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A B S T R A C T   

In the Strait of Gibraltar, the Blackspot Seabream (Pagellus bogaraveo, Brünnich 1768) is an economic resource of 
great commercial importance for the Spanish and Moroccan artisanal and Moroccan longline fleets. Given the 
great interest of the species for the fleets, it is of vital importance to know the dynamics of landings and how this 
can be influenced by environmental variability. From this arises the hypothesis of the present study: environ
mental mechanisms cause forcings in the dynamics of landings. To this end, we analysed the average annual 
dynamics of the time series of commercial landings of the Blackspot Seabream from 1983 to 2015 from a 
multivariate perspective. We applied trend, principal component (PCA) and time series clustering analyses to 
determine patterns and relationships between the fishery series and different oceanographic variables and cli
matic indices. In addition, we determined the influence of this set of variables on landings from a linear approach 
based on multiple linear regressions (MLRs) and generalized linear models (GLMs) and non-linear determined by 
generalized additive models (GAMs). The results obtained indicated the presence of common temporal patterns 
and the existence of significant influence between landings and ocean temperature with the current velocity 
modulus in specific layers and heat flux, causing lower fishing yields as we get colder waters with less intense 
currents. Such studies are of vital importance for the application of an ecosystem approach to the management of 
this resource by understanding the effect and influence of the environment on the dynamics of landings from the 
fishery.   

1. Introduction 

Blackspot Seabream (Pagellus bogaraveo, Brünnich 1768) is a widely 
fished benthopelagic marine sparid species that can be found from along 
the coast of Norway to the Canary Islands and Senegal, as well as in the 
Mediterranean basin (Carpenter and Russell, 2014). One of the most 
important Blackspot Seabream stocks from an ecological, social and 
economic point of view is located in the Strait of Gibraltar (Cabrera, 
2014; CopeMed, 2019; Gil-Herrera et al., 2021). 

In this region, the Blackspot Seabream is the target species of the 
Spanish and Moroccan artisanal “voracera” fleets and the Moroccan 
longline fleet. Although both fleets use a longline system as a catching 
gear, there are important operational and catch differences as a conse
quence of the legislative structures of each country (Belcaid et al., 2012; 
CopeMed, 2018, 2019). 

Changes in landings have been observed in recent years, with a 

general downward trend in landings in the main Spanish ports 
(Gutiérrez-Estrada et al., 2017; Sanz-Fernández et al., 2019; Sanz- 
Fernández and Gutiérrez-Estrada, 2021; Gil-Herrera et al., 2021), which 
has been associated with a variation in climatic and oceanographic 
conditions (Báez et al., 2014). 

In the area of the Strait of Gibraltar, several studies have analysed the 
effect of environmental variability on the commercial landings of the 
Spanish fleet’s Blackspot Seabream. Castilla Espino et al. (2010) studied 
the relationship with sea surface temperature (SST) and Báez et al. 
(2014), analysed the influence of climatic indices (NAO and AO) and 
oceanographic variables (temperature and salinity). Continuing in the 
same line of work, but also including information on the commercial 
landings of the Moroccan fleet’s Blackspot Seabream, Sanz-Fernández 
and Gutiérrez-Estrada (2021) analyse the effect of two environmental 
variables using a simple correlation analysis. All previous studies sug
gest, the existence of relationships between environmental factors and 
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the evolution of Blackspot Seabream exploited fish stock indicate that 
negative trends and relationships could reduce fishery yields, but none 
of them are fully conclusive. 

For the analysis and quantification of the effect of environmental 
variability on fishery production (commercial landings) data a wide 
variety of statistical techniques can be applied, from traditional 
regression statistical modelling based on a linear and non-linear 
approach to advanced time series modelling (Nicola et al., 2018). Mul
tiple linear regression models (MLRs), generalized linear models (GLMs) 
and generalized additive models (GAMs) are presented as tools to detect 
and elucidate the relationships between fishery and environmental 
variables, being able to quantify the effects of environmental variability 
on the fishery and ecological dynamics of the resource (Borja et al., 
1998; Damalas et al., 2007; Silva et al., 2015; Castro-Gutiérrez et al., 
2022). 

The application of multivariate statistical techniques focused on the 
classification and reducing the dimensionality of the dataset, such as 
principal component analysis (PCA) and time series clustering, can be 
very useful as they can detect common patterns among variables along 
with their clustering. For this reason, the combined use of traditional 
regression models and clustering and dimensionality reduction tech
niques can be presented as an analytical approach to assess common 
patterns and relationships between the historical series of landings and 
environmental parameters, trying to identify which of them and what 
extent influence landings. 

Additionally, as for other fish species (Lloret et al., 2001; Erzini, 
2005), apart from the effects of environmental-oceanographic vari
ability on fisheries data (commercial landings), we should take into 
account those of climatic and oceanic variations, which are involved in 
changes in the status of fish populations. Gutiérrez-Estrada et al. (2017), 
Sanz-Fernández et al. (2019) and Gutiérrez-Estrada et al. (2020) ob
tained simulated biomasses of the P. bogaraveo population in the Strait of 
Gibraltar using simulation models that incorporate the biological as
pects of the species and the dynamics of landings, concluding that any 
modification in the environmental parameters of its surroundings is a 
barrier that prevents its optimal development, with a devastating effect 
on its population, especially when the population reaches low biomass 
levels as a result of excess fishing pressure. 

The aim of this study was to assess in depth and comprehensively the 
relative impact of a range of environmental parameters on the 
P. bogaraveo commercial landing of the Spanish and Moroccan fleets 
operating in the Strait of Gibraltar. According to the European Union 
(EU)’s Common Fisheries Policy (CFP), one of the objectives of which is 
to safeguard the sustainably of fishing activity, the consideration of 
environmental information is essential for proper management of 
resource from an ecosystem-based approach (Europe, 2022). Hence, our 
primary objective was to increase our knowledge of the potential re
lationships between commercial landings of P. bogaraveo and a wide set 
of environmental variables and two climatic indices. Our initial hy
pothesis was that these variables do influence annual variability in 
commercial landings, which could explain part of the variability of 
landings. To explore this hypothesis, a literature review is carried out 
and an analysis is applied to the historical series of commercial landings 
of P. bogaraveo in the Strait of Gibraltar from 1983 to 2015, grouping 
and modelling the landings according to a broad framework of envi
ronmental parameters and climatic indices, in order to detect and clarify 
their patterns and relationships, as well as to identify which of them 
influence the landings and quantify their effects. For this reason, the 
combined use of MLR, GLM and GAM models together with PCA and 
time series clustering are applied. 

