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Abstract
Concept Mining is one of the main challenges both in Cognitive Computing and in Machine Learning. The ongoing improve-
ment of solutions to address this issue raises the need to analyze whether the consistency of the learning process is preserved. 
This paper addresses a particular problem, namely, how the concept mining capability changes under the reconsideration of 
the hypothesis class. The issue will be raised from the point of view of the so-called Three-Way Decision (3WD) paradigm. 
The paradigm provides a sound framework to reconsider decision-making processes, including those assisted by Machine 
Learning. Thus, the paper aims to analyze the influence of 3WD techniques in the Concept Learning Process itself. For this 
purpose, we introduce new versions of the Vapnik-Chervonenkis dimension. Likewise, to illustrate how the formal approach 
can be instantiated in a particular model, the case of concept learning in (Fuzzy) Formal Concept Analysis is considered.

Keywords Concept learning · Vapnik-Chervonenkis dimension · Three-way decision paradigm · Formal concept analysis

1 Introduction

Concept mining deals with the extraction of concepts from 
artifacts such as data, traces of behaviors, or collections of 
unstructured data, among others. In a broad sense, the task 
should be understood as a problem on recognizing patterns 
from source data. Its resolution needs to use Artificial Intel-
ligence and Statistics techniques (such as data mining, text 
mining, and variants of statistical learning). However, other 
scientific fields as Cognitive Computing or Psychology are 
also needed.

When faced with this task, the researcher must bear in 
mind that the concept notion itself is subject to various inter-
pretations, some of them accommodated to the nature of a 

particular problem. Such notion is not limited to concept 
extraction based on linguistic patterns (e.g., using WordNet 
[44]). One can also address the problem of extracting con-
cepts with slightly more formalized semantics as for instance 
with Formal Concept Analysis (see a survey of related issues 
in [39]) or even at the level of Semantic Web technologies 
[17].

There are several issues related to Concept Mining as, 
for instance, the granularity of the conceptual structure 
achieved, the richness of the concept repertoire, and the 
treatment of uncertainty. The latter affects the extensionality 
of the extracted concepts; in equivalent terms, the problem 
of deciding the concept membership. Decision-making in 
Concept Mining could be essentially different from other 
decision-making tasks since solving the uncertainty would 
solve, in practice, the problem itself, the concept specifica-
tion. For example, the treatment of concept mining by means 
of fuzzy methods (e.g., [42]) would allow posing the prob-
lem in such a way that general-purpose solutions for uncer-
tainty processing could be applied. It is in this aspect that 
Concept Mining relates to approaches for shaping decision 
regions within the data space, as the so-called Three-Way 
Decisions (3WD) research paradigm.

The 3WD paradigm has emerged as a framework to 
address the challenges related to decision-making pro-
cesses [22, 32, 61, 63, 66]. The ground idea that underlies 
in 3WD is that the domain of a decision-making problem 
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is intrinsically partitioned into two regions. The first one 
-the decided data- comprises those inputs for which the 
decision problem has been solved, split in turn in the set 
for which the answer is positive, and the set containing the 
inputs with negative output. A second region comprises all 
data for which we do not know, for the moment, the decision 
to be made (the boundary region). The analysis of the parti-
tion is prior to the second problem to address: the design of 
strategies for the three regions (see Fig. 3).

The 3WD paradigm aims to bridge ideas between differ-
ent approaches, ranging from well-established fields such as 
Granular Computing [65], to human problem-solving skills 
[62, 64]. Solutions based on 3WD techniques capture dif-
ferent ways of understanding both the decision process and 
the (ontological) nature of positive, negative, and boundary 
(representing undecided, uncertainty) sets. Among other 
approaches, the following are considered: techniques from 
Rough Set Theory [66], assessment of thresholds and deter-
mination of decisions [49], working with interval-based 
evaluations [36], and extensions of Formal Concept Analy-
sis [47, 66, 68, 71], etc. The 3WD is inspiring new ways of 
managing decision-making that broaden the horizon of its 
applicability [5].

