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Abstract We revisit the evolution of generalised parton dis-
tributions (GPDs) in momentum space. We formulate the
evolution kernels at one loop in perturbative quantum chro-
modynamics (pQCD) in a form that is suitable for numerical
implementation and that allows for an accurate study of their
properties. This leads to the first open-source implementation
of GPD evolution equations able to cover the entire kine-
matic region and allowing for heavy-quark-threshold cross-
ings. The numerical implementation of the GPD evolution
equations is publicly accessible through theAPFEL++ evolu-
tion library and is available within thePARTONS framework.
Our formulation makes use of the operator definition of GPDs
in light-cone gauge renormalised in the MS scheme. For the
sake of clarity, we recompute the evolution kernels at one
loop in pQCD, confirming previous calculations. We obtain
general conditions on the evolution kernels derived from the
GPD sum rules and show that our formulation obeys these
conditions. We analytically show that our calculation repro-
duces the DGLAP and the ERBL equations in the appropri-
ate limits and that it guarantees the continuity of GPDs. We
numerically check that the evolved GPDs fulfil DGLAP and
ERBL limits, continuity, and polynomiality. We benchmark
our numerical implementation against analytical evolution in
conformal space. Finally, we perform a numerical compari-
son to an existing implementation of GPD evolution, finding
general good agreement on the kinematic region accessible
to the latter. This work provides a pedagogical description
of GPD evolution equations which benefits from a renewed
interest as future colliders, such as the electron-ion collid-
ers in the United States and in China, are being designed.
It also paves the way for the extension of GPD evolution
codes to higher accuracies in pQCD desirable for precision
phenomenology at these facilities.
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1 Introduction

Generalised parton distributions (GPDs) were introduced in
the 1990s [1–5] and have been thoroughly studied ever since
(see e.g. the review papers in Refs. [6–8]). There are many
reasons for their interest. GPDs can be interpreted in terms
of partonic probability densities in longitudinal momentum
and transverse position [9,10]. Therefore, an understand-
ing of GPDs would allow us to obtain a spatial picture of
hadrons (hadron tomography) that is not achievable other-
wise. Moreover, GPDs are closely related to the form fac-
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tors of the energy-momentum tensor, allowing for a gauge-
invariant spin decomposition of the hadron [3] and for a for-
mal analogy with pressure and shear force distributions [11].
GPDs emerge from the factorisation of exclusive hard pro-
cesses such as deeply virtual Compton scattering [2,12]. This
ultimately gives us the possibility to achieve an experimen-
tally driven tomography of hadrons. In fact, this has been one
of the main motivations for investing in current experimen-
tal programmes, such as the Jefferson Laboratory upgrade to
12 GeV, and in future facilities like the electron-ion colliders
in the United States (EIC) [13,14] and in China (EicC) [15].

Already in the early days of GPDs, and guided by the
work done on both parton distribution functions (PDFs) and
distribution amplitudes (DAs), several groups derived evolu-
tion equations for GPDs, generalising both the Dokshitzer–
Gribov–Lipatov–Altarelli–Parisi (DGLAP) and Efremov–
Radyushkin–Brodsky–Lepage (ERBL) evolution equations.
Leading-order (LO) results were readily obtained [1,2,5,16–
19], followed shortly thereafter by the calculation of the next-
to-leading order (NLO) corrections [20–24], which were
recently confirmed by an independent study [25] and even
extended to three loops (NNLO) in the non-singlet case [26].

On the phenomenological side, early efforts were devoted
to developing GPD evolution codes. Vinnikov [27] developed
the first open-source code in momentum space able to evolve
GPDs at LO accuracy. However, the code webpage no longer
exists and, as far as we can tell, the only public version of this
code is its implementation in the PARTONS framework [28].
A few years earlier, Freund and McDermott [29] developed a
code able to evolve GPDs at NLO tailored to the computation
of deeply virtual Compton scattering. However, to the best of
our knowledge, this code was never made fully open-source,
and as of today it is difficult to find a clean copy. In parallel, a
strong effort was put into obtaining an evolution procedure at
NLO in conformal space (see e.g. Ref. [30]), yielding the only
public NLO evolution code available today [31,32]. We point
out that all the codes mentioned above are rigidly associated
with specific GPD models or families of parameterisations,
and can hardly be used out of the box to evolve different
input GPDs. Moreover, to the best of our knowledge, none
of them allows for the treatment of heavy flavours, while a
significant amount of current experimental data lies above
the charm threshold. In the last decade, these codes have
not taken the front stage mainly because the latest and most
precise experimental data related to GPDs were obtained in
relatively small ranges and at relatively small values of the
hard scale Q2. The necessity of using evolution equations
for a consistent theoretical analysis of experimental data was
jeopardised by the poor accuracy of LO perturbative QCD at
low scales. This has made evolution of GPDs less critical for
phenomenological purposes. However, with the forthcoming
EIC and EicC, the situation is expected to change drastically,

as exclusive processes will be measured in a larger kinematic
range, making the need for evolution pressing.

In this paper, we revisit the LO evolution equations
of GPDs in momentum space computing the one-loop
unpolarised anomalous dimensions renormalised in the MS
scheme in the light-cone gauge. In order to make the paper
self-contained, we provide a pedagogical description of the
computation targeting newcomers unfamiliar with the most
technical aspects of the field, a community which is expected
to grow in view of the timeline of the EIC and EicC projects.
We formalise our results in a way that allows us to study their
properties and that facilitates the numerical implementation.
The solution of the evolution equations is implemented in the
open-source code APFEL++ [33,34] that is interfaced to the
PARTONS framework.

In Sect. 2, we derive the GPD evolution equations and
present our calculation of the kernels. These equations are
presented in a form that resembles the DGLAP equations,
thus allowing us to exploit the capabilities of existing evolu-
tion codes such as APFEL++ for their solution. In Sect. 3, we
present a thorough study of the analytical properties of the
ensuing evolution kernels. In Sect. 4, we discuss the numer-
ical implementation and provide quantitative evidence that
the evolution fulfils fundamental requirements such as cor-
rect DGLAP and ERBL limits, continuity, polynomiality, and
equivalence with the conformal-space approach. To the best
of our knowledge, these numerical consistency checks have
not been discussed in a detailed manner in the existing litera-
ture concerning GPD evolution codes. Finally, in Sect. 5 we
summarise and give some concluding remarks. Appendices
are devoted to some technical aspects. Appendix A discusses
the general method used to compute the evolution kernels by
the introduction of the parton-in-parton GPDs, Appendix B
gives some details concerning the explicit calculation of the
one-loop evolution kernelP [0]

q/q , and Appendix C presents the
explicit calculation of its conformal moments.

2 Operator definition of GPDs and evolution equations

GPDs enjoy an operator definition that results from the
collinear factorisation of processes like deeply virtual Comp-
ton scattering and deeply virtual meson production [12,35].
This operator definition is affected by UV divergences related
to the integration over the transverse momenta kT of the
constituent partons and that need to be renormalised. As
is customary, the renormalisation procedure introduces an
unphysical scale, μ, that roughly speaking corresponds to a
cut-off on the integral in kT . The fact that unrenormalised
(bare) GPDs do not depend on μ allows one to derive a set
of renormalisation-group equations (RGEs) that governs the
dependence of the renormalised GPDs on μ: the evolution
equations. The anomalous dimensions (sometimes referred
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to as evolution kernels or splitting functions) of these evo-
lution equations can be computed in perturbation theory by
isolating the coefficient of the UV divergences of the bare
GPDs order by order in the expansion in powers of the strong
coupling αs . GPDs cannot be computed in perturbation the-
ory, but for the purpose of extracting the UV poles, one can
replace the hadronic states that enter their operator defini-
tion with partonic states, thus enabling an explicit compu-
tation. This follows from the fact that GPDs emerge from
factorisation theorems that apply to any target. As a conse-
quence, the extraction of the anomalous dimensions related
to UV poles (as well as of the partonic cross sections) is
conveniently accomplished using partonic on-shell targets
[36]. Although GPDs are not physical observables, they are
gauge-invariant quantities. In a covariant formulation, gauge
invariance is guaranteed by the presence of the so-called Wil-
son line that connects the bi-local GPD operator along the
light-cone direction.

When using the operator definition of GPDs in perturba-
tive calculations, the presence of the Wilson line introduces
substantial complications [37]. This is because a Wilson line
can be pictured as the radiation of an arbitrary number of
collinear gluons with scalar polarisation (i.e. with polarisa-
tion proportional to the gluon momentum and thus to the
collinear direction) that massively increase the number of
diagrams to be considered at any given perturbative order.
This problem can be overcome by adopting an axial gauge,
n · A = 0, in which the gauge vector n is on the light cone,
n2 = 0: this is usually called light-cone gauge. By definition,
scalar gluons are absent in the light-cone gauge, thus enor-
mously reducing the number of diagrams to be considered. In
addition, in light-cone gauge there are no ghosts [38], which
further reduces the complexity of the calculation. These sim-
plifications however come at the price of a complication of
the gluon propagator that in the light-cone gauge takes the
form:

Dμν(k) = 1

k2 + iε

(
−gμν + kμnν + kνnμ

k · n
)

. (1)

A particularly unpleasant feature of this propagator is that it
develops a spurious pole at k · n = 0. However, it has been
argued that poles deriving from the gluon propagator in the
light-cone gauge must cancel in gauge-invariant quantities
[39]. Therefore, when computing GPD anomalous dimen-
sions, it is enough to regularise these poles on a diagram-by-
diagram basis using a suitable prescription, bearing in mind
that they eventually cancel when summing up all diagrams.1

1 Different regularisation prescriptions exist. The authors of Ref. [39]
originally introduced a simple principal-value regularisation. Later,
other prescriptions were also introduced [40,41], see also Ref. [42].
We also mention that in Refs. [43,44] it was observed that, up to two-
loop accuracy, most of the poles at k · n = 0 can be regularised by
means of dimensional regularisation. In addition, those that cannot be

Finally, the operator defining the bare quark and gluon
unpolarised GPDs of a generic hadron species H in the light-
cone gauge with gauge vector n reads

F̂q/H (x, ξ,�2) =
∫

dy

2π
e−i x(n·P)y

×
〈
P − �

∣∣∣∣ψq

( yn
2

) /n

2
ψq

(
− yn

2

)∣∣∣∣ P + �

〉

F̂g/H (x, ξ,�2) = nμnν

x(n · P)

∫
dy

2π
e−i x(n·P)y

×
〈
P − �

∣∣∣Fμj
a

( yn
2

)
Fν j
a

(
− yn

2

)∣∣∣ P + �
〉
, (2)

where ψq is the quark field for the flavour q in the fundamen-
tal colour representation, and Fμν

a is the gluon field strength
for the colour configuration a in the adjoint representation.
The integrals are understood to run between −∞ and +∞.
The variable x is the longitudinal fraction of the average
momentum P carried by the parton, while ξ , often referred
to as skewness, is the longitudinal fraction of the momen-
tum transfer �. In addition, an average over the initial-state
spin/helicity physical states is understood. The index j in
the gluon distribution runs over the longitudinal components
( j = 1, 2) and is summed over as well as the colour index a.
Note the absence of the Wilson line as a consequence of the
light-cone gauge. A further simplification induced by this
gauge is that the contraction of the gauge vector with the
gluon field strength reduces to nμF

μj
a (x) = (n · ∂) A j

a(x).
The tensorial decomposition of the correlators in Eq. (2) leads
to the actual definition of the bare GPDs Ĥi/H and Êi/H [6]:

F̂i/H (x, ξ,�2) = 1

n · P
[
Ĥi/H (x, ξ,�2)u(P − �)

/n

2
u(P + �)

+Êi/H (x, ξ, �2)u(P − �)
iσμνnμ�ν

4M
u(P + �)

]
, (3)

with i = q, g and where u is spinor of the external state H
and M is its mass. Note that the definitions in Eq. (2) are such
that GPDs in the forward limit � → 0 exactly reproduce the
standard collinear parton distribution functions (PDFs):

lim�→0 F̂q/H (x, ξ,�2) = f̂q/H (x),
lim�→0 F̂g/H (x, ξ,�2) = f̂g/H (x).

(4)

In order to fulfil Eq. (4) for the gluon, we adopt the off-
forward generalisation of the definition of gluon PDF given
in Ref. [45]. This differs by a factor 2/(n · P) w.r.t. Ref. [2]
and by factor 1/x w.r.t. Ref. [6]. From now on, we will drop
the dependence on the total momentum transfer �2 because
it does not participate in the evolution of GPDs.

Footnote 1 continued
regularised in this way (only one specific virtual three-point integral,
see Appendix C of Refs. [44]) give a result that is largely independent
of the regularisation procedure. We thank the referee for drawing our
attention to these calculations.

123



888 Page 4 of 30 Eur. Phys. J. C (2022) 82 :888

Fig. 1 Graphical representation
of the parton-in-hadron GPDs
defined in Eq. (2)

A graphical representation of the GPDs defined in Eq. (2)
is displayed in Fig. 1. In these graphs, the crosses represent
the operator insertion and the integration over y, that is,

−yn

2
yn

2
=

dy

2π
e−ix(n·P )y . . .

/n

2
. . .

for quarks and

−yn

2
yn

2

=
nμnνδijδab

x(n · P )
dy

2π
e−ix(n·P )y . . .

μi, a νj, b

for gluons.
Assuming dimensional regularisation in 4 − 2ε dimen-

sion, with ε > 0, the bare GPD correlator in Eq. (2) can be
renormalised in the MS scheme as follows:

Fi/H (x, ξ, μ) =
∑
j=q,g

∫ 1

−1

dy

|y| Zi j

(
x

y
,
ξ

x
, αs(μ), ε

)

×F̂j/H (y, ξ, ε), i = q, g, (5)

where the sum runs over all active quark flavours at the scale
μ. Due to longitudinal boost invariance, the MS renormalisa-
tion constants Zi j can only be functions of ratios of momen-
tum fractions, of the coupling αs , and of the regulator ε, and
can be expanded as [36]:2

Zi j

(
x

y
,
ξ

x
, αs, ε

)
=

∞∑
n=0

ans Z
[n]
i j

(
x

y
,
ξ

x
, ε

)

= δi jδ

(
1 − x

y

)

2 In the modified minimal-subtraction (MS) scheme, the poles are actu-
ally embedded in powers of Sε/ε, with

Sε = (4π)ε

�(1 − ε)
= 1 + ε (ln 4π − γE) + O(ε2), (6)

where γE is the Euler constant. To simplify the notation, in the following
we omit the factor Sε .