2. Material and methods 

2.1. Study area and fishing data 

The area of the Strait of Gibraltar is a particular oceanographic 

environment. It is located to the south of the Iberian Peninsula and north 
of Morocco and creates an approximately 60-km long natural border 
between geographical Europe and Africa (Bruno et al., 2013). From a 
fluid dynamics perspective, it is a two-layer system of inverse exchange 
flow between water masses of the Atlantic Ocean and the Mediterranean 
Sea. The lower salinity of Atlantic water and therefore lower density, 
flows at the surface towards the Mediterranean, while Mediterranean 
water flows at depth towards the Atlantic, as it is more saline and has a 
higher density (Echevarrıá et al., 2002; Vázquez López-Escobar, 2006). 
This pattern of water currents is strongly influenced by the prevailing 
winds, topography of the Strait, tidal currents from ocean mixing pro
cesses, upwelling and the generation and propagation of internal waves 
(Echevarrıá et al., 2002; Bruno et al., 2013). These characteristics pro
vide the key conditions for the Strait’s high marine productivity and 
broad range of fisheries (Echevarrıá et al., 2002; García Horcajuelo, 
2018; Cort and Abaunza, 2019; Gil-Herrera et al., 2021). 

We used the historical series of commercial fish landings of 
P. bogaraveo made by the Spanish artisanal fleets in the ports of Alge
ciras, Ceuta, Conil and Tarifa and the Moroccan fleet in the port of 
Tangier between 1983 and 2015. These data were provided by the 
Spanish Oceanographic Institute and the National Institute of Fisheries 
Research in Tangier. Specifically, we used annual average landings in 
tonnes. These data are derived from the estimation of the average per 
year of the total series corresponding to the sum of the monthly landings 
of the Spanish ports of Algeciras (1995–2015), Ceuta (1987–2001), 
Conil (2001–2015) and Tarifa (1983–2015) and the Moroccan port of 
Tangier (2001–2015). The area of the study was limited to the fishing 
areas of the fleets corresponding to the far southeast of International 
Council for the Exploration of the Sea (ICES) Division IXa from 6◦25′W 
to 5◦15′W and 35◦45′N to 36◦15′N (Burgos et al., 2013) (Fig. 1 upper 
panel). 

2.2. Oceanic data and climatological indices 

We used the historical annual average data from 1983 to 2015 of the 
following oceanic variables: surface ocean heat flux coming through 
coupler and mass transfer (W m− 2), salinity flux (kg m− 2 s− 1), salinity 
(PSU), ocean water temperature (◦C) and zonal and meridional com
ponents of the current velocity (m s− 1) (current velocity modulus). 
These data were retrieved from the Simple Ocean Data Assimilation 
(SODA) ocean reanalysis data set, version 3.3.1 (SODA3.3.1 files htt 
p://www.atmos.umd.edu/~ocean). Version 3 of this dataset uses 
version 5 of the Modular Ocean Model developed by the Geophysical 
Fluid Dynamics Laboratory of the US National Oceanic and Atmospheric 
Administration (NOAA). The variables are mapped in 3D onto a hori
zontal 1/2◦ x 1/2◦ Mercator mesh at 50 vertical levels (z, detph) (Carton 
et al., 2018). The transformation of the data from positional to temporal 
scale was carried out by area averaging. The database was filtered to 
obtain the first 24 layers, corresponding to depths from 5 to 525 in 10 to 
80 m intervals. The choice of this depth range is due to the demersal 
nature of the species, with the vast majority of fishing operations taking 
place within this depth range (Gil, 2006; CopeMed, 2019). 

The climatic indices used were the North Atlantic Oscillation (NAO) 
and the Arctic Oscillation (AO). The time series of these indices between 
1983 and 2015 were downloaded in a monthly format and annual means 
were calculated. The NAO index was downloaded from the US National 
Center for Atmospheric Research Climate Analysis Section (Hurrell and 
National Center for Atmospheric Research Staff, 2020) and the AO index 
from NOAA’s Climate Prediction Center, (http://www.cpc.ncep.noaa.go 
v/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.curre 
nt.ascii). 

2.3. Identification of common patterns in landings climatic indices and 
oceanic variables 

Two multivariate statistical techniques focused on classification and 
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dimension reduction were used: time series clustering and principal 
component analysis. The combined use of these two techniques was used 
with the aim of detecting common patterns between the time serie of 
landings and the time series of climatic indices and oceanographic 
variables. Based on these two techniques, 1- We corroborate that the 
landings follow common patterns with the same variables if the two 
techniques coincide and 2- We identify if the grouping of the landings is 

the same. To avoid some variables dominating over others due to dif
ferences in their units of measurement and orders of magnitude, data 
were standardised by subtracting their mean and dividing by their 
standard deviation, making the variables comparable. 

2.3.1. Time series clustering 
We used time series clustering to group the study variables based on 

Fig. 1. Operational ground in the Strait of Gibaltar of the 
Spanish (blue) and Moroccan (pink) “voracera” fleet (up) 
with the annual average landings time series (1983–2015) 
(below). The points represent the different ports involved 
in the fishery, blue-Spanish and red-Moroccan. This figure 
is a modification of maps 9 to 17 included in “Empresa 
Pública para el Desarrollo Agrario y Pesquero de Anda
lucía, S.A. 2010. Análisis de la pesquería de voraz y 
especies asociadas en el Estrecho de Gibraltar”. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this 
article.)   
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their attributes to obtain a set of groups or clusters with the greatest 
possible homogeneity within them and the greatest possible heteroge
neity between them (Supplementary material; Fig. S1). It is considered 
that the group in which the landings are found indicate that they have 
similar attributes or maximum homogeneity with the rest of the climatic 
indices and oceanographic variables found within the same it. For the 
salinity, temperature and current velocity variables, we performed hi
erarchical clustering using dynamic time warping with a shape extrac
tion centroid and hierarchical control using an average method (Sardá- 
Espinosa, 2019). The tsclust() function (Sardá-Espinosa, 2019) was used 
for this purpose. These new variables were obtained as the mean of 
values in each cluster. The use of this analysis for the variables salinity, 
temperature and modulus of current velocity is mainly due to its phi
losophy of not reassigning individuals once they have been merged, and 
not separating them at later stages. Given the low variability that occurs 
between these variables by depth, the use of the hierarchical method 
allows them to be grouped into 3 ranges by depth: shallow, intermediate 
and deep. 