Focusing on a topic closer to that of the paper -consist-
ency of Concept Mining from datasets- there are several 
3WD applications in Data Science and related fields (e.g. 
[40, 58]). These cover topics as foundations [5, 30, 62], 
the enrichment of Machine Learning (ML) processes [54], 
applications in the presence of uncertainty or absence of 
data/information [1], semantic tagging and sentiment analy-
sis [24, 69, 70], and incremental concept learning [68].

1.1  Related work on 3WD foundations of Concept 
Learning in FCA

Roughly speaking, efforts focused on the formalization of 
processes for concept learning within the 3WD paradigm 
can be classified in two categories. Those that design the 
formalism from 3WD principles as [23, 29], and those that 
exploit the similarities with 3WD within other frameworks 
that allow formalizing them, such as Formal Concept Analy-
sis or Concept Graphs [19, 27].

The later type of approach is rooted in 3WD principles. 
For example, the notion of Three-Way Cognitive Concept 
Learning introduced through the so-called Three-way 
cognitive operator [29]. This approach is framed within a 
multi-granularity context. It starts with an attribute parti-
tion according to the different ways of deciding data. In 
the cited paper the basic requirements for such an opera-
tor are detailed (an axiomatic approach). This is specified 
employing a pair of applications relating, in both directions, 
the three-way decisions with the sets of the attribute parti-
tion. From the axioms, the notion of concept under such 

applications is defined as: a pair (⟨X, Y⟩,B) formed by a 
3WD decision (X, Y are the positive and the negative region 
resp.) and a subset of attribute partition satisfying two clo-
sure conditions. The first is (X, Y), which is the most effective 
decision for the multi-decision set represented by B. The sec-
ond condition, states that B contains all decision problems 
for which (⟨X, Y) or another less effective 3WD decision is 
a solution. Two particularities of the theory developed in 
that work are that the decision thresholds for each function 
are set as initial parameters (thus prefixing the positive and 
negative sets for 3WD reasoning) and that only uncontradic-
tory three-way decisions are considered (something natural 
for learning in a multi-decision context). The framework is 
also useful to formalize the dynamics and evolution of the 
3WD decision (depending on the variations of the informa-
tion), as well as to establish how the 3WD cognitive concept 
learning would be [23], from a fusion viewpoint. The idea 
guiding the learning in the latter is to find the best approach 
to the decision problem from the multi-granularity [23, 29].

Concerning the second approach mentioned above -FCA 
and related approaches as the source of Concept Learning 
formalization- the two cited works [19, 27] develop concept 
learning approaches in FCA. These can be seen as exten-
sions of Kuznetsov foundational work [26]. The idea can 
be read in 3WD since the attribute to learn classifies the 
data from G (object set in FCA) in positive G+ , negative 
G− , and undetermined G� (the so-called boundary region in 
3WD). The partition of the object set induces three formal 
contexts that, combined, allow to define the version space 
to select the hypothesis (the consistent classifier), as well 
as to characterize different types of sound classifiers. The 
approach [27] further generalizes the idea to work with con-
ceptual graphs, that are not necessarily endowed with a lat-
tice structure, although they are partially ordered by means 
of a specialization relationship, which gives rise to a concept 
lattice on sets of graphs.

The former two approaches share the aim of establishing 
the appropriate framework in which to specify and solve the 
concept learning problem. Such a framework can and should 
be complemented with other two types of studies. On the 
one hand, a study on the computational complexity of the 
problem. And on the other hand, another is on how to decide 
the consistency of the learning processes, designed on the 
constructed hypothesis spaces (a Statistical Learning issue). 
In the present case, how to study the consistency of methods 
based on Empirical Risk Minimization (ERM) using the new 
hypothesis classes.

Concerning the first issue, the complexity was character-
ized by Kuznetsov in [28]. The author presents the main 
complexity results in (FCA-based) Concept Learning. As 
regards counting the (minimal) hypotheses in FCA-based 
learning, the problem is proved to be #P-complete. And 
concerning the decision problem itself (the existence of a 
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positive hypothesis of bounded size), its NP-completeness 
is proved.