+
∞∑
n=1

ans

n∑
p=1

1

ε p
Z [n,p]
i j

(
x

y
,
ξ

x

)
, (7)

where we have defined as = g2/16π2 = αs/4π . Exploiting
the fact that F̂ does not depend on the renormalisation scale
μ, the logarithmic derivative w.r.t. μ of Eq. (5) gives

dFi/H (x, ξ, μ)

d ln μ2 =
∑
k=q,g

∫ 1

−1

dz

|z|Pi/k

(
x

z
,
ξ

x
, αs(μ)

)

×Fk/H (z, ξ, μ), (8)

with

Pi/k

(
x

z
,
ξ

x
, αs

)
= lim

ε→0

∑
j=q,g

∫ 1

−1

dy

|y|
dZi j

(
x
y ,

ξ
x , αs(μ), ε

)
d ln μ2

×Z−1
jk

(
y

z
,
ξ

y
, αs, ε

)
, (9)

where Z−1
k j is defined by means of the following equality:

∑
j=q,g

∫ 1

−1

dx

|x | Z
−1
k j

(
z

x
,
ξ

z
, αs, ε

)
Z ji

(
x

y
,
ξ

x
, αs, ε

)

= δkiδ

(
1 − z

y

)
. (10)

Note that the definition of Pi/k allows one to take the limit
ε → 0 because these quantities are finite order by order
in perturbation theory and therefore permit the perturbative
expansion:

Pi/k

(
x

z
,
ξ

x
, αs

)
=

∞∑
n=0

an+1
s P [n]

i/k

(
x

z
,
ξ

x

)
. (11)

From Eq. (9),Pi/k can be seen as an x-dependent generalisa-
tion of the anomalous dimension introduced in the renormal-
isation of local operators. Exploiting the fact that Zi j depend
on the scale μ only through the strong coupling αs , one can
further manipulate the derivative in Eq. (9) as follows:

dZi j

(
x
y ,

ξ
x , αs(μ), ε

)
d ln μ2 = (−εas + β(as))

dZi j

(
x
y ,

ξ
x , αs , ε

)
das

= (−εas + β(as))
∞∑
n=1

nan−1
s

×
n∑

p=0

1

ε p
Z [n,p]
i j

(
x

y
,
ξ

x

)
(12)
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where we have used the (4 − 2ε)-dimensional RGE for the
strong coupling:

das
d ln μ2 = −εas + β(as). (13)

Since in this paper we are mainly concerned with the leading-
order contribution to perturbative expansion of the anoma-
lous dimensions in Eq. (11), considering thatβ(as) = O(α2

s ),
we find

P [0]
i/k

(
x

z
,
ξ

x

)
= −Z [1,1]

ik

(
x

z
,
ξ

x

)
. (14)

Therefore, the calculation of the one-loop anomalous dimen-
sion of the GPD evolution boils down to computing the coef-
ficient of the divergence of the one-loop renormalisation con-
stant of the bare GPDs themselves. However, the procedure
is totally general and can be extended to any fixed order in
perturbation theory.

The calculation of the renormalisation constants can be
accomplished by using the parton-in-parton GPDs defined
in Appendix A. As mentioned above, owing to the univer-
sality of the UV structure of the partonic correlator, one can
replace the hadronic states in Eq. (2) with partonic states,
thus enabling a perturbative calculation. Therefore, both the
bare and renormalised parton-in-parton GPDs enjoy the per-
turbative expansions:

F̂i/j (x, ξ, ε) =
∞∑
n=0

ans F̂
[n]
i/j (x, ξ, ε),

Fi/j (x, ξ, μ) =
∞∑
n=0

ans F
[n]
i/j (x, ξ, μ), (15)

which plugged into Eq. (5), along with the expansion in
Eq. (7), allow us to relate bare and renormalised parton-in-
parton GPDs order by order in αs :

F [n]
i/k(x, ξ, μ) =

∑
j=q,g

n∑
p=0

∫ 1

−1

dy

|y| Z
[p]
i j

(
x

y
,
ξ

x
, ε

)

×F̂ [n−p]
j/k (y, ξ, ε). (16)

The first two orders explicitly read:

F [0]
i/k(x, ξ, μ) = F̂ [0]

i/k(x, ξ, ε) ≡ Di (ξ)δikδ(1 − x),

F [1]
i/k(x, ξ, μ) = F̂ [1]

i/k(x, ξ, ε) + Z [1]
ik

(
x,

ξ

x
, ε

)
Dk(ξ),

(17)

where the first equality is the result of a tree-level com-
putation using the definitions in Eq. (2) (see Appendix A,
where the factors Di are also derived). The second equality
instead allows us to extract Z [1,1]

ik in Eq. (14) by requiring that

F [1]
i/k(x, ξ, μ) be finite in the ε → 0 limit, finally obtaining:

P [0]
i/k

(
x,

ξ

x

)
= P.P.

[
F̂ [1]
i/k(x, ξ, ε)

]
D−1
k (ξ), (18)

where P.P. stands for “MS UV pole part”. F̂ [1]
i/k can be obtained

through the calculation of the appropriate one-loop diagrams.
Using the definitions given in Appendix A, we have com-
puted the one-loop corrections to all (non-vanishing) parton-
in-parton GPDs and extracted the pole part. Finally, using
Eq. (18), we found that the one-loop anomalous dimensions
have the following structure:3

P [0]
i/k

(
x,

ξ

x

)
= θ(1 − x)

[
θ (x + ξ) pik

(
x,

ξ

x

)

+θ (x − ξ) pik

(
x,− ξ

x

)]

+δikδ(1 − x)2Ci

[
Ki − 2

∫ 1

0

dz

1 − z

− ln

(∣∣∣∣1 − ξ2

x2

∣∣∣∣
)]

, (19)

where

pqq(y, κ) = CF
(1 + κ)(1 − y + 2κy)

κ(1 + κy)(1 − y)
,

pqg(y, κ) = TR
(1 + κ)(1 − 2y + κy)

κ(1 + κy)(1 − κ2y2)
,

pgq(y, κ) = CF
(1 + κ)(2 − y + κy)

κy(1 + κy)
,

pgg(y, κ) = −CA
1 − κ2

κ(1 − κ2y2)

×
[

1 − 2κy

1 − y
− 2(1 + y2)

y(1 − κ)(1 + κy)

]
, (20)

and

Kq = 3

2
, Kg = 11CA − 4n f TR

6CA
, (21)

with Cg = CA = Nc = 3, Cq = CF = (N 2
c − 1)/2Nc =

4/3, TR = 1/2, and n f the number of active quark flavours.

For the sake of illustration, the explicit calculation of F̂ [1]
q/q ,

which allowed us to extractP [0]
q/q , is presented in Appendix B.

The remaining one-loop parton-in-parton GPDs and the cor-
responding anomalous dimensions can be computed in a sim-
ilar fashion.

In the following, we will formulate the GPD evolution
equations in a form that resembles the DGLAP equations for
PDFs. On the one hand, this facilitates the implementation

3 The integral appearing in the second line of Eq. (19) is clearly diver-
gent. However, this expression is to be intended in the sense of a distri-
bution that acquires a meaning only upon integration. In this respect, the
diverging integral has the scope of subtracting an opposite divergence
generated by the first line of Eq. (19).
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in existing computer codes able to compute the DGLAP evo-
lution. Indeed, relying on solid and well-established numer-
ical techniques, several DGLAP evolution codes have nowa-
days reached a numerical accuracy well below the per-
mil level [33,34,46–48]. On the other hand, this formula-
tion allows us to highlight some interesting properties of
the anomalous dimensions. To do so, we restrict ourselves
the longitudinal momentum fraction x to be non-negative.
This can be done first by observing that, using the def-
inition in Eq. (2), the gluon GPD is an odd function of
x , so that Fg/H (−x, ξ,�2) = −Fg/H (x, ξ,�2), and sec-
ond by defining the anti-quark GPDs as Fq/H (x, ξ,�2) =
−Fq/H (−x, ξ,�2). In addition, from Eq. (19) it is apparent
that evolution kernels and thus GPDs are symmetric under
the transformation ξ → −ξ . Therefore, without loss of gen-
erality we can restrict to considering non-negative values of
ξ . We can then write leading-order evolution equations for
quark, antiquark, and gluon GPDs separately as

dFq/H (x, ξ, μ)

d ln μ2

= αs(μ)

4π

{∫ 1

0

dz

z
P [0]
q/q

(
x

z
,
ξ

x

)
Fq/H (z, ξ, μ)

−
∫ 1

0

dz

z
P [0]
q/q

(
− x

z
,
ξ

x

)
Fq/H (z, ξ, μ)

+
∫ 1

0

dz

z

[
P [0]
q/g

(
x

z
,
ξ

x

)
− P [0]

q/g

(
− x

z
,
ξ

x

)]

×Fg/H (z, ξ, μ)

}
, (22)

dFq/H (x, ξ, μ)

d ln μ2

= αs(μ)

4π

{
−
∫ 1

0

dz

z
P [0]
q/q

(
− x

z
,
ξ

x

)
Fq/H (z, ξ, μ)

+
∫ 1

0

dz

z
P [0]
q/q

(
x

z
,
ξ

x

)
Fq/H (z, ξ, μ)

+
∫ 1

0

dz

z

[
P [0]
q/g

(
x

z
,
ξ

x

)

−P [0]
q/g

(
− x

z
,
ξ

x

)]
Fg/H (z, ξ, μ)

}
, (23)

dFg/H (x, ξ, μ)

d ln μ2

= αs(μ)

4π

{∫ 1

0

dz

z
P [0]
g/q

(
x

z
,
ξ

x

)
Fq/H (z, ξ, μ)

−
∫ 1

0

dz

z
P [0]
g/q

(
− x

z
,
ξ

x

)
Fq/H (z, ξ, μ)

+
∫ 1

0

dz

z

[
P [0]
g/g

(
x

z
,
ξ

x

)
− P [0]

g/g

×
(

− x

z
,
ξ

x

)]
Fg/H (z, ξ, μ)

}
, (24)

where we have used the following equality:

P [0]
i/k

(
x,− ξ

x

)
= P [0]

i/k

(
x,

ξ

x

)
, (25)

which is a consequence of a general symmetry of GPDs
and follows immediately from Eq. (19). It is now possi-
ble to define parton-in-hadron GPD combinations that maxi-
mally diagonalise the matrix of one-loop anomalous dimen-
sionsP [0]

i/k . More precisely, one defines the total-valence non-
singlet GPD as

F− =
n f∑
q=1

Fq/H − Fq/H , (26)

and a bidimensional vector of GPDs made of the total-singlet
and the gluon GPDs, often collectively referred to as singlet

F+ =
(∑n f

q=1 Fq/H + Fq/H

Fg/H

)
. (27)

These combinations obey the following evolution equa-
tions:4

dF±(x, ξ, μ)

d ln μ2 = αs(μ)

4π

∫ ∞

x

dy

y
P±,[0] (y, κ) F±

(
x

y
, ξ, μ

)
,

(28)

with κ = ξ/x . The evolution kernel of the non-singlet GPD
is given by

P−,[0] (y, κ) = P [0]
q/q (y, κ) + P [0]

q/q (−y, κ) , (29)

while that of the singlet is given by

P+,[0] (y, κ)

=
(
P [0]
q/q (y, κ) − P [0]

q/q (−y, κ) 2n f

(
P [0]
q/g (y, κ) − P [0]

q/g (−y, κ)
)

P [0]
g/q (y, κ) − P [0]

g/q (−y, κ) P [0]
g/g (y, κ) − P [0]

g/g (−y, κ)

)
.

(30)

Using Eq. (19), it is easy to see that for x > 0 and ξ ≥ 0

P [0]
i/k (−y, κ) = θ (κ − 1) pik (−y,−κ) , (31)

so that the splitting kernels can be recast as

P±,[0] (y, κ) = θ(1 − y)P±,[0]
1 (y, κ)

+θ(κ − 1)P±,[0]
2 (y, κ) . (32)

4 We point out that having only one non-singlet evolution equation is
the consequence of working at one-loop accuracy. As mentioned in
Appendix A, in massless QCD with more than one quark flavour, there
are in general seven independent evolution kernels that can be arranged
in a way that four of them are responsible for the evolution of the singlet
and the remaining three for the evolution of three independent sets of
non-singlet combinations. At one loop, all non-singlet combinations
evolve through the same kernel P−,[0] which allows us to consider only
the total-valence distribution F− in Eq. (26).
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Fig. 2 Integration domain covered by the convolution integral in the
r.h.s. of the evolution equations in Eq. (28). The coverage of the single
functions P1 and P2 according to the decomposition in Eq. (32) is
shown in red and blue, respectively. The dot-dashed line corresponding
to y = x/ξ is relevant in that, along this line, both P1 and P2 separately
diverge (see Sect. 3.3)

For the non-singlet evolution kernel one finds:5

P−,[0]
1 (y, κ) = pqq (y, κ) + pqq (y,−κ)

+δ(1 − y)2Cq

[
Kq − 2

∫ 1

0

dz

1 − z
− ln

(∣∣∣1 − κ2
∣∣∣)
]

,

P−,[0]
2 (y, κ) = −pqq (y,−κ) + pqq (−y,−κ) , (33)

while for the single components of the matrix associated with
the singlet evolution

P+,[0]
1,ik (y, κ) = pik (y, κ) + pik (y,−κ)

+δikδ(1 − y)2Ci

[
Ki − 2

∫ 1

0

dz

1 − z
− ln (|1 − κ|)

]
,

P+,[0]
2,ik (y, κ) = −pik (y,−κ) − pik (−y,−κ) . (34)

The decomposition in Eq. (32) is particularly convenient. The
P1 terms, being proportional to θ(1 − y), reduce Eq. (28) to
the exact same form of a DGLAP evolution equation. As a
matter of fact, we will show below that in the limit ξ → 0, the
one-loop P1 kernels exactly reduce to the one-loop DGLAP
splitting functions. The P2 terms instead come into play for
κ > 1 (x < ξ ) and thus represent the contribution to the
evolution due to the ERBL region. Of course, for ξ → 0 these
terms do not contribute, leaving only the DGLAP kernels. A
graphical representation of the integration domain covered
by P1 and P2 is displayed in Fig. 2.

5 Note that, for the sake of compactness, in the definition of P1 in both
Eqs. (33) and (34) we have also factored out θ(1 − y) from the term
proportional to δ(1− y), essentially assuming δ(1− y) = θ(1− y)δ(1−
y). Of course, this is not strictly true and is simply meant to simplify
the notation.