The clustering of salinity, temperature and modulus of current ve
locity, once grouped by depth, together with the others (landing, cli
matic indices and the rest of oceanographic variables) was performed by 
applying the partitional clustering algorithm with random seed for 
reproducibility of 200, and Dynamic Time Warping (DTW) distance, 
with a window size of 10% of the length of the series, function tsclust(). 
The choice of DTW as the distance is due to its ability to obtain similarity 
between time series and establish their optimal alignment using a non- 
linear approach (Gonzáles Castellanos and Soto Valero, 2013). 

The optimal number of clusters was identified by an iterative pro
cedure (Sardá-Espinosa, 2019) based on optimising the following pa
rameters: maximising the Silhouette index (Rousseeuw, 1987), Dunn 
index (Arbelaitz et al., 2013), Calinski-Harabasz index (Arbelaitz et al., 
2013) and Score Function (Saitta et al., 2007) and minimising the COP 
(Arbelaitz et al., 2013), modified Davies-Bouldin (Kim and Ram
akrishna, 2005) and Davies-Bouldin (Arbelaitz et al., 2013) indices. 
During this procedure, the prototypes or centroids Partition Around 
Medoids (PAM) (a medoid is a time series whose average distance to the 
other components of the same cluster is minimal) and DTW Barycenter 
Averaging (DBA) were used (Petitjean et al., 2011; Sardá-Espinosa, 
2019). The variation in the initial number of clusters ranged from 2 to 8 
cluster, given that we were considering 13 study variables. Further 
consideration of clustering would give a much disaggregated result, 
favouring the creation of individual clusters per variable. 

Having identified the optimal number of clusters, the best time series 
centroid adjusted to the optimal number of clusters with 1 repetition 
was also determined by internal validation, using the above indices, 
taking into account only the two previous centroids. 

Finally, having identified the optimal number of clusters and 
centroid, the final clusters were obtained. They are obtained using the 
tsclust() function specifying in their arguments the number of optimal 
clusters and the centroid detected in the previous steps. Subsequently, 
stability of the final clusters was evaluated using the dissimilarity 
function (Hornik, 2021) (Supplementary material; Fig. S1). Dissimilar
ities using minimal Euclidean membership distance. The cluster stability 
study was carried out to quantify the degree of agreement of different 
replicates, which in this case were 20. The results presented are those in 
which the pairs of replicates had dissimilarity equal to 0. 

2.3.2. Principal component analysis (PCA) 
PCA was used to explore interannual variability, observe and identify 

similar patterns and the variables that explain the most variance in the 
data, reduce the dimensionality of the dataset and construct biplots 
showing the joint two-dimensional distribution of the variables (Kas
sambara, 2017). PCA biplot graph allows us to visualise the two- 
dimensional distribution of the variables that fall within the principal 
components, observing the common direction of the variables. In this 
way, it detect common patterns between landings and the rest of the 

variables, taking years as observations. If two variables point in the same 
direction, it means that they will have high values in those years. The 
length of the arrow refers to the correlation of the variables with respect 
to the dimensions, so the longer the arrow, the higher the correlation 
between the variables and the dimensions. Variables with positive cor
relations between them are grouped together while variables with 
negative correlations are placed on opposite sides of the graph. For 
selecting the number of principal components, the threshold for mini
mum total variance explained was set at 70%. The FactoMineR package 
was used for performing the PCA and plotting the results (Lê et al., 
2008). 

2.4. Modelling the relationship between commercial landings and 
environmental variables 

The relationship between commercial landings and environmental 
variables was assessed by using linear and nonlinear analysis, basing the 
linear approach on two types of models, multiple linear regression 
(MLR) and generalized linear models (GLMs), and the nonlinear 
approach on generalized additive models (GAMs). In both approaches, 
the response variable was commercial landings while the explanatory 
variables were climatic indices and oceanic variables. The joint use of 
these techniques allows us to compare results from a linear and non- 
linear perspective, knowing that linear models will only explain the 
linear variability of landings and the GAMs models will explain the 
variability of landings that is due to the non-linear pattern. 

The MLR and GLM models were built using the lm() and glm() 
functions of the stats package (R Core Team, 2020), respectively. Prior to 
running the GLMs and GAMs, it was assessed whether the response 
variable was best described by normal or gamma distributions. The best 
distribution was selected graphically and by considering the lowest 
Second-order Akaike Information Criterion for small samples (AICc). 
AICc should be used when the ratio between the number of observations 
and the number of estimated parameters is than 40 (Burnham and 
Anderson, 2004). In our case the number of observations per variable is 
33. The mlnorm(), mlgamma() and AICc()functions were used for this 
purpose. (Moss, 2019; Barton et al., 2020). In this case, the gamma 
distribution was selected (gamma distribution AICc = 279.44, normal 
distribution AICc = 284.69 and Supplementary material; Fig. S13). 
Subsequently, link functions (identity, inverse and log) were assessed by 
building block models (one for each link function) using all the variables 
resulting from the exploratory analysis and the best function was 
selected based on the lowest AICc for the GLMs. 

The implementation of the GAM models was performed with the gam 
() (Wood, 2017). To avoid over-fitting in the non-parametric part, the 
maximum number of degrees of freedom allowed was 3 (k = 4) and we 
used the thin plate regression spline (“tp”) basis. The method of esti
mating the number of degrees of freedom of the smoothing parameter 
was generalized cross validation for unknown scale parameter (GCV.Cp) 
coupled with a double penalty incorporated by the arguments select (=
true) and gamma (Marra and Wood, 2011). The value of gamma was set 
to 1.4 to avoid the known overfitting tendency in GCV. Using this value 
corrects for this to a large extent without compromising model fit and 
without greatly degrading prediction error performance (Kim and Gu, 
2004; Wood, 2017). The link function was selected on a case-by-case 
basis. Once the best model per function was obtained, the selection of 
the best of the 3 models was made on the basis of the validation of its 
residuals.Only the model that met all the conditions for validation of the 
residuals is presented. In our case 2 of the best GAM models presented 
temporal correlation in the residuals. 