The second study would focus on the convergence of the 
learning procedures. For example, whether the empirical 
risk of an ERM method converges to the true risk when the 
sample set increases. In particular, we are concerned with 
the ERM consistency preservation when the hypothesis class 
itself is enhanced (e.g. providing more effective 3WD deci-
sions or refining classifiers). To better frame this problem, 
let us focus for a moment on such enrichment.

1.2  Enhancing the hypothesis class by means 
of 3WD

This paper concerns some of the foundational issues arising 
when reconsidering Machine Learning (ML) models under 
3WD premises. Specifically, how the Learning Process is 
influenced by the transformation of F  , the class of functions 
on the data space U that the ML model can use to learn (the 
hypothesis class). To properly raise the problem, the ele-
ments involved in the issue are sketched here.

Let F
3WD

 be some extension of F  using a particular 
3WD-based enhancing method (previously designed). Such 
an extension will be called 3WD closure. The selected 3WD 
closure should present some features, for instance, to be 
easy to implement (from F  ) and that (partially) solves the 
noncommitement problem. The change of F  by F

3WD
 will 

have an impact on the Learning Process. Consequently, the 
decision-making procedure based on such a process may 
change. This fact suggests addressing two issues.

The first one is foundational in nature, namely what 
consequences the extension of F  to F

3WD
 would have. It 

should describe how such an extension would affect the per-
formance of the model. To study the issue, we will focus 
on Vapnik-Chervonenkis (VC) dimension, -denoted in this 
paper by dimVC(.) . VC dimension is useful for studying PAC-
learning and Empirical Risk Minimization-based (ERM) 
learning processes as well.

The second would deal with the usefulness of the study 
for the first one. That is how the theoretical framework 
developed in the first part of the paper applies to a particu-
lar ML model. We have selected as a case study the (Fuzzy) 

Formal Concept Analysis (F)FCA, considered as a Knowl-
edge Discovery tool for concept mining. The application of 
(F)FCA for Concept Learning is an active research topic in 
both Cognitive Computing and Machine Learning [15, 30, 
37, 39, 68]. Its soundness is based on its natural relationship 
with the traditional notion of concept. The classical view on 
concepts, the classical theory, holds that concepts possess 
a definitional structure. In other words, a concept can be 
defined by specifying (a set of) its properties. In fact, accord-
ing to the International Standard ISO 704, a concept is a unit 
of thought constituted of two parts: its extent and its intent. 
That is, besides the definitional structure formed by proper-
ties, it is the set of elements satisfying it. This definition 
matches with the notion of the formal concept itself in FCA.

In order to familiarize the reader with the basics of FCA, 
let us see a simple but illustrative example using FFCA for 
Concept Learning.

Example 1 Consider the dataset from Fig.  1 and its 
study through FFCA by using the fuzzy formal context 
�1 = (G,M, I) grounded on the dataset, and the fuzzy attrib-
utes M = {young, very young, tall, very tall, Female, Male} . 
The last ones are crisp, while the first ones have the member-
ship functions (resp.):

(see Fig. 1, right). In FFCA, it is usual to take a common 
threshold for attributes to induce crisp concepts. For exam-
ple, one can select as a threshold 1 to obtain a (crisp) formal 
context. However, for characterizing some sets, employing 
concepts is not convenient. If different thresholds for the 
same attribute are selected, one can obtain the formal con-
text �2 shown in Fig 1, down. The associated concept lattices 
are shown in Fig. 2.

