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Abstract: This study presents a mathematical model of non-integer order through the fractal fractional
Caputo operator to determine the development of Ebola virus infections. To construct the model
and conduct analysis, all Ebola virus cases are taken as incidence data. A symmetric approach is
utilized for qualitative and quantitative analysis of the fractional order model. Additionally, stability
is evaluated, along with the local and global effects of the virus that causes Ebola. Using the fractional
order model of Ebola virus infections, the existence and uniqueness of solutions, as well the posedness
and biological viability and disease free equilibrium points are confirmed. Many applications of
fractional operators in modern mathematics exist, including the intricate and important study of
symmetrical systems. Symmetry analysis is a powerful tool that enables the creation of numerical
solutions for a given fractional differential equation very methodically. For this, we compare the
results with the Caputo derivative operator to understand the dynamic behavior of the disease. The
simulation demonstrates how all classes have convergent characteristics and maintain their places
over time, reflecting the true behavior of Ebola virus infection. Power law kernel with the two
step polynomial Newton method were used. This model seems to be quite strong and capable of
reproducing the issue’s anticipated theoretical conditions.

Keywords: Ebola model; Caputo fractional operator; well posedness; positivity; uniqueness; stability;
simulation

1. Introduction

The deadly EVD (Ebola virus disease), which was initially identified in Africa, is a
condition that only sometimes breaks out. EVD affects both nonhuman primates and people
(such as monkeys, gorillas and chimpanzees). The initial discovery of the Ebola virus was
in 1976 in the Democratic Republic of the Congo, close to the Ebola River. Since then, the
virus has occasionally been responsible for epidemics in various African nations [1,2]. The
precise origin of the Ebola virus is unknown to scientists. A straightforward mathematical
model depicting the 2014 Ebola outbreak in Liberia was investigated by Rachah et al. [3].
The mathematical model was subsequently validated using computer simulations and
historical data from the WHO. They also created a brand new mathematical model that
takes immunisation of people into account. By comparing the classical and fractional SEIR
epidemic Ebola virus models with real data from reports released by the World Health
Organization from 27 March 2014, Area et al. [4] carried out a comparative analysis. A
comparison of two mathematical models used to describe the continuous transmission
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of the Ebola virus in West Africa was conducted by Rachah and Torres [5]. They used
two models to determine the best Ebola control and looked at numerical simulations to
better predict how the virus will spread and how to manage it. They specifically looked at
instances in which the two models yielded comparable outcomes.

The monograph on which A.A. Kilbas worked presents the most recent and up-to-date
study on fractional and fractional integro-differential equations, employing a wide range
of potentially useful fractional calculus operators. The calculus of integrals and deriva-
tives of any arbitrary real or complex order was addressed by fractional calculus and its
applications and the work was continued by Zhang [6]. In many fields of science and
engineering where nonlocality plays an important role in fractional calculus, numerous
models still need to be suggested, investigated and put into practice. There are still a lot of
non-local phenomena that have not been explored and are only waiting to be discovered,
despite the fact that many amazing findings have already been documented by researchers
in significant monographs and review papers [7]. While Ali Akgul worked on Atangana
Baleanu developed a derivative with fractional order to locate the crucial questions. The
Atangana–Baleanu problem’s fractional derivative, as well as a new approach for research-
ing fractional differential equations, are covered in [8]. The main goal of Akgul’s research
is to solve linear and nonlinear fractional differential equations using the Mittag–Leffler
kernel. A precise numerical strategy was created to address this problem. The theoretical
conclusions were supported by two experiments [9]. Ford et al. [10] saught to understand
the derivatives in the Caputo sense. Before examining how the solutions connect to the
existing information, the existence and uniqueness of the solutions were first explored
analytically. Baleanu et al. [11] adapted and tweaked the method to solve a large class of
partial differential equations of fractional order. We demonstrated the approach’s value by
applying it to solve a model fractional problem.

According to the report in 1976, the region of Africa had a wide spread of virus
name as Ebola. The Ebola virus starts from a rural area of West Africa areas and spread
over the urban area within a week, also within a month it becomes a global epidemic.
Baleanu et al. [12] proposed a novel fractional derivative with a non-local and non-singular
kernel. We spoke about some of the positive traits of the new derivative and applied it to
solve the fractional heat transfer model. Atangana and Goufo [13] originally utilized the
Ebola virus model with the classical derivative and then modified it with the beta derivative
to create a generalised version. They thoroughly investigated the endemic equilibrium
locations using the Jacobian approach to determine the corresponding Eigenvalues. As a
consequence, they created the model by iteratively numerically addressing the problem.
These answers were discovered in terms of beta and time. Using the Atangana–Baleanu
fractional derivative and integral operator, Koca [14] assessed the existence and uniqueness
of the solutions for the Ebola disease transmission model. Latha et al. in [15] proposed
a fractional-order Ebola virus epidemic model with heterogeneous complex networks
with a delayed immune response. The term “time delay” is used to describe cytotoxic T
lymphocytes (CTLs). Several requirements for the model’s stability are given based on the
fractional Laplace transform. Singh [16,17] undertook some studies on certain numerical
solutions for mathematical models. Dokuyucu et al. [18] studied the modelling of cancer
therapy using the Caputo–Fabrizio fractional derivative operator in their article. They
looked into whether an answer existed. They also explored the solution’s uniqueness
and determined the circumstances in which the model offers a unique answer based on
research by Hasan et al. [19] a number of fractional parameters were also used to analyse
the deterministic mathematical model of the Omicron effect. The Ebola virus is a highly
infectious illness that, according to Farman et al. [20], has the capacity to infect the whole
population, depending on the dynamics of the community and the individuals. Due to a
description of the recollection and hereditary properties in [21–23], ordinary integer order
can hinder understanding of the explanation of real-world situations, but fractional order,
which requires including and transecting differentiation with the use of fractional calculus,
can also help in the modelling of genuine occurrences.
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The remaining portions of this research document are as follows: A thorough intro-
duction to the proposed model is provided in Section 1, along with descriptions of some
other important discoveries from the other work. Several basic fractional order derivatives
contained in Section 2 are useful in resolving the epidemiological model. An extended
version of the model and an evaluation of the preliminary model description may be found
in Section 3, along with the proposed model’s study of well-posedness. In Section 4, a
qualitative analysis of the the suggested model is given, along with the study of disease-free
equilibrium, positivity of the proposed model with nonlocal operators, invariant region,
existence, and uniqueness is discussed. In Section 5, an analysis of stability of the proposed
scheme, such as stability of UH (Ulam–Hyres) is given. The numerical simulations and a
discussion is given in Section 7. In Section 8, the conclusion is presented.

2. Fundamental Fractional Operator Concepts

In [24], we found a number of significant and practical nonlinear dynamics and
modern calculus results.

Definition 1. If ψ(t) is continuous, it is continuous and differentiable in the interval ]a, b[, then
its fractal fractional derivative of order υ ∈ (0, 1) with a Caputo-type kernel is provided by

CDυ
t ψ(t) =

1
Γ(ξ − υ)

∫ t

0

ψξ(ρ)

(t− ρ)υ−ξ+1 dρ, (1)

where ξ = [υ] + 1, ξ < υ + 1 and [υ] represent the integer parts of υ.

Definition 2. The fractal fractional integral of order υ ∈ (0, 1) with a Caputo-type kernel is given by

CIυ
t ψ(t) =

1
Γ(υ)

∫ t

0
(t− ρ)υ−1dρ, (2)

if the interval ]a, b[ is continuous for ψ(t).

Definition 3. Let φ? be the equilibrium point in the Caputo fractional dynamical system if the
interval ]a, b[ is continuous for ψ(t)

CDυ
t ψ(t) = f (t, φ(t)), υ ∈ (0, 1), (3)

if f (t, φ?(t)) = 0.

3. Fractional-Order Model of Ebola with Treatment

We offer a deterministic model to better comprehend the dynamics of Ebola virus
transmission. The causes and recurrence of epidemics are being investigated through
simulations by researchers. Let us look at some of the key aspects of the compartmental
mathematical epidemic model that Rama et al. [25] devised to explain viral transmission.

The epidemic Ebola virus treatment model is described by a set of nonlinear ordinary
differential equations as follows

CDυ1,υ2
0,t S(t) = Λ− (β I I + βH H + βDD)S− (τ + µ)S,

CDυ1,υ2
0,t E(t) = S(β I I + βH H + βDD)− (µ + τ + δ)E,

CDυ1,υ2
0,t I(t) = δE− (µ + γ)I,

CDυ1,υ2
0,t H(t) = γI − (µ + λ + α)H,

CDυ1,υ2
0,t R(t) = αH − (µ + τ)R,

CDυ1,υ2
0,t D(t) = λH − θD.

(4)

where the initial conditions are
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S(0) = S0 ≥ 0, H(0) = H0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0, D(0) = D0 ≥ 0. (5)

3.1. Model Description

The population is divided into four divisions according to our mathematical model,
which is displayed in Table 1.

Table 1. The classes of the proposed model are described.