For selecting the explanatory variables in each of the types of models 
(MLRs, GLMs and GAMs), an algorithm was developed with the main 
goals of obtaining a model that was significant (all its components being 
significant, p < 0.05) and parsimonious but explained as much vari
ability as possible in the response variable (R2 in MLRs and pseudo R2 in 
GLMs and GAMs). In this way, an attempt is made to cover all possible 
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possibilities in order to find the model with the least loss of information, 
the greatest significance in its variables and the greatest variability 
explained. 

The model selection algorithm is based on the forward direction 
approximation using the AICc as the selection criterion. The algorithm 
will advance in each of its iterations, selecting as best those models with 
the lowest AICc at the beginning of the iteration. The algorithm will 
terminate when the AICc is not improved. In each iteration, new 
branches are opened with each of the selected models, and the branch 
will end when the AICc is not improved. Once at the end, if the final 
model with the lowest AICc has all its variables significant and a higher 
explained variability, the algorithm stops, otherwise it goes backwards 
checking the significance of the variables of the previous models until it 
finds the model with the highest significance in its variables and the 
highest explained variability. It is possible to converge to the same 
model from different branches. 

The models selected were validated by calculating the residuals and 
a set of external errors obtained by comparing observed values and those 
predicted by the models. The residuals were assessed for homogeneity, 
normality (except in the case of GLMs and GAMs using a gamma dis
tribution), independence (due to model misspecification or inherent in 
the time correlation) and most influential variables (Zuur et al., 2009; 
Zuur and Ieno, 2016). In the MLRs, GLMs and GAMs, the ordinary re
siduals (observed value minus model fitted value) obtained through the 
resid() function were used (R Core Team, 2020). The collinearity of the 
predictors was assessed by calculating the Variance Inflation Factor 
(VIF) (vif() function) in the case of MLRs and GLMs (Fox and Weisberg, 
2019) and concurvity (the GAM equivalent of collinearity) (Lee et al., 
2021) (concurvity() function) in the case of GAMs (Wood, 2017). The 
output of the latter function presents 3 indices of concurvity, worst, 
observed and estimate, all bounded between 0 and 1, where 0 indicates 
no concurvity and 1 indicates total lack of identifiability (Wood, 2017). 
Although there is no universal criterion for concurvity, estimated 
concurrence values of <0.5 and at worst <0.8 are generally considered 
acceptable (Barton et al., 2020; Goldshtein et al., 2021; Ross, 2023). 

In the VIF, the reference value was taken to be equal or close to 5 to 
indicate that each explanatory variable is independent of the others 
(Zuur et al., 2009), for the estimated concurvity it was <0.5 and in the 
worst case 0.8. The likelihood ratio test of nested models was used to 
assess the significance of each model (lrtest() function) (Zeileis and 
Hothorn, 2002). For the GLM and GAMs, the pseudo R2 is calculated 
(Zuur et al., 2009). 

Finally, we perform an external validation of the model results ob
tained. For this we use the model-adjusted landings values and the 
actual landings values. The type error measures were calculated: the 
determination coefficient (R2), the root-mean-square deviation (RMSE), 
mean absolute error (MAE), standard error of prediction, as a percentage 
(%SEP) (Ventura et al., 1995), coefficient of efficiency (E2) (Nash and 
Sutcliffe, 1970; Kitanidis and Bras, 1980), average relative variance 
(ARV) (Griñó, 1992), the persistence index (PI) with a 1-year lag 
(Kitanidis and Bras, 1980) and modified Kling-Gupta Efficiency (KGE′) 
(Kling et al., 2012). To be considered the best model, a model was 
required to explain a high level of variance (ARV and E2) and show good 
agreement between observed and predicted values (KGE′), with no time 
lag (PI) and a low level of absolute (RMSE, MAE) and relative (%SEP) 
errors. All analyses in this study were carried out in R (R Core Team, 
2020). 

3. Results 

The application of the hierarchical cluster analysis with DTW dis
tance with centroid shape extraction and hierarchical control according 
to the average method on the oceanographic variables salinity, tem
perature and current velocity modulus generated the following variables 
as a function of depth: surface salinity (5–75 m) or S5–75, intermediate 
salinity (85–125 m) or S85–125, deep salinity (135–525 m) or 

S135–525, surface temperature (5–85 m) or T5–85, intermediate tem
perature (95–225 m) or T95–225, deep temperature (255–525 m) 
T255–525, modulus of surface current velocity (5 m) or UV5, modulus of 
intermediate current velocity (15–335 m) or UV15–335, modulus of 
deep current velocity (385–525 m) or UV385–525. All of them obtained 
as the average of the depth-identified cluster. Thus, the dataset on which 
the analyses were made was the following: fishery variable: commercial 
landings, climatic indices: NAO and AO and oceanographic variables: 
heat flux, salinity flux and the rest of the variables mentioned at the 
beginning of the paragraph. This makes a total of 14 initial variables. 

The supplementary material shows the results obtained after the 
application of the exploratory analysis and the trend analysis (Supple
mentary material; Fig. S2; Fig. S3; Fig. S4; Fig. S5; Fig. S6; Fig. S7; 
Fig. S8; Table S1, Table S2; Table S3). By way of summary, the variable 
S5–75 was eliminated from the initial set of variables for the time series 
clustering, PCA, linear and non-linear models because its vif value was 
higher than 5 (Supplementary material; Table S1). A total of 13 variables 
were used for the latter analyses. Finally, NAO, salinity flux, S85.125, 
S135.525 and UV385.525 had no significant trends. The landings 
showed a significant trend of order 3 in all terms (p <0.001) which is 
upward from 1991 to 1993 and downward from 2003 to 2013 (Sup
plementary material; Fig. S8; Table S3). 

