR entropy)) 143
(TITLE-ABS-KEY (aquacult*) AND TITLE-ABS-KEY (fractal* OR entropy)) 87

(TITLE-ABS-KEY ("Fish behavio*") AND TITLE-ABS-KEY (entropy)) 11
(TITLE-ABS-KEY ("Fish behavio*") AND TITLE-ABS-KEY (fractal)) 9

(TITLE-ABS-KEY ("collective behaviour" OR "collective behavior") AND TITLE-ABS-KEY
(fish) AND TITLE-ABS-KEY (welfare OR stress* OR health OR disease)) 23

3. Targeted Applications

Appendix A displays a summary of the contents of the 37 selected publications, in-
cluding the most relevant data and results. The works have been classified according to the
investigated subject and the targeted applications addressing the following topics: individual
identification in groups; preying/search behaviours in larvae and fish; feeding status; collec-
tive behaviour, including the effect of the number of fish, individual interactions, hierarchies,
and collective behaviour in shoals of mixed species; effect of tagging and pain; fear/anxiety
responses to predators; modulation of fear/anxiety and positive emotional contagion.

3.1. Individual Identification in Groups

Neumeister et al. [46] were able to distinguish between the swimming trajectories
of individual goldfish within groups using the discriminant analysis of six variables,
consisting of the mean velocity and five nonlinear measures, namely, the characteristic FD,
the Richardson dimension (DR), the Lempel–Ziv complexity, the Hurst exponent (HE) and
the relative dispersion (the reader should refer to [46] and references to the original works
describing the parameters for further information). In addition, although not apparently
distinguishable, the swimming patterns were rather complex, and each fish displayed
highly individual and disparate swimming profiles. No single measure was “the most
effective”, although the nonlinear measures were more effective than the mean velocity,
and the most effective measures were HE and DR.

3.2. Preying/Feeding Search Behaviour
3.2.1. Larvae

Coughlin et al. [64] published the first work applying fractal analysis to the swimming
and preying behavioural patterns of clownfish larvae, which was conducted because tradi-
tional methods did not differentiate foraging modes appropriately. Both the age of the larvae
and the amount of available prey influenced the swimming and search patterns: the larvae
showed highly variable, complex swimming paths during the first two days after hatching as
reflected in their higher FD, which decreased by the third day after the start of active feeding,
thus denoting a trend toward simpler, more linear paths. Different search patterns were
followed by the larvae after the onset of feeding: straighter (with the lowest FD) and intricate
(higher FD) paths in low- and high-prey-density media, respectively, were observed.
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Mahjoub et al. [65] also studied the prey search behaviour of malabar grouper, Epinephelus
malabaricus, larvae via the 3D recording of their swimming behaviour in the absence and
presence of prey. FD analyses of the swimming projections in the three axes (XZ, XY, and
YZ) revealed anisotropy in the changes of the search pattern induced by the addition of
prey. Without prey, the FD analyses indicated increased activity on the vertical axis but, in
the presence of prey, the complexities in the vertical and horizontal axes were similar. This
indicates an optimization of the search volume by the larvae and, therefore, the need to
consider 3D search behaviour in further studies. It is important to remark that the authors
emphasized that the FD of the trajectories was used for comparative purposes and not to
determine the exact FD of a given path.

3.2.2. Fish

The fractal properties of fish school trajectories were examined by Tikhonov et al.
in two papers [44,45] using the computer modelling of four components of the trophic
chain: nutrients, phytoplankton, zooplankton, and fish. Their model was able to describe a
wide range of fish school motions. For example, it revealed that the groups swim to the
areas with the highest zooplankton density and that the complex motion of the school is
basically dependent on the predation rate. It also indicated that a decrease in the preda-
tion rate induced a transition in the type of trajectory from one with frequent changes of
direction (with fractal properties for all temporal scales,) to another, straighter one (with
pronounced multifractal properties for large-scale displacements). These results agree with
the above-mentioned work regarding larvae after the onset of feeding [64] that displayed
straighter swimming paths (with lowest FD) in a low-prey-density environment. Although
not considered in their model, other works had indicated that the natural variation in envi-
ronmental parameters can cause the school–prey system to adopt quasi-periodic behaviour
and display chaotic oscillations ([44,45] and references therein).

Examining in the wild the prey-searching methods of tagged marine organisms from
several taxa, Sims et al. [66] concluded that they adopt Lévy-like moving behaviour, albeit
not continuously, to optimize their chances of encountering patches of prey. It must be
noted that prey (and feed on a farm) do not usually have a random distribution. This
behaviour will be particularly advantageous in environments with shifting resources due,
for example, to the exploitation of their prey by other species (which may resemble an open,
multitrophic aquacultural production system), climate change, or other modifications,
and its study may contribute to the optimization of feeding strategies in conventional
aquaculture and in PFF.

Zhang et al. [67] developed a procedure for classifying small fish groups according
to their shoaling/feeding status. Processed 2D video images of zebrafish were used to
create a database of different behaviours that constituted the core information used to
train a VGG-16 network (a 16-layer deep convolutional neural network). Changes of the
status of fish during feeding were described by two-dimensional image entropy (calculated
according to SE). The procedure was able to discriminate between two group behaviours
that the authors termed “Normal” when shoaling unmolested and “Abnormal” when
responding to a feeding stimulus, where the response resembles the schooling of the fish.
It must be noted, however, that “abnormal” is an unfortunate selection of name given
that the response examined is the normal response of the fish to the feed. In any case, the
authors indicate the need to develop their model further by including images of different
quality and different types of behaviour. This work supports the previously mentioned
study by [35] who found that not only the SE of the fish system increased with the number
of fish but also that the behaviour corresponding to schooling (in response to a stochastic
event, similar to the “Abnormal” behaviour described in the study by [67]) had a higher
SE value than that of the “Normal” shoaling system (termed “basal” in the study by [35]),
for which the actual values are a function of the number of fish in the group, a parameter
whose value was not taken into consideration by [67]. For 25 fish and depending on the
tank and the number of days after the beginning of the experiment, the SE in the study
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by [35] increased from 4.3–4.8 (basal, normal shoaling) to 4.4–5.5 (schooling, “abnormal”
response), while in the study by [67] the entropy of the zebrafish system (which seems to
contain over 25 individuals) in their “normal” state is recorded to be under 0.25, increasing
to 0.45 upon human intervention or during feeding.

3.3. Feeding Status

A relevant piece of information for farmers is the feeding status of their fish, i.e.,
whether they are feeding and how much they consume. While there are works devoted to
the discrimination of feeding/non feeding fish, there is a lack of information on how to
classify feeding status according to the amount of food a fish feeds, particularly under real-
life production settings. This subject was addressed by Chen et al. ([61] where the abstract
is in English and the original paper in Chinese) who developed a fine-grained classification
algorithm of fish-feeding status. The raw data used to build the database were 752 videos
(3 s each, constituting 90 frames) labelled as non-eating, weakly eating, or strongly eating,
that had been recorded in an RAS production facility (although, unfortunately, the authors
do not mention the species). An optical flow algorithm was applied to convert the videos
into many inter-frame motion feature samples upon which a five-layer (comprising one
input layer, one output layer, and three hidden layers) classification neural network (CNN)
was built, which had three output categories corresponding to the three different selected
feeding states (non-eating, weakly eating, and strongly eating). The CNN had been op-
timized by a cross-entropy loss function. Two issues can be raised regarding the work:
One is that the CNN does not include the ability to identify (and classify) “non-feeding”
fish, which is very relevant. The second is that, at least in the English summary, there is
no information on whether the model was tested and/or validated with video recordings
different from those used to develop the CNN. In any case, the approach is interesting and
deserves further attention.

3.4. Collective Behaviour

Nonlinear approaches have helped to understand how collective decisions are better
than individual ones in social groups [68], including fish. Mann and Garnett [51] suc-
cessfully applied the causal entropic framework designed by [69] to determine the origin
of collective behaviour from a purely entropic point of view. The authors were able to
predict the fundamental form of social interactions and showed that the causal entropic
principle could provide a purely statistical prediction for many of the emergent properties
of collective behaviour, including cases where the mechanisms for inter-individual interac-
tions were not fully understood. Entropy has also found applications in the detection of
special behaviours of relevance for the welfare of Nile tilapia (Oreochromis niloticus) in a
RAS system. Zhao et al. [70] detected gastrointestinal evacuation using a modified kinetic
energy model (KEM) that employed the dispersion, velocity, and turning angle of the shoal
as parameters, for which dispersion was estimated by optical flow, entropy, and statistical
parameters. The proposed KEM model showed a good performance in detecting emergent
gathering and scattering behaviours.