Using the pik functions given in Eq. (20), we can obtain the
explicit expressions for the P1,2 kernels. For the non-singlet
sector they read

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P−,[0]
1 (y, κ)

= 2CF

{(
2

1−y

)
+ − 1+y

1−κ2 y2 + δ(1 − y)
[ 3

2 − ln
(|1 − κ2|)]

}
,

P−,[0]
2 (y, κ) = 2CF

[
1+(1+κ)y+(1+κ−κ2)y2

(1+y)(1−κ2 y2)
−
(

1
1−y

)
++

]
,

(35)

while for the singlet sector we find

⎧⎪⎨
⎪⎩
P+,[0]

1,qq (y, κ) = P−,[0]
1 (y, κ),

P+,[0]
2,qq (y, κ) = 2CF

[
1+y+κy+κ3y2

κ(1+y)(1−κ2y2)
−
(

1
1−y

)
++

]
,

(36)⎧⎨
⎩
P+,[0]

1,qg (y, κ) = 4n f TR
[
y2+(1−y)2−κ2 y2

(1−κ2y2)2

]
,

P+,[0]
2,qg (y, κ) = 4n f TR(1 − κ)

[
1−κ(κ+2)y2

κ(1−κ2 y2)2

]
,

(37)

⎧⎨
⎩
P+,[0]

1,gq (y, κ) = 2CF

[
1+(1−y)2−κ2 y2

y(1−κ2 y2)

]
,

P+,[0]
2,gq (y, κ) = −2CF

(1−κ)2

κ(1−κ2 y2)
,

(38)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P+,[0]
1,gg (y, κ) = 4CA

[(
1

1−y

)
+ − 1+κ2 y

1−κ2y2

+ 1
(1−κ2 y2)2

(
1−y
y + y(1 − y)

)]

+δ(1 − y)
[(

11CA−4n f TR
3

)
− 2CA ln(|1 − κ2|)

]
,

P+,[0]
2,gg (y, κ) = 2CA

[
2(1−κ)(1+y2)

(1−κ2 y2)2

+ κ2(1+y)
1−κ2 y2 + 1−κ2

1−κ2 y2

(
2 − 1

κ
− 1

1+y

)
−
(

1
1−y

)
++

]
.

(39)

In the expressions above, two kinds of distributions are
present. The first is the familiar +-distribution (with round
brackets) that only appears in the P1 terms (and thus in the
DGLAP region) and is defined upon integration with a test
non-singular function f as

∫ 1

x
dy

(
1

1 − y

)
+

f (y)

=
∫ 1

x
dy

f (y) − f (1)

1 − y
+ f (1) ln(1 − x). (40)

The +-prescription is a consequence of the cancellation
of soft divergences between real and virtual diagrams and
emerges thanks to the divergent integral in Eq. (19) [39]. The
second distribution is the ++-distribution that only appears
in theP2 terms. This distribution is meant to provide a numer-
ically amenable implementation of the Cauchy principal-
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value distribution for integrals of the following kind:

I =
∫ ∞

x
dy

f (y)

1 − y
. (41)

If one subtracts and adds back the divergence at y = 1, i.e.

f (1)

∫ 1

0

dy

1 − y
, (42)

one can rearrange the integral I as follows:

I =
∫ ∞

x

dy

1 − y

[
f (y) − f (1)

(
1 + θ(y − 1)

1 − y

y

)]

+ f (1) ln(1 − x) ≡
∫ ∞

x
dy

(
1

1 − y

)
++

f (y), (43)

which effectively defines the ++-distribution. The advan-
tage of this rearrangement is that the integrand is free of the
divergence at y = 1, making the numerical computation eas-
ier. Interestingly, the ++-distribution reduces to the standard
+-distribution when the upper integration bound is 1 rather
than infinity. In this sense, the ++-distribution generalises
the +-distribution to integrals in the ERBL region.

3 Properties of the evolution kernels

In the previous section we provided a thorough derivation of
the leading-order evolution equations for unpolarised GPDs,
providing explicit expressions for the evolution kernels. In
this section, we analyse these kernels in detail, highlighting
some prominent properties.

3.1 The DGLAP limit

One of the most important requirements for the GPD evolu-
tion equations is that they reduce to the DGLAP evolution
equations [49–51] in the forward limit ξ → 0. As already
mentioned, the decomposition in Eq. (32) nicely isolates the
DGLAP contribution to the evolution kernels into the P1

functions, causing the ERBL contribution embedded in P2

to automatically drop out for ξ → 0. Therefore, to ensure
that our GPD evolution tends to the DGLAP, it is enough
to show that the forward limit of the P1 functions coincides
with the one-loop DGLAP splitting functions. This is easily
done by taking the limit for κ → 0 of the expressions given
in Eqs. (35)–(39):

lim
κ→0

P−,[0]
1 (y, κ) = 2CF

[
y2 + 1

(1 − y)+
+ 3

2
δ(1 − y)

]
,

lim
κ→0

P+,[0]
1,qq (y, κ) = lim

κ→0
P−,[0]

1 (y, κ),

lim
κ→0

P+,[0]
1,qg (y, κ) = 4n f TR

[
y2 + (1 − y)2

]
,

lim
κ→0

P+,[0]
1,gq (y, κ) = 2CF

[
1 + (1 − y)2

y

]
,

lim
κ→0

P+,[0]
1,gg (y, κ) = 4CA

[
y

(1 − y)+
+ 1 − y

y
+ y(1 − y)

]

+δ(1 − y)

[(
11CA − 4n f TR

3

)]
,

(44)

that indeed are equal to the one-loop DGLAP splitting func-
tions (see e.g. Ref. [52]).

3.2 The ERBL limit

Sound GPD evolution equations also need to reproduce the
ERBL evolution equations [38,53] that govern the evolution
of DAs in the ξ → 1 limit. To prove that this is the case, it is
useful to rearrange Eq. (28) as follows:

d

d ln μ2 F
±(x, ξ, μ)

= αs(μ)

4π

∫ 1

−1

dy

|ξ |V
±,[0]

(
x

ξ
,
y

ξ

)
F±(y, ξ, μ), (45)

with

1

|ξ |V
+,[0]
ik

(
x

ξ
,
y

ξ

)
= 1

y

{
[θ(x − ξ)θ(y − x)

−θ(−x − ξ)θ(x − y)]

[
pik

(
x

y
,
ξ

x

)
+ pik

(
x

y
,− ξ

x

)]

+θ(ξ − x)θ(x + ξ)

[
θ(y − x)pik

(
x

y
,
ξ

x

)

−θ(x − y)pik

(
x

y
,− ξ

x

)]

+δ

(
1 − x

y

)
δik2Ci

[
Ki +

∫ x

ξ

dz

z − x

+
∫ x

−ξ

dz

z − x

]}
,

1

|ξ |V
−,[0]

(
x

ξ
,
y

ξ

)
= 1

|ξ |V
+,[0]
qq

(
x

ξ
,
y

ξ

)
. (46)

For the moment, we are again allowing x to be negative. How-
ever, the combinations F± have a definite behaviour upon
sign change of x , that is, F±(−x, ξ, μ) = ∓F±(x, ξ, μ) ,
and therefore the negative branch in x is determined in terms
of the positive one. Before taking the limit, it is convenient
to introduce the variables t and u defined as

t = 1

2
(x + 1), and u = 1

2
(y + 1), (47)

spanning the range [0, 1], and to write the ERBL evolution
equation in a more conventional form as

d

d ln μ2 �±(t, μ) = αs(μ)

4π

∫ 1

0
duV±,[0](t, u)�±(u, μ),

123



Eur. Phys. J. C (2022) 82 :888 Page 9 of 30 888

(48)

such that

�±(t, μ) = lim
ξ→1

F±(2t − 1, ξ, μ), (49)

and

V±,[0](t, u) = lim
ξ→1

1

|ξ |V
±,[0]

(
2t − 1

ξ
,

2u − 1

ξ

)
. (50)

For the non-singlet anomalous dimension, we find

V−,[0](t, u) = CF

{[
θ(u − t)

u − t

]
+

+θ(u − t)
t − 1

u
−
[
θ(t − u)

u − t

]
+

−θ(t − u)
t

1 − u
+ 3

2
δ (u − t)

}
, (51)

which reproduces the results of Refs. [19,38], where the +-
prescription (with square brackets) here has to be interpreted
as

[ f (t, u)]+ = f (t, u) − δ(u − t)
∫ 1

0
dt f (t, u), (52)

which generalises the definition in Eq. (40) to a two-variable
function with support t, u ∈ [0, 1] with a single pole at t = u.
One can also check that the integral of V−,[0] over t vanishes:
∫ 1

0
dt V−,[0](t, u) = 0, (53)

which allows us to write it in a fully +-prescribed form as:

V−,[0](t, u) = CF

[
θ(u − t)

(
t − 1

u
+ 1

u − t

)

−θ(t − u)

(
t

1 − u
+ 1

u − t

)]
+

. (54)

This property was also explicitly derived in Ref. [54], and it
was argued that it must hold for symmetry reasons. For the
singlet sector instead we find

V+,[0]
qq (t, u) = V−,[0](t, u),

V+,[0]
qg (t, u) = TR

2u − 1

2u(u − 1)

[
θ(u − t)

t (u − 2t + 1)

u

+θ(t − u)
(t − 1)(u − 2t)

u − 1

]
,

V+,[0]
gq (t, u) = 2CF

2t − 1

[
θ(u − t)

t (2u − t)

u

+θ(t − u)
(t − 1)(2t − t − 1)

u − 1

]
,

V+,[0]
gg (t, u) = CA

t (t − 1)(2u − 1)

u(u − 1)(2t − 1)

[
1

u − t
− θ(u − t)

×
(

1 − 2t2 + 2u2 − 2t − 2u + 1

2u(t − 1)(2t − 1)2

)

+θ(t − u)

(
1 − 2t2 + 2u2 − 2t − 2u + 1

2t (u − 1)(2t − 1)2

)]
.

(55)

We could not find any reference reporting the explicit ERBL
singlet kernels to compare our results with.

3.3 Spurious divergences and continuity of GPDs at x = ξ

All the expressions for the GPD evolution kernels given in
Eqs. (35)–(39) are affected by a non-integrable singularity
at y = κ−1 denoted by the dot-dashed line in Fig. 2. These
singularities may potentially spoil the convergence of the
integral in the r.h.s. of Eq. (28), but fortunately they cancel
between theP1 andP2 contributions to the evolution kernels.
As a matter of fact, they appear in the region κ > 1 in which
bothP1 andP2 contribute. In addition, for each single kernel,
the coefficient of the divergence of P1 is equal in absolute
value but opposite in sign w.r.t. that of P2, so that they finally
cancel out, yielding a convergent integral. The value of the
coefficient of the divergences can be explicitly computed by
taking the appropriate limits. For the non-singlet kernels,
P−,[0]

1 and P−,[0]
2 , we find

lim
y→κ−1

(1 − κ2y2)P−,[0]
1 (y, κ)

= − lim
y→κ−1

(1 − κ2y2)P−,[0]
2 (y, κ) = −2CF

1 + κ

κ
,

(56)

while for the singlet kernels we find:

lim
y→κ−1

(1 − κ2y2)P+,[0]
1,qq (y, κ)

= − lim
y→κ−1

(1 − κ2y2)P+,[0]
2,qq (y, κ) = −2CF

1 + κ

κ
,

lim
y→κ−1

(1 − κ2y2)2P+,[0]
1,qg (y, κ)

= − lim
y→κ−1

(1 − κ2y2)2P+,[0]
2,qg (y, κ) = 8n f TR(1 − κ)

κ
,

lim
y→κ−1

(1 − κ2y2)P+,[0]
1,gq (y, κ)

= − lim
y→κ−1

(1 − κ2y2)P+,[0]
2,gq (y, κ) = 2CF

(1 − κ)2

κ
,

lim
y→κ−1

(1 − κ2y2)2P+,[0]
1,gg (y, κ)

= − lim
y→κ−1

(1 − κ2y2)2P+,[0]
2,gg (y, κ)

= 4CA
(κ − 1)(κ2 + 1)

κ2 . (57)

Importantly, all the coefficients above are finite at κ = 1,
i.e. at the crossover point x = ξ between the DGLAP and
ERBL regions. This is a requisite to ensure that GPDs remain
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finite at the crossover point upon evolution. The continuity of
GPDs at the crossing point is finally ensured by the following
additional property:6

P±,[0]
2 (y, k) ∝ (1 − κ). (58)

Since theP2 functions multiply θ(κ−1), Eq. (58) guarantees
a continuous transition from the DGLAP region (κ < 1) into
the ERBL region (κ > 1). However, this property does not
guarantee that GPDs remain smooth at the crossover point
upon evolution. In fact, the very presence of the term pro-
portional to θ(κ − 1) in Eq. (32) makes the derivative w.r.t.
to x of the kernels discontinuous at x = ξ . Therefore, the
evolution is expected to generate a cusp at x = ξ .

3.4 Sum rules

A very important aspect of GPDs is that their first two Mellin
moments can be connected to physical quantities. In order to
exemplify the discussion, let us first consider the forward
limit of GPDs, i.e. PDFs. It is well known that PDFs must
obey the so-called valence (or counting) and momentum sum
rules. The valence sum rule ensures the conservation of the
flavour quantum numbers and reads∫ 1

0
dx
[
fq/H (x, μ) − fq/H (x, μ)

]

=
∫ 1

0
dx f −(x, μ) = cq , (59)

where the cqs are constants depending on the valence struc-
ture of the hadron H (for example for the proton cu = 2,
cd = 1, and cq = 0 for all other flavours). The momentum
sum rule guarantees that the total momentum carried by all
partons equals the momentum of the parent hadron and reads
∫ 1

0
dx x

[∑
q

( fq/H (x, μ) + fq/H (x, μ)) + fg/H (x, μ)

]

=
∫ 1

0
dx x

[
f +(x, μ) + fg/H (x, μ)

] = 1. (60)

The fact that both Eqs. (59) and (60) are independent of
the factorisation scale μ implies a set of constraints on
the DGLAP splitting functions. Specifically, denoting with
P±,[n] the (n + 1)-loop contribution to the singlet and non-
singlet splitting functions, the valence sum rule implies∫ 1

0
dx P−,[n](x) = 0, (61)

while the momentum sum rule implies∫ 1

0
dx x

[
P+,[n]
qq (x) + P+,[n]

gq (x)
]

= 0,

6 Although not directly visible from Eqs. (35), (36), and (39), P−,[0]
2 ,

P+,[0]
2,qq , and P+,[0]

2,gg also enjoy the property of Eq. (58).

∫ 1

0
dx x

[
P+,[n]
qg (x) + P+,[n]

gg (x)
]

= 0, (62)

that must hold for any n.
It turns out that the GPD evolution kernels must also fulfil

similar relations that generalise those for the DGLAP split-
ting functions. The generalisation of the valence sum rule
follows from the fact that the integral of a non-singlet GPD
is∫ 1

0
dxF−(x, ξ, μ) = G, (63)

where G is an observable (Dirac or Pauli) elastic form factor
that cannot depend on μ.7 Therefore, one can follow the same
reasoning applied to the DGLAP splitting function to obtain
the following order-by-order constraint on the non-singlet
GPD evolution kernels:∫ 1

0
dz P−,[n]

1

(
z,

ξ

yz

)
+
∫ ξ/y

0
dz P−,[n]

2

(
z,

ξ

yz

)
= 0.