3.1. Time series clustering 

Fig. 1 (lower panel) and Fig. 2 show the time series of the different 
variables analysed. Time series clustering analysis indicated that the 
optimal numbers of clusters for both centroids (PAM and DBA) were 3, 7 
and 8 because in most cases they presented a higher number of optimal 
results per index (Supplementary material; Table S4; Table S5; Table S6: 
Table S7: Table S8; Table S9; Table S10; Table S11). For each of the 
clusters selected, the best centroid was obtained with PAM, except for 3 
where a draw (3/3) was achieved between DBA and PAM. (Supple
mentary material; Table S12). The stability analysis of the 3-cluster with 
DBA centroid solution indicated a convergence of landings with flux 
salinity, T5–85, T95–225, UV5 (|UV| (5 m)), UV15–335 and 
UV385–525. For the 3-cluster with PAM centroid solution indicanted a 
convergence of landings with T5.85, T95.225, |UV|5, |UV|15.335 and | 
UV|385.525. In the case of the 7-cluster solution, a link was observed 
with T5–85 and T95–225. Finally, in the 8-cluster solution, landings 
were grouped with T95–225 and UV15–335. In the results established 
by the optimal numbers of clusters, we observed a common pattern 
characterised by the grouping of landings by water temperature and 
current speed (Fig. 3). In the results established by the optimal number 
of clusters in which the landings were located, a common pattern was 
clear, namely, with higher values between 1990 and 1999 and 
2003–2013, showing the existence of a non-linear pattern among the 
variables (Fig. 4). 

3.2. Annual PCA 

All the assumptions for PCA were met (Supplementary material; 
section anual PCA). The first component explained 23.94% of the 
observed variance, while the second, third, fourth and fifth components 
explained 16.99%, 13.59%, 10.52% and 9.26%, respectively. The 
overall variance explained was 74.28%. The variables contributing the 
most to the two first components were (in descending order): T95–225, 
UV15–335, landings, T5–85 and salinity flux (PC1) and AO, NAO, 
UV385–525 and UV15–335 (PC2). The first and fourth components had 
the highest contribution of landings, 14.18% and 10.43% respectively 
(Supplementary material; Fig. S10). 

The biplots of PC1 had the same pattern as that detected for the 
landings and their relationships with oceanic and climatic variables 
(Fig. 5). The landings were associated with UV15–335, T95–225 and 
T5–85, having in common the same direction and location. Climatic 
indices showed the opposite pattern to landings in all cases (Fig. 6). The 
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PCA biplots clarified the existence of similar patterns between landings 
and the 3 explanatory variables: UV15–335, T95–225 and T5–85 for the 
rest of the components (Supplementary material; Fig. S11; Fig. S12). In 
general terms, the trajectories of the scores of principal components 1, 2, 
3, 4 and 5 showed a non-linear pattern with higher values between 1990 
and 2000 and 2004–2011, although components 2, 3 and 4 had mini
mum behaviours during 2009 and 2010 (Fig. 6). 

3.3. Modelling the relationship between commercial landings and 
environmental variables 

3.3.1. Multiple linear regression models (MLRs) 
The final model obtained included T95–225, UV15–335 and heat 

flux as explanatory variables. These variables explained 38% of the 
variance in the landings. They were all significant (p < 0.05) and in
dependent of each other (VIF values of around 1) (Supplementary 

Fig. 2. Anual time series of the different variables from 1983 to 2015. The intervals in metres (m) refer to the clustering by depth obtained after the application of the 
hierarchical cluster analysis with Dynamic Time Warping (DTW) distance with shape extraction centroid and hierarchical control according to the average method. 

Fig. 3. Time series of the clusters in which the landings are located from 1983 to 2015. a) Optimal cluster number 3, centroid DBA and repetition 3, b) optimal 
cluster number 3, centroid PAM and repetition 4, c) optimal cluster number 7, centroid PAM and repetition 9, d) optimal cluster number 8, centroid PAM y repetition 
1. All the repetitions represented obtained dissimilarity values equal to 0. And in the case of b), the repetition 4 was the one with the highest dissimilarities equal to 0. 
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material; Table S13). The model was highly significant (likelihood ratio 
test p = 0.0012). The residuals of this model were homogeneous and 
normally distributed, showing no strong patterns. The variables T5–85 
and UV385–525 had a weak nonlinear effect. Additionally, we did not 
find any influential values, although we observed a slight time depen
dence (Supplementary material; Fig. S14; Fig. S15). The direction of the 
effect of the variables was negative between 14.10 and 14.45 ◦C, 0.025 
and 0.033 m s− 1 and 0 and 20 W m− 2 (Fig. 7). 

3.3.2. Generalized linear models (GLMs) 
The explanatory variables T95–225, UV15–335 and heat flux were 

included in the final model which explained 43.12% of the variance in 
landings. This model used the identity link function and gamma distri
bution with dispersion and shape parameters of 0.15 and 6.66, respec
tively. It was highly significant (p < 0.001) and all the variables were 
highly significant (p < 0.001) and clearly independent (VIF values of 
around 1) (Supplementary material; Table S14). The residuals of this 
model were homogeneous and there were no influential values. In 
general, they did not show marked patterns, although we detected 
nonlinear effects in T5–85 and UV385–525 (Supplementary material; 
Fig. S16; Fig. S17). As with the MLR, the negative effects on landings 
appeared around 14.10 and 14.45 ◦C, 0.025 and 0.033 m s− 1 and 0 and 
21 W m− 2 (Fig. 8). 

3.3.3. Generalized additive models (GAMs) 
The final GAM used a gamma distribution together with the identity 

link function and included the explanatory variables T5–85, UV15–335 
and heat flux. The dispersion and shape parameters of the gamma dis
tribution were 0.13 and 7.69, respectively. The model was highly sig
nificant (p < 0.001) and all the explanatory variables were significant (p 
< 0.01) and independent of each other (Supplementary material; 
Table S15; Table S16). This model explained 51.50% of the variance in 
the landings. The residuals of this model were homogeneous, with no 
influential values, and randomly distributed, with no time dependence, 

although showing slight patterns in AO, T5–85, S85–125 and 
UV385–525 (Supplementary material; Fig. S18; Fig. S19). Finally, both 
UV15–335 and heat flux had linear effects, while T5–85 had a slightly 
oscillating behaviour. This indicated the presence of negative effects on 
the landings between approximately 16.70 and 17.10 ◦C while for 
UV15–335 and heat flux, negative effects were observed between 0.025 
and 0.033 m s− 1 and between 0 and 20 W m− 2, respectively (Fig. 9). 