It is known that collective changes from shoaling to schooling in a group of fish may
happen suddenly as a consequence of a stochastic event [71], and this is reflected in changes
in the SE of the system [35]. This phenomenon prompted Crosato et al. [72] to study the
flow of information in a school of fish during collective U-turn swimming changes by using
TE. The authors identified two different flows of information: an informative flow (positive
TE) from fish that have already turned to fish that are turning, and a misinformative flow
(negative TE) from fish that have not turned yet to fish that are turning. Local behavioural
changes of a single individual could lead to large transitions between the collective state
of a school, such as between schooling and milling (an ordered state in which individuals
constantly rotate around an empty core [73]). Considering that a stochastic event may be
anything unexpected that will startle a fish (such as noises or the sudden appearance of
a predator, feed, a diver, or a robotic camera, all of which occur under normal farming
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conditions), it follows that these kind of studies are of relevance when attempting to
understand the dynamics of fish motion, behaviour, and communication within cages,
particularly in large offshore cages.

3.5. Effect of the Number of Fish

The number of fish in a group influences both the FD [74] and the SE [35] of some
behaviours, particularly for small numbers of fish of shoaling species. Kushida et al. [74]
calculated, among other properties, the FD of Japanese horse mackerel (Trachurus japonicus)
from a HD video recording with a camera mounted on top of an experimental tank. Their
aim was to build small virtual robots generating actions resembling the behaviour of actual
fish. Their work showed that as the number of fish increased from one to twenty-four,
the FD of the real fish tended to decrease, and the fish tended to move toward smaller
regions of the tank. They postulated that this movement toward smaller regions should
result in lower average swimming speeds that would, in turn, produce the measured lower
FD values.

Unlike in the research conducted by [74], where it was shown that the FD tended
to decrease with an increasing number of fish, [35] measured an increase in the SE in
fish systems consisting of between one and fifty fish in both their shoaling and schooling
responses for which a power relationship was maintained with the number of fish and
whose coefficient of variation, which was the largest for the one-fish systems, decreased
concomitantly with the number of fish. Compared to the shoaling, basal state, SE was
usually higher (i.e., the unpredictability increased) for the schooling response to a stochastic
event for all fish groups, but the difference was particularly noticeable for individual fish
and for groups with only two to five fish. These results may indicate the influence of stress
that occurs when shoaling fish find themselves isolated or in small groups, indicating
that the results of experiments performed using one or a small number of fish may not
be directly applicable to real-life fish-farming settings, and even less so to the larger PFF
operations with hundreds of thousands of fish.

3.6. Collective Behaviour and Individual Interactions

Hiramatsu et al. [75] modelled the schooling behaviour of a group of medaka based on
how an individual fish interacted with its neighbours in a tank with no flow, measuring the
distance between individuals, their spatial distribution, and their communication processes.
The structure and characteristics of the real fish school were quantified by the nearest
neighbour distance (which also yielded an estimate of the cohesiveness of the school), the
level of polarization (the intensity of the parallel orientation of a fish school), the expanse
(an estimate of the distance of every fish to the mass centre of the school), and its FD (as a
measurement of the straightness/tortuousness of the trajectory of the school’s centre of
mass). The simulations were able to satisfactorily reproduce the behaviour of the medaka
school using a simple genetic algorithm with fitness defined by those four variables.

The coexistence of order and flexibility within fish schools was examined by Inada and
Kawachi [43] using a simple numerical model and a computer simulation. According to
their results, both the number of neighbours interacting and the randomness of individual
motion influence the order of the school and its flexibility. For high flexibility, there were
optimal and low (two to three) numbers of interacting neighbours. A slightly larger number
of interacting neighbours (four to five) was necessary when the fish paid attention to more
conspecifics in the school. School order was established for three to four neighbours,
indicating that schooling fish have evolved a specialized ability to establish both school
order and flexibility when the maximum number of individuals interacting is relatively
small, i.e., higher than three.

Suzuki et al. [76] designed a model after quantifying the behaviour of chicken grunt
(Parapristipoma trilineatum) schools of different sizes in a tank containing a column. The FD
analyses of the time series [77] quantifying their behaviour indicated that it was random,
but the attractive and repulsive forces of the walls were larger, while the magnitudes of



Entropy 2023, 25, 559 9 of 29

the propulsive force were smaller, in small schools (one to five fish) than in larger schools
(ten to twenty-five fish). However, the attractive and repulsive forces of the structure were
significant only for the larger school (n = 25). Although the model seemed to be useful, the
authors indicate the need to collect more data on different patterns of use of space and for
different species.

In a comprehensive and very interesting work, Wark et al. [78] examined the exis-
tence of population-specific shoaling behaviours in 13 wild populations of three-spined
sticklebacks (Gasterosteus aculeatus). Standard measures of shoaling behaviour failed to
distinguish among the different populations, but when their swimming patterns were
analysed using population-level probability distributions and their SE was quantified,
significant differences between populations were identified. Unfortunately, there were
not enough data to estimate the entropy for individual fish and, consequently, it was not
possible to elucidate whether the differences between populations were due to consistent
individual behavioural patterns or to differences among individuals within the populations.
However, a log-likelihood analysis showed that an individual’s behaviour was more akin
to that of its own population, thus supporting the hypothesis that the SE of a population
most likely reflects that of its individuals.

Fish are exposed to different kinds of stimuli in farms. Obviously, one of them is
the feed, but there are also undesirable stimuli that may alarm fish and provoke stress
and changes in their behaviour, such as noises and the presence of predators, particularly
when the latter are actively feeding upon their conspecifics. Schaerf et al. [79] studied
the changes in individual and group behaviour as well as the rules of interaction among
fish before and after being submitted to two different stimuli: an alarm cue (the filtered,
macerated bodies of their conspecifics) and a food cue. The controls were exposed to
the conditioned water only. The behavioural responses were measured by linear and
nonlinear parameters. Compared to the controls, the fish stimulated by food displayed
a reduced frequency of observing group mates at close proximities and they travelled at
higher speeds. Unsurprisingly, the strongest responses were elicited by the alarm cue,
including a tendency to travel at lower speeds. Changes in their conditional entropy,
mutual information, and entropy rate indicated an increase in the unpredictability of their
movements upon exposure to the alarm. The alarmed fish also moved in more tightly
clustered shoals with smaller distances to their neighbours than in either the control groups
or the groups exposed to food. An increase in the entropy in the alarmed shoals was also
reported by [35], and the difference between the SE of basal and the alarmed states was
more pronounced when the fish were alone or in small groups (two to five individuals)
than in larger groups of up to fifty individuals, wherein the fish may have felt safer.

Cross-entropy loss was one of the parameters used by Heras et al. [80] to develop a
deep attention network to understand, and ultimately predict, the behaviour of a fish in its
group, with the group being variable in size. The example selected was the estimation of
the probability of a fish within a group to turn right or left. The network was developed
and trained based on the behaviour of groups of 60, 80, and 100 juvenile zebrafish that
were 2D-video-recorded and whose 2D position, velocity, and acceleration values were
tracked by Idtracker.ai (https://idtrackerai.readthedocs.io/, accessed on 21 March 2023).
The network performed satisfactorily and, in agreement with the abovementioned works
on the number of fish and their interactions, the number of interacting individuals was
found to be variable, typically somewhere between 8–22 fish, with 1–10 more important
cases, particularly if some moved at higher speed in front or to the sides or if they were
very close or on a collision path. Their results indicate that each fish decides the turning
size by actively selecting information from the group.