(64)

Note that for ξ → 0, the equality above reduces to Eq. (61).
It is interesting to verify Eq. (64) plugging in the explicit one-

loop expressions forP−,[0]
1 andP−,[0]

2 given in Eq. (35). One
finds that∫ 1

0
dz P−,[0]

1

(
z,

ξ

yz

)

= −2CF

[
3

2

ξ2

ξ2 − y2 + ln

(∣∣∣∣1 − ξ2

y2

∣∣∣∣
)]

, (65)

which correctly tends to zero as ξ → 0, and
∫ ξ/y

0
dz P−,[0]

2

(
z,

ξ

yz

)

= 2CF

[
3

2

ξ2

ξ2 − y2 + ln

(∣∣∣∣1 − ξ2

y2

∣∣∣∣
)]

, (66)

such that Eq. (64) is indeed fulfilled.
Now we move to considering the generalisation of the

momentum sum rule. To do so, we use the property of poly-
nomiality of GPDs, given in Eq. (99) below, to write8

∫ 1

0
dx xF+

q(g)(x, ξ, μ) = AF
q(g)(μ) + ξ2DF

q(g)(μ). (67)

However, it is well known that unpolarised helicity-conserving
(H ) and helicity-flip (E) GPDs have the same D-term but
with opposite sign [6], i.e. DH

q(g)(μ) = −DE
q(g). Therefore, if

we assume for the moment that F = H+E , the ξ -dependent
term cancels out. In addition, Ji’s sum rule [3] ensures that

7 In fact, due to polynomiality, G does not depend on ξ either, but it
can depend on �2.
8 Also, in this case, the coefficients AF

q(g) and DF
q(g) generally depend

on �2.
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the sum AF
q + AF

g has to be independent of the factorisation
scale because it is related to the physically observable total
angular momentum of the hadron. Therefore, one finally has

∫ 1

0
dx x

[
F+
q (x, ξ, μ) + F+

g (x, ξ, μ)
]

= constant. (68)

Since H and E obey the same evolution equations, so does
their sum. This allows us to take the derivative with respect to
ln μ2 of both sides of the equation above and use the evolution
equations to obtain the following order-by-order constraints
on the GPD evolution kernels:
∫ 1

0
dz z

[
P+,[n]

1,qq

(
z,

ξ

yz

)
+ P+,[n]

1,gq

(
z,

ξ

yz

)]

+
∫ ξ/y

0
dz z

[
P+,[n]

2,qq

(
z,

ξ

yz

)
+ P+,[n]

2,gq

(
z,

ξ

yz

)]
= 0,

∫ 1

0
dz z

[
P+,[n]

1,qg

(
z,

ξ

yz

)
+ P+,[n]

1,gg

(
z,

ξ

yz

)]

+
∫ ξ/y

0
dz z

[
P+,[n]

2,qg

(
z,

ξ

yz

)
+ P+,[n]

2,gg

(
z,

ξ

yz

)]
= 0.

(69)

As in the case of the valence sum rule, these relations reduce
to Eq. (62) in the forward limit ξ → 0. We now verify that
the one-loop splitting functions in Eqs. (36)–(39) do fulfil
the equalities in Eq. (69). The explicit computation of the
integrals gives

∫ 1

0
dz z

[
P+,[0]

1,qq

(
z,

ξ

yz

)
+ P+,[0]

1,gq

(
z,

ξ

yz

)]

= −2CF

[
1

2

ξ2

y2 − ξ2 + ln

(∣∣∣∣1 − ξ2

y2

∣∣∣∣
)]

,

∫ ξ/y

0
dz z

[
P+,[0]

2,qq

(
z,

ξ

yz

)
+ P+,[0]

2,gq

(
z,

ξ

yz

)]

= 2CF

[
1

2

ξ2

y2 − ξ2 + ln

(∣∣∣∣1 − ξ2

y2

∣∣∣∣
)]

, (70)

and

∫ 1

0
dz z

[
P+,[0]

1,qg

(
z,

ξ

yz

)
+ P+,[0]

1,gg

(
z,

ξ

yz

)]

= y2ξ2

3(y2 − ξ2)2

[
CA

(
11ξ2

y2 − 4

)
+ 2n f TR

(
1 − 2ξ2

y2

)]

−2CA ln

(∣∣∣∣1 − ξ2

y2

∣∣∣∣
)

,

∫ ξ/y

0
dz z

[
P+,[0]

2,qg

(
z,

ξ

yz

)
+ P+,[0]

2,gg

(
z,

ξ

yz

)]

= − y2ξ2

3(y2 − ξ2)2

[
CA

(
11ξ2

y2 − 4

)
+ 2n f TR

(
1 − 2ξ2

y2

)]

+2CA ln

(∣∣∣∣1 − ξ2

y2

∣∣∣∣
)

, (71)

which evidently cancel pairwise so that the equalities in
Eq. (69) are satisfied. In addition, they all tend to zero, as
ξ → 0 as required by Eq. (62).

We finally point out that the constraints in Eqs. (64)
and (69) can be used to simplify the perturbative calculation
of the evolution kernels in that they allow one to determine
the contribution due to virtual diagrams by knowing the real
ones. To be more specific, virtual diagrams give rise to contri-
butions proportional to δ(1 − y) that are naturally associated
to P1 such that, order by order in αs , it can be decomposed
as

P±,[n]
1 (y, κ) = P real,±,[n]

1 (y, κ)

−δ(1 − y)Pvirtual,±,[n]
1 (κ). (72)

Conversely, P2 only contains real-diagram contributions:

P±,[n]
2 (y, κ) = P real,±,[n]

2 (y, κ). (73)

Taking as an example Eq. (64), the consequence of this
decomposition is that
∫ 1

0
dz P real,−,[n]

1

(
z,

ξ

yz

)
+
∫ ξ/y

0
dz P real,−,[n]

2

(
z,

ξ

yz

)

= Pvirtual,−,[n]
1 (κ), (74)

making it unnecessary to explicitly compute the virtual-
diagram contributions. Of course, the two equalities in
Eq. (69) also have to be simultaneously fulfilled. Since by
construction only P− and the diagonal terms of P+, i.e. P+

qq
and P+

gg , can get virtual corrections with the additional con-

straint Pvirtual,−,[n] = Pvirtual,+,[n]
qq , at each order in pertur-

bation theory there are two virtual contributions to be deter-
mined. On the other hand, Eqs. (64) and (69) provide us with
a set of three constraints. Consequently, these equalities not
only give us access to the virtual corrections, but also provide
a strong check of the calculation of the real contributions.
However, we point out that we have explicitly computed the
one-loop virtual diagrams, verifying that the resulting con-
tribution agrees with the calculation obtained by means of
the sum rules. In Appendix B, we present this check for the
case of P [0]

q/q .

3.5 Conformal moments

In this section, we consider the so-called conformal moments
of GPDs which in the non-singlet case are defined as [6]

C−
n (ξ, μ) = ξn

∫ 1

−1
dx C (3/2)

n

(
x

ξ

)
F−(x, ξ, μ), (75)

where C (3/2)
n are Gegenbauer polynomials of rank 3/2 and

degree n (with n even). The choice of these specific moments
(and thus the underlying local conformal operators) comes
from the fact that they do not mix under renormalisation at
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one loop [55]. First we highlight the consequences of this
property and then sketch a way to prove it.

Multiplying Eq. (45) by ξnC (3/2)
n (x/ξ) and integrating

over x between −1 and 1 yields

dC−
n (ξ, μ)

d ln μ2 = αs(μ)

4π
ξn
∫ 1

−1
dyF−(y, ξ, μ)

×
∫ 1

−1

dx

|ξ | C
(3/2)
n

(
x

ξ

)
V

−,[0]
(
x

ξ
,
y

ξ

)
. (76)

In the absence of mixing, the conformal moments of the non-
singlet GPD obey the following equality:∫ 1

−1

dx

ξ
C (3/2)
n

(
x

ξ

)
V

−,[0]
(
x

ξ
,
y

ξ

)

= V−,[0]
n (ξ)C (3/2)

n

(
y

ξ

)
, (77)

where the anomalous dimension of the associated local con-
formal operator is labelled by V−,[0]

n . Looking at Eq. (77),
one may think that V−,[0]

n generally depends on ξ . However,
in the MS scheme, anomalous dimensions of local operators
are fixed independently of incoming or outgoing states. Thus,
as we will see, one should expect V−,[0]

n to be ξ -independent.
If Eq. (77) held true, Eq. (76) would then become

dC−
n (ξ, μ)

d ln μ2 = αs(μ)

4π
V−,[0]
n (ξ)C−

n (ξ, μ), (78)

making explicit the fact that GPD conformal moments evolve
multiplicatively. An interesting indication that this is true and
also that the anomalous dimension V−,[0]

n does not depend
on ξ comes from considering the DGLAP (ξ → 0) and the
ERBL (ξ → 1) limits of Eq. (78).

Let us start with the DGLAP limit. For ξ → 0, conformal
moments coincide with Mellin moments up to a multiplica-
tive numerical factor. This can be seen by observing that
Gegenbauer polynomials are such that

lim
ξ→0

ξnC (3/2)
n

(
x

ξ

)
= (2n + 1)!

2n(n!)2 xn . (79)

Therefore, the conformal moments of the non-singlet distri-
bution in the forward limit become

lim
ξ→0

C−
n (ξ, μ) = (2n + 1)!

2n(n!)2 [1 + (−1)n] f −
n+1(μ), (80)

where Mellin moments of the forward distribution (PDF) are
defined as

f −
n (μ) = lim

ξ→0

∫ 1

0
dx xn−1F−(x, ξ, μ), (81)

and are known to diagonalise the DGLAP equation to all
orders. Using Eq. (79) and the fact that

lim
ξ→0

1

|ξ |V
−,[0]

(
x

ξ
,
y

ξ

)

= [θ(x)θ(y − x) − θ(−x)θ(x − y)]

× 1

|y| P
−,[0]

(
x

y

)
, (82)

which derives from Eq. (46), one finally finds that [52]

lim
ξ→0

V−,[0]
n (ξ) = P−,[0]

n+1

= 2CF

[
3

2
+ 1

(n + 1)(n + 2)
− 2

n+1∑
k=1

1

k

]
. (83)

In the ERBL limit, the conformal moments yield this time
[38]:
∫ 1

−1
dx C (3/2)

n (x) V−,[0]
NS (x, y)

= 2CF

[
3

2
+ 1

(n + 1)(n + 2)
− 2

n+1∑
k=1

1

k

]
C (3/2)
n (y) .

(84)

Comparing Eq. (84) with Eq. (83), one immediately sees
that conformal moments do not mix either in DGLAP or in
ERBL limits and that Vn is the same in both cases. In order to
explicitly prove the general case, we need to compute Eq. (77)
for a generic value of ξ and for all n. To do so, we use the
decomposition in Eq. (46) with the explicit form of the pqq
function given in Eq. (20), which yields
∫ 1

−1

dx

|ξ | C
(3/2)
n

(
x

ξ

)
V

−,[0]
(
x

ξ
,
y

ξ

)

= 2CF

{
3

2
C (3/2)
n

(
y

ξ

)

−1

2

∫ y

ξ

dx

[
x + ξ

ξ(y − ξ)
C (3/2)
n

(
x

ξ

)

−2
C (3/2)
n (x/ξ) − C (3/2)

n (y/ξ)

y − x

]

+1

2

∫ y

−ξ

dx

[
x − ξ

ξ(y + ξ)
C (3/2)
n

(
x

ξ

)

+2
C (3/2)
n (x/ξ) − C (3/2)

n (y/ξ)

y − x

]}
. (85)

The explicit calculation is presented in Appendix C and
indeed confirms that∫ 1

−1

dx

|ξ | C
(3/2)
n

(
x

ξ

)
V

−,[0]
(
x

ξ
,
y

ξ

)

= 2CF

[
3

2
+ 1

(n + 1)(n + 2)
− 2

n+1∑
k=1

1

k

]
C (3/2)
n

(
y

ξ

)
.

(86)

A similar calculation for the singlet sector can be achieved
in a similar fashion.
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3.6 Comparison with other calculations

In this section, we compare our calculation with previous
results for the one-loop GPD unpolarised evolution kernels.
We will show that our calculation agrees with those already
present in the literature. For definiteness, we will concen-
trate on the non-singlet evolution kernel P−,[0], but we have
checked that agreement is also found for the other one-loop
evolution kernels.

We start with the computation by Ji presented in Ref. [2].
In that paper, the GPD evolution equations are written in
the DGLAP and in the ERBL regions separately. To find the
correspondence, we use the evolution equation in the form
given in Eq. (45). In the DGLAP region (x > ξ ), the evolution
kernel reduces to

1

|ξ |V
−,[0]

(
x

ξ
,

1

ξ

)

= θ(1 − x)

[
pqq

(
x,

ξ

x

)
+ pqq

(
x,− ξ

x

)]

+δ (1 − x) 2CF

[
3

2
+
∫ x

ξ

dz

z − x
+
∫ x

−ξ

dz

z − x

]

= θ(1 − x)2CF
1 + x2 − 2ξ2

(1 − x)(1 − ξ2)

+δ(1 − x)2CF

[
3

2
+
∫ x

ξ

dz

z − x
+
∫ x

−ξ

dz

z − x

]
. (87)

Considering the shift ξ → ξ/2 due to a different definition
of the external momenta and an overall factor of 2 to the
fact that we are using αs/(4π) rather than αs/(2π) as an
expansion parameter, we exactly reproduce the results given
in Eqs. (15)–(17) of Ref. [2]. In the ERBL region (x < ξ )
the evolution kernel reads

1

|ξ |V
−,[0]

(
x

ξ
,

1

ξ

)
=
[
θ(1 − x)pqq

(
x,

ξ

x

)

−θ(x − 1)pqq

(
x,− ξ

x

)]

+δ (1 − x) 2CF

[
3

2
+
∫ x

ξ

dz

z − x
+
∫ x

−ξ

dz

z − x

]

= CF

[
θ(1 − x)

x + ξ

ξ(1 + ξ)

(
1 + 2ξ

1 − x

)

−θ(x − 1)
x − ξ

ξ(1 − ξ)

(
1 − 2ξ

1 − x

)]

+δ (1 − x) 2CF

[
3

2
+
∫ x

ξ

dz

z − x
+
∫ x

−ξ

dz

z − x

]
, (88)

which agrees with Eqs. (18)–(19) of Ref. [2].
We now compare our calculation with that of Ref. [56],

which is also reported in Eq. (101) of Ref. [6]. We again use
the form of the evolution given in Eq. (45) and, setting ξ = 1
but allowing |x | and |y| to be larger than 1, the evolution

kernel becomes

V
−,[0] (x, y) = ρ(x, y)CF

1 + x

1 + y

(
1 + 2

y − x

)
+ (x→−x

y→−y
)