S(t) Group of vulnerable individuals

E(t) Group of infected people

I(t) Group of contagion carriers

H(t) Class of hospitalized people

D(t) Class of dead people

R(t) Class of recovered people

3.2. Model Assumptions

The following assumptions were made in the model

1. People who have not been exposed to the illness pathogen are placed in the susceptible
class S(t).

2. Those that reside in this class I(t) have the disease pathogen but do not exhibit overt
clinical symptoms. They are not yet able to spread infection. This is the incubation
phase. People then proceed to the infectious class at the conclusion of this phase.

3. People begin exhibiting clinical symptoms and potentially spread an infection to oth-
ers E(t). Authorities place infectious patients under sanitary care after the infectious
period, which is the average amount of time a person spends in this class and then
classify them as hospitalized.

4. Although they are receiving treatment, the individuals in this class H(t) are still
contagious. After the hospital stay, patients have two options: heal (and move into
the recovered class) or pass away (dead class). We specifically state that there are no
hospitalized patients who are no longer able to spread disease in class H. They are
classified as described below as “recovered”.

5. People who have died from the disease but have not yet been buried D(t) are still
contagious to others through touch. The body is interred after a predetermined
amount of time.

6. This class R(t) consists of survivors of the virus. In this class, people are naturally
immune to the disease-causing agent and stop being contagious.

The full list of parameters for the proposed model is presented in Table 2.

Table 2. The suggested model parameters.

Λ Rate of recruitment of individuals in state S

µ The death rate

β I The effective contact rates for diseases among those in compartment I

βH People in class H’s rates of effective disease contact

βD The effective contact rates for diseases among those in compartment D

δ Rate of change from compartment E to I

γ Rate of change from compartment E to compartment I
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Table 2. Cont.

λ The result of the sickness mortality rate multiplied by the compartment H to compartment D transition rate

α The percentage of illnesses that survive multiplied by the transition rate from condition H to compartment R

θ The percentage of Ebola victims buried

τ The daily percentage of persons departing the nation in states S, E, and R

Thus, the total population is established by

N(t) = S(t) + H(t) + E(t) + I(t) + R(t) + D(t). (6)

4. Well Posedness of the Model

The time period and region where the roots to our proposed system makes cultural
sense are examined in this section. We have already proven that all solutions and suggested
parameters are positive for all t. We know that for everyone, t > 0.

CDυ1,υ2
0,t N(t) = −µN(t) + Λ. (7)

We desire the function N(t) to be an increasing function, CDυ1,υ2
0,t N(t) > 0

CDυ1,υ2
0,t N(t) ≥ N(t) < Λ

µ
. (8)

The level of threshold population is how the literature describes the aforementioned
disparity. This leads us to the conclusion that the recognised set of solutions for the
suggested model should be restricted to

Υ =

{
(S, E, I, H, R, D) ∈ R6

+ : S + E + H + I + R + D = N <
Λ
µ

}
. (9)

The +ve cone of R6
+ in this instance also contains its faces in the smaller faces. In the

interest of reality, we rule out the possibility that the host population ultimately reaches its
carrying capacity if CDυ1,υ2

0,t N(t) ≥ 0.

5. Qualitative Analysis of the Proposed Model

To learn more about the characteristics of the Ebola virus and to comprehend the
variables that affect how the virus spreads.

5.1. Equilibrium Point of the Model

Setting the left hand side of system (4), we obtain an equilibrium point that is
P? = {S?, E?, I?, H?, R?, D?}, where

S? =
Ξ1

Ξ2
. (10)

Ξ1 =θ
(

αδγ + αδµ + αγµ + αγτ + αµ2 + αµτ + δγλ + δγµ + δλµ + δµ2 + γλµ

+ γλτ + γµ2 + γµτ + λµ2 + λµτ + µ3 + µ2τ
)

.

Ξ2 = δ(αθβ I + γλβD + γθβH + λθβ I + µθβ I).

E? =
Ξ3

Ξ4
. (11)
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Ξ3 =Λαδθβ I + ΛδγλβD + ΛδγθβH + Λδλθβ I + Λδµθβ I − αδγµθ − αδγτθ − αδµ2θ

− αδµτθ − αγµ2θ − 2αγµτθ − αγτ2θ − αµ3θ − 2αµ2τθ − αµτ2θ − δγλµθ

− δγλτθ − δγµ2θ − δγµτθ − δλµ2θ − δλµτθ − δµ3θ − δµ2τθ − γλµ2θ

− 2γλµτθ − γλτ2θ − γµ3θ − 2γµ2τθ − γµτ2θ − λµ3θ − 2λµ2τθ − λµτ2θ − µ4θ

− 2µ3τθ − µ2τ2θ.

Ξ4 =δ
(

αδθβ I + αµθβ I + ατθβ I + δγλβD + δγθβH + δλθβ I + δµθβ I + γλµβD

+ γλτβD + γµθβH + γτθβH + λµθβ I + λτθβ I + µ2θβ I + µτθβ I

)
.

I? =
Ξ5

Ξ6
. (12)

Ξ5 =Λαδθβ I + ΛδγλβD + ΛδγθβH + Λδλθβ I + Λδµθβ I − αδγµθ − αδγτθ − αδµ2θ

− αδµτθ − αγµ2θ − 2αγµτθ − αγτ2θ − αµ3θ − 2αµ2τθ − αµτ2θ − δγλµθ

− δγλτθ − δγµ2θ − δγµτθ − δλµ2θ − δλµτθ − δµ3θ − δµ2τθ − γλµ2θ

− 2γλµτθ − γλτ2θ − γµ3θ − 2γµ2τθ − γµτ2θ − λµ3θ − 2λµ2τθ − λµτ2θ − µ4θ

− 2µ3τθ − µ2τ2θ.

Ξ6 =αδγθβ I + αδµθβ I + αγµθβ I + αγτθβ I + αµ2θβ I + αµτθβ I + δγ2λβD + δγ2θβH

+ δγλµβD + δγλθβ I + δγµθβ I + δγµθβH + δλµθβ I + δµ2θβ I + γ2λµβD + γ2λτβD

+ γ2µθβH + γ2τθβH + γλµ2βD + γλµτβD + γλµθβ I + γλτθβ I + γµ2θβ I + γµ2θβH

+ γµτθβ I + γµτθβH + λµ2θβ I + λµτθβ I + µ3θβ I + µ2τθβ I .

H? =
Ξ7

Ξ8
. (13)

Ξ7 =γ
(

Λαδθβ I + ΛδγλβD + ΛδγθβH + Λδλθβ I + Λδµθβ I − αδγµθ − αδγτθ − αδµ2θ

− αδµτθ − αγµ2θ − 2αγµτθ − αγτ2θ − αµ3θ − 2αµ2τθ − αµτ2θ − δγλµθ − δγλτθ

− δγµ2θ − δγµτθ − δλµ2θ − δλµτθ − δµ3θ − δµ2τθ − γλµ2θ − 2γλµτθ − γλτ2θ

− γµ3θ − 2γµ2τθ − γµτ2θ − λµ3θ − 2λµ2τθ − λµτ2θ − µ4θ − 2µ3τθ − µ2τ2θ
)

.

Ξ8 =α2δγθβ I + α2δµθβ I + α2γµθβ I + α2γτθβ I + α2µ2θβ I + α2µτθβ I + αδγ2λβD

+ αδγ2θβH + αδγλµβD + 2αδγλθβ I + 2αδγµθβ I + αδγµθβH + 2αδλµθβ I

+ 2αδµ2θβ I + αγ2λµβD + αγ2λτβD + αγ2µθβH + αγ2τθβH + αγλµ2βD

+ αγλµτβD + 2αγλµθβ I + 2αγλτθβ I + 2αγµ2θβ I + αγµ2θβ I + 2αγµτθβ I

+ αγµτθβH + 2αλµ2θβ I + 2αλµτθβ I + 2αµ3θβ I + 2αµ2τθβ I + δγ2λ2βD

+ δγ2λµβD + δγ2λθβH + δγ2µθβH + δγλ2µβH + δγλ2θβ I + δγλµ2βD

+ 2δγλµθβ I + δγλµθβH + δγµ2θβ I + δγµ2θβH + δλ2µθβ I + 2δλµ2θβ I

+ δµ3θβ I + γ2λ2µβD + γ2λ2τβD + γ2λµ2βD + γ2λµτβD + γ2λµθβH + γ2λτθβH

+ γ2µ2θβH + γ2µτθβH + γλ2µ2βD + γλ2µτβD + γλ2µθβ I + γλ2τθβ I + γλµ3βD

+ γλµ2τβD + 2γλµ2θβ I + γλµ2θβH + 2γλµτθβ I + γλµτθβH + γµ3θβ I + γµ3θβH

+ γµ2τθβ I + γµ2τθβH + λ2µ2θβ I + λ2µτθβ I + 2λµ3θβ I + 2λµ2τθβ I + µ4θβ I + µ3τθβ I .