The work of Wilson et al. [81] presented some practical implications when a shoal
of fish consists of hungry and sated fish and indicates that even optimizing the feeding
conditions for all fish may decrease the expense of energy that hungry fish and groups
consisting of mostly hungry fish will use to swim faster, possibly, as indicated by the
authors, to optimize their detection of prey/feed. Their work examined how the number of

https://idtrackerai.readthedocs.io/
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hungry fish in groups of up to eight individuals of X-ray tetras (Pristella maxillaris) influences
the behaviour of the individuals and the group. The authors used five different kinds of
groups with various ratios of hungry/satiated fish (8/0, 6/2, 4/4, 2/6, and 0/8). They
calculated, at the individual level, the mean speed and mean nearest neighbour distance
and, at the group level, the median polarization (as a measure of group coherence), while
information flow within each group was calculated by the mean pairwise TE, as described
by [72]. Groups with a greater proportion of hungry fish swam faster and exhibited greater
nearest neighbour distances, but there was no difference in the swimming speeds of hungry
versus well-fed fish within the groups. Thus, the nutritional status of individuals within
the group seems to impact both individual and group behaviours. In addition, one very
interesting result was that the flow of information was greater in the groups with a majority
of hungry individuals, but there was not a linear relationship between the pairwise TE and
the relative number of hungry/fed fish. Rather, there seemed to be a difference, which was
also underlined by the authors, between the three groups consisting of mostly hungry fish
and the one with up to 50–50% hungry/fed fish on the one hand and the two other groups
consisting of a majority of fed fish (six fed/two hungry and eight fed fish) on the other. The
existence of such a breaking point, which deserves further study and characterization, may
find a practical application when optimizing feeding schedules to identify the point in time
when most of the fish on a farm are hungry and need to be fed.

3.7. Collective Behaviour and Hierarchies

Collective movement requires each individual animal to decide to move, a process
that is usually initiated by a single individual or by a small group and that may be based on
a variety of factors (e.g., age, sex, position in the hierarchy, etc.) [82,83]. Therefore, the iden-
tification of leaders in groups and the mechanisms of leadership are important, particularly
(but not only) in the wild, where they may need to escape predators, find food, and avoid
polluted and stressful locations. Collignon et al. [38] used the idTracking software [84] to
generate the individual trajectories of each individual in groups of n = 2–10 zebrafish. The
distribution of leadership was quantified by calculating the entropy associated with the
time series of the identity of all the leaders. The results indicated that any fish had the
potential to lead the collective movement of the group and that all shoal members had
the same success rate. The predictor of a fish’s tendency to initiate collective movement
mainly seemed to be its mobility, regardless of its position in the hierarchy, i.e., an informed
individual moving in a specific direction is more likely to be followed by a group of naive
individuals by just moving faster than the rest. However, it was also observed that some
individuals lead collective movements more often than others, which may, over time, result
in the development of specialized roles, for example, if this initiation is linked to personality
traits such as boldness.

Niizato et al. [85] used ayus (Plecoglossus altivelis) and boids (artificial life simulation)
models to assess the integrity in small groups of fish (n = 2 to 5). They compared three
parameters to analyse the dynamics within the fish groups: Mutual information (MI),
TE, and integrated information theory (IIT 3.0). Unlike most parameters concerning the
acquirement of information about “what the (fish) system does”, integrated information
theory (IIT) measures the “degree of consciousness” of a system. IIT postulates that the
amount of information loss caused by a minimum information partition is equivalent to the
degree of information integration in the system, i.e., IIT measures “what the (fish) system
is” [85]. IIT 3.0 identifies intrinsic differences in the integrity of schools of n = 2–5 fish, and
it detects the existence of a discontinuity in the integrity of the system between groups of n
= 2–3 and those n = 4–5 individuals. Such differences in group integrity (i.e., an estimation
of leadership in the group, albeit different from the classical leadership concept as used in
TE analyses) is due to the fact that group integration in systems of n < 4 fish requires an
intact visual field, but for groups of n > 4 fish, group integration has tolerance for some
blind spots. No such discontinuity was detected by the SE of seabass groups of n = 1 to
5 fish mentioned above by [35]. This may be due to differences in the parameters used but



Entropy 2023, 25, 559 11 of 29

also to the time scale of the analyses (3 min in the study by [35] and 0.05 s in the study
by [85]) and to the likely differences in the behaviour of the two species. It is important to
stress that the results obtained by [85] are only applicable within the very limited timescale
used (the reaction time of a fish, which is about 0.05 s) and to the number of fish used
(n = 2–5). The behaviour of systems over longer time periods and incorporating a larger
number of fish must be examined independently. Nevertheless, IIT has emerged as an
interesting parameter with respect to understanding fish systems’ behaviour and may shed
new light on the understanding of the behaviour of larger systems, such as those used
in PFF.

3.8. Collective Behaviour and Mixed Shoal Species

Despite the emphasis placed on multitrophic aquaculture, there are very few published
works on fish behaviour in mixed-species settings. It must be noted that the species mixed
on multitrophic farms do not predate on each other; thus, the well-studied predator–prey
interactions should not apply to those cases. Ward et al. [86] studied the behaviour of three
species that form mixed-species shoals in the wild: three-spined sticklebacks (Gasterosteus
aculeatus), nine-spined sticklebacks (Pungitius pungitius), and roach (Rutilus rutilus). The
authors set up different experiments in which the individuals from the three species were
mixed and analysed their behaviour through classical (the mean of the median speeds of
each fish, mean distance between all fish, and the mean polarization of the group during
each trial) and nonlinear (TE) methods. The single-species groups were more polarized
than the mixed-species groups, and there were differences between treatments in terms
of the mean pairwise TE. Species-specific differences were noted with respect to (1) the
use of information within the mixed-species groups and (2) the responses to conspecifics
and heterospecifics in the mixed-species groups. The TE-based results indicated that
information flows both between and within species in all treatments. Interestingly, the
results from the TE analysis did not always agree with the results of the classical parameters
uncovering features of the inter-species interactions that traditional measurement methods
did not. This study stresses the relevance of examining the inter-species interactions in
multitrophic settings and the need to use non-linear methods to monitor their interactions.

3.9. Tagging and Pain

The tagging of fish is a common practice used to perform experiments and, potentially,
in farming settings to identify fish and monitor their production [6]. The Visual Implant
Elastomer (VIE) tags developed by Northwest Marine Technology are considered to avoid
significantly influencing the behaviour of fish [87]. Corroborating the work of [87], Eguiraun
et al. [23] also found a negligible effect of VIE-tagging on the SE of the schooling response
of a group of 81 European seabass (a 0.25% decrease) and a very small effect on the
permutation entropy of the same response (increased by less than 1%). On the other hand,
the Katz–Castiglioni FD of the same experiment [23] decreased in tagged fish somewhere
between 4–15% (for sliding window lengths of between 320–1280 points from 24 frames/sec
video images). It must be noted that the Katz–Castiglioni FD suffered an increase upon
MeHg treatment between 3–15%, which led the authors to propose a non-relevant effect of
the tag compared to that of a documented chemical stressor [23].

Using zebrafish, Ruberto et al. [88] found somewhat different results: tagging barely
impacted individual behaviour and shoaling and schooling tendencies, but the procedure
did increase the speed of the individual fish and that of the group. Interestingly, TE
indicated a significant effect of tagging on inter-individual interactions, providing indi-
cations that they might be tag-colour-dependent. For example, yellow-tagged fish were
less likely to influence others, although the other colours did not seem to provoke similar
responses [88]. The influence of tagging on the social behaviour of fish had already been
documented by Frommen et al. [89], who showed that test fish spent significantly more
time near the tagged shoal than near the sham-tagged shoal; however, contrary to [88],
they did not find any significant effect attributable to the colour of the tag. However, in
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the study by [89], the test zebrafish that were not tagged and had grown with non-tagged
fish did show a preference to swim closer to tagged individuals. Taken together, it seems
that tagging may have a colour- and species-specific effect on fish behaviour, and caution
should be adopted when experiments require the mixing of tagged and non-tagged fish.