+δ (y − x)CF

[
3 + 2

∫ x

1

dz

z − x
+ 2

∫ x

−1

dz

z − x

]
, (89)

with

ρ(x, y) = θ(x + 1)θ(y − x) − θ(−x − 1)θ(x − y)

= θ

(
y − x

1 + y

)
θ

(
1 + x

1 + y

)
sign(1 + y). (90)

It is easy to verify that∫ ∞

−∞
dx V−,[0] (x, y) = 0. (91)

Therefore, one can rewrite

V
−,[0] (x, y)

=
{
ρ(x, y)CF

1 + x

1 + y

(
1 + 2

y − x

)
+ (x→−x

y→−y
)}

+
, (92)

where the +-prescription (with curly brackets) here is defined
in a yet different manner and generalises that in Eq. (52) to a
two-dimensional function with support x, y ∈ R and a single
pole at x = y:

{ f (x, y)}+ = f (x, y) − δ(x − y)
∫ ∞

−∞
dx f (x, y). (93)

This finally allows us to recover the results of Refs. [6,56].
Finally, we compare our result with that of Ref. [7]. Adopt-

ing the notation of that reference, one can show that

ϑ0
11(x1, x1 − y1) = 2

ξ + y
ρ

(
x

ξ
,
y

ξ

)
and

ϑ0
11(x2, x2 − y2) = 2

ξ − y
ρ

(
− x

ξ
,− y

ξ

)
, (94)

and

ϑ0
111(x1,−x2, x1 − y1) = − ξ + x

ξ(ξ + y)
ρ

(
x

ξ
,
y

ξ

)

− ξ − x

ξ(ξ − y)
ρ

(
− x

ξ
,− y

ξ

)
, (95)

with ρ given in Eq. (90). This allows us to recast the evolution
kernel Kqq;V

(0) (x1, x2|y1, y2) given in Eq. (4.42) of Ref. [7]
into the following form:

Kqq;V
(0) (x1, x2|y1, y2) = −

{
ρ

(
x

ξ
,
y

ξ

)
CF

ξ + x

ξ + y

×
(

1

ξ
+ 2

y − x

)
+ (x→−x

y→−y
)}

+
. (96)

Considering that a factor of 2 due to the different expan-
sion parameter (αs/(2π) vs. αs/(4π)) is compensated by an
opposite factor that comes from the fact that in Ref. [7] the
evolution equations are differential w.r.t. to ln μ rather than
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ln μ2, and accounting for a minus sign in the definition of the
evolution kernels, this result coincides with Eq. (92), which
we have already proven to agree with our result.9

4 Numerical results

In Sect. 2, we recast the GPD evolution kernel in a form suit-
able for a straightforward implementation in the numerical
code APFEL++ [33,34], allowing for robust evaluations and
handling of heavy-flavour thresholds. In Sect. 3, we detailed
the theoretical properties of this particular form. In this sec-
tion, we present a series of numerical checks aimed at estab-
lishing the validity of our implementation to high numerical
accuracy. To the best of our knowledge, this provides the
most extensive set of tests of an implementation of GPD
evolution equations ever presented in the literature, at least
with respect to publicly released codes. Although here we are
not concerned with performance and computing speed, our
implementation guarantees a fast evaluation of GPD evolu-
tion suitable for phenomenological extractions.

4.1 DGLAP limit and skewness dependence

As discussed in Sect. 3.1, in the forward limit, ξ → 0,
our derivation of the GPD evolution equations reproduces
the one-loop DGLAP evolution. In the following, we pro-
vide numerical evidence for this statement. To do so, we
need to evolve a set of distributions defined at some ini-
tial scale μ0 up to a different scale μ using the solution
of Eq. (28). To this end, we use the leading-order PDF set
MMHT2014lo68cl [57] through the LHAPDF interface
[58] with μ0 = 1 GeV. The running of the strong coupling is
computed at one loop using αs(MZ ) = 0.135, consistently
with MMHT2014lo68cl. In addition, the evolution is per-
formed using the variable-flavour-number scheme; i.e. we
allow for heavy-quark-threshold crossings during the evolu-
tion, with charm and bottom thresholds set to mc = 1.4 GeV
and mb = 4.75 GeV, respectively.

Figure 3 shows the effect of evolving the
MMHT2014lo68cl PDF set to μ = 10 GeV for differ-
ent values of ξ , including the DGLAP limit ξ → 0, using the
numerical solution of Eq. (28) as implemented in APFEL++.
Evolution is probed for x ranging between 10−3 and 1, rel-
evant for the fixed target (Jefferson Lab, COMPASS) and
collider (EIC, EIcC) experiments, while the evolution range
spans two orders of magnitude in the hard scale μ2, from
1 to 100 GeV2. The top-left plot displays the up-quark non-

9 We note that, while Eq. (92) applies for any x and y in R, Eq. (96)
applies for x, y ∈ [−1, 1]. However, since x and y in Eq. (96) always
appear in the ratios x/ξ and y/ξ with ξ ∈ [0, 1], one can rescale x/ξ →
x and y/ξ → y in Eq. (96) so that it coincides with Eq. (92).

singlet distribution F−
u = Fu−Fu , the top-right one displays

the singlet distribution F+
u = Fu + Fu , and the bottom plot

displays the gluon distribution Fg . The upper insets show the
absolute distributions while the lower ones show the ratio
to the DGLAP evolution as delivered by the LHAPDF grid
[58]. The first observation is that, as is clear from the bottom
insets, our GPD evolution in the ξ → 0 limit reproduces
the DGLAP evolution very accurately. It is also interesting
to observe how GPD evolution modifies the shape of the
distributions w.r.t. the DGLAP when changing the skewness
ξ . Differences are sizeable particularly in the ERBL region,
x < ξ , where the GPD evolution tends to suppress the dis-
tributions w.r.t. the DGLAP one. Particularly striking is the
singlet sector in which steeply rising low-x distributions are
turned into decreasing distributions. In addition, as antici-
pated in Sect. 3.3, distributions are continuous at the cross-
ing point x = ξ but develop a cusp, although the initial scale
distributions are smooth.

4.2 ERBL limit

Having ascertained that with the use of our GPD evolution
equations the DGLAP limit is recovered, we now turn to
check the opposite limit, i.e. the ERBL limit ξ → 1. To do
so, we exploit the fact that functions of this kind

F2n(x, μ0) = (1 − x2)C (3/2)
2n (x), (97)

diagonalise the (non-singlet) leading-order ERBL evolution
equation such that they evolve multiplicatively as

F2n(x, μ) = exp

[
P−,[0]

2n+1

4π

∫ μ

μ0

d ln μ′2αs(μ
′)
]
F2n(x, μ0),

(98)

with anomalous dimensions P−,[0]
n+1 given in Eq. (83). Fig-

ure 4 shows the non-singlet evolution of Eq. (97) with n = 2
from μ2

0 = 1 GeV2 to a number of higher scales μ2, up to
μ2 = 104 GeV2, using the numerical solution of Eq. (28)
with ξ = 1. The upper panel displays the absolute distri-
butions including the initial-scale one, while the lower panel
displays the ratio to the analytical evolution given in Eq. (98).
As is clear from the bottom panel, the agreement between
numerical and analytical solutions is excellent,10 confirm-
ing that our implementation of the GPD evolution also gives
sound results in the ERBL limit. We could not find other
numerical tests of the recovery of the ERBL limit for other
public GPD evolution codes in the existing literature.

10 The spikes appearing in the lower panel of Fig. 4 correspond to the
points in which the distributions change signs.
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Fig. 3 Non-singlet up-quark (upper left) and singlet up-quark (upper
right), and gluon (bottom) distributions evolved from μ0 = 1 GeV to
μ = 10 GeV using the GPD evolution equations in Eq. (28) with differ-
ent values of the skewness ξ . Initial-scale distributions are taken from

the MMHT2014lo68cl PDF set. To tame the fast rise of gluons at
low-x , we weight the distribution with an additional power of x . The
lower inset displays the ratio to the DGLAP evolution as delivered by
the LHAPDF grid

Fig. 4 Non-singlet leading-order ERBL evolution from μ0 = 1 GeV
to different values of the final scale μ of the distribution in Eq. (97)
with n = 2. The upper inset displays the distributions obtained by
numerically solving Eq. (28) with ξ = 1, while the bottom inset shows
the ratio to Eq. (98). Note that the curves in the bottom inset overlap
almost completely, making them hardly distinguishable

4.3 Polynomiality

GPDs enjoy the so-called polynomiality property that for
quarks can be written as

∫ 1

0
dx x2n F−

q (x, ξ, μ) =
n∑

k=0

Ak(μ)ξ2k, and

∫ 1

0
dx x2n+1F+

q (x, ξ, μ) =
n+1∑
k=0

Bk(μ)ξ2k, (99)

with F±
q = Fq±Fq . It is important to note that these relations

must be valid at any scale μ, implying that GPD evolution
must preserve polynomiality. In this section we quantitatively
show that this is the case when using the solution of Eq. (28).

We consider the set-up of Sect. 4.1 in which a set of ξ -
independent PDFs, which thus trivially obey polynomiality,
is evolved from μ0 = 1 GeV to μ = 10 GeV. In order to
check that polynomiality is conserved, we evaluate the inte-
grals in Eq. (99) for the first three moments (n = 0, 1, 2)
and for different values of ξ . We then fit the points thus
obtained using the expected power laws in ξ2. We point out
that higher moments can be computed analogously. How-
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Fig. 5 Non-singlet (left) and singlet (right) up-quark Mellin moments
for GPDs evolved from μ0 = 1 GeV to μ = 10 GeV using the GPD
evolution equations in Eq. (28) as functions of skewness ξ . Initial-scale

distributions are taken from the MMHT2014lo68cl PDF set. Each set
of points is fitted with the power law predicted by polynomiality

ever, a solid check of polynomiality requires that the num-
ber of points in ξ used for the fit be much larger than the
degree of the expected polynomial in ξ2. For this reason we
limit the check to the first three moments using ten points
in ξ : this should be enough to guarantee that the power-law
behaviours are accurately reproduced. The result is shown
in Fig. 5. The l.h.s. plot displays the first two moments of
the up-quark non-singlet distribution F−

u as functions of ξ ,
while the r.h.s. one shows the same for the up-quark sin-
glet distribution F+

u . The computed values (plain dots) are
superimposed on the fitted curves, proving that the expected
behaviour is obtained to very good accuracy over the entire
range in ξ ∈ [0, 1]. Some additional comments are in order.
First, the first moment (n = 0) of the non-singlet distribu-
tion F−

u is not only constant, as expected, but also equal to
2, which reflects the valence sum rule for the up-quark in
the proton. Secondly, the first moment (n = 0) of the sin-
glet distribution F+

u , despite being allowed to depend on ξ

through a quadratic term, is also constant. This is because the
term proportional to ξ2n+2 in the second equation of Eq. (99)
gives rise to the so-called D-term [59] that evolves indepen-
dently. Since the initial scale distributions do not include any
D-term, none is generated by evolution, and thus only the
constant term contributes to the first moment of F+

u .

4.4 Conformal-space evolution

In Sect. 3.5 we explicitly proved that the one-loop non-singlet
evolution kernel computed in this paper is such that the evo-
lution of the GPD conformal moments is diagonal; i.e. each
moment evolves multiplicatively with its own kernel. In the
following, we show that our implementation of the solution
of the evolution equations numerically fulfils this property.
To do so, we consider as an initial-scale non-singlet GPD at
μ0 = 1 GeV the quark GPD Hq given by the Radyushkin

Fig. 6 Leading-order evolution of the second (n = 4) conformal
moment of the non-singlet distribution of the Radyushkin double-
distribution ansatz (RDDA) described in the text. The evolution starts
from μ0 = 1 GeV up to different values of the final scale μ. The upper
inset displays the moment as a function of the skewness ξ obtained by
numerically solving Eq. (28) and by computing the conformal moment
of the final-scale distribution by means of Eq. (75), while the bottom
inset shows the ratio to the solution of Eq. (78). As in Fig. 4, the curves
in the bottom inset are hardly distinguishable because they all lie on top
of each other

double-distribution ansatz (RDDA) [60]:

Hq(x, ξ) =
∫

�

dβdαδ (x − β − ξα) q(|β|)π(β, α), (100)

where � is such that |α| + |β| ≤ 1 and

q(x) = 35

32
x−1/2(1 − x)3, (101)

π(β, α) = 3

4

((1 − |β|)2 − α2)

(1 − |β|)3 . (102)
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This simple ansatz allows us to benchmark our x-space evolu-
tion code using a realistic behaviour of the non-singlet GPDs
with respect to conformal evolution.

In Fig. 6, we compare the second (n = 4) conformal
moment, computed by means of Eq. (75), of the RDDA-
based model evolved to μ = 2, 5, 10, 100 GeV obtained by
numerically solving Eq. (28) to the solution of Eq. (78) with
the evolution kernel given in Eq. (86). The upper panel of
the plot displays the evolved conformal moment as a func-
tion of ξ for the different values of μ computed by solving
Eq. (28), while the lower panel shows the ratio to the solu-
tion of Eq. (78). It is clear that the agreement between the
two evolution methods is excellent over the entire range in
ξ considered, validating our implementation in the light of
Sect. 3.5.

Before proceeding to comparing our evolution code with
another implementation, we emphasise that all the numerical
tests performed in Sects. 4.1–4.4 turned out to be very suc-
cessful. Namely, we found that all the fundamental properties
of GPD evolution, including DGLAP and ERBL limits, poly-
nomiality conservation, and equivalence with the conformal-
moment approach, are fulfilled to the sub-per-mil level or
better. We regard this as a very strong consistency check of
our code.

4.5 Comparison with Vinnikov’s code

In this section, we compare the evolution obtained with
APFEL++ to that presented in Ref. [27], which in the follow-
ing will be referred to as “Vinnikov’s code” after its author.
Specifically, we use an implementation of Vinnikov’s code
available in the PARTONS framework [28]. A limitation of
Vinnikov’s code is that it does not implement the variable-
flavour-number scheme; i.e. it does not allow one to cross
heavy-quark thresholds along the evolution. Therefore, for
the comparison, we have used the n f = 3 fixed-flavour-
number scheme in which three quark flavours (up, down, and
strange) are active at all scales. Like APFEL++, Vinnikov’s
code can perform GPD evolution only at LO. As initial-scale
distributions we have used the model presented in Refs. [61–
63] which also depends on the momentum transfer t that we
set to t = −0.1 GeV2. In Fig. 7 we present the comparison for
the evolution between μ0 = 2 GeV and μ = 10 GeV for the
GPDs H−

u , H+
u , and Hg . The upper panels display the abso-

lute distributions for four different values of the skewness
parameter ξ = 10−4, 0.05, 0.5, 1 with the solid lines show-
ing the results obtained with Vinnikov’s code and the dashed
lines those obtained with APFEL++. The lower panels show
the same curves normalised to APFEL++. We observe gen-
eral very good agreement between the two codes for almost
all values of ξ and across the full range in x considered.
The only exception is ξ = 1, for which a disagreement at
the percent level for H−

u (non-singlet sector) and as large as

20% for H+
u and Hg (singlet sector) is observed. We could

not identify the origin of this disagreement, but in view of
the reported numerical instabilities of Vinnikov’s code in the
large-ξ region [64], we suspect that the results of this code at
ξ = 1 might be affected by numerical inaccuracies. Indeed,
we point out that Vinnikov’s code does not allow one to set
either ξ = 1 or ξ = 0, and the smallest stable value of ξ we
could find is ξ = 10−4. Regarding the large ξ region, in the
plots in Fig. 7 we have actually used ξ = 1−ε with ε = 10−6

for both codes. Finally, we found severe numerical instabili-
ties for 0.6 � ξ � 0.95. Therefore, we were not able to per-
form a comparison in this region. This also justifies the need
for a new open and maintained evolution code. Moreover,
the modular architecture of APFEL++ and PARTONS will
facilitate the integration of higher-order corrections to the
evolution, while this task would probably require an almost
complete rewriting of Vinnikov’s code.