R? =
Ξ9

Ξ10
. (14)
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Ξ9 =αγ
(

Λαδθβ I + ΛδγλβD + ΛδγθβH + Λδλθβ I + Λδµθβ I − αδγµθ − αδγτθ − αδµ2θ

− αδµτθ − αγµ2θ − 2αγµτθ − αγτ2θ − αµ3θ − 2αµ2τθ − αµτ2θ − δγλµθ − δγλτθ

− δγµ2θ − δγµτθ − δλµ2θ − δλµτθ − δµ3θ − δµ2τθ − γλµ2θ − 2γλµτθ − γλτ2θ

− γµ3θ − 2γµ2τθ − γµτ2θ − λµ3θ − 2λµ2τθ − λµτ2θ − µ4θ − 2µ3τθ − µ2τ2θ
)

.

Ξ10 =
(

α2δγθβ I + α2δµθβ I + α2γµθβ I + α2γτθβ I + α2µ2θβ I + α2µτθβ I + αδγ2λβD

+ αδγ2θβH + αδγλµβD + 2αδγλθβ I + 2αδγµθβ I + αδγµθβH + 2αδλµθβ I

+ 2αδµ2θβ I + αγ2λµβD + αγ2λτβD + αγ2µθβH + αγ2τθβH + αγλµ2βD + αγλµτβD

+ 2αγλµθβ I + 2αγλτθβ I + 2αγµ2θβ I + αγµ2θβH + 2αγµτθβH + αγµτθβH

+ 2αλµ2θβ I + 2αλµτθβ I + 2αµ3θβ I + 2αµ2τθβ I + δγ2λ2βD + δγ2λµβD + δγ2λθβH

+ δγ2µθβH + δγλ2µβD + δγλ2θβ I + δγλµ2β I + 2δγλµθβ I + δγλµθβH + δγµ2θβ I

+ δγµ2θβH + δλ2µθβ I + 2δλµ2θβ I + δµ3θβ I + γ2λ2µβD + γ2λ2τβD + γ2λµ2βD

+ γ2λµτβD + γ2λµθβH + γ2λτθβH + γ2µ2θβH + γ2µτθβH + γλ2µ2βD + γλ2µτβD

+ γλ2µθβ I + γλ2τθβ I + γλµ3βD + γλµ2τβD + 2γλµ2θβ I + γλµ2θβH + 2γλµτθβ I

+ γλµτθβH + γµ3θβ I + γµ3θβH + γµ2τθβ I + γµ2τθβH + λ2µ2θβ I + λ2µτθβ I

+ 2λµ3θβ I + 2λµ2τθβ I + µ4θβ I + µ3τθβ I

)
(µ + τ).

D? =
Ξ11

Ξ12
. (15)

Ξ11 =γ
(

Λαδθβ I + ΛδγλβD + ΛδγθβH + Λδλθβ I + Λδµθβ I − αδγµθ − αδγτθ

− αδµ2θ − αδµτθ − αγµ2θ − 2αγµτθ − αγτ2θ − αµ3θ − 2αµ2τθ − αµτ2θ

− δγλµθ − δγλτθ − δγµ2θ − δγµτθ − δλµ2θ − δλµτθ − δµ3θ − δµ2τθ − γλµ2θ

− 2γλµτθ − γλτ2θ − γµ3θ − 2γµ2τθ − γµτ2θ − λµ3θ − 2λµ2τθ − λµτ2θ

− µ4θ − 2µ3τθ − µ2τ2θ
)

λ.

Ξ12 =
(

α2δγθβ I + α2δµθβ I + α2γµθβ I + α2γτθβ I + α2µ2θβ I + α2µτθβ I + αδγ2λβD

+ αδγ2θβH + αδγλµβD + 2αδγλθβ I + 2αδγµθβ I + αδγµθβH + 2αδλµθβ I

+ 2αδµ2θβ I + αγ2λµβD + αγ2λτβD + αγ2µθβH + αγ2τθβH + αγλµ2βD + αγλµτβD

+ 2αγλµθβ I + 2αγλτθβ I + 2αγµ2θβ I + αγµ2θβH + 2αγµτθβ I + αγµτθβH + 2αλµ2θβ I

+ 2αλµτθβ I + 2αµ3θβ I + 2αµ2τθβ I + δγ2λ2β I + δγ2λµβD + δγ2λθβH + δγ2µθβD

+ δγλ2µβD + δγλ2θβ I + δγλµ2βD + 2δγλµθβ I + δγλµθβH + δγµ2θβ I + δγµ2θβH

+ δλ2µθβ I + 2δλµ2θβ I + δµ3θβ I + γ2λ2µβD + γ2λ2τβD + γ2λµ2βD + γ2λµτβD

+ γ2λµθβH + γ2λτθβH + γ2µ2θβH + γ2µτθβH + γλ2µ2βD + γλ2µτβD + γλ2µθβ I

+ γλ2τθβ I + γλµ3βD + γλµ2τβD + 2γλµ2θβ I + γλµ2θβ I + 2γλµτθβ I + γλµτθβH

+ γµ3θβ I + γµ3θβH + γµ2τθβ I + γµ2τθβH + λ2µ2θβ I + λ2µτθβ I + 2λµ3θβ I

+ 2λµ2τθβ I + µ4θβ I + µ3τθβ I

)
θ.
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5.2. Positivity of Proposed Model with Nonlocal Operator

We demonstrate the positivity of the solutions for a fractional calculus model with
nonlocal operators in this subsection. If all of the initial criteria are met for nonlocal
operators, then all solutions are positive.

Theorem 1. Consider

Υ =
{
(S, E, I, H, R, D) ∈ R6

+ : S(0) > 0, R(0) > 0, E(0) > 0, H(0) > 0, I(0) > 0, D(0) > 0
}

, (16)

therefore, the remedies for

{S(t), E(t), H(t), I(t), R(t), D(t)}, (17)

of Equation (4) are positive ∀t ≥ 0.

Proof. Let us begin by solving the system’s first Equation (4)

dS(t)
dt

= Λ− (β I I + βH H + βDD)S− S(µ + τ), (18)

dS(t)
dt

= Λ− (τ + µ)S.

We now analyse a possible solution to

dS(t)
dt

+ (τ + µ)S = Λ.

Using the integrating factor approach, we arrive at

S(t) =
Λ

µ + τ
+ ce−(µ+τ)t,

in the initial circumstance
S(0) = S0,

then
c = S0 −

Λ
µ + τ

,

so

S(t) =
Λ

µ + τ
+

(
S0 −

Λ
τ + µ

)
e−(τ+µ)t ≥ 0. (19)

Consider the system’s second equation now (4).

E(t)
dt

= S(β I I + βH H + βDD)− (µ + δ + τ)E, (20)

E(t)
dt
≥ −(µ + τ + δ)E.

Integration yields
E(t) ≥ E0e−(µ+τ+δ)t ≥ 0. (21)

Now consider the third equation of the system (4)

I(t)
dt

= δE− (µ + γ)I, (22)

I(t)
dt
≥ −(µ + γ)I.
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Integration yields
I(t) ≥ I0e−(µ+γ)t ≥ 0. (23)

Now think about the system’s fourth Equation (4).

H(t)
dt

= γI − (µ + λ + α)H, (24)

H(t)
dt
≥ −(µ + λ + α)H.

Integration yields
H(t) ≥ H0e−(µ+λ+α)t ≥ 0. (25)

Now think about the system’s fifth Equation (4).

R(t)
dt

= αH − R(τ + µ), (26)

R(t)
dt
≥ −R(τ + µ).

Integration yields
R(t) ≥ R0e−(µ+τ)t ≥ 0. (27)

Now consider the final equation of the system (4)

D(t)
dt

= λH − θD, (28)

D(t)
dt
≥ −θD.

Integration yields
D(t) ≥ D0e−θt ≥ 0. (29)

5.3. Invariant Region

The feasible zone contains solutions to the system Equation (4).

Υ =
{
(S, E, I, H, R, D) ∈ R6

+ : S(0) > 0, R(0) > 0, E(0) > 0, H(0) > 0, I(0) > 0, D(0) > 0,

S + E + I + H + R + D = N <
Λ
µ

}
.

(30)

The model can be demonstrated to be positively invariant and globally attractive in
R6
+ with regard to the system of ordinary differential equations representing our model,

and it also makes biological sense.
We have the reproductive number R0 data from [25].

R0 = meant∈[0,Tmax ]R0(t) and CR0(j) = meant∈[0,Tmax ]R0(j, t) (31)
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5.4. Existence and Uniqueness

This section looks at the set of equations that allows fractional calculus to still exist as
well as its originality. To do this, it is essential to demonstrate the following theorem.

CDυ
t S(t) = Θ1(t, W),

CDυ
t E(t) = Θ2(t, W),

CDυ
t I(t) = Θ3(t, W),

CDυ
t H(t) = Θ4(t, W),

CDυ
t R(t) = Θ5(t, W),

CDυ
t D(t) = Θ6(t, W).

(32)

where W = S, E, I, H, R, D.

Θ1(t, W) = −S(β I I + βH H + βDD) + Λ− S(µ + τ),
Θ2(t, W) = S(β I I + βDD + βH H)− E(µ + τ + δ),
Θ3(t, W) = δE− (µ + γ)I,
Θ4(t, W) = Iγ− H(µ + λ + α),
Θ5(t, W) = αH − R(µ + τ),
Θ6(t, W) = λH − θD.