Tagging most likely also causes pain, which inherently brings about reduced welfare
and increased stress. While VIE tags are expected to induce some form of pain in a fish
when injected, this tagging procedure is usually performed under anaesthesia, which may
exert an effect on its own (see below), but other forms of tagging may be performed quickly
and without aesthetic treatment, such as fin clipping. When the tagging and/or the tag
induce pain, the pain itself may change the behaviour of the injected fish, as demonstrated
by Deakin et al. [90]. These authors examined the effects of two alternative tagging methods,
namely, fin clipping (performed with and without lidocaine anaesthesia) and PIT tagging
(the implantation of Passive Integrated Transponders for individual fish identification).
They assessed the effects of the treatments on the complexity of individual fishes’ behaviour
by measuring the FD of their 3D swimming trajectories and showed that, indeed, both
treatments decreased the complexity of their behaviours, which was reflected by a decrease
in their FD values. Interestingly, an injection of acetic acid, a standard pain test, also
decreased the FD in a dose-dependent manner. On the other hand, when the fins were
clipped after lidocaine treatment, the FD of the fish was not altered, resembling that of the
control and sham-treated fish. This work indicates the usefulness of the FD of swimming
trajectories for estimating changes in fish welfare due to pain and the beneficial effects of
the use of anaesthesia to avoid painful procedures.

Fin amputation and pain in zebrafish were also the subject of a very interesting
study by Audira et al. [91]. Fin tagging is a common procedure used to distinguish fish
groups under experimental conditions where different fins may be targeted for different
experimental groups in the same experiment. The study also addressed whether the
selection of the fin (dorsal, caudal, anal, pelvic, or pectoral) might have implications on
the behaviour of the amputated fish. The authors aimed to assess the complexity of 3D
swimming behaviour (by idTracker) by measuring the subjects’ locomotor activity (by four
end-point parameters), movement orientation (two end points), exploratory behaviour
(six end points) and through FD and entropy analyses of their swimming trajectories.
Additional experiments were performed to verify whether potential changes might be
attributed to pain (by using lidocaine) or whether they were simply due to mechanical
effects caused by the lack of a fin. The subjects’ behaviour during the regeneration period
was also examined. The observations during the first 2 days after fin amputation were
made for isolated fish and groups (n = 6). Upon identification of caudal amputation as
the intervention exerting the strongest (negative) effect on fish behaviour, the caudal-fin-
amputated fish were further investigated, but only in groups (n = 6), for 10 days for the
lidocaine-treated fish and a further 30 days to perform follow-up assessments of their
behaviour during caudal fin regeneration. The FD values of fish behaviour for the fish
with amputated caudal, pelvic, or pectoral fins were significantly lower than those of the
control fish but only when the fish were tested in groups and not when they were tested
individually. Similarly, only the entropy of the fish groups whose caudal fin (but not other
fins) had been amputated was significantly different, albeit higher, than the entropy of
the control groups, but the significance was lost when the fish were individually tested.
According to the behavioural parameters, recovery started 1 day post-amputation, was
almost complete after 5 days, and was fully completed by the 10th day. It was paralleled
by a gradual recovery in the values of FD and entropy, which, 3 days post-amputation,
resembled the controls. The regeneration of the caudal fin had already started on the
5th day, while almost full and full regeneration had occurred by days 20–25 and day
30 day, respectively. However, only 5 days post-amputation, with only about 20% of the
fin regenerated, the fish were able to display relatively normal behaviour, indicating that
mechanical hindrance may not be the main reason for their altered behaviours. Lidocaine
treatment provoked diminished activity, which is an expected side-effect consistent with
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its sedative effects. The diminished activity of amputated fish may also be a response
adopted to avoid the aggressive responses of conspecifics known to occur in species that
form dominance hierarches, such as zebrafish, and whose intensity may be dependent on
the size of the group (see the research conducted by [91] for a complete discussion and
additional references). As the authors indicate, this would explain why the fish tested
individually (i.e., in the absence of threatening conspecifics) displayed higher activity.

Although the study by [91] was performed on zebrafish and to test pain, it casts some
very interesting light on the application of entropy and FD techniques for identifying the
behaviour of farmed fish that have been subjected to aggression from conspecifics, given
that such aggression is often enacted in the form of bites to the fins. Moreover, it can help
to quantify how practical implementations to reduce stress, e.g., through environmental
enrichment, may decrease aggression [92,93]. It may also explain why wounded fish would
prefer to be still and alone (thereby avoiding potential aggression) and why healthy fish
might prefer to be in groups (safety in numbers).

3.10. Fear/Anxiety Responses to Predators

Regarding the study of fishes’ responses to predators, robots have been introduced in
research studies as predators in order to prevent focal fish from exhibiting the inconsistent
responses that are often observed when real predators are introduced in the system. This is
because unlike actual predatory fish, robots can be used under controlled, custom-designed
experimental conditions that produce more repeatable results.

Butail et al. [94] used zebrafish in an experimental set up with a known information
flow and applied TE as a measure of directional information in two systems: (1) fish–
fish and (2) fish–robot (a life-sized zebrafish replica) interactions. The behaviours in the
two systems were 2D-video-recorded by a camera above the tank, and the SE was used
to calculate the TE of the interactions between the fish–conspecific and fish–robot. As
expected, the authors found that when a live fish interacts with a replica moving along a
predetermined trajectory, the dominant flow of information is from the replica to the fish,
and the information flow is reduced significantly if the motion of the replica is randomly
delayed. On the other hand, the TE from a living focal fish to a living conspecific and
vice versa were not significantly different [94]. In a related experiment, Bartolini et al. [95]
used robotic replicas of different sizes and found that the TE indicated preferences and an
adjustment in fish behaviour consisting of an avoidance of larger replicas and attraction
towards smaller ones, by which the fish were, in turn, influenced. In contrast to the
study conducted by [94], Bartolini et al. [95] found that similar-sized replicas did not
elicit significant responses, i.e., no information transfer was observed between the fish
and surrogate data generated by the hypothetical motion of either a support or a shoal
of replicas.

TE was also applied by Neri et al. [96] to identify causal relationships in the behaviour
of fish using a prey–predator system where the predatory fish was located outside the
space occupied by the prey. This set up imitated the conditions of a fish swimming in a
cage and visually interacting with predators attracted to the net and surrounding it. They
initially used a robotic predator and, as is common when one of the interacting partners
is a robot, the information flowed unidirectionally from the robot (predator) to the fish,
i.e., the zebrafish reacted to the behaviour of the robot. However, when the robot was
replaced by a real predatory fish (the red tiger oscar fish, Astronotus ocellatus), the one-
directional information flow was substituted by a reciprocal one: upon visual interaction,
a positive feedback loop was established by which the predator watches and shows an
increased responsiveness to the prey’s movement, whose response is avoidance. This can
be of relevance for fish swimming in the outer parts of the net where predators may also
swim looking for potential prey. Interestingly, these results contrast with those related by
Hu et al. [97], who reported a net information flow from a living predator (the northern
snakehead, Channa argus) to the prey fish (rosy bitterling, Rhodeus ocellatus) in a similar
circular arena. However, Hu’s work had several methodological differences, including
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the use of different species and the fact that each fish could feel the ripples in the water
produced when the other fish swam. In this case, the flow of information moved from from
the predator to the prey, including a critical and sensitive region where the prey is highly
vigilant of the predator’s behaviour and did not allow it to draw near.

To evaluate a zebrafish’s fear response to a 3D replica of the above-mentioned allopatric
predator (Astronotus ocellatus), Spinello et al. [98] used geotaxis and two avoidance-related
parameters: the average distance between the replica and the fish and the time spent by
the focal fish in the half of the water column opposite to that occupied by the replica. A
finite-state Markov chain switching between “stationary”, “swimming”, and “attacking”
states was used to control the motion of the replica. As expected, exposure to the replica
increased the fear response of the fish, shown by an increased rate of geotaxis (i.e., the
fish swam to the bottom), and they spent different times in the vertical axis opposite to
that occupied by the replica, but there were no differences regarding the average distance
from the replica. TE revealed a rapid adjustment of the fishes’ behaviour to avoid the
predator’s attacks.

3.11. Modulation of Fear/Anxiety Responses

The parameter most used as an indicator of fear/anxiety is geotaxis, i.e., the tendency
to swim to the bottom of a tank. To characterize and model this behaviour, Burbano
and Porfiri [99] used data from zebrafish treated with citalopram and ethanol [100], two
commonly used anxiolytic drugs, and what they defined as spatial entropy (calculated as its
SE) to identify the extent of the volume of water occupied by the fish and in which part of
the tank its activity is more concentrated. The same group of authors have extensively used
zebrafish models to study the effect of fear/anxiety and anxiolytic drugs on this species’
behaviour and on the positive emotional contagion conferred by the treated toward the
untreated fish to relieve the anxiety responses provoked in the latter by a predator (see
references below).