5 Conclusions

The main purpose of this paper is to provide a solid and
public implementation of GPD evolution that can be used
for phenomenological studies. To this end, we have revisited
GPD evolution in view of an efficient numerical implementa-
tion spelling out the computational details. We rederived the
evolution equations and recomputed the evolution kernels at
one-loop accuracy in perturbative QCD. For the calculation,
we adopted a Feynman-diagram approach using the operator
definition of GPDs in the light-cone gauge, which reduces the
number of diagrams to be considered, renormalised in the MS
scheme. Our formulation of the evolution equations allowed
us to easily study some relevant properties of the evolution
kernels. Specifically, we have shown that our calculation cor-
rectly reproduces both the DGLAP and the ERBL limits and
that it guarantees continuity of GPDs at the crossover point
x = ξ . In addition, we have worked out the consequences of
the GPD sum rules on the evolution kernels, deriving equal-
ities that need to be obeyed order by order in perturbation
theory, finally showing that our one-loop calculation fulfils
these equalities. Moreover, we have computed the confor-
mal moments of our non-singlet evolution kernels showing
that, as expected, they diagonalise upon Gegenbauer trans-
form and that their eigenvalues coincide with the well-know
DGLAP and ERBL one-loop anomalous dimensions. Finally,
we have also explicitly shown that our computation repro-
duces previous results present in the literature.

Our calculation has been implemented in the public code
APFEL++ that in turn has been interfaced toPARTONS. This
allowed us to perform detailed numerical studies. We have
checked that DGLAP and ERBL evolutions are reproduced
to very high accuracy in the ξ → 0 and ξ → 1 limits,
respectively. Moreover, we have checked that the evolution

123



888 Page 18 of 30 Eur. Phys. J. C (2022) 82 :888

Fig. 7 Comparison between Vinnikov’s code [27] and APFEL++. The
evolution is performed at LO in the n f = 3 scheme (no threshold cross-
ing) between the scales μ0 = 2 GeV and μ = 10 GeV. As initial-scale

distributions we have used the model of Refs. [61–63] (GK model)
setting t = −0.1 GeV2 as momentum transfer squared

preserves GPD polynomiality. In addition, we have verified
that our implementation of GPD evolution agrees with the
evolution computed in conformal space. As a last check,
we have compared our GPD evolution against another exist-
ing implementation, Vinnikov’s code, finding general good
agreement.

In this paper, we limited ourselves to the one-loop (LO)
evolution of unpolarised GPDs. The next natural short-
term step is the extension to longitudinally and transversely
polarised evolutions. In the longer run, we plan to implement
the two-loop (NLO) corrections to the evolution. Facing a
new era for GPD experiments at colliders, we believe that
the public release of a documented and carefully checked
implementation of GPD evolution equations meets the need
of the hadron-physics community. The code is flexible and
can run with any GPD model expressed in x space. It also
provides for the first time an implementation of the variable-
flavour-number scheme in a public solver of GPD-evolution
equations.

We conclude by stressing once again that the implemen-
tation of GPD evolution presented here is publicly available
in the APFEL++ code:

https://github.com/vbertone/apfelxx

that is in turn interfaced to the PARTONS framework:

https://partons.cea.fr/partons/doc/html/index.html

that gives access to a large variety of GPD models, some of
which are used in this paper. The user can find ready-to-use
example codes to evolve any of the GPD models available in
PARTONS.
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Appendix A: Parton-in-parton GPDs

In this appendix, we introduce the unpolarised parton-in-
parton GPDs and give explicit definitions that can be used to
compute them in perturbation theory. As shown in Sect. 2,
this allows one to determine the anomalous dimensions that
govern the evolution of GPDs. We explicitly compute the
tree-level contribution to these GPDs showing that, to this
order, they coincide with the corresponding PDFs times a
ξ -dependent factor, thereby setting their normalisation. In
Appendix B, we will use these definitions to compute the
one-loop quark-in-quark anomalous dimension.

The parton-in-parton GPDs can be easily obtained by
replacing the hadronic states in the parton-in-hadron GPDs
defined in Eq. (2) with the appropriate partonic states. Specif-
ically, we consider on-shell massless partons moving along
the direction defined by the gauge vector n with incoming
momentum (1 + ξ)p and outgoing momentum (1 − ξ)p. In
addition, we also have to include an average over the colour
states of the external partons. To do so, we need to invoke for
a moment the Wilson line. Since we are working in the light-
cone gauge, the Wilson line does not contribute in the sense
that it reduces to the unitary operator in the fundamental rep-
resentation of the colour group for the quark operator and in
the adjoint representation for the gluon operator. Therefore,
when averaging over the colour states of the external par-
tons, since the probe is assumed to be a colour singlet, we
effectively need to take the trace over the colour indices and
divide by the dimension of the colour representation. This
amounts to

1

Nc
Trc[. . . ], (103)

for external quark states and to:

1

N 2
c − 1

Trc[. . . ], (104)

for external gluon states, where “Trc” indicates the trace over
the colour indices and Nc = 3 is the number of colours.
Finally, we also need to include an average over the physical
spin/helicity states and a trace over the Dirac indices

1

2

∑
s

TrD[. . . ], (105)

with s running over the spin index for quark states and the
helicity index for gluon states. In the following, we will
denote with “Tr” the trace over both colour and Dirac indices.

In the presence of more than one massless quark flavour,
one can define seven different combinations between external
partonic states and GPD operators. We list them all below by
also including the appropriate averaging discussed above.
Let us start with the gluon operator. In this case, we can have
the gluon-in-gluon GPD in which the gluon operator acts on
gluon external states

F̂g/g(x, ξ) = nμnν

2(N 2
c − 1)x(n · p)

∫
dy

2π
e−i x(n·p)y

×
∑
s

Tr

⎡
⎣
〈
(1 − ξ)p, s

∣∣∣Fμj
a

( yn
2

)

× Fν j
a

(
− yn

2

)∣∣∣ (1 + ξ)p, s

〉
g

⎤
⎦ , (106)

where we have made the helicity index s explicit in the states
and indicated with the subscript g that the states refer to
external gluons. A second possibility is to bracket the gluon
operator between quark states, which defines the gluon-in-
quark GPD:

F̂g/q(x, ξ) = nμnν

2Ncx(n · p)
∫

dy

2π
e−i x(n·p)y

×
∑
s

Tr

⎡
⎣
〈
(1 − ξ)p, s

∣∣∣Fμj
a

( yn
2

)

× Fν j
a

(
− yn

2

)∣∣∣ (1 + ξ)p, s

〉
q

⎤
⎦ , (107)

with the subscript q denoting external quark states and the
index s this time referring to the quark spin state.

Now we move to considering the quark operator. This can
be bracketed between gluon states giving the quark-in-gluon
GPD:

F̂q/g(x, ξ) = 1

2(N 2
c − 1)

∫
dy

2π
e−i x(n·p)y

×
∑
s

Tr

[〈
(1 − ξ)p, s

∣∣∣∣∣ψq

( yn
2

)

× /n

2
ψq

(
− yn

2

)∣∣∣∣ (1 + ξ)p, s

〉
g

]
. (108)

The quark operator for a specific flavour (or antiflavour) q
can finally be bracketed between four different quark states:
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• states of exactly the same flavour q and charge-
conjugation quantum number:

F̂q/q(x, ξ) = 1

2Nc

∫
dy

2π
e−i x(n·p)y

×
∑
s

Tr

[ 〈
(1 − ξ)p, s

∣∣∣ψq

( yn
2

)

× /n

2
ψq

(
− yn

2

)∣∣∣∣ (1 + ξ)p, s

〉
q

]
, (109)

• states of the same flavour q but opposite charge-
conjugation quantum number:

F̂q/q(x, ξ) = 1

2Nc

∫
dy

2π
e−i x(n·p)y

×
∑
s

Tr

[ 〈
(1 − ξ)p, s

∣∣∣ψq

( yn
2

)

× /n

2
ψq

(
− yn

2

)∣∣∣∣ (1 + ξ)p, s

〉
q

]
, (110)

• states of different flavour q ′ but same charge-conjugation
quantum number:

F̂q/q ′(x, ξ) = 1

2Nc

∫
dy

2π
e−i x(n·p)y

×
∑
s

Tr

[ 〈
(1 − ξ)p, s

∣∣∣ψq

( yn
2

)

× /n

2
ψq

(
− yn

2

)∣∣∣∣ (1 + ξ)p, s

〉
q ′

⎤
⎦ , (111)

• states of different flavour q ′ and opposite charge-
conjugation quantum number:

F̂q/q ′(x, ξ) = 1

2Nc

∫
dy

2π
e−i x(n·p)y

×
∑
s

Tr

⎡
⎣
〈
(1 − ξ)p, s

∣∣∣ψq

( yn
2

)

× /n

2
ψq

(
− yn

2

)∣∣∣∣ (1 + ξ)p, s

〉
q ′

⎤
⎦ . (112)

A graphical representation of the seven parton-in-parton
GDPs listed above is given in Fig. 8.

It should be stressed that in general, the quark and gluon
fields in Eqs. (106)–(112) are interacting fields in the sense
that they can radiate and absorb partons, possibly chang-
ing species, before interacting with the external asymptotic

states. In this way, these definitions can be used to compute
perturbative corrections in αs to the anomalous dimensions
by considering diagrams with additional radiation. For any
given GPD, non-vanishing diagrams are those that have the
appropriate external free fields to annihilate the asymptotic
states according to

ψ(0)
q (x)|k, s〉q = e−ik·xuq,s(k)|0〉 and

ψ(0)
q (x)|k, s〉q = eik·xvq,s(k)|0〉, (113)

for quarks and

A(0), j
a (x)|k, s〉g = e−ik·x e ja,s(k)|0〉, (114)

for gluons. Here, uq,s(k) (vq,s(k)) is the quark (antiquark)
spinor for the flavourq of momentum k and spin s, and eα

a,s(k)
is the gluon polarisation vector of momentum k, colour index
a, and helicity s. ψ

(0)
q and A(0),α

a are respectively the quark
and gluon free fields that can be regarded as the asymptote
of the original interacting fields after radiation.

A detail worth discussing is the fact that the gluon field A j
a

always appears through nμF
μj
a . As discussed in Sect. 2, the

light-cone gauge greatly simplifies the form of this combina-
tion, which reduces to nμF

μj
a (x) = (n · ∂) A j

a(x). When this
operator is acting on a partonic state with plus momentum
(1±ξ)p+, since it appears in a Fourier transform, the deriva-
tive can be traded for a factor (1±ξ)p+ −k+ = i(x±ξ)p+.
This finally allows us to write the gluon-in-gluon and gluon-
in-quark GPDs in terms of the gluon field rather than in terms
of the field strength, as follows:

F̂g/g(x, ξ) = (n · p)(x2 − ξ2)

2(N 2
c − 1)x

×
∫

dy

2π
e−i x(n·p)y∑

s

Tr

⎡
⎣
〈
(1 − ξ)p, s

∣∣∣A j
a

( yn
2

)

× A j
a

(
− yn

2

)∣∣∣ (1 + ξ)p, s

〉
g

⎤
⎦ , (115)

and

F̂g/q(x, ξ) = (n · p)(x2 − ξ2)

2Ncx

×
∫

dy

2π
e−i x(n·p)y∑

s

Tr

⎡
⎣
〈
(1 − ξ)p, s

∣∣∣A j
a

( yn
2

)

× A j
a

(
− yn

2

)∣∣∣ (1 + ξ)p, s

〉
q

⎤
⎦ . (116)

Using Eqs. (113)–(114) and the orthogonality relations for
quark spinors∑

s

uq,s((1 + ξ)p)uq,s((1 − ξ)p)
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Fig. 8 Graphical representation
of the parton-in-parton GPDs
defined in Eqs. (106)–(112)

=
∑
s

vq,s((1 + ξ)p)vq,s((1 − ξ)p) =
√

1 − ξ2 /p,

(117)

and gluon polarisation vectors∑
s

e ja,s((1 − ξ)p)e ja,s((1 + ξ)p) = −2, (118)

the computation of parton-in-parton GPDs reduces to inte-
grals of this form:

√
1 − ξ2

∫
dy

2π
ei(1∓x)yp·nTr

[
. . . Ic . . . /p

]
, (119)

for quark (minus sign) and antiquark external states (plus
sign) and to

− 2
∫

dy

2π
ei(1−x)yp·nTrc [. . . Ic . . . ] , (120)

for gluon external states. Therefore, given a specific diagram,
one just needs to replace the ellipses using standard QCD

Feynman rules in light-cone gauge. This allows parton-in-
parton GPDs to have the following perturbative expansion:

F̂i/j (x, ξ) =
∞∑
n=0

( αs

4π

)n
F̂ [n]
i/j (x, ξ). (121)

At O(α0
s ), where no additional radiation is allowed, only the

gluon-in-gluon GPD F̂g/g , Eq. (115), and the fully diago-
nal quark-in-quark GPD F̂q/q , Eq. (109), are different from
zero. The corresponding Feynman diagrams are shown in
Fig. 9. The explicit computation can be done using Eqs. (119)
and (120) by simply removing the ellipses and inserting in
the quark case the operator /n/2. This yields

F̂ [0]
q/q(x, ξ) =

√
1 − ξ2 δ(1 − x),

F̂ [0]
g/g(x, ξ) = (1 − ξ2)δ(1 − x), (122)

which compared with Eq. (17) allows us to find that Dq(ξ) =√
1 − ξ2 and Dg(ξ) = 1 − ξ2. It should be noted that this
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Fig. 9 Tree-level graphs
contributing to the
gluon-in-gluon GPD F̂g/g ,
Eq. (106), (left) and to the fully
diagonal quark-in-quark GPD
F̂q/q , Eq. (109) (right)

result, which derives from the calculation of the disconnected
diagrams in Fig. 9, relies on imposing the conservation of the
momentum injected into the operator-insertion vertices (see
Fig. 1). In other words, the momentum that flows into the
vertices equals the external momentum.11

At O(αs), the interacting fields radiate one additional
parton before interacting with the external states. This also
allows F̂g/q , Eq. (107), and F̂q/g , Eq. (108), to be different
from zero, while the remaining quark-in-quark GPDs (110)–
(112) get their first contribution at higher orders. Contrary to
the tree-level calculations, loop corrections to the parton-in-
parton GPDs are divergent. It is the renormalisation of these
divergences that defines the anomalous dimensions responsi-
ble for the evolution of GPDs. The seven anomalous dimen-
sions obtained from Eqs. (106)–(112) are usually arranged
in seven specific combinations that are convenient for the
implementation of the evolution equations. Using the same
indexing as for GPDs, there are three non-singlet anomalous
dimensions, defined as

P−± = (Pq/q − Pq/q ′
)± (Pq/q − Pq/q ′

)
,

P−
V = P−− + n f (Pq/q ′ − Pq/q ′), (123)

and four singlet anomalous dimensions

P+
qq = P−+ + n f (Pq/q ′ + Pq/q ′),

P+
qg = 2n fPq/g,

P+
gq = Pg/q ,

P+
gg = Pg/g. (124)

As mentioned above, at one loop one finds Pq/q = Pq/q ′ =
Pq/q ′ = 0 which in turn implies P−+ = P−− = P−

V = P+
qq =

Pq/q .