(33)

Now the equation becomes{
CDυ

t µ(t) = κ(t, µ(t)),
µ(0) = µ0 ≥ 0.

(34)

only if 
v(t) = (W)T ,
v(t) = (S0, E0, I0, H0, R0, D0)

T ,
κ(t, v(t)) = (Θi(t, W))T , i = 1, 2, 3, · · · , 6.

(35)

where (·)T is the transpositional surgery.

v(t) = v0 + χυ
0 + κ(t, v(t)),

v(t) = v0 +
1

Γ(υ)

∫
(t− τ)υ−1κ(τ, v(τ))dτ.

Let B = C([0, b]; R) be a Banach space (BS) for all the continuous functions from R[0, b]
and the norm ‖v‖ = supt ∈ J|v(t)|.

Theorem 2. Let mappings of the bounded subset of J?R3 and the function κ ∈ C[J, R]) be a
compact subset of R. Additionally, a constant ξκ ≥ 0 exists where

A1 |κ(t, v1(t))− κ(t, v2(t))| ≤ ξκ |v1(t)−v2(t)|, for all t ∈ J and for all v1, v2 ∈ C([χ, R]),
which has a unique solution whenever σξκ < 1.

σ =
b

Γ(φ + 1)
.

Proof. Consider that S : F→ F is defined by

v(t) = v0 +
1

Γ(υ)

∫
(−τ + t)−1+υκ(τ, v(τ))dτ, (36)

|v(t)| ≤ |v0|+
1

Γ(υ)

∫
(−τ + t)−1+υ|κ(τ, v(τ))dτ|,

≤ |v0|+
1

Γ(υ)

∫
(−τ + t)υ−1[|κ(τ, v(τ))− κ(τ, 0)|+ κdτ,
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≤ |v0 +
(ξκn + K1)

Γ(υ + 1)

∫
(−τ + t)υ−1dτ,

≤ |v0 +
(ξκn + K1)

Γ(υ + 1)
bυ,

≤ |v0 + σ(ξκn + K1),

≤ n.

We justify the results for v1, v2 ∈ E

|(v1(t)−v2(t)| ≤
1

Γ(υ)

∫
(−τ + t)−1+υ|κ(t, v1(t))− κ(t, v2(t))|dτ, (37)

≤ ξ

Γ(υ)

∫
(−τ + t)υ−1|v1(τ))−v2(τ))|dτ,

≤ σξκ |v1(t))−v2(t)|,

≤ 1
Γ(υ)

∫
(−τ + t)υ−1|κ(τ, v1(τ))− κ(τ, v2(τ))|dτ,

≤ ξκ

Γ(υ)

∫
(t− τ)υ−1|v1(τ)−v2(τ)|dτ,

≤ σξκ |v1(t)−v2(t)|.

This justifies that
|(v1)− (v2)| ≤ σξκ |v1(t)−v2(t)|.

Similarly,
|(Ev1)− (Ev2)| ≤ σξκ |v1(t)−v2(t)|,

|(Iv1)− (Iv2)| ≤ σξκ |v1(t)−v2(t)|,

|(Hv1)− (Hv2)| ≤ σξκ |v1(t)−v2(t)|,

|(Rv1)− (Rv2)| ≤ σξκ |v1(t)−v2(t)|,

|(Dv1)− (Dv2)| ≤ σξκ |v1(t)−v2(t)|.

The answer is hence unique as a result of the Banach contraction.

Lemma 1. Let B be a closed, bounded, convex subset of a Banach space, and let M 6= φ be its
element. Let Ω1 and Ω2 be the two operators that respect the stated relation.

1. Ω1v1 + Ω2v2 ∈ M, provided that v1, v2 ∈ M.
2. Ω1 is continuous and compact.
3. Ω2 is the mapping contraction.

Then, c ∈ M is equal to c = Ω1c + Ω2c.

Theorem 3. Surmising κ : χ ∗R3 → R is continuous and holds for the circumstance (2). Further-
more, let

A2 |(t, v)| ≤ φ(t)∀t, v ∈ J ∗R and φ ∈ C([0, b], R6
+).

When this occurs, the equation system (4) has at least one solution.

ξk‖v1(t0)−v2(t0)‖ < 1.

Proof. Setting supt∈J |φ(t)| = ||φ|| and η ≥ ||v0||+ σ||φ||.
We believe

Gη = v ∈ B : ||µ|| ≤ η.
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Assume the (Ω1, Ω2) operators on Gη are expressed as

(Ω1v)(t) =
1

Γ(φ)

∫
(−τ + t)φ−1κ(τ, v(τ))dτ, t ∈ J

Ω1v(t) = v(t0), t ∈ J

Now, every v1, v2 ∈ Gη gives

‖Ω1v1(t) + Ω2v2(t)‖ ≤ ‖v0‖+
1

Γ(φ)

∫
(t− τ)−1+φ‖κ(τ, v1(τ))‖, (38)

≤ ‖µ0‖+ σ‖φ‖,

≤ η < +∞. (39)

Therefore, it may be justified that Ω1 is compact if Ω1 is not uniformly confined by
Ω1v1 + Ω2v2 ∈ Gη . This demonstrates that there is at least one solution via the Arzela–
Ascoli principle.

|(Ω1v1(t)−Ω2v2(t)| =
1

Γ(φ)
|
∫ t1

0
[(t2 − τ)−1+φ − (t1 − τ)−1+φ]κ(τ), v(τ))dτ

+
∫ t2

t1

(t2 − τ)−1+φκ(τ, v(τ))dτ|,

≤ κ∗

Γ(φ)

[
2(t2 − t1)

φ + (tφ
2 − tφ

1 )
]
→ 0, t2 → t1. (40)

Theorem 4. Depending on the initial circumstances, the suggested epidemic Ebola virus model (4)
solution is distinct and constrained in R6

+.

Proof. We control it by

CDυ1,υ2
0,t S(t)|S=0 = Λ ≥ 0,

CDυ1,υ2
0,t E(t)|E=0 = S(β I I + βH H + βD) ≥ 0,

CDυ1,υ2
0,t I(t)|I=0 = δE ≥ 0,

CDυ1,υ2
0,t H(t)|H=0 = γI ≥ 0,

CDυ1,υ2
0,t R(t)|R=0 = αH ≥ 0,

CDυ1,υ2
0,t D(t)|D=0 = λH ≥ 0.

(41)

According to Equation (5), the solution cannot escape the hyper-plane if {S(0); R(0); E(0);
I(0); H(0); D(0)} ∈ R6

+. A vector field pointing towards R6
+ exists in each hyper-plane around

the non-negative orthant, indicating that the domain is positively invariant.

6. Analysis of the Proposed Model’s Stability

To acquire insights into the dynamical properties of the proposed model system (4),
a qualitative analysis is conducted. This analysis helps to increase understanding of how
control measures affect the dynamics of the Ebola virus transmission. The Ebola virus
model’s stability features are first investigated.
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Theorem 5. Let there be a self map on B and a Banach space, respectively. The inequality that
follows therefore applies to all instances of B:

‖G∗x −G∗y‖ ≤ C‖x−G∗‖+ c‖x− y‖, (42)

with c ∈ [0, 1), C ≥ 0. If we suppose that G∗ is picard G∗ stable.

Proof. We assume G∗ is picard G∗ stable. Consider the equations connected with the
proposed model (4):

Sn+1 = Sn(t) + L−1
[

1
Sυ
L{Λ− Sn(β I In + βH Hn + βDDn)− (µ + τ)Sn}

]
,

En+1 = En(t) + L−1
[

1
Eυ
L{Sn(β I In + βH Hn + βDDn)− (µ + τ + δ)En}

]
,

In+1 = In(t) + L−1
[

1
Iυ
L{δEn − (µ + γ)In}

]
,

Hn+1 = Hn(t) + L−1
[

1
Hυ
L{γIn − (µ + λ + α)Hn}

]
,

Rn+1 = Rn(t) + L−1
[

1
Rυ
L{αHn − (µ + τ)Rn}

]
,

Dn+1 = Dn(t) + L−1
[

1
Dυ
L{λHn − θDn}

]
.

(43)

Theorem 6. A self map is U. The definition is

U[Sn] = Sn+1 = Sn(t) + L−1
[

1
Sυ
L{Λ− Sn(β I In + βH Hn + βDDn)− (µ + τ)Sn}

]
,

U[En] = En+1 = En(t) + L−1
[

1
Eυ
L{Sn(β I In + βH Hn + βDDn)− (µ + τ + δ)En}

]
,

U[In] = In+1 = In(t) + L−1
[

1
Iυ
L{δEn − (µ + γ)In}

]
,

U[Hn] = Hn+1 = Hn(t) + L−1
[

1
Hυ
L{γIn − (µ + λ + α)Hn}

]
,

U[Rn] = Rn+1 = Rn(t) + L−1
[

1
Rυ
L{αHn − (µ + τ)Rn}

]
,

U[Dn] = Dn+1 = Dn(t) + L−1
[

1
Dυ
L{λHn − θDn}

]
.

(44)

Where U is only stable in the space of L1(a, b).