3.3.4. Goodness of fit of the best models constructed 
Table 1 lists the error terms of the different models selected. The 

mean variance in landings explained by the models was 41%, the GAM 
yielding the best result (49%), followed by the MLR and GLM (which 
explained 38% and 37% of the variance, respectively). This high level of 
explained variance was reflected in strong agreement between observed 
values and those predicted by the models (KGE’), with an average of 
51%, the best models being the GAM followed by the GLM and MLR. 
Given these results, there was agreement with lower percentages of 
prediction standard errors, with an average of 37%, the highest being 
found for GLM (38.44%) and the lowest for GAM (34.40%). Overall, we 
observed that, in terms of absolute and mean quadratic errors, the best 
model was the GAM and the worst the GLM. Finally, in terms of temporal 
persistence, there were significant lags in all three models, with an 
average of − 0.70. 

4. Discussion 

In this study, we applied a wide range of statistical techniques based 
on trend analysis, classification and dimensionality reduction tech
niques together with several linear and nonlinear models, to detect and 
analyse patterns and relationships of the time series of commercial 
landings of P. bogaraveo and various climate indices and oceanic vari
ables recorded from its fishing area, Strait of Gibraltar. PCA and time 
series clustering have enabled us to identify common patterns while 
MLRs, GLMs and GAMs have allowed us to examine and quantify the 

Fig. 4. Time series of the centroids obtained by the clusters represented in Fig. 2 from 1983 to 2015. In this case, the centroid with PAM prototype of 3, 7 and 8 was 
the same. 
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Fig. 5. PCA biplots of component 1 (X-axis) as a function of the rest of the components 2 to 5 (Y-axis). The orientation and distribution of the variables and the 
individuals (years) grouped according to the change points are shown. Variables and individuals are projected in the space of principal components. a) PC1 vs PC2, b) 
PC1 vs PC3, c) PC1 vs PC4 and d) PC1 vs PC5. 

Fig. 6. Trajectories time series from 1983 to 2015 of the scores of the 5 principal components obtained.  
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effect of the environmental variability on the landings. 
The landings or catches together with their associated parameters 

related to fishing effort (LPUE-landings and CPUE-catches per unit 
effort) have been used as indicators of the status of the population, this 
information being used as a proxy for the abundance (Mugo et al., 
2010). In small pelagic fisheries, such as anchovies or sardines, could be 
considered as true since localisation methods based on electronic sys
tems and ultrasonic waves allow (Aoki and Inagaki, 1993; Massé, 1996; 
Gerlotto et al., 2004) accurate estimation of the real abundance. 
Nonetheless, for the fishery of Blackspot Seabream, no clear association 
has been found between LPUE or CPUE and real abundance. Although 
this species tends to assemble in shoals (Gil, 2006), it is very difficult for 
fishing gear to reach and catch this fish species given the depths at which 
it is commonly found (up to 525 m). A lack of catches, and therefore 
landings at port, may be attributable to various factors, including the 
captain of a vessel lacking sufficient skills to deploy the fishing gear 
effectively, the random movement of the shoals or non-ideal climatic 
and oceanic conditions. For this reason, we do not consider landings to 
be a proxy for abundance although we do understand that greater 
landings may be favoured by better climatic and oceanic conditions 
which could increase the probability of finding and catching the fish 
with the fishing gear. 

We used commercial landings to provide data on fishing activity. 
This type of information has been recognised by various authors to be of 

great value for understanding the dynamics of resources (Teixeira et al., 
2014). Commercial landings at port relate to the amount of the popu
lation that meets the criteria to be caught legally and is sold in ports 
always within the framework for legal sale and distribution. In this 
Spanish fishery, one of the management and control measures consists of 
the introduction of a minimum conservation reference size. From 12 cm 
(total length) to 35 cm (total length), up to the current 33 cm (total 
length) (Council Regulation [EEC] No 3782 85; Council Regulation 
[EEC] No 3094/86; Council Regulation [EC] No 1359/2008; Council 
Regulation [EC] No 1225/2010; and Council Regulation [EC] No 2017/ 
787). 

In the case of Morocco, the regulation sets the minimum size at 25 cm 
fork length (about 28 cm total length) (Gil-Herrera et al., 2021). In 
relation to this, taking both countries together, the mean fish size landed 
between 2005 and 2015 was close to or >36 cm (CopeMed, 2019). The 
changes in legislation have undoubtedly had a strong impact on the 
population, which may be reflected in the third-order trend observed in 
this study. This trend indicates a cyclical pattern in mean annual land
ings, with a first cycle between 1991 and 1993 and a second one be
tween 2003 and 2013. This trend seems to indicate that the effects of 
fishing activity on the population were stronger in the first cycle than in 
the second due to the less restrictive legislation that allowed the capture 
of young and immature fish, reducing population recruitment success 
the following year. These results are consistent with those of Sanz- 

Fig. 7. Effects of the 3 predictor variables of the multiple regression (MLR) on landings from 1983 to 2015. Partial residuals are plotted on the Y-axis and the 
different predictor variables on the X-axis. a) T95.225 = Temperature ◦C (95–255) m, b) UV15.335 = |UV| m s− 1 (15–335) m y c) Flux.Heat = Flux Heat W m− 2. The 
up arrow indicates positive residuals, and thus a positive effect on landings, while the down arrow indicates the opposite. The solid line is a least-squares line and the 
dashed line is a Loess smoother, span = 0.69. 
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Fernández and Gutiérrez-Estrada (2021), who indicated that changes in 
legislation on landings play a crucial role in understanding the evolution 
of the fishery over time. 

The results of time series clustering and PCA pointed in the same 
direction. Both types of analysis indicated that the landings had a similar 
pattern and grouping to those seen for T5–85, T95–225, salinity flux, 
UV15–335 and UV385–525. Similarly, the centroids from the time series 
clustering and the PCA scores both indicated two cyclical components 
with higher values between 1990 and 2000 and 2003–2013. These pe
riods match those described by Sanz-Fernández et al. (2019), Gutiérrez- 
Estrada et al. (2020) and Gil-Herrera et al. (2021) who identify them as 
blocks of time with the largest temperature and salinity anomalies. 
These authors also established that during the years with the greatest 
variability in temperatures and salinity (1990 to 1998), the abundance 
of Blackspot Seabream tended to be lowest, it growing again during the 
first decade of the 20st century. This finding partially differs from that of 
our study, in the fact that the trend in landings was upward during the 
first period while in the second period it was downward and then 
recovered, which may be due to a slight mismatch between landings and 
abundances between 2001 and 2015. Previous authors, using different 
approaches to assess the abundance of the Blackspot Seabream in the 
Strait of Gibraltar, indicate that at the start of the fishery in 1983 the 
biomass was at or above the 1983 landings, which resulted in a 

progressive increase in landings. At the same time as the biomass 
decreased, landings increased to their historical maximum coinciding 
with the historical minimums of biomass. It is during the second period 
that this relationship appears to be uncoupled or out of phase as an in
crease in biomass resulted in a second historical maximum in landings 
years after the biomass maximum. This could indicate a response effect 
of landings coupled with abundance from 1983 to 1999–2000 and 
slightly decoupled from 2001 to 2015. Abundance-biomass data corre
spond to simulated abundances obtained through simulation models 
that incorporate the biological aspects of the species and the dynamics of 
landings. 