Examining the effect of psychoactive substances on zebrafish behaviour, Ladu et al. [101]
applied TE to quantify the interaction between individual fish and a shoal-replica of four
zebrafish treated with different doses of caffeine (0 (control), 5, 25, and 50 mg/L). TE did not
detect any significant flow of information from fish to replica and vice versa for either the
control or the group with the lowest caffeine dose; however, for the fish treated with 25 and
50 mg/L, the TE from fish to replica was lower than that from the replica to the fish.

Macrì et al. [102] documented the modulation of fear conditioning in zebrafish pro-
voked by ethanol (a 0% control group, and two test groups with 0.25% and 1.00% concen-
trations of ethanol/water). Individual 3D swimming trajectories of the fish were generated
by two video cameras (placed on top and in front of the experimental tank) and analysed
using the authors’ own software. The fear response was elicited by three zebrafish replicas
manoeuvred along 3D trajectories by a robotic platform. The following parameters were
tested: the avoidance index, geotaxis, freezing, spatial entropy (tendency of the fish to
explore the tank, which was computed as the SE), and average speed, acceleration and
angular speed. The spatial avoidance values indicated that ethanol, particularly the 0.25%
concentration, decreased the degree of aversion to the fear-related compartment. Geotaxis
was also modulated by low ethanol concentrations: the 0.25%-ethanol-treated fish dis-
played no preference, while both the control and 1.00%-ethanol-treated fish preferred the
bottom of the tank. Over the course of the experiment, the evolution of the values of spatial
entropy and average speed in the control and 0.25%-ethanol-treated fish were comparable,
but those of the 1.00%-treated individuals decreased with time. Thus, according to the
authors’ hypothesis, the zebrafish were indeed fear-conditioned, and the response was
modulated by ethanol, particularly for anxiety-related behaviours (i.e., spatial avoidance
and geotaxis). However, only the highest dose (1.00%) exerted effects on the other parame-
ters (i.e., average speed, average acceleration, and spatial entropy), yet these were small
and mostly consisted of a decrease in the values during the test. These results confirmed
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the ethanol-dependent reduction in general locomotion observed in previous studies ([102]
and references therein).

In a related study, Clément et al. [103] 3D-tracked zebrafish behaviour to estimate
fear-conditioned behaviour and how it is affected by the treatment with two anxiolytic
substances: citalopram and ethanol. As described in the study by [104], fear was elicited
by a programmed robot simulating a zebrafish-sympatric predator (an Indian pond heron,
Ardeola grayii), which hit the water surface of a lateral compartment approximately every
30 s to induce, as a conditioned response, the avoidance of the upper part of the water
column. The success of the conditioning procedure was indicated by the values of spatial
entropy (calculated using the SE). The experiment was performed in the presence and
absence of three different concentrations of citalopram (30, 50, and 100 mg/L) and ethanol
(0.25%, 0.50%, and 1.00%) and the drug-free control groups. The parameters measured were
the avoidance index, geotaxis, freezing, spatial entropy, and average speed, acceleration
and angular speed. The results of the spatial entropy values for citalopram and ethanol
treatments were also similar and mirrored the freezing behaviour: the fish displayed an
increasing tendency to explore during the later stages of the test that was not modulated by
citalopram concentration, while the spatial entropy did not significantly vary according
to the experimental group, and no time–concentration interactions were found. Geotaxis
was the most informative parameter: a conditioned control fish showed a clear positional
avoidance of the robot by exhibiting a robust preference for the lower portion of the tank.
As hypothesized by the authors, the citalopram administration resulted in a linear dose–
response curve with respect to anxiety, with the subjects treated with a 100 mg/L dose
exhibiting a significant preference for the upper part of the tank. Similar results were
obtained with the ethanol treatment but, in this case, the modulation followed a U-shaped
dose–response curve: the fish treated with 0.25% ethanol preferred the upper part, while
the fish treated with 0%, 0.50%, and 1.00% preferred the lower part of the tank.

3.12. Psychoactive Drugs for Anxiety Modulation

Macrì et al. [100] compared the behavioural information obtained from 2D and 3D
video-tracking procedures. The subjects of the study were groups of zebrafish (n = 16,
consisting of 8 males and 8 females), and the treatments were as follows: a control, three
groups treated with citalopram (30, 50, and 100 mg/L), and three groups treated with
ethanol (0.25%, 0.50%, and 1.00% ethanol/water vol/vol). One objective of the study was
to assess the behavioural responses of the fish to the drugs, for which the authors found
that both drugs influenced the fishes’ swimming patterns and anxiety-related profiles.
In addition, the ethanol administration induced erratic movements, freezing, and the
avoidance of the anxiety-eliciting areas. The second purpose of their work was to compare
the quality of the information obtained from the 2D and from 3D video recordings. The
results indicate that compared to the 3D views, the 2D views occasionally yielded false
positive and false negative findings. Unsurprisingly, the 2D projections of 3D trajectories
introduced a source of unwanted variation in zebrafish behavioural phenotyping and
both 2D views underestimated the absolute levels of general locomotion. Given a choice
regarding the positioning of a camera for a 2D recording only, the authors stated that the
top of the experimental tank would be preferable, since the data thus obtained were more
akin to those from the 3D reconstruction. On the other hand, they did not recommend
to position the camera for a frontal view, since this produced negative findings [100].
Although the work does not use entropy or FD data treatment (and, therefore, is not listed
in Appendix A), we consider that the subject is relevant both as a basis with which to
recommend 3D image acquisition and to understand the other related works by the same
group of authors mentioned in this review that do use non-linear methods.

3.13. Positive Emotional Contagion

Emotional contagion, a behaviour widely documented in numerous species, including
fish, seems to be unconscious and governed by the amygdala [105]. Therefore, species
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with a proper amygdala or with a homologous organ (such as zebrafish) may respond in a
similar manner (see the research conducted by [106] for a more detailed discussion). Until
now, fear-contagion-based studies have mostly been the object of scientific work, but some
recent studies (mentioned below) indicate that positive emotional contagion also occurs in
fish groups. The study and implementation of positive emotional contagion in fish farming
may improve the welfare of the entire production by adequately treating only a subset of
fish. Alternatively, the selection and inclusion of “positive” fish, i.e., those with an innate
tendency to display positive behaviours, may have a similar effect on the shoal, and it
would eliminate the need to use undesirable and time-dependent treatments.

Burbano Lombana et al. [106] examined the response to citalopram of individually
treated zebrafish both individually (where the fish were tested in isolation) and in groups
(consisting of one treated and four untreated fish). The experimental set up was akin to
that described in the study by [100], and the treatment consisted of a control, untreated
group, and two groups treated with 30 and 100 mg citalopram/L. In agreement with
previous studies, the citalopram treatment decreased the geotaxis of the treated fish when
individually tested. Interestingly, the presence of a single treated fish in the group also
decreased the anxiety-related behaviour of the entire group, which was demonstrated by
their reduced geotaxis. Notably, while the behaviours of the fish treated with 30 and 100
mg/L were not significantly different from each other, the fish treated with the higher dose
displayed a greater tendency to swim upwards when compared to the control. Group
cohesion (nearest neighbour distance) and coordination (polarization) were not affected
by the treatment. Interestingly, a TE analysis of the causal interactions within the group
showed that the directionality of the emotional contagion was from the treated to the
untreated fish, but not the other way around.