ℵ =



{
1 + k1β Ih1(υ) + k2β Ih2(υ) + k1βHh3(υ) + k3βHh4(υ)

+k1βDh5(υ) + K4βDh6(υ) + (µ + τ)h7(υ)
}
< 1,{

1 + k1β Ih8(υ) + k2β Ih9(υ) + k1βHh10(υ) + k3βHh11(υ)

+k1βDh12(υ) + k4βDh13(υ) + (µ + τ + δ)h14(υ)
}
< 1,{

1 + δh15(υ) + (µ + γ)h16(υ)
}
< 1,{

1 + γh17(υ) + (µ + λ + α)h18(υ)
}
< 1,{

1 + αh19(υ) + (µ + τ)h20(υ)
}
< 1,{

1 + λh21(υ) + θh22(υ)
}
< 1.

(45)

Proof. Given that U is a fixed point, one achieves (m, n) ∈ (N×N) for each

U[Sn]−U[Sm] = Sn+1(t) = Sn(t) + L−1
[

1
Sυ
L{Λ− Sn(β I In + βH Hn + βDDn)− (µ + τ)Sn}

]
− Sm(t)−L−1

[
1

Sυ
L{Λ− Sm(β I Im + βH Hm + βDDm)− (µ + τ)Sm}

]
,

(46)
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U[En]−U[Em] = En+1(t) = En(t) + L−1
[

1
Eυ
L{Sn(β I In + βH Hn + βDDn)− (µ + τ + δ)En}

]
− Em(t)−L−1

[
1

Eυ
L{Sm(β I Im + βH Hm + βDDm)− (µ + τ + δ)Em}

]
,

(47)

U[In]−U[Im] = In+1(t) = In(t) + L−1
[

1
Iυ
L{δEn − (µ + γ)In}

]
− Im(t)−L−1

[
1
Iυ
L{δEm − (µ + γ)Im}

]
,

(48)

U[Hn]−U[Hm] = Hn+1(t) = Hn(t) + L−1
[

1
Hυ
L{γIn − (µ + λ + α)Hn}

]
− Hm(t)−L−1

[
1

Hυ
L{γIm − (µ + λ + α)Hm}

]
,

(49)

U[Rn]−U[Rm] = Rn+1(t) = Rn(t) + L−1
[

1
Rυ
L{αHn − (µ + τ)Rn}

]
− Rm(t)−L−1

[
1

Rυ
L{αHm − (µ + τ)Rm}

]
,

(50)

U[Dn]−U[Dm] = Dn+1(t) = Dn(t) + L−1
[

1
Dυ
L{λHn − θDn}

]
− Dm(t)−L−1

[
1

Dυ
L{λHm − θDm}

]
.

(51)

By taking the norm of (46)–(51), and without loss of generality, we obtain

‖U[Sn]−U[Sm]‖ =
∥∥∥Sn(t) + L−1

[
1

Sυ
L{Λ− Sn(β I In + βH Hn + βDDn)− (µ + τ)Sn}

]
− Sm(t)−L−1

[
1

Sυ
L{Λ− Sm(β I Im + βH Hm + βDDm)− (µ + τ)Sm}

]∥∥∥,
(52)

‖U[En]−U[Em]‖ =
∥∥∥En(t) + L−1

[
1

Eυ
L{Sn(β I In + βH Hn + βDDn)− (µ + τ + δ)En}

]
− Em(t)−L−1

[
1

Eυ
L{Sm(β I Im + βH Hm + βDDm)− (µ + τ + δ)Em}

]∥∥∥,
(53)

‖U[In]−U[Im]‖ =
∥∥∥In(t) + L−1

[
1
Iυ
L{δEn − (µ + γ)In}

]
− Im(t)−L−1

[
1
Iυ
L{δEm − (µ + γ)Im}

]∥∥∥,
(54)

‖U[Hn]−U[Hm]‖ =
∥∥∥Hn(t) + L−1

[
1

Hυ
L{γIn − (µ + λ + α)Hn}

]
− Hm(t)−L−1

[
1

Hυ
L{γIm − (µ + λ + α)Hm}

]∥∥∥,
(55)
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‖U[Rn]−U[Rm]‖ =
∥∥∥Rn(t) + L−1

[
1

Rυ
L{αHn − (µ + τ)Rn}

]
− Rm(t)−L−1

[
1

Rυ
L{αHm − (µ + τ)Rm}

]∥∥∥,
(56)

‖U[Dn]−U[Dm]‖ =
∥∥∥Dn(t) + L−1

[
1

Dυ
L{λHn − θDn}

]
− Dm(t)−L−1

[
1

Dυ
L{λHm − θDm}

]∥∥∥.
(57)

Then, applying the inequality, the equations become

‖U[Sn]−U[Sm]‖ ≤
∥∥∥Sn(t)− Sm(t)

∥∥∥+ L−1
[ 1

Sυ
L
{
‖ − Snβ I(In − Im)‖

+ ‖ − Imβ I(Sn − Sm)‖+ ‖ − SnβH(Hn − Hm)‖+ ‖ − HmβH(Sn − Sm)‖

+ ‖ − SnβD(Dn − Dm)‖+ ‖ − DmβD(Sn − Sm)‖+ ‖ − (µ + τ)(Sn − Sm)‖
}]

,

(58)

‖U[En]−U[Em]‖ ≤
∥∥∥En(t)− Em(t)

∥∥∥+ L−1
[ 1

Eυ
L
{
‖Snβ I(In − Im)‖

+ ‖Imβ I(Sn − Sm)‖+ ‖SnβH(Hn − Hm)‖+ ‖HmβH(Sn − Sm)‖

+ ‖SnβD(Dn − Dm)‖+ ‖DmβD(Sn − Sm)‖+ ‖ − (µ + τ + δ)(En − Em)‖
}]

,

(59)

‖U[In]−U[Im]‖ ≤
∥∥∥In(t)− Im(t)

∥∥∥+ L−1
[ 1

Iυ
L
{
‖δ(En − Em)‖+ ‖ − (µ + γ)(In − Im)‖

}]
, (60)

‖U[Hn]−U[Hm]‖ ≤
∥∥∥Hn(t)− Hm(t)

∥∥∥+ L−1
[ 1

Hυ
L
{
‖γ(In − Im)‖+ ‖ − (µ + λ + α)(Hn − Hm)‖

}]
, (61)

‖U[Rn]−U[Rm]‖ ≤
∥∥∥Rn(t)− Rm(t)

∥∥∥+ L−1
[ 1

Rυ
L
{
‖α(Hn − Hm)‖+ ‖ − (µ + τ)(Rn − Rm)‖

}]
, (62)

‖U[Dn]−U[Dm]‖ ≤
∥∥∥Dn(t)− Dm(t)

∥∥∥+ L−1
[ 1

Dυ
L
{
‖λ(Hn − Hm)‖+ ‖ − θ(Dn − Dm)‖

}]
. (63)

Considering that the obtained solutions take on a similar role, we conclude that

‖Sn(t)− Sm(t)‖ = ‖Rn(t)− Rm(t)‖ = ‖In(t)− Im(t)‖
= ‖Hn(t)− Hm(t)‖ = ‖Dn(t)− Dm(t)‖ = ‖En(t)− Em(t)‖.

(64)

By replacing with this in (58)–(63), we obtain the connection shown below
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‖U[Sn]−U[Sm]‖ ≤
∥∥∥Sn(t)− Sm(t)

∥∥∥+ L−1
[ 1

Sυ
L
{
‖ − β ISn(Sn(t)− Sm(t))‖

+ ‖ − Imβ I(Sn − Sm)‖+ ‖ − SnβH(Sn(t)− Sm(t))‖+ ‖ − HmβH(Sn − Sm)‖

+ ‖ − SnβD(Sn(t)− Sm(t))‖+ ‖ − DmβD(Sn − Sm)‖+ ‖ − (µ + τ)(Sn − Sm)‖
}]

,

(65)

‖U[En]−U[Em]‖ ≤
∥∥∥En(t)− Em(t)

∥∥∥+ L−1
[ 1

Eυ
L
{
‖Snβ I(En − Em)‖

+ ‖Imβ I(En − Em)‖+ ‖SnβH(En − Em)‖+ ‖HmβH(En − Em)‖

+ ‖SnβD(En − Em)‖+ ‖DmβD(En − Em)‖+ ‖ − (µ + τ + δ)(En − Em)‖
}]

,

(66)

‖U[In]−U[Im]‖ ≤
∥∥∥In(t)− Im(t)

∥∥∥+ L−1
[ 1

Iυ
L
{
‖δ(In − Im)‖+ ‖ − (µ + γ)(In − Im)‖

}]
, (67)

‖U[Hn]−U[Hm]‖ ≤
∥∥∥Hn(t)− Hm(t)

∥∥∥+ L−1
[ 1

Hυ
L
{
‖γ(Hn − Hm)‖+ ‖ − (µ + λ + α)(Hn − Hm)‖

}]
, (68)

‖U[Rn]−U[Rm]‖ ≤
∥∥∥Rn(t)− Rm(t)

∥∥∥+ L−1
[ 1

Rυ
L
{
‖α(Rn − Rm)‖+ ‖ − (µ + τ)(Rn − Rm)‖

}]
, (69)