�y(x) =

⎧
⎪⎨⎪⎩

1 x ≤ 30
40 − x

10
30 ≤ x ≤ 40

0 40 ≤ x

, �vy(x) = (�y(x))
2

�t(x) =

⎧
⎪⎨⎪⎩

0 0 ≤ x ≤ 160
x − 170

10
179 ≤ x ≤ 180

1 180 ≤ x

, �vt(x) = (�t(x))
2

Fig. 1  Dataset, fuzzy formal 
context and one defuzzification

Age Height(cm.) Sex

Mary 20 180 Female
John 55 178 Male
Ann 32 160 Female
Peter 15 175 Male

K1 young tall very young very tall female male

Mary 1 1 1 1 1 0
John 0 4/5 0 16/25 0 1
Ann 4/5 0 0 0 1 0
Peter 1 1/2 1 1/4 0 1

K2 µy(.) ≥ 0.8 µy(.) ≥ 0.9 µt(.) ≥ 0.9 µt(.) ≥ 0.8 µvy(.) ≥ 0.8 µvt(.) ≥ 0.9 female male

Mary X X X X X X X
John X X
Ann X X
Peter X X X X
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Note  t ha t ,  i n  t h i s  case ,  any  subse t  o f 
P = {Peter, John,Mary} can be characterized -in �2 - 
employing concepts with crisp attributes, i.e., for all A ⊆ P 
there exists a concept C = (X, Y) of �2 such that P ∩ X = A . 
That is, (and restricted to P itself):

• {Peter, John,Mary} ≡ all persons in P (universal set)
• {Peter, John} ≡ male persons
• {Peter,Mary} ≡ very young persons
• {John,Mary} ≡ tall persons
• {John} ≡ tall male persons
• {Mary} ≡ very tall female persons
• {Peter} ≡ very young persons

The example would have the maximum size of a subset with 
maximum semantic differentiation (technically, a shattered 
set using concepts from �2 ). To obtain a similar differentia-
tion for all the individuals, 24 concepts would be needed, 
thus this is not possible with �2 . However, the number of 
fuzzy attributes can be increased by taking other modifica-
tions from the original attributes. A question that arises is 
whether the full object could be shattered by enlarging the 
attribute set with some newer (crisp) modifiers of the fuzzy 
attributes. This issue would be interesting when working 
with potentially infinite datasets and hypothesis classes.

As it can be seen in the example, the step from the dataset 
to FFCA can be considered natural, and the refinement of 
the class of membership functions would be necessary for 
proper concept mining. It is necessary to keep in mind that 
increasing the number of attributes is like increasing the size 
(the variable dimension) of the dataset, so this could bring 
more complexity. Therefore, new issues can arise (some-
thing similar to the curse of dimensionality [7]). To address 
the issue, the VC dimension for a formal context � will be 

introduced in a natural way (Sect. 6). Namely it is the VC 
dimension of the class formed by (the extensions of) the 
concepts of �.

Generalizing the framework sketched in the previous 
example, we can see that any hypothesis class F  on a data 
space G naturally induces a formal context

In general ,  dimVC(F) < ∞ does not imply that 
dimVC(�[F]) < ∞ (although the reciprocal is true). The 
aim in the case at hand is to extend the hypothesis class 
to F

3WD
 (built by some method), before constructing the 

formal context. Thus, the same issue arises: whether 
dimVC(�[F

3WD
]) < ∞ . Furthermore, in case it is true, a new 

question arises: whether it is possible to restrict ourselves 
to finitely generated (f.g) concepts, that is, concepts that are 
characterizable by a finite set of attributes. The requisite 
of only using f.g. concepts is a natural condition since it 
facilitates user acceptability of the discovered concepts by 
presenting simpler characterizations (see e.g. [4]).

Summing up, the Table 1 shows, with a brief descrip-
tion, both the hypothesis classes and the different versions 
of the VC dimension that will be used along the paper, both 
in the abstract definition and in the case of FFCA. The first 
block contains the general notation. The term F

3WD
 denotes 

a generic 3WD-closure obtained using some approach. The 
second block lists the different types of hypothesis classes 
considered in the paper. It includes both the ones induced 
by the attributes of the formal context (the two first ones) 
and the ones built by concept subsets of the concept lattice 
of the formal context. The third block enumerates the four 
VC dimensions studied in the paper.

�[F] = (G,F, I) where I is defined as: gIf ⟺ f (g) = 1

Fig. 2