4. Prospects and Research Requirements

Most of the studies reviewed herein were performed under experimental conditions
and on model fish systems (primarily zebrafish), with excellent water quality and light
conditions and no external disturbances. Furthermore, the information in these studies
was usually obtained through the processing of 2D video images (which [100] reported to
be suboptimal) and the recording of only a few minutes of activity at most, even though
the videos may have been recorded for longer times and the experiments themselves may
have lasted many days. Therefore, even though the results are undoubtfully relevant, they
must be confirmed under real farming conditions. One of the key issues is the acquisition
of high-quality reliable data, preferably from information obtained from 3D swimming
patterns [100]. In our opinion, sensors will be optimized and deployed in the near future
to provide 3D information on fish behaviour, regardless of the quality of water. A second
key issue is the need for complete, reliable databases of recorded and analysed behaviours
from different fish species, under different conditions, and concerning longer periods of
time. The addressal of this issue will enable the fast and successful classification of on-farm
detected behaviours through the use of AI procedures such as 3D machine vision and
machine learning for the adequate classification of information (including classification
convolutional and neural networks, Bayesian networks, Hidden Markov models, and oth-
ers). Thirdly, the on-farm information needs to be recorded with high frequency, promptly
processed, and made available to farmers given that such information should aim to both
facilitate the control of production and the detection, as quickly as possible, of deviations
affecting the health and welfare of fish and the quality of production. It follows that im-
plementation of a full IA system implies a large investment, both financially and in terms
of the recruitment of expert personnel, that only powerful farmers are likely to be able to
afford. Yet, their willingness to share valuable information in a competitive market will
likely be very limited. Fortunately, some punctual applications are indeed finding their way
into practical implementation, for instance, machine learning algorithms and techniques
for identifying and classifying fish, evaluating biomass, performing behavioural analysis,
and predicting water quality parameters [15].



Entropy 2023, 25, 559 17 of 29

A particularly interesting and novel study examined herein is the one addressing
positive emotional contagion [106] since it opens the possibility of improving the welfare
of the shoal by manipulating the status of selected individuals. It also opens interest-
ing new research avenues concerning the identification and possible selection of fish
strains with naturally low levels of anxiety to exert a positive effect on the welfare of the
entire production.

In our opinion, and based on the above-mentioned studies and how the field is
developing, it is clear that non-linear analyses, including entropy and fractal analyses of fish
behaviour on farms, will find wide applications in (1) identifying the status of individual
fish in a shoal; identifying (2) normal behaviours (in response to normal environmental
variations, feed, and conspecifics) and (3) abnormal ones (in response to disease, parasites,
aggression, and predators); (4) quantifying welfare; (5) maintaining health; (6) reducing
disease and parasitism (potentially uncovered for instance by changes in their FD); and
(7) reducing stress (positive emotional contagion) and, consequently, (8) improving the
yield and quality of production. However, as already mentioned above, the practical
application and successful implementation of these techniques still requires a wealth of
additional experimental and practical data obtained in real farming settings, under different
conditions, and for different species.
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Appendix A

Table A1. Summary of main data from publications on fractal and entropy-based methods analysing individual and collective behaviours of fish with potential for
selected applications in PFF/IA.

Reference Species Methods, FD, and/or Entropy Individual/Collective Behaviour Main Findings

Individual identification in groups.

[46] Mature goldfish (Carassius auratus).

The mean swimming velocity and five
nonlinear parameters: two measures of the FD

(characteristic FD and the Richardson
dimension) the Lempel–Ziv complexity, the
Hurst exponent, and the degree of relative

dispersion.

Individual swimming patterns in groups.

Discriminant analysis of the six measures
showed that each fish displayed a very

different and highly individual swimming
profile, which allowed the researchers to

distinguish each individual fish within groups.

[101] Zebrafish (Danio rerio).

2D video recording of the interaction between
the fish and a robotic replica of 4 zebrafish by

TE as affected by 3 concentrations of caffeine: 0
(control), 5, 25, and 50 mg/L.

Individual response of individually placed fish
to a replica of a shoal of conspecifics and its

modulation by caffeine.

The TE was always higher from the replica to
the fish, but the difference was only significant

in fish exposed to at least 25–50 mg
caffeine/mL.

Preying/feeding search behaviours—Larvae

[64] Pink anemonefish (Amphiprion perideraion)
larvae. Fractal analysis of prey search patterns.

Individual swimming and searching behaviour
in groups (up to 10 larva) prior to and after the

start of feeding.

FD studies show that the larvae forage using at
least one type of search behaviour for ranging
and another for local searches depending on

the age of the larvae and the prey’s abundance

[65] Malabar grouper (Epinephelus malabaricus)
larvae

3D-recorded swimming behaviour of the
larvae in presence of prey, including FD.

Early feeding: individual larval prey-searching
behaviour in groups of 4 larvae.

Without prey, the FDs of the horizontal and
vertical projections of larvae indicated

increased activity on vertical axis. In the
presence of prey, the FD showed similarly

complex activity in both dimensions,
indicating an optimization of the search

volume and, therefore, the need to consider 3D
search behaviour.

Preying/feeding search behaviours—Fish

[44,45] Computer simulation. Chaos and fractals. Modelling of fish schools’ chaotic movements
in the presence of prey.

The motion of the fish school and its fractal
properties depend on the predation rate.

[66]

Several—Pressure
(depth)-sensitive-data-logging-tagged basking

sharks (Cetorhinus maximus), small spotted
catshark (Scyliorhinus canicular), bigeye tuna

(Thunnus obesus), Atlantic cod (Gadus morhua),
leatherback turtles (Dermochelys coriacea),
penguins (Spheniscus magellanicus), and

southern elephant seals (Mirounga leonine).

Simulation of searches was used to test the
hypothesis that foraging success (biomass
consumed per distance moved) by optimal

Lévy walkers in fractal (natural) prey
distributions exceeded prey acquisition rates

within random prey fields.

Different marine predators’ searching
behaviour in the wild.

Optimal search patterns (Lévy walks) seem to
arise as a function of the underlying
distribution of the prey field, i.e., the

predator’s prey-searching patterns are a result
of the prey distribution it encounters.
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Reference Species Methods, FD, and/or Entropy Individual/Collective Behaviour Main Findings

[67] Zebrafish (Danio rerio).

The number of fish is not indicated. The
behaviour of the groups was

2D-video-recorded, and the treated images
were processed and used to create a database

of different behaviours that was further used to
train a VGG-16 network. Two-dimensional

image entropy (calculated according to SE) was
applied to describe the changes of the status of
fish. Two statuses were examined: “Normal”

(shoaling) and “Abnormal” (response to
feeding).

Collective behaviour in a group.

The procedure can correctly classify fish into
their real status. The image entropy (SE)
increases when the fish transfer from a

shoaling to a schooling-type of behaviour.

Feeding status

[61]. Abstract in
English and

original paper
in Chinese.

Not given.

Real-life RAS farm settings. Use of a database
of recoded videos to classify the fish into

3 categories: non-eating, weakly eating, and
strongly eating using a 5-layer classification

neural network (CNN) optimized by a
cross-entropy loss function.

Classification of fish according to three
categories. It was not indicated if individual

fish were classified.

There was a lack of relevant information in the
English abstract, including the species used,
whether the classification system applies to

individuals or groups, and whether the model
was tested with data different from those used

to develop the CNN.

Collective behaviour

[51] Species/organisms/social bodies displaying
collective behaviour.

Study of collective behaviours by applying the
causal entropic (CE) framework of [69].

To understand the origin of collective
behaviour from a purely entropic point of view

and make testable predictions about the
fundamental form of social interactions

The CE principle gives a purely statistical
prediction for many of the emergent properties
of collective behaviour even in the absence of a
detailed understanding of the mechanisms of

interaction between individuals.

[70] Nile tilapia (Oreochromis niloticus).

Video recording of a shoal and calculation of
its dispersion (estimated by optical flow,

entropy, and statistical parameters), velocity,
and turning angle.

Shoal behaviour and welfare: construction of
an efficient method to recognize special shoal

behaviours and provide reliable theoretical
support for online smart supervision in

aquaculture, especially in RAS, to ensure fish
welfare.

The proposed KEM model to detect a specific
behaviour (evacuation of gastro-intestinal
contents) showed good performance with

respect to detecting emergent gathering and
scattering behaviours of the shoal.

[72] Freshwater rummy-nose tetra (Hemigrammus
rhodostomus).

Video recording of the fish trajectories and
assessment of the collective interactions by TE.

Collective behaviour and interactions: flow in
a fish school during collective U-turn

swimming changes are exposed by TE.