‖U[Dn]−U[Dm]‖ ≤
∥∥∥Dn(t)− Dm(t)

∥∥∥+ L−1
[ 1

Dυ
L
{
‖λ(Dn − Dm)‖+ ‖ − θ(Dn − Dm)‖

}]
. (70)

The above Equations (65)–(70) are simplified so that:

‖U[Sn]−U[Sm]‖ ≤
∥∥∥Sn(t)− Sm(t)

∥∥∥+ L−1
[ 1

Sυ
L
{

β I‖Sn‖‖(Sn(t)− Sm(t))‖

+ ‖Im‖β I‖(Sn − Sm)‖+ ‖Sn‖βH‖(Sn(t)− Sm(t))‖+ ‖Hm‖βH‖(Sn − Sm)‖

+ ‖Sn‖βD‖(Sn(t)− Sm(t))‖+ ‖Dm‖βD‖(Sn − Sm)‖+ (µ + τ)‖(Sn − Sm)‖
}]

,

(71)

‖U[En]−U[Em]‖ ≤
∥∥∥En(t)− Em(t)

∥∥∥+ L−1
[ 1

Eυ
L
{
‖Sn‖β I‖(En − Em)‖

+ ‖Im‖β I‖(En − Em)‖+ ‖Sn‖βH‖(En − Em)‖+ ‖Hm‖βH‖(En − Em)‖

+ ‖Sn‖βD‖(En − Em)‖+ ‖Dm‖βD‖(En − Em)‖+ (µ + τ + δ)‖(En − Em)‖
}]

,

(72)

‖U[In]−U[Im]‖ ≤
∥∥∥In(t)− Im(t)

∥∥∥+ L−1
[ 1

Iυ
L
{

δ‖(In − Im)‖+ (µ + γ)‖(In − Im)‖
}]

, (73)

‖U[Hn]−U[Hm]‖ ≤
∥∥∥Hn(t)− Hm(t)

∥∥∥+ L−1
[ 1

Hυ
L
{

γ‖(Hn − Hm)‖+ (µ + λ + α)‖(Hn − Hm)‖
}]

, (74)

‖U[Rn]−U[Rm]‖ ≤
∥∥∥Rn(t)− Rm(t)

∥∥∥+ L−1
[ 1

Rυ
L
{

α‖(Rn − Rm)‖+ (µ + τ)‖(Rn − Rm)‖
}]

, (75)
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‖U[Dn]−U[Dm]‖ ≤
∥∥∥Dn(t)− Dm(t)

∥∥∥+ L−1
[ 1

Dυ
L
{

λ‖(Dn − Dm)‖+ θ‖(Dn − Dm)‖
}]

. (76)

In addition, Sn, Im, Hm and Dm are convergent sequences; hence, they are bounded
and we can obtain four different positive constants k1, k2, k3 and k4 for all t such that

‖Sn‖ < k1, ‖Im‖ < k2, ‖Hm‖ < k3, ‖Dm‖ < k4. (77)

Next, considering Equations (71)–(77), we obtain

‖U[Sn(t)]−U[Sm(t)]‖ ≤
{

1 + k1β Ih1(υ) + k2β Ih2(υ) + k1βHh3(υ) + k3βHh4(υ)

+ k1βDh5(υ) + K4βDh6(υ) + (µ + τ)h7(υ)
}
‖(Sn − Sm)‖,

(78)

‖U[En(t)]−U[Em(t)]‖ ≤
{

1 + k1β Ih8(υ) + k2β Ih9(υ) + k1βHh10(υ) + k3βHh11(υ)

+ k1βDh12(υ) + k4βDh13(υ) + (µ + τ + δ)h14(υ)
}
‖(En − Em)‖,

(79)

‖U[In(t)]−U[Im(t)]‖ ≤
{

1 + δh15(υ) + (µ + γ)h16(υ)
}
‖(In − Im)‖, (80)

‖U[Hn(t)]−U[Hm(t)]‖ ≤
{

1 + γh17(υ) + (µ + λ + α)h18(υ)
}
‖(Hn − Hm)‖, (81)

‖U[Rn(t)]−U[Rm(t)]‖ ≤
{

1 + αh19(υ) + (µ + τ)h20(υ)
}
‖(Rn − Rm)‖, (82)

‖U[Dn(t)]−U[Dm(t)]‖ ≤
{

1 + λh21(υ) + θh22(υ)
}
‖(Dn − Dm)‖. (83)

Where hi(υ), i = 1, 2, 3, · · · , 22 are functions from L−1
[
L
]
.

Therefore, the mapping G? has a fixed point. Next, we prove that G? holds all the
conditions in above Theorem 5. Let Equations (77) and (84) hold, and by using

ℵ = (0, 0, 0, 0, 0, 0),

ℵ =



{
1 + k1β Ih1(υ) + k2β Ih2(υ) + k1βHh3(υ) + k3βHh4(υ)

+k1βDh5(υ) + K4βDh6(υ) + (µ + τ)h7(υ)
}
< 1,{

1 + k1β Ih8(υ) + k2β Ih9(υ) + k1βHh10(υ) + k3βHh11(υ)

+k1βDh12(υ) + k4βDh13(υ) + (µ + τ + δ)h14(υ)
}
< 1,{

1 + δh15(υ) + (µ + γ)h16(υ)
}
< 1,{

1 + γh17(υ) + (µ + λ + α)h18(υ)
}
< 1,{

1 + αh19(υ) + (µ + τ)h20(υ)
}
< 1,{

1 + λh21(υ) + θh22(υ)
}
< 1.

(84)

all the conditions in Theorem 6 are satisfied by G?. Therefore, G? is Picard G? stable.
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7. Numerical Dynamics

At this point, utilising the most appropriate values found in the table and the Caputo
operator (a fractional differential operator), we give several numerical findings for the
suggested model. In order to conduct the model simulations, a dependable piece of
software called Matlab has been used in conjunction with a numerical method for the type
of fractional dynamical proposed system, as described and assessed in [26]. The Cauchy
ordinary differential equation is considered in the following manner with respect to a
Caputo differential operator of order υ.{

CDυ
t ψ(t) = µ(t, ψ(t)),

ψb = ψb
0.

(85)

where 0 < t ≤ υ, 0 < ψ ≤ 1 with b = 0, 1, 2 . . . , n− 1, n = [υ].
As a result, we obtain the Voltera equation

ψ(t) =
n−1

∑
b=0

ψb
0

t
b
+

1
Γ(υ)

∫
(t− E)υ−1µ(E, ψ)dE. (86)

Numerical Scheme with Power Law Kernel

Our main goal in this section is to apply the operators to the suggested model. Addi-
tionally, we implement the variable version and recover the classical operators using the
power-law kernel. Therefore, the suggested model (4) becomes

CDυ
t S(t) = Λ− S(β I I + βDD + βH H)− (τ + µ)S,

CDυ
t E(t) = S(β I I + βH H + βDD)− (µ + τ + δ)E,

CDυ
t I(t) = δE− (µ + γ)I,

CDυ
t H(t) = γI − (µ + λ + α)H,

CDυ
t R(t) = αH − (µ + τ)R,

CDυ
t D(t) = λH − θD.

(87)

with initial conditons

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, H(0) = H0 ≥ 0, R(0) = R0 ≥ 0, D(0) = D0 ≥ 0. (88)

CDυ
t S(t) = Υ1(t, W),

CDυ
t E(t) = Υ2(t, W),

CDυ
t I(t) = Υ3(t, W),

CDυ
t H(t) = Υ4(t, W),

CDυ
t R(t) = Υ5(t, W),

CDυ
t D(t) = Υ6(t, W).

(89)



Υ1(t, W) = Λ− S(β I I + βH H + βDD)− (µ + τ)S,
Υ2(t, W) = S(β I I + βH H + βDD)− (µ + τ + δ)E,
Υ3(t, W) = δE− (µ + γ)I,
Υ4(t, W) = γI − (µ + λ + α)H,
Υ5(t, W) = αH − (µ + τ)R,
Υ6(t, W) = λH − θD.

(90)
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As an example of a Power Law kernel, consider

S(tδ+1) =
1

Γ(υ)Σδ
µ=2

∫ tδ+1
tδ (Υ1(τ, W(τ))(−τ + tδ+1)

−1+υ)dτ,

E(tδ+1) =
1

Γ(υ)Σδ
µ=2

∫ tδ+1
tδ (Υ2(τ, W(τ))(−τ + tδ+1)

−1+υ)dτ,

I(tδ+1) =
1

Γ(υ)Σδ
µ=2

∫ tδ+1
tδ (Υ3(τ, W(τ))(−τ + tδ+1)

−1+υ)dτ,

H(tδ+1) =
1

Γ(υ)Σδ
µ=2

∫ tδ+1
tδ (Υ4(τ, W(τ))(−τ + tδ+1)

−1+υ)dτ,

R(tδ+1) =
1

Γ(υ)Σδ
µ=2

∫ tδ+1
tδ (Υ5(τ, W(τ))(−τ + tδ+1)

−1+υ)dτ,

D(tδ+1) =
1

Γ(υ)Σδ
µ=2

∫ tδ+1
tδ (Υ6(τ, W(τ))(−τ + tδ+1)

−1+υ)dτ.