The periods identified in the present study characterised by signifi
cant variations in landings dynamics (1990–2000 and 2003–2013, 
approximately) have also been detected in fisheries in other parts of the 
world (Almodóvar et al., 2019; Piroddi et al., 2017; Zhang et al., 2004). 
During these periods, changes in the dynamics of fish production and 
ecosystems were detected, helping to support the hypothesis that 
changes in the environmental conditions affected the dynamics of the 
marine ecosystem and the fish resources in the area (Zhang et al., 2000; 
Zhang et al., 2004). In the ecosystem of the Gulf of Cadiz, an area 
adjacent and connected to the Strait of Gibraltar, Torres et al. (2013) 
analysed the food-web structure and impacts of fisheries on the Gulf of 
Cadiz ecosystem, indicating that the ecosystem is highly stressed, with a 

Fig. 8. Effects of the 3 predictor variables of the generalized linear model (GLM) on landings from 1983 to 2015. Partial residuals are plotted on the Y-axis and the 
different predictor variables on the X-axis. a) T95.225 = Temperature ◦C (95–255) m, b) UV15.335 = |UV| m s− 1 (15–335) m y c) Flux.Heat = Flux Heat W m− 2. The 
up arrow indicates positive residuals, and thus a positive effect on landings, while the down arrow indicates the opposite. The solid line is a least-squares line and the 
dashed line is a Loess smoother, span = 0.69. 
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high impact of fisheries from 1993 to 2009 causing variations on trophic 
levels and that therefore to ensure the sustainability of marine resources, 
management based on ecosystem approaches is necessary. de Carvalho- 
Souza et al. (2021) carried out the first holistic assessment of the Gulf of 
Cadiz ecosystem from 1993 to 2015, identifying two main periods of 
change before 2005 and after 2006. They established that during the 
first stage the ecosystem was characterised by a progressive degradation 
caused by permissive fisheries regulation, climate sensitivity and 
collateral effects of international policy, while in the second stage the 
imposition of appropriate and integrative regulation was able to reverse 
the situation, bringing the ecosystem to a more stable configuration. 
Therefore, our results are in line with the pattern observed for other 
fisheries, which may be indicating global connectivity of the impact on 

fisheries through variations in the catch and landing trends caused by 
changes in the environmental conditions as well as human stressors. 
Furthermore, the conclusions obtained in neighbouring areas are along 
the same lines as for this fishery, where greater lateral efforts in inter
national policies would undoubtedly help to improve the resource, as 
occurred in the Gulf of Cadiz. 

The use of models with linear and nonlinear approaches has enabled 
us to detect significant associations of landings with oceanic variables 
and climate indices, as well as determine the types of effect and quan
tifying them. The three techniques used in this study mainly pointed 
towards the same variables. Multiple linear regression and the GLM 
indicated that the T95–225, UV15–335 and heat flux were clearly sig
nificant, explaining as much as 38% and 43.12% of the total variance in 

Fig. 9. Effects as solid lines/curves of the 3 predictor variables of the generalized additive model (GAM) on landings from 1983 to 2015. Partial residuals are plotted 
on the Y-axis and the different predictor variables on the X-axis. a) T5.85 = Temperature ◦C (5–85) m, b) UV15.335 = |UV| m s− 1 (15–335) m y c) Flux.Heat = Flux 
Heat W m− 2. The up arrow indicates positive residuals, and thus a positive effect on landings, while the down arrow indicates the opposite. 

Table 1 
Goodness-of-fit measures of the best models obtained.  

Model Formula in R* Distribution 
response variable 

Link 
function 

R2 RMSE 
(tonnes) 

MAE 
(tonnes) 

%SEP E2 ARV PI KGE’ 

MLR T95.225+ UV15.335+ Flux.Heat Gaussian Identity 0.38 13.30 10.62 37.78 0.38 0.62 − 0.76 0.46 
GLM T95.225+ UV15.335+ Flux.Heat Gamma Identity 0.37 13.54 10.95 38.44 0.36 0.64 − 0.84 0.51 

GAM 
s(T5.85, k = 4, bs = “tp”) + s(UV15.335, k 
= 4, bs = “tp”) + s(Flux.Heat, k = 4, bs =
“tp”) 

Gamma Identity 0.49 12.11 10.18 34.40 0.49 0.51 − 0.47 0.55  

* Formulas shown in the R programming language. 
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landings. On the other hand, while the GAM also identified UV15–335 
and heat flux as significant, unlike the other two models, T5–85 was 
included instead of T95–225. This latter model explained >50% of the 
variance in landings. Similar results have been obtained by other au
thors for P. bogaraveo in the Strait of Gibraltar. Báez et al. (2014) 
detected negative associations between ocean temperature and landings 
between 1986 and 2006. Similarly, Sanz-Fernández and Gutiérrez- 
Estrada (2021) reported significant correlations between temperature 
anomalies and landings with varying time lags of up to 3 years. We have 
observed that both variables had a direct positive increasing effect on 
landings, in certain ranges. Water temperature is a key variable in un
derstanding fish population dynamics because of its impact on recruit
ment and mortality of the stock and consequently on abundance. It is 
therefore a key factor in understanding the variability of fish stocks 
(Hare and Mantua, 2000; Frank et al., 2005; Morrongiello et al., 2014; 
Perretti et al., 2017; Le Bris et al., 2018; Free et al., 2019; Pershing et al., 
2015). Several studies have highlighted the influence of temperature 
and heat flux on P. bogaraveo biomass in the Strait of Gibraltar from 
1983 to 2015, concluding that both variables play an important role in 
the dynamics of population abundance and that unusually low tem
peratures with low heat flux values could favour recruitment in 
following years and thus explain the increase in landings (Gutiérrez- 
Estrada et al., 2017; Sanz-Fernández et al., 2019). Additionally and 
taking into account a short-medium term effect, temperature is of great 
importance in keeping fish habitats healthy, which in any case will 
favour good fishery performance (Damalas et al., 2007; Mugo et al., 
2010; Giannoulaki et al., 2011). Through otolith analyses of P. bogaraveo 
populations in the Azores, Neves et al. (2021) established that water 
temperature is a factor affecting the growth of individuals. Warmer deep 
waters are associated with slower growth, probably reflecting physio
logical conditions and food availability, which could consequently affect 
the production of the fishery. We can hypothesize that an inverse effect 
of temperature on the growth of P. bogaraveo in the Strait of Gibraltar 
will affect the long-term fishing yield, causing maximum landings to 
take longer to occur as a consequence of slower growth, thus explaining 
the lower landings when temperature rises in a certain range, as indi
cated by the models. 