Two different information flows were
identified: an informative flow (positive TE)

from fish that have already turned to fish that
are turning and a misinformative flow

(negative TE) from fish that have not turned
yet to fish that are turning.
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Reference Species Methods, FD, and/or Entropy Individual/Collective Behaviour Main Findings

Number of fish

[74] Japanese horse mackerel (Trachurus japonicas)

HD video recording using a camera that is
mounted

on top of a tank containing 1 to 24 fish and a
simulation with robots under the same

conditions.

Number of fish (1–24) and FD. Evaluation of a
simulation of behaviour using robots and

comparison of the fishes’ behaviour under the
same conditions. Measures, among other

parameters, the FD of the system.

The trajectories of the virtual robot differed
from those of real fish: while the value of FD in
the real fish decreases with increasing number

of fish, the opposite occurred when using
robots.

[36] European seabass (Dicentrarchus labrax).

2D video recording of the behaviour of fish
estimated by the SE of their trajectory exposed

to two variables: number of fish (n = 1 to 50)
and a hit in the tank.

Individual and collective (2–50) behaviour of
groups in response to two different stressors:

number of fish and a hit in the tank.

The SE of the shoaling behaviour increased
concomitantly with the number of fish (power
function). In addition, the SE entropy increased
after the hit in the tank (schooling response) for

all fish groups but particularly so for
individual fish and groups with only 2–5 fish.

Collective behaviour and individual interactions

[75] Medaka (Oryzias latipes).
Simple genetic algorithm, the

nearest neighbour distance, polarization, the
expanse, and the FD.

Individual schooling behaviour in groups of
5 fish and its mathematical modelling.

Modelling the behaviour of the medaka school
using a simple genetic algorithm with the
fitness defined by 4 variables: the nearest

neighbour distance, polarization, the expanse,
and the FD of the school’s centre of mass.

[43] Computer simulation.
Order and flexibility of the school based on

attraction, repulsion, and parallel orientation
behaviour of individuals.

Motion of fish schools.

School’s order and flexibility are affected by
the number of neighbours interacting and by

the randomness of individual motion.
Schooling fish have evolved specialized ability
to establish both school order and flexibility at

low Nb,max (=3).

[76] Chicken grunt (Parapristipoma trilineatum). Higuchi’s FD analysis of digital video images
time series.

Effect of the number of fish and the presence of
structures in the tank on the behaviour of the

schools.

There was a difference in behaviour of schools
with 1–5 fish compared to those of 10–25 fish.

[78] Three-spined sticklebacks (Gasterosteus
aculeatus).

Video recording of the shoaling behaviour of
fish from 13 different populations and
estimation of the SE and log-likelihood
analysis of the population distributions.

Shoaling behaviour: Assessment of inter- and
intra-populational variation in shoaling

behaviour of 13 different populations of wild
sticklebacks.

Traditional behavioural measures did not
reveal populational differences in shoaling

behaviour but SE analyses identified
population-specific clustering patterns

consistent with individual-specific behavioural
patterns.

[79] X-ray tetra (Pristella maxillaris).

Recording and comparing, via linear and
non-linear (entropy) measurements, the

behaviour of fish groups exposed to an alarm
cue (macerated conspecifics) and to food

versus the controls

Collective behaviour of groups in responses to
an alarm cue and food.

Exposure to the alarm cue induced the
strongest responses with wide ranging effects
on the behaviour of the fish and changes in the
entropy, mutual information, and entropy rate,
indicating that their movements became more
unpredictable after exposure to the alarm both

in terms of changes in displacement and
changes in velocity over short time periods.
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[80] Juvenile zebrafish (Danio rerio)

Groups of 60, 80, or 100 juvenile zebrafish were
2D-video-recorded and their individual

position, velocity, and acceleration values were
tracked (Idtracker.ai). The statistics calculated

from the videos included the following
parameters: distance to centre of arena, local
polarization, inter-individual distance, and

probability of finding another animal around a
focal one. Cross-entropy loss was one of the
parameters used to train the deep network
when estimating the probability of a fish

turning right or left. The purpose of the work
was to develop a model (using deep attention
networks) to understand the rules of collective
behaviour and predict the sides a fish will turn

toward.

Modelling individual behaviour of the
collective according to interaction with

conspecifics.

The network indicated that the number of
interacting individuals is between 8–22, with

1–10 more important ones, particularly if some
move at higher speed in front or to the sides or

if they are very close or on a collision path.

[81] X-ray tetras (Pristella maxillaris).

2D video recording of the behaviour of groups
of fish with different ratios of hungry/satiated
fish (8/0, 6/2, 4/4, 2/6, and 0/8). Analysis of
individual and group speed, group cohesion,

and polarization, as well as pair-wise TE
between individuals in each group.

Individual and collective behaviours in groups
of 8 fish and their interactions according to the

hunger status of their individual members.

The nutritional status of individuals within the
groups impacts both individual and group
behaviour, and members of heterogeneous
groups adapt their behaviour to facilitate

collective motion.

Collective behaviour and hierarchies

[38] Zebrafish (Danio rerio).

Individual trajectories of each fish in groups of
2–10 zebrafish were established by idTracking

[84] and the distribution of leadership was
quantified by calculating the entropy

associated with the time series of all the
leaders.

Collective behaviour: identification of
leadership in groups of zebrafish.

Any fish could potentially lead the collective
movements in the shoal. The predictor of a

fish’s tendency to lead seemed to be mostly its
mobility, regardless of its position in the
hierarchy, although some individuals led

collective movements more often than others,
which, over time, may result in the
development of specialized roles.

[85] Ayus (Plecoglossus altivelis) and Boids (artificial
life simulation) models.

2D video recording of groups of n = 2–5 fish
and analysis of Boids models to analyse the
integrity of fish groups via three parameters:
Mutual information (MI), TE, and integrated

information theory (IIT 3.0).

Use of individual interactions and dynamics of
the collective behaviour in the school to assess

the integrity of the system.

IIT 3.0 identifies intrinsic differences in the
behaviour of schools of 2–5 fish and a

discontinuity in the group integration between
systems of n = 2–3 fish and n = 4–5. For n < 4

groups, integrity requires an intact visual field.
For n > 4 groups, integrity has tolerance for

some blind spots.
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Collective behaviour in mixed-species shoals

[86]
Three-spined sticklebacks (Gasterosteus

aculeatus), nine-spined sticklebacks (Pungitius
pungitius), and roach (Rutilus rutilus)

Video recording of the behaviour of
individuals and shoals composed of

individuals from the same and different
species using linear (mean of the median

speeds of each fish, mean distance between all
fish, and mean polarization of the group

during each trial) and nonlinear (TE calculated
on heading updates and differences for each

pair of individuals within each group across all
relevant samples) methods.

Collective behaviour and interactions in
environments with mixed-species shoals.

Single-species groups were more polarized
than mixed-species groups, for which there

were differences between treatments in mean
pairwise TE. Species-specific differences were
noted in: (1) the use of information within the
mixed-species groups and in (2) differences in

the responses to conspecifics and
heterospecifics in groups of mixed species.

Tagging and pain

[23] European seabass (Dicentrarchus labrax).

The FD (Higuchi, Katz, and Katz–Castiglioni)
and Shannon and Permutation entropy of the

schooling response to a percussive force
applied to the tank) of groups (n = 81) of

VIE-tagged and non-tagged fish.

Collective schooling behaviours of
tagged/non-tagged fish.

Negligible effect of VIE-tagging on the SE and
very small effect on the permutation entropy.

On the other hand, the Katz–Castiglioni FD of
tagged fish decreased somewhere between
4–15% depending on the window length.

[88] Zebrafish (Danio rerio).

Videorecording of the
individual and group behaviours

exhibited by groups of 3 individuals: two
non-tagged and one (focal subject) that was

either non-tagged (control condition) or sham-,
purple-, blue-, or yellow-tagged using

traditional behavioural parameters of shoaling
and schooling activities and information

theoreticl measure of social interaction by TE

Effect of tagging on the individual and
collective behaviour and interactions in groups

of 3 fish.

Tagging did not affect the shoaling and
schooling tendencies of the fish, but it

significantly increased individual speed of the
tagged subjects and of the group. TE. however,
showed altered levels of interactions between
individuals and that yellow-tagged fish were

less likely to influence others.

[90] Female zebrafish (Danio rerio).