(91)

Sδ+1 =
1

Γ(υ)
Σδ

µ=2Υ1(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)∆t
∫ tδ+1

tδ
(tδ+1 − τ)υ−1)dτ

+
1

Γ(υ)
Σδ

µ=2

[Υ1(tµ−1, , Sµ−1, Eµ−1, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

∆t

−
Υ1(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

∆t

]
×
∫ tδ+1

tδ
(τ − tµ−2)(tδ+1 − τ)υ−1)dτ

+
1

Γ(υ)
Σδ

µ=2

[Υ1(tµ, Sµ, Eµ, Iµ, Hµ, Rµ, Dµ)− 2Υ1(tµ−1, S−1+µ, Eµ−1, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

2(∆t)2

+
Υ1(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

2(∆t)2

]
×
∫ tδ+1

tδ
(τ − tµ−2)(τ − tµ−1)(tδ+1 − τ)υ−1dτ,

(92)

Eδ+1 =
1

Γ(υ)
Σδ

µ=2Υ2(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)∆t
∫ tδ+1

tδ
(tδ+1 − τ)υ−1)dτ

+
1

Γ(υ)
Σδ

µ=2

[Υ2(tµ−1, , Sµ−1, Eµ−1, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

∆t

−
Υ2(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

∆t

]
×
∫ tδ+1

tδ
(τ − tµ−2)(t1+δ − τ)υ−1)dτ

+
1

Γ(υ)
Σδ

µ=2

[Υ2(tµ, Sµ, Eµ, Iµ, Hµ, Rµ, Dµ)− 2Υ2(tµ−1, S−1+µ, Eµ−1, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

2(∆t)2

+
Υ2(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

2(∆t)2

]
×
∫ tδ+1

tδ
(τ − tµ−2)(τ − tµ−1)(tδ+1 − τ)υ−1dτ,

(93)

Iδ+1 =
1

Γ(υ)
Σδ

µ=2Υ3(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)∆t
∫ tδ+1

tδ
(tδ+1 − τ)υ−1)dτ

+
1

Γ(υ)
Σδ

µ=2

[Υ3(tµ−1, , Sµ−1, Eµ−1, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

∆t

−
Υ3(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

∆t

]
×
∫ tδ+1

tδ
(τ − tµ−2)(t1+δ − τ)υ−1)dτ

+
1

Γ(υ)
Σδ

µ=2

[Υ3(tµ, Sµ, Eµ, Iµ, Hµ, Rµ, Dµ)− 2Υ3(tµ−1, S−1+µ, Eµ−1, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

2(∆t)2

+
Υ3(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

2(∆t)2

]
×
∫ tδ+1

tδ
(τ − tµ−2)(τ − tµ−1)(tδ+1 − τ)υ−1dτ,

(94)
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Hδ+1 =
1

Γ(υ)
Σδ

µ=2Υ4(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)∆t
∫ tδ+1

tδ
(tδ+1 − τ)υ−1)dτ

+
1

Γ(υ)
Σδ

µ=2

[Υ4(tµ−1, , Sµ−1, Eµ−1, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

∆t

−
Υ4(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

∆t

]
×
∫ tδ+1

tδ
(τ − tµ−2)(t1+δ − τ)υ−1)dτ

+
1

Γ(υ)
Σδ

µ=2

[Υ4(tµ, Sµ, Eµ, Iµ, Hµ, Rµ, Dµ)− 2Υ4(tµ−1, S−1+µ, Eµ−1, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

2(∆t)2

+
Υ4(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

2(∆t)2

]
×
∫ tδ+1

tδ
(τ − tµ−2)(τ − tµ−1)(tδ+1 − τ)υ−1dτ,

(95)

Rδ+1 =
1

Γ(υ)
Σδ

µ=2Υ5(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)∆t
∫ tδ+1

tδ
(tδ+1 − τ)υ−1)dτ

+
1

Γ(υ)
Σδ

µ=2

[Υ5(tµ−1, , Sµ−1, Eµ−1, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

∆t

−
Υ5(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

∆t

]
×
∫ tδ+1

tδ
(τ − tµ−2)(t1+δ − τ)υ−1)dτ

+
1

Γ(υ)
Σδ

µ=2

[Υ5(tµ, Sµ, Eµ, Iµ, Hµ, Rµ, Dµ)− 2Υ5(tµ−1, S−1+µ, Eµ−1, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

2(∆t)2

+
Υ5(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

2(∆t)2

]
×
∫ tδ+1

tδ
(τ − tµ−2)(τ − tµ−1)(tδ+1 − τ)υ−1dτ,

(96)

Dδ+1 =
1

Γ(υ)
Σδ

µ=2Υ6(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)∆t
∫ tδ+1

tδ
(tδ+1 − τ)υ−1)dτ

+
1

Γ(υ)
Σδ

µ=2

[Υ6(tµ−1, , Sµ−1, Eµ−1, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

∆t

−
Υ6(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

∆t

]
×
∫ tδ+1

tδ
(τ − tµ−2)(t1+δ − τ)υ−1)dτ

+
1

Γ(υ)
Σδ

µ=2

[Υ6(tµ, Sµ, Eµ, Iµ, Hµ, Rµ, Dµ)− 2Υ6(tµ−1, S−1+µ, Eµ−1, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

2(∆t)2

+
Υ6(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

2(∆t)2

]
×
∫ tδ+1

tδ
(τ − tµ−2)(τ − tµ−1)(tδ+1 − τ)υ−1dτ,

(97)
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The resulting number pattern is as follows:

Sδ+1 =
(∆t)υ

Γ(υ + 1)
Σδ

µ=2t1−β
µ−2Υ1(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

×
[
(δ− µ + 1)υ − (δ− µ)υ

]
+

(∆t)υ

Γ(υ + 2)
Σδ

µ=2

[
t1−β
µ−1Υ1(tµ−1, Sµ−1, E−1+µ, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

− t1−β
µ−2Υ1(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

]
×
[
(δ− µ + 1)υ(δ− µ + 3 + 2a)− (δ− µ)υ(δ− µ + 3 + 3a)

]
+

(∆t)υ

2Γ(υ + 3)
Σδ

µ=2

[
t1−β
µ−2Υ1(tµ, Sµ, Eµ, Iµ, Hµ, Rµ, Dµ)

− t1−β
µ−2Υ1(tµ−1, Sµ−1, E−1+µ, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

− t1−β
µ−2Υ1(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

]
× (δ− µ + 1)υ

×
[
2(δ− µ)2 + (3υ + 10)(δ− µ) + 2υ2 + 9υ + 12

]
− (δ− µ)υ

×
[
2(δ− µ)2 + (5υ + 10)(δ− µ) + 6υ2 + 18υ + 12

]
,

(98)

Eδ+1 =
(∆t)υ

Γ(υ + 1)
Σδ

µ=2t1−β
µ−2Υ2(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

×
[
(δ− µ + 1)υ − (δ− µ)υ

]
+

(∆t)υ

Γ(υ + 2)
Σδ

µ=2

[
t1−β
µ−1Υ2(tµ−1, Sµ−1, E−1+µ, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

− t1−β
µ−2Υ2(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

]
×
[
(δ− µ + 1)υ(δ− µ + 3 + 2a)− (δ− µ)υ(δ− µ + 3 + 3a)

]
+

(∆t)υ

2Γ(υ + 3)
Σδ

µ=2

[
t1−β
µ−2Υ2(tµ, Sµ, Eµ, Iµ, Hµ, Rµ, Dµ)

− t1−β
µ−2Υ2(tµ−1, Sµ−1, E−1+µ, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

− t1−β
µ−2Υ2(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

]
× (δ− µ + 1)υ

×
[
2(δ− µ)2 + (3υ + 10)(δ− µ) + 2υ2 + 9υ + 12

]
− (δ− µ)υ

×
[
2(δ− µ)2 + (5υ + 10)(δ− µ) + 6υ2 + 18υ + 12

]
,

(99)
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Iδ+1 =
(∆t)υ

Γ(υ + 1)
Σδ

µ=2t1−β
µ−2Υ3(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

×
[
(δ− µ + 1)υ − (δ− µ)υ

]
+

(∆t)υ

Γ(υ + 2)
Σδ

µ=2

[
t1−β
µ−1Υ3(tµ−1, Sµ−1, E−1+µ, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

− t1−β
µ−2Υ3(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

]
×
[
(δ− µ + 1)υ(δ− µ + 3 + 2a)− (δ− µ)υ(δ− µ + 3 + 3a)

]
+

(∆t)υ

2Γ(υ + 3)
Σδ

µ=2

[
t1−β
µ−2Υ3(tµ, Sµ, Eµ, Iµ, Hµ, Rµ, Dµ)

− t1−β
µ−2Υ3(tµ−1, Sµ−1, E−1+µ, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

− t1−β
µ−2Υ3(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

]
× (δ− µ + 1)υ

×
[
2(δ− µ)2 + (3υ + 10)(δ− µ) + 2υ2 + 9υ + 12

]
− (δ− µ)υ

×
[
2(δ− µ)2 + (5υ + 10)(δ− µ) + 6υ2 + 18υ + 12

]
,

(100)