Regarding the movements of adult fish in the areas of the Strait of 
Gibraltar, these are mainly associated with feeding and breeding (Gil, 
2006). The diet of Blackspot Seabream is mostly composed of fish and 
invertebrates. In the Strait of Gibraltar, the main prey is Sergia robusta 
(mesopelagic crustacean), although it also feeds on fishes mainly Myc
tophidae and Stomiiformes (Polonio et al., 2008). In the Strait of 
Gibraltar, this crustacean and these fish are preyed upon by other spe
cies such as the Atlantic Bluefin Tuna (Thunnus thynnus) (Sorell et al., 
2017; Varela et al., 2020) that could interact with the Blackspot Seab
ream for the same resources. Mesopelagic myctophids are targets of 
Blackspot Seabream. Although the mesopelagic zone is strictly defined 
at depths of 200 to 1000 m (Sutton, 2013), myctophids are characterised 
by carrying out vertical migrations (Giménez et al., 2018) which would 
favour the availability of them in the water column for Blackspot 
Seabream. In this way, landings would be favoured by high availability 
of food for Blackspot Seabream.It is suggested that the largest landings 
are occurring in areas where there is a higher concentration of food for 
the P. bogaraveo, where oceanographic factors combine favourably 
within an environmental window of optimal range, favouring a greater 
predator-prey encounter. 

All the models included ocean current speed as a significant variable. 
Previous studies, based on the use of hydrodynamic models coupled 
with Lagrangian particle tracking, have indicated that Atlantic Jet 
exiting the Strait of Gibraltar influences in the dispersion process and 
semidiurnal tidal currents and spring-neap tidal cycle are the main 
factor determining the horizontal dispersion and the course and 
pathway of eggs and larvae (Nadal-Arizo, 2019; Sammartino et al., 
2019; Nadal et al., 2022). As described by Gil (2006), currents have an 
impact on fish from birth, given that the larval phase of Blackspot 

Seabream is pelagic, and the areas of growth are the coastal waters of the 
Gulf of Cadiz and the Alboran Sea. Therefore, whether fish reach the 
coast from hatcheries strongly depends on current speed. 

In summary, landings could be favoured by hydrodynamic condi
tions that would facilitate the development of the first stages of the life 
cycle (eggs and larvae) thanks to their movement towards areas of 
protection and the predator-prey encounter, resulting in the incorpo
ration of new individuals into the fishery biomass. 

Therefore, we could hypothesize that the effect of water tempera
ture, heat flux and current velocity modulus on the landings creates 
favourable habitat conditions for the continuance of the species, which 
would lead to a greater probability of encounters between the resource 
and the fishing gear. This together with the knowledge of fishermen 
would be translated into a greater landing success. Furthermore, the fact 
that these variables may have a direct impact on population dynamics 
may indicate a better status of the food web and larger number of re
cruits, and consequently, greater landings in the subsequent years. 

Finally, although our best model explained approximately 50% of 
the variability of landings, which is statistically satisfactory, the incor
poration of other variables such as wind speed and direction, chloro
phyll and the tidal cycle could substantially improve the results 
obtained. In this sense, wind speed and direction affect water exchange 
in the Strait of Gibraltar. Wind-induced upwelling on the north coast of 
the Strait of Gibraltar is the phenomenon responsible for the higher 
biological production as the nutrient-rich Mediterranean water is shal
lower, increasing the availability of energy resources for the early life 
stages of P. bogaraveo which, coupled with temporary fishing windows 
during their reproductive period, would result in strong recruitment and 
higher landings in subsequent years. 

On the other hand, the inference of the results obtained in the present 
study on the existence of relationships between fisheries production and 
the environment in which they take place must be interpreted according 
to the limitations given by the statistical techniques employed and the 
quality of the data. In general, the models fit the data well and are 
consistent with other statistical techniques in relation to the relation
ships obtained and with other studies. However, the statistical model
ling techniques employed are based on correlations and therefore 
causality inference is not possible. Furthermore, a very important fact 
that must be taken into account is that the final model obtained is 
conditioned by ecological, statistical and data processing assumptions, 
and these are responsible for steering the final model in one direction or 
another (Austin, 2002; Gordó-Vilaseca et al., 2021). 

To conclude, a comprehensive understanding of how environmental 
variability influences the historical dynamics of commercial landings of 
P. bogaraveo in the area of the Strait of Gibraltar has been carried out. 
For this purpose, a wide range of statistical tools have been used, in 
addition to a substantial oceanographic-climatic database. The Black
spot Seabream being a shared transboundary resource, the incorpora
tion of this fact through the information on landings of the Spanish and 
Moroccan fleets has allowed an objective analysis of the real situation of 
landings of the resource in the area. The results of this study suggest that 
the historical series of commercial landings of Blackspot Seabream in the 
Strait of Gibraltar between 1983 and 2015 follow similar patterns to and 
have significant relationships with temperature, heat flux and current 
speed in specific layers. A decrease in their values, colder waters with 
lower current intensity, would be related to lower fishing yields and vice 
versa. Finally, the fishery of Blackspot Seabream is of great importance 
for the local economy and relies on it being a renewable resource. This 
implies that it is necessary to implement policies that favour manage
ment of the resource based on legality, transparency and sustainability 
considering the effects of both fishing and environmental processes. 
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