Effect of fin clipping (with and without
administration of the anaesthetic lidocaine),
PIT tagging, and a standard pain test on the
complexity of the 3D swimming patterns of
individual fish estimated by their FD values.

The results were compared to those of control
and sham-treated zebrafish.

Effect of the selected pain treatments on the FD
of 3D swimming trajectories of individual fish

that were individually tested.

The FD in treated groups showed a reduced
degree pf complexity in the fishes’ trajectories,
while the FD of the control and sham-treated

fishes did not change over time. Anesthetizing
the fish with lidocaine prior to fin clipping

restored the complexity of the fish behaviour to
that seen in control fish. FD was useful for

estimating lack of welfare/presence of pain.
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[91] Zebrafish (Danio rerio).

Effect of fin amputation, lidocaine treatment,
and fin regeneration on the complexity of 3D

swimming patterns (analysed by idTracker) of
individual fish estimated via their FD and
through meandering entropy analyses. In

addition, principal component and hierarchical
clustering analyses of collective behaviour

performance were calculated. The results were
compared to those of control and sham-treated

zebrafish.

Effect of the selected treatments on the
individual behaviour of fish individually

tested (fin amputation) and collective
behaviour in groups (n = 6, for lidocaine

treatment and regeneration experiments).

Amputation of caudal fin resulted in more
dramatic effects that fish recovered from even
before full regeneration of the fin. Lidocaine

treatment did not accelerate recuperation and
induced minor (sedative) side-effects.

Fear/anxiety responses to predators

[94] Zebrafish (Danio rerio) and life-sized robot
replica of the zebrafish.

The behaviours of a fish–conspecific and a
fish–robot system were recorded by a web

camera placed above the surface of the water.
The SE was used to calculate the TE between

the fish–conspecific and the fish–robot systems.

Testing of TE as a measure of directional
information in fish–fish and fish–robot

interactions.

Validation of TE as an information-theoretical
measure with which to compute directional

information flow in social behaviour.

[95] Zebrafish (Danio rerio).
TE was used to study the relationship between

fish and robots imitating these fish but
differing in size.

Behavioural response of individual fish to
replica of differing in size.

TE showed that the fish adjust their behaviour
in response to variations in the size of the fish

replicas, avoiding larger replicas and being
attracted to and influenced by smaller ones.

Similar-sized replica did not elicit significant
responses.

[96]
Zebrafish (Danio rerio) as prey, robotic

predators, and red tiger oscar fish (Astronotus
ocellatus) as live predators.

Video recording of prey fish and their
interactions with a robotic predator and with a
real life predatory fish surrounding it. Analysis

of causal interactions by TE

Individual behaviour. Predator–prey
interactions: Testing of TE as a tool to identify
and quantify causal prey–predator behavioural

interactions in real fish systems.

When a living predator surrounds the prey (as
in open fish farming settings), a two-way

interaction is established, as shown by TE: the
predator watches and responds to the

behaviour of the prey, which displays an
avoidance response.

[97] Prey (rosy bitterling, Rhodeus ocellatus) and its
predator (northern snakehead, Channa argus).

Videorecording of the behaviour of the prey
and the predator as they interact when the prey
is placed in a concentric tank surrounded by a
larger tank containing the predator. The fish
can interact with each other visually and by
feeling the ripples in the water produced by

the swimming movements of the other.

Use of TE to acquire information on the
interactions between the two individual fish.

The prey’s TE was generally significantly
greater than the predator’s (i.e., information

flows from the predator to the prey) regardless
of the set of coarse-grained parameters chosen,
indicating that the prey was more vigilant with

respect to the predator’s position than vice
versa. The prey was also vigilant while the

predator moved aimlessly.
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[98]

Male and female zebrafish (Danio rerio) acting
as prey and a 3D-printed robotic replica of its

allopatric predator the red tiger oscar fish
(Astronotus ocellatus).

Videorecording of the motion of the prey fish
in the vertical and horizontal axes in response

to the movements of the replica predator
controlled under closed- and open-loop

conditions. The fear response to the predator is
computed by two avoidance-related

parameters: (1) the average distance between
the replica and the fish and (2) the time spent

by the focal fish in the half of the water column
opposite to that occupied by the replica.

Individual behaviour of individual fish in
response to a replica predator. TE quantifies

the response of the prey in terms of
“stationary”, “swimming”, and “attacking”

motion patterns of the predator.

The zebrafish quickly adjusted their behaviour
to avoid the predator’s attacks. TE revealed

that the state of the robot affected the vertical
position of the fish only in the closed-loop

control condition and not its position in the
horizontal axis.

Modulation of fear/anxiety

[99] Zebrafish (Danio rerio). Data from [100]. Data from [100].

Modelling of geotaxis by using spatial entropy
(SE) to identify the extent of the volume of

water occupied by a fish and in which part of
the tank most of the activity takes place.

Mathematical model to quantify geotaxis.

[101] Zebrafish (Danio rerio).

2D videorecording of the interaction between
the fish and a robotic replica of 4 zebrafish

according to TE as affected by 3 concentrations
of caffeine: 5, 25, and 50 mg/L and compared

to an untreated control

Individual response of individually placed fish
to a replica of a shoal of conspecifics and its

modulation by caffeine.

The TE was always higher from the replica to
the fish but only in fish exposed to at least
25–50 mg caffeine/mL the difference was

significant.

[102]

Zebrafish (Danio rerio) and a fear-eliciting
stimulus consisting of three zebrafish replicas

with a synchronized and polarized motion
moving in 3D trajectories via a robotic

platform.

3D tracking of zebrafish responses in the
presence and absence of ethanol (0, control
group, and two test groups with 0.25% and

1.00% concentrations of ethanol/water), which
is known to interfere with fear conditioning in

different species.

Modulation of conditioned fear-responses.
Individual responses. The parameters assessed

were avoidance index, geotaxis, freezing,
spatial entropy (SE), and average speed,

acceleration, and angular speed.

Ethanol significantly lowered the intensity of
anxiety-related behaviours (i.e., spatial

avoidance and geotaxis). The effects on spatial
entropy (SE) and average speed and

acceleration were marginal, time-dependent,
and only present at the highest dose (1.00%).
There was no effect on freezing or average

angular speed.

[103]

Zebrafish (Danio rerio) and a robotic stimulus
mimicking a sympatric predator of zebrafish

(Indian pond heron, Ardeola grayii)
programmed via a microcontroller that

regularly struck the water’s surface in a lateral
compartment.

3D tracking of zebrafish behaviour in the
presence and absence of two anxiolytic
compounds. The experimental groups

included: drug-free control groups and those
treated with three different concentrations of

citalopram (30, 50, and 100 mg/L) and ethanol
(0.25%, 0.50%, and 1.00%).

Modulation of fear/anxiety. Individual
responses. The parameters assessed were

avoidance index, geotaxis, freezing, spatial
entropy (SE), and average speed, acceleration,

and angular speed.

In the absence of the conditioning stimulus,
zebrafish displayed a conditioned geotaxis that
was reduced in a linear dose–response-oriented

manner by citalopram and in a U-shaped
dose–response manner by ethanol.
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Positive emotional contagion

[106] Zebrafish (Danio rerio).

2D recording of zebrafish administered a
solution of citalopram of 0 (control), 30, and
100 mg/L. The fish were tested individually
and in groups of n = 5, where only 1 of them

had been citalopram-treated.

Testing of positive emotional contagion by
analysing geotaxis, group cohesion,

coordination, and causal interactions (by TE)
for individuals (individually assessed) and for

groups.

Group cohesion and coordination were not
affected by the treatment. Changes in geotaxis
were consistent with alleviation of anxiety in
citalopram-treated individuals and in groups

where only one member was treated. TE
indicated that emotional contagion was

directional: the treated individual influenced
untreated fish, but not vice versa

Recognition of abnormal behaviour

[37] Species not declared
Video recording under real farming conditions

and development of a method to detect
abnormal behaviours.

Detection of abnormal behaviour in real-life
situation on a farm.

Softmax cross-entropy loss and weight
attenuation L2 regularization were used to
optimize a convolution 3D model, which,

consequently, proved to be able to successfully
analyse real-life aquaculture videos and detect

abnormal behaviours.
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