Appendix B: One-loop quark-in-quark anomalous dimen-
sion

In this appendix, we present the details of the calculation of
the one-loop anomalous dimensions in the MS renormali-
sation scheme using the light-cone gauge. As discussed in
Sect. 2, the anomalous dimensions can be determined by

11 We thank the referee for suggesting that we clarify this point.

Fig. 10 Real graph contributing to the quark-in-quark GPD at one loop

extracting the pole part of appropriately defined parton-in-
parton GPDs that can be computed in perturbation theory.
In Appendix A we introduced the parton-in-parton GPDs
and carried out the tree-level computation. For illustrative
purposes, here we consider the one-loop correction to the
quark-in-quark GPD F̂ [1]

q/q , and using Eq. (18) we immedi-
ately obtain the one-loop quark-in-quark anomalous dimen-
sion P [0]

q/q . The remaining one-loop anomalous dimensions
can be extracted in an analogous way by simply considering
the appropriate parton-in-parton GPDs.

The advantage of using the light-cone gauge is a reduc-
tion of the number of diagrams to be considered. Specifically,
F̂ [1]
q/q results from the computation of a single diagram dis-

played in Fig. 10. For the calculation, we will use a gauge
vector that in light-cone coordinates12 reads nμ = (0, 1, 0T ),
such that the scalar product of any vector v with n gives
n · v = v+. Using the definition in Eq. (109) and the manip-
ulation in Eq. (119), we obtain:

g2

16π2 F̂
[1]
q/q(x, ξ)

=
√

1 − ξ2

2Nc

∫
dy

2π
ei(1−x)yp+

Tr
[
Ic R

(1)(y, ξ)/p
]
, (125)

with

R(1)(y, ξ) =
∫

d4−2εk

(2π)4−2ε
e−ik+yδαβ iDμν(k)

12 Given a four-vector vμ = (t, x, y, z), its light-cone-coordinate
representation is vμ = (v+, v−, vT ) with v± = (t ± z)/

√
2 and

vT = (x, y).
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×(−igμεγ μtα)
i((1 + ξ)/p − /k)

((1 + ξ)p − k)2 + iε

γ +

2

× −i((1 − ξ)/p − /k)

((1 − ξ)p − k)2 + iε
(igμεγ ν tβ), (126)

and where Dμν is defined in Eq. (1), and tα are the SU(3)
generators. Expressing the integration measure in light-cone
coordinates

d4−2εk = dk+dk−d2−2εkT , (127)

the integral reduces to

R(1)(y, ξ) = g2

16π2 2i tαtαμ2ε

×
∫

d2−2εkT

(2π)2−2ε
dk+dk−e−ik+yDμν(k)

× γ μ[(1 + ξ)/p − /k]/n[(1 − ξ)/p − /k]γ ν

[((1 + ξ)p − k)2 + iε][((1 − ξ)p − k)2 + iε] . (128)

The gluon propagatorDμν has two components (see Eq. (1)):
one proportional to the metric tensor gμν and one to the gauge
vector nμ. It is thus convenient to split the integral into two
components that we respectively denote with the superscripts
(g) and (n):

F̂ [1]
q/q(x, ξ) = F̂ [1],(g)

q/q (x, ξ) + F̂ [1],(n)
q/q (x, ξ). (129)

Integrating over k+, using the identity Trc[tαtα] = NcCF ,
plus some additional manipulations, we obtain

F̂ [1],(g)
q/q (x, ξ) = iCF

√
1 − ξ2

(p+)2(1 − x)(x2 − ξ2)
μ2ε

×
∫

d2−2εkT

(2π)2−2ε
k2
T I (k2

T ),

F̂ [1],(n)
q/q (x, ξ) = 2x

1 − x
F̂ [1],(g)
q/q (x, ξ) + 4iCF

√
1 − ξ2

p+(1 − x)2 μ2ε

×
∫

d2−2εkT

(2π)2−2ε
J (k2

T ), (130)

where

I (k2
T ) =

∫ +∞

−∞
dk−

(k− − k−
1 )(k− − k−

2 )(k− − k−
3 )

,

J (k2
T ) =

∫ +∞

−∞
k−dk−

(k− − k−
1 )(k− − k−

2 )(k− − k−
3 )

, (131)

with

k−
1 = k2

T

2(1 − x)p+ − i(1 − x)ε,

k−
2 = − k2

T

2(x + ξ)p+ + i(x + ξ)ε,

k−
3 = − k2

T

2(x − ξ)p+ + i(x − ξ)ε. (132)

In defining k−
2 and k−

3 , we have multiplied the term iε coming
from the quark propagators (see e.g. Eq. (128)) by (x ± ξ) to
account for the correct sign of these terms. This derives from
the fact that, precisely like the finite term k2

T , the infinitesimal
contribution iε also gets a factor 1/[2(x±ξ)p+]. Since we are
only interested in the position of the pole w.r.t. the integration
path, i.e. the real axis, we only need to know the sign of the
factor 1/[2(x ± ξ)p+]. Considering that p+ is positive, in
the limit ε → 0+, this is equivalent to multiplying iε by
(x ± ξ), hence the definitions in Eq. (132). This is crucial
for determining the pole configuration of the integrand in k−
as a function of the relative position of x and ξ . In addition,
for the same reason, we have multiplied the iε term of k−

1 by
(1 − x).

In order to compute these integrals, we need to con-
sider different configurations depending on the position of
the poles relative to the real axis. We close the integration
path upwards in such a way that it runs anticlockwise, and
all the residues get a factor +2π i . We start by assuming
−ξ < x < 1. In this configuration the relevant cases are as
follows:

• x > ξ : In this case the position of the poles is shown in
the left plot of Fig. 11. The contour picks up the poles in
k−

2 and k−
3 , producing

I (k2
T )

x>ξ= 2π i

k−
2 − k−

3

×
[

1

k−
2 − k−

1

− 1

k−
3 − k−

1

]
,

J (k2
T )

x>ξ= 2π i

k−
2 − k−

3

×
[

k−
2

k−
2 − k−

1

− k−
3

k−
3 − k−

1

]
.

(133)

• x < ξ : The poles are placed as shown in the right plot
of Fig. 11. The poles in k−

1 and k−
3 are now external, and

only the pole in k−
2 contributes, giving

I (k2
T )

x<ξ= 2π i

k−
2 − k−

3

× 1

k−
2 − k−

1

,

J (k2
T )

x<ξ= 2π i

k−
2 − k−

3

× k−
2

k−
2 − k−

1

. (134)

The net result is that the integrals I and J can generally
be written as

I (k2
T ) = 2π i

k−
2 − k−

3

[
1

k−
2 − k−

1

− θ(x − ξ)
1

k−
3 − k−

1

]

= −4π i(p+)2(1 − x)(x2 − ξ2)

ξk4
T

×
[
x + ξ

1 + ξ
− θ(x − ξ)

x − ξ

1 − ξ

]
,
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Fig. 11 Position of the poles in
the complex plane defined by
k− in the integrals in Eq. (131).
The red arrows indicate the
integration path

J (k2
T ) = 2π i

k−
2 − k−

3

[
k−

2

k−
2 − k−

1

− θ(x − ξ)
k−

3

k−
3 − k−

1

]

= 2π i p+(1 − x)(x2 − ξ2)

ξk2
T

[
1

1 + ξ
− θ(x − ξ)

1

1 − ξ

]
.

(135)

These results were obtained under the assumption −ξ < x <

1. If x > 1, the pole in k−
1 moves into the upper half of the

complex plane in k−. In this configuration, the case x > ξ in
the l.h.s. of Fig. 11 produces a vanishing result because all
poles lie above the integration path, which can then be closed
downwards where there are no poles. In addition (assuming
ξ < 1), the conditions x > 1 and x < ξ cannot be simultane-
ously fulfilled. Therefore, the r.h.s. configuration of Fig. 11
is ruled out. In conclusion, the results in Eq. (135) effectively
multiply θ(1 − x). If x < −ξ , the pole in k−

2 moves into the
lower half of the complex plane. In this way, for x < ξ , all
poles are below the integration path, thus again yielding a
vanishing result, while the configuration x > ξ is ruled out.
Therefore, the results above also multiply a factor θ(x + ξ).
This allows us to recast Eq. (135) as follows:

I (k2
T ) = −4π i(p+)2(1 − x)(x2 − ξ2)

ξk4
T

θ(1 − x)

×
[
θ(x + ξ)

x + ξ

1 + ξ
− θ(x − ξ)

x − ξ

1 − ξ

]
,

J (k2
T ) = 2π i p+(1 − x)(x2 − ξ2)

ξk2
T

θ(1 − x)

×
[
θ(x + ξ)

1

1 + ξ
− θ(x − ξ)

1

1 − ξ

]
. (136)

We can finally put everything together using Eqs. (129) and
(130) to obtain the one-loop real correction to the bare quark-
in-quark GPD:

F̂ [1]
q/q(x, ξ) = F̂ [1],(g)

q/q (x, ξ) + F̂ [1],(n)
q/q (x, ξ)

= CF

√
1 − ξ2θ(1 − x)

ξ(1 − x)

×
[
θ(x + ξ)

(x + ξ)(1 − x + 2ξ)

1 + ξ
− θ(x − ξ)

× (x − ξ)(1 − x − 2ξ)

1 − ξ

]
μ2εSε

∫
dk2

T

k2+2ε
T

,

(137)

where for the (2 − 2ε)-dimensional integral in kT we have
used the identity

∫
d2−2εkT

(2π)2−2ε

1

k2
T

= Sε

4π

∫ ∞

0

dk2
T

k2+2ε
T

, (138)

with Sε given in Eq. (6). It turns out that the integral over kT
in Eq. (137) vanishes [65]. This result can be regarded as the
consequence of the cancellation of two divergences due to
the use of dimensional regularisation to regularise both the
UV divergence when kT → ∞ and the IR divergence when
kT → 0. Therefore, this integral can be interpreted as

∫ ∞

0

dk2
T

k2+2ε
T

∼ 1

εUV
− 1

εIR
. (139)

This structure could be more clearly highlighted by regu-
larising UV and IR divergences differently, as for example
done in Refs. [66,67]. For infrared-safe observables, the IR
divergence cancels against an opposite divergence produced
in the calculation of the partonic cross section. Therefore,
what we are concerned with is the UV divergence that needs
to be cancelled by a renormalisation constant. for this pur-
pose, we discard the IR divergence and write the result of the
calculation above as

F̂ [1]
q/q(x, ξ) = CF

√
1 − ξ2θ(1 − x)

ξ(1 − x)

×
[
θ(x + ξ)

(x + ξ)(1 − x + 2ξ)

1 + ξ
− θ(x − ξ)

× (x − ξ)(1 − x − 2ξ)

1 − ξ

]
μ2εSε

εUV
. (140)

The calculation of the one-loop quark-in-quark GPD is
still incomplete because, so far, we have only considered
the “real” contribution in Fig. 10. We still need to include
the “virtual” contribution. As discussed in Sect. 3.4, an
explicit calculation is unnecessary, as this contribution can
be obtained from the knowledge of the real one. As a matter
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of fact, writing

F̂ [1]
q/q(x, ξ) → F̂ [1]

q/q(x, ξ) + A(ξ)δ(1 − x), (141)

and imposing the valence sum rule gives13

A(ξ) = 2CF

√
1 − ξ2

[
3

2
− 2

∫ 1

0

dz

1 − z
− ln(|1 − ξ2|)

]
μ2εSε

εUV
.

(142)

Once the full one-loop quark-in-quark GPD has been com-
puted, we can use Eq. (18), with Dq(ξ) = √

1 − ξ2, to

extract the anomalous dimension, finally obtaining P [0]
q/q as

in Eq. (19).
It is however instructive to perform the calculation of the

virtual contribution toP [0]
q/q to explicitly verify that, at least at

one-loop accuracy, the constraints discussed in Sect. 3.4 are
actually fulfilled. Figure 12 displays the relevant diagrams.

These diagrams correspond to self-energy corrections to
the external legs. As a consequence, they can be included
by means of the Lehmann–Symanzik–Zimmermann (LSZ)
reduction formula [68]. Specifically, virtual corrections to the
one-loop quark-in-quark GPD are included by computing

ZF (1 + ξ) + ZF (1 − ξ)

2
F̂q/q(x, ξ), (143)

where F̂q/q(x, ξ) is computed with amputated external legs
and ZF is the residue of the quark propagator. We have
included a correction for each external leg along with a fac-
tor of 1/2 as a consequence of the LSZ reduction formula.
As we will show below, the explicit dependence of ZF on
the longitudinal momentum fractions 1 ± ξ emerges from
the regularisation of the 1/(nk) divergence caused by the
light-cone gluon propagator.

In order to identify the residue ZF , we follow Ref. [39].
The quark propagator in momentum space in the vicinity of
the pole behaves as follows:14

DF (q) =
q2∼0

i ZF

/q
+ finite corrections, (144)

which effectively defines the residue ZF and where the finite
corrections are related to the quark spectral function in the
continuum region [69]. As is well known, the 1PI contribu-
tion to the self-energy, �, can be resummed to all orders,
producing

DF (q) = i

/q
+ i

/q
(−i�(q))

i

/q
+ · · · = i

/q − �(q)
. (145)

13 Here we are also using the fact that F̂ [1]
q/q (x, ξ) is zero to identify the

non-singlet GPD with F̂ [1]
q/q (x, ξ).