Hδ+1 =
(∆t)υ

Γ(υ + 1)
Σδ

µ=2t1−β
µ−2Υ4(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

×
[
(δ− µ + 1)υ − (δ− µ)υ

]
+

(∆t)υ

Γ(υ + 2)
Σδ

µ=2

[
t1−β
µ−1Υ4(tµ−1, Sµ−1, E−1+µ, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

− t1−β
µ−2Υ4(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

]
×
[
(δ− µ + 1)υ(δ− µ + 3 + 2a)− (δ− µ)υ(δ− µ + 3 + 3a)

]
+

(∆t)υ

2Γ(υ + 3)
Σδ

µ=2

[
t1−β
µ−2Υ4(tµ, Sµ, Eµ, Iµ, Hµ, Rµ, Dµ)

− t1−β
µ−2Υ4(tµ−1, Sµ−1, E−1+µ, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

− t1−β
µ−2Υ4(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

]
× (δ− µ + 1)υ

×
[
2(δ− µ)2 + (3υ + 10)(δ− µ) + 2υ2 + 9υ + 12

]
− (δ− µ)υ

×
[
2(δ− µ)2 + (5υ + 10)(δ− µ) + 6υ2 + 18υ + 12

]
,

(101)
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Rδ+1 =
(∆t)υ

Γ(υ + 1)
Σδ

µ=2t1−β
µ−2Υ5(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

×
[
(δ− µ + 1)υ − (δ− µ)υ

]
+

(∆t)υ

Γ(υ + 2)
Σδ

µ=2

[
t1−β
µ−1Υ5(tµ−1, Sµ−1, E−1+µ, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

− t1−β
µ−2Υ5(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

]
×
[
(δ− µ + 1)υ(δ− µ + 3 + 2a)− (δ− µ)υ(δ− µ + 3 + 3a)

]
+

(∆t)υ

2Γ(υ + 3)
Σδ

µ=2

[
t1−β
µ−2Υ5(tµ, Sµ, Eµ, Iµ, Hµ, Rµ, Dµ)

− t1−β
µ−2Υ5(tµ−1, Sµ−1, E−1+µ, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

− t1−β
µ−2Υ5(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

]
× (δ− µ + 1)υ

×
[
2(δ− µ)2 + (3υ + 10)(δ− µ) + 2υ2 + 9υ + 12

]
− (δ− µ)υ

×
[
2(δ− µ)2 + (5υ + 10)(δ− µ) + 6υ2 + 18υ + 12

]
,

(102)

Dδ+1 =
(∆t)υ

Γ(υ + 1)
Σδ

µ=2t1−β
µ−2Υ6(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

×
[
(δ− µ + 1)υ − (δ− µ)υ

]
+

(∆t)υ

Γ(υ + 2)
Σδ

µ=2

[
t1−β
µ−1Υ6(tµ−1, Sµ−1, E−1+µ, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

− t1−β
µ−2Υ6(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

]
×
[
(δ− µ + 1)υ(δ− µ + 3 + 2a)− (δ− µ)υ(δ− µ + 3 + 3a)

]
+

(∆t)υ

2Γ(υ + 3)
Σδ

µ=2

[
t1−β
µ−2Υ6(tµ, Sµ, Eµ, Iµ, Hµ, Rµ, Dµ)

− t1−β
µ−2Υ6(tµ−1, Sµ−1, E−1+µ, Iµ−1, Hµ−1, Rµ−1, Dµ−1)

− t1−β
µ−2Υ6(tµ−2, Sµ−2, Eµ−2, Iµ−2, Hµ−2, Rµ−2, Dµ−2)

]
× (δ− µ + 1)υ

×
[
2(δ− µ)2 + (3υ + 10)(δ− µ) + 2υ2 + 9υ + 12

]
− (δ− µ)υ

×
[
2(δ− µ)2 + (5υ + 10)(δ− µ) + 6υ2 + 18υ + 12

]
,

(103)

8. Discussions and Numerical Simulations

A mathematical analysis has been performed on a non-linear epidemiological model of
the Ebola virus and therapy. In order to ascertain the benefits of the parameters used in this
Ebola dynamics model, several simulation tests based on parameter values were carried out
to assess the impact of the fractional derivative on the treatment sections. Through using
a fractal fractional derivative, the model creates numerical representations for a range of
fractional values in accordance with the steady state point. Many numerical methods may
be used to study the end time value of a certain parameter in order to analyze how distinct
parameters affect the dynamics of the fractional order model. Figures 1–6 show graphs
of the approximations of solutions for various fractional orders. As shown in Figures 1–6,
S(t) and R(t) increase as the fractional values drop, whereas E(t), I(t), H(t) and D(t) fall
as the fractional values grow. When the fractional values are reduced, the behaviour in all
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graphs shifts, suggesting that the roots will work better if the fractional values are lower
than the classical derivative. These simulations demonstrate how variations in values have
an effect on the model behavior. The simulation also demonstrates how the condition of
Ebola patients might change over time. As a result, the research becomes even more crucial
for making choices and putting restrictions in place.

Through using different numerical techniques and the time fractional parameters, the
mechanical characteristics of the fractional order model have been identified. Simulations
reveal that the model’s dynamics have changed. Furthermore, with aid of the fractional
value and results from various dimensions, the outcomes of the nonlinear system memory
were also discovered. It provides a better way to control the disease without defining
other parameters. Figure 1 shows the simulations obtained by the power law kernel
method. It is highlighted that, when compared to the classical order situation with varied
dimensions, the most visible and robust part (the fractional order derivatives) are far better
at explaining the physical processes. The numerical results demonstrate how the dynamics
in the different fractional orders behave.
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Figure 1. Simulation of the model classes with the Caputo fractional derivative. (a) S(t) at dimension
1. (b) S(t) at dimension 0.8.

Simulations obtained by the power law kernel approach are shown in Figure 2. It is
highlighted that, when compared to the classical order situation with varied dimensions, the
most visible and robust parts (the fractional order derivatives) are far better at explaining the
physical processes. The numerical results demonstrate how the dynamics in the different
fractional orders behave.
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Figure 2. Simulation of model classes with the Caputo fractional derivative. (a) E(t) at dimension 1.
(b) E(t) at dimension 0.8.

Simulations obtained by the power law kernel approach are shown in Figure 3. It is
highlighted that, when compared to the classical order situation with varied dimensions, the
most visible and robust part (the fractional order derivatives) are far better at explaining the
physical processes. The numerical results demonstrate how the dynamics in the different
fractional orders behave.
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Figure 3. Simulation of model classes with the Caputo fractional derivative. (a) I(t) at dimension 1.
(b) I(t) at dimension 0.8.

Simulations obtained by the power law kernel approach are shown in Figure 4. It is
highlighted that, when compared to the classical order situation with varied dimensions, the
most visible and robust parts (the fractional order derivatives) are far better at explaining the
physical processes. The numerical results demonstrate how the dynamics in the different
fractional orders behave.
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Figure 4. Simulation of model classes with the Caputo fractional derivative. (a) H(t) at dimension 1.
(b) H(t) at dimension 0.8.

Simulations obtained by the power law kernel approach are shown in Figure 5. It is
highlighted that, when compared to the classical order situation with varied dimensions, the
most visible and robust parts (the fractional order derivatives) are far better at explaining the
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physical processes. The numerical results demonstrate how the dynamics in the different
fractional orders behave.
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Figure 5. Simulation of model classes with the Caputo fractional derivative. (a) R(t) at dimension 1.
(b) R(t) at dimension 0.8.

Simulations obtained by the power law kernel approach are shown in Figure 6. It is
highlighted that, when compared to the classical order situation with varied dimensions, the
most visible and robust parts (the fractional order derivatives) are far better at explaining the
physical processes. The numerical results demonstrate how the dynamics in the different
fractional orders behave.
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Figure 6. Simulation of model classes with the Caputo fractional derivative. (a) D(t) at dimension 1.
(b) D(t) at dimension 0.8.

9. Conclusions

To better comprehend how the Ebola virus spreads, a nonlinear compartmental model
has been suggested. Six components make up the suggested paradigm, and they are all
mutually exclusive. It has been determined that there have been many Ebola virus fever
cases and Ebola has caused many fatalities and it may be spread by treating infected
individuals and through dead bodies. We were able to analyze the consequences of the
Ebola virus on individuals, as well as the general population in any nation, through the
research of a proposed mathematical model with fast and slow observable cases. The
model’s nonlinear ordinary differential equations were carefully analyzed for the degree
to which they are well posed. The existence and positivity of solutions were also checked
to determine biological feasibility of the model. Then, we investigated the stability of the
iterative scheme of the proposed model by using fixed point theory results. The numerical
results were discussed through graphs, and we also compared the results in two different
dimensions for a complex analysis. Symmetry analysis is a strong tool that makes it possible
to generate numerical answers to given fractional differential equations very methodically.
This unique method of fusing two operators was used to derive numerical outcomes and
simulations for this purpose. The method is extremely dependable, efficient and capable of
resolving a variety of technical and scientific issues. This area of research is beneficial for
understanding how the Ebola virus spreads and how to manage illnesses in a community.
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