14 Note that DF is a matrix in both Dirac and colour space. However,
since it is diagonal in colour space, we omit the corresponding indices
implying that it multiplies the identity matrix INc×Nc .

We now show how � is related to the residue ZF . First of
all, we observe that in light-cone gauge, � must have this
structure:

�(q) = A/q + B/n
q2

2(nq)
, (146)

where A and B are scalar coefficients. Plugging this equation
into Eq. (145), one finds

DF (q) = i

(1 − A)/q − B/n q2

2(nq)

= 1

1 − A − B

×
[
i

/q
− B

1 − A

i/n

2(nq)

]
. (147)

By comparison with Eq. (144), one immediately sees that

ZF = 1

1 − A − B
. (148)

Since � starts at O(αs):

�(q) =
∞∑
n=1

ans �
[n](q), (149)

so do A and B:

A =
∞∑
n=1

ans A
[n], and B =

∞∑
n=1

ans B
[n]. (150)

This implies that the perturbative expansion of the residue
reads

ZF = 1 + as(A
[1] + B[1]) + O(α2

s ). (151)

Using this equality in Eq. (143), one finds that the contribu-
tion to the one-loop correction of the quark-in-quark GPD
due to the virtual diagrams in Fig. 12 amounts to

F̂virt
q/q (x, ξ)

= [A[1](1 + ξ) + B[1](1 + ξ)] + [A[1](1 − ξ) + B[1](1 − ξ)]
2√

1 − ξ2δ(1 − x), (152)

where we have used Eq. (122) for F̂ [0]
q/q . The values of A[1] and

B[1] can be extracted by computing the diagram in Fig. 13.
Using light-cone-gauge Feynman rules, this diagram evalu-
ates to

g2

16π2 (−i�[1](q)) =
∫

d4−2εk

(2π)4−2ε
(−igμεγ ν tβ)iδβαDμν(k)

× i(/q − /k)

(q − k)2 (−igμεγ μtα)

≡ g2

16π2CF
(4π2μ2)ε

π2 [�F + �A] ,

(153)
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Fig. 12 Virtual graphs
contributing to the
quark-in-quark GPD at one loop

Fig. 13 One-loop quark self energy

where we have defined

�F = 2(1 − ε)

[
/q
∫

d4−2εk

k2(q − k)2 − γμ

∫
d4−2εk kμ

k2(q − k)2

]
,

(154)

and

�A =
∫

d4−2εk
/k(/q − /k)/n + /k(/q − /k)/n

(nk)k2(q − k)2 . (155)

The numerator of the integrand of �A can be rearranged as
follows:

/k(/q − /k)/n + /k(/q − /k)/n = /k/q/n + /k/q/n − 2k2/n

= 2(q2 − (q − k)2)/n − /q/k/n − /q/k/n. (156)

The term proportional to (q − k)2 can be discarded because
it cancels one of the poles in the denominator. This leaves
a single pole in k− (or k+) that produces a vanishing result
because the integration path can be closed in a way that it
contains no poles. Finally, we have

�A = 2q2/n
∫

d4−2εk

(nk)k2(q − k)2 − (/qγμ/n + /nγμ/q)

×
∫

d4−2εk kμ

(nk)k2(q − k)2 . (157)

In view of the use of the Feynman-parameter method to solve
the integrals in Eqs. (154) and (157), we have omitted the iε
terms from the propagators. Denoting

JF =
∫

d4−2εk

k2(q − k)2 , Jμ
F =

∫
d4−2εk kμ

k2(q − k)2 ,

JA =
∫

d4−2εk

(nk)k2(q − k)2 , Jμ
A =

∫
d4−2εk kμ

(nk)k2(q − k)2 ,

(158)

and using the Feynman-parameter identity

1

QR
=
∫ 1

0

dx

[xQ + (1 − x)R]2 , (159)

with Q = k2 and R = (q − k)2, allows us to recast these
integrals as follows:

J (μ)
F,A =

∫ 1

0
dx I (μ)

F,A(x), (160)

with

IF (x) =
∫

d4−2εk

[k2 − 2(1 − x)(pk) + (1 − x)q2]2 ,

Iμ
F (x) =

∫
d4−2εk kμ

[k2 − 2(1 − x)(pk) + (1 − x)q2]2 ,

IA(x) =
∫

d4−2εk

(nk)[k2 − 2(1 − x)(pk) + (1 − x)q2]2 ,

Iμ
A (x) =

∫
d4−2εk kμ

(nk)[k2 − 2(1 − x)(pk) + (1 − x)q2]2 . (161)

These integrals can finally be computed using, for example,
Eqs. (A.1), (A.2), (A.6) and (A.7) of Ref. [70]. The result is

IF (x) = iπ2−εeεiπ �(ε)

[x(1 − x)q2]ε ,

Iμ
F (x) = iπ2−εeεiπ �(ε)

[x(1 − x)q2]ε (1 − x)qμ,

IA(x) = iπ2−εeεiπ �(ε)

[x(1 − x)q2]ε(nq)

1

1 − x
,

Iμ
A (x) = iπ2−εeεiπ �(ε)

[x(1 − x)q2]ε(nq)

×
[
qμ + x

1 − x

q2

2(nq)
nμ

]
. (162)

Gathering all pieces, we obtain

�F = 2iπ2�(ε)(1 − ε)

∫ 1

0

dx

[πx(1 − x)q2]ε (1 − x)/q,

(163)

and

�A = 2iπ2eεiπ�(ε)

∫ 1

0

dx

[πx(1 − x)q2]ε
2x

1 − x

q2/n

2(nq)
,

(164)
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so that

�[1](q) = −2CFeεiπ�(ε)

∫ 1

0
dx

[
4πμ2

x(1 − x)q2

]ε

×
[
(1 − ε)(1 − x)/q + 2x

1 − x
/n

q2

2(nq)

]

= −2CF
μ2εSε

εUV

∫ 1

0
dx

[
(1 − x)/q+ 2x

1−x
/n

q2

2(nq)

]

+O(ε0). (165)

The integral in x is clearly divergent because of the singu-
larity at x = 1 caused by the 1/(nk) term in the gluon prop-
agator. Therefore, before identifying the coefficients A and
B using Eq. (146), it is first necessary to make this integral
convergent. To do so, we first note that any regularisation
needs somehow to rely on the light-cone projection of the
incoming/outgoing parton, i.e. (np), that defines the direc-
tion along which the so-called rapidity divergences take place
[36]. Therefore, we introduce a generic regularisation that we
denote by the subscript “Reg(np)”:

�[1](q) = −2CF
μ2εSε

εUV

∫ 1

0
dx

×
[
(1 − x)/q + 2x

1 − x
/n

q2

2(nq)

]
Reg(np)

. (166)

With this at hand, we can extract from the regularisation sign
anything that is not affected by the regularisation itself. In
addition, we take (nq) = y(np), with y = 1 ± ξ , as required
by Eq. (143). This leads to

�[1](q) = −2CF
μ2εSε

εUV

×
{

1

2
/q +

[
−2 + 2

∫ 1

0
dx y

[
1

y(1 − x)

]
Reg(np)

]
/n

q2

2(nq)

}
.

(167)

It is important to note that the factor 1/y that comes from
1/(nq) must remain inside the regularisation sign. We are
therefore forced to multiply and divide by y outside the regu-
larisation sign to reconstruct 1/(nq), leaving a leftover factor
of y. This finally allows us to identify the one-loop coeffi-
cients A[1] and B[1] by inspection of Eq. (146), whose sum
relevant to Eq. (152) is

A[1](y) + B[1](y) = 2CF
μ2εSε

εUV

×
[

3

2
− 2

∫ 1

0
dx y

[
1

y(1 − x)

]
Reg(np)

]
. (168)

We now focus on the integral in x in Eq. (168) and manipulate
it as follows:∫ 1

0
dx y

[
1

y(1 − x)

]
Reg(np)

=
∫ y

0
dt

(
1

t

)
Reg(np)

=
∫ 1

0

dz

1 − z
+ ln y. (169)

In the first equality we have made the change of variable
y(1 − x) = t . In the second equality we have extended the
integral in t to the interval [0, 1] and subtracted the residual
that can now be integrated, giving ln y. We have then made
another change of variable, t = 1 − z, and removed the
regularisation sign to match the notation in Eq. (142). This
finally gives

A[1](y) + B[1](y) = 2CF
μ2εSε

εUV

×
[

3

2
− 2

∫ 1

0

dz

1 − z
− 2 ln y

]
. (170)

Plugging this identity into Eq. (152) finally yields

F̂virt
q/q(x, ξ) = 2CF

√
1 − ξ2

[
3

2
− 2

∫ 1

0

dz

1 − z

− ln(1 − ξ2)
] μ2εSε

εUV
δ(1 − x), (171)

which agrees with Eq. (142).

Appendix C: Diagonalisation of the conformal moments

In this appendix we provide a general proof of Eq. (86). To
do so, we define z = y/ξ and, using the change of variable
v = x/ξ in the integrals, rewrite the r.h.s. of Eq. (85) without
the factor 2CF as follows:

I = 3

2
C (3/2)
n (z) − 1

2

∫ z

1
dv

[
v + 1

z − 1
C (3/2)
n (v)

−2
C (3/2)
n (v) − C (3/2)

n (z)

z − v

]

+1

2

∫ z

−1
dv

[
v − 1

z + 1
C (3/2)
n (v)

+2
C (3/2)
n (v) − C (3/2)

n (z)

z − v

]
. (172)

Now, we use the fact that C (3/2)
n is indeed a polynomial of

degree n whose expansion reads

C (3/2)
n (x) =

�n/2�∑
k=0

a(n)
k x� with

a(n)
k = (−1)k2� �(� + k + 3/2)

�(3/2)k!�! , (173)
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with � = n − 2k. This allows us to write

I = 3

2
C (3/2)
n (z)

−1

2

�n/2�∑
k=0

a(n)
k

[∫ z

1
dv

v�+1 + v�

z − 1

−
∫ z

−1
dv

v�+1 − v�

z + 1
+ 2

∫ z

1
dv

z� − v�

z − v

+2
∫ z

−1
dv

z� − v�

z − v

]
. (174)

Let us now solve all the integrals in the r.h.s. of this equation.
The first gives

∫ z

1
dv

v�+1 + v�

z − 1
= 1

� + 2

1 − z�+2

1 − z
+ 1

� + 1

1 − z�+1

1 − z

= 1

� + 2

�+1∑
j=0

z j + 1

� + 1

�∑
j=0

z j , (175)

and similarly, the second:

∫ z

−1
dv

v�+1 − v�

z + 1
= − (−1)�+2

� + 2

�+1∑
j=0

(−z) j

+ (−1)�+1

� + 1

�∑
j=0

(−z) j , (176)

where we have used the geometric series

n∑
j=0

v j = 1 − vn+1

1 − v
. (177)

Their combination evaluates to
∫ z

1
dv

v�+1 + v�

z − 1
−
∫ z

−1
dv

v�+1 − v�

z + 1

=
[

1

� + 2
+ 1

� + 1

] �∑
j=0

[
1 + (−1)�− j

]
z j . (178)

Note that the z�+1 term vanishes because the projector is null
for j = � + 1. Now we turn to the third and fourth integrals
in Eq. (172):

∫ z

1
dv

z� − v�

z − v
= z�−1

∫ z

1
dv

1 − (v/z)�

1 − v/z

=
�−1∑
j=0

z�− j−1
∫ z

1
dv v j =

�−1∑
j=0

z� − z�− j−1

j + 1

= −
�−1∑
j=0

z j

� − j
+ z�

�∑
j=1

1

j
, (179)

and

∫ z

−1
dv

z� − v�

z − v
= −

�−1∑
j=0

(−1)�− j z j

� − j
+ z�

�∑
j=1

1

j
, (180)

so that their combination gives

2
∫ z

1
dv

z� − v�

z − v
+ 2

∫ z

−1
dv

z� − v�

z − v

= −2
�−1∑
j=0

1 + (−1)�− j

� − j
z j + z�

�∑
j=1

4

j
. (181)

Gathering all pieces, one finds

I = 3

2
C (3/2)
n (z)

−
�n/2�∑
k=0

a(n)
k

⎡
⎣�−1∑

j=0

(
1

� + 2
+ 1

� + 1
− 2

� − j

)

× 1 + (−1)�− j

2
z j +

⎛
⎝ 1

� + 2
+ 1

� + 1
+

�−1∑
j=0

2

j + 1

⎞
⎠ z�

⎤
⎦ .

(182)

Now we exchange the sums over k and the first sum over j in
the second line of the equation above by using the following
equality:

�n/2�∑
k=0

�−1∑
j=0

· · · =
�n/2�∑
k=0

n−2k−1∑
j=0

· · · =
n−1∑
j=0

� n− j−1
2 �∑

k=0

. . . , (183)

finding

I = 3

2
C (3/2)
n (z)

−
n−1∑
j=0

z j
1 + (−1)n− j

2

� n− j−1
2 �∑

k=0

a(n)
k

×
(

1

n − 2k + 2
+ 1

n − 2k + 1
− 2

n − 2k − j

)

−
�n/2�∑
k=0

z�a(n)
k

⎛
⎝ 1

� + 2
+ 1

� + 1
+

�−1∑
j=0

2

j + 1

⎞
⎠ . (184)

where in the first line we have made explicit � = n − 2k and
used the equality

1 + (−1)�− j

2
= 1 + (−1)n−2k− j

2
= 1 + (−1)n− j

2
. (185)

This projector nullifies all the terms in the first series over j
for which n − j is odd, selecting only the even ones. There-
fore, we can identify the combination n − j with an even
index, i.e. n − j = 2h, and remove the projector. Replacing
the summation index k with h and also making explicit the
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index � in the second line gives

I = 3

2
C (3/2)
n (z)

−
�n/2�∑
h=0

a(n)
h zn−2h

[
1

n − 2h + 2
+ 1

n − 2h + 1

+2
n−2h∑
j=1

1

j
+

h∑
j=1

a(n)
h− j

a(n)
h

(
1

n − 2h + 2 j + 2

+ 1

n − 2h + 2 j + 1
− 1

j

)]
. (186)

It turns out that the term in the square brackets is indepen-
dent of the summation index h (this statement can be easily
verified numerically). Therefore, without loss of generality,
we can set h = 0 inside the square brackets and pull it out
from the summation symbol, obtaining

I =
⎡
⎣3

2
− 1

n + 2
− 1

n + 1
− 2

n∑
j=1

1

j

⎤
⎦C (3/2)

n (z)

=
⎡
⎣3

2
+ 1

(n + 1)(n + 2)
− 2

n+1∑
j=1

1

j

⎤
⎦C (3/2)

n (z) , (187)

which finally proves the identity in Eq. (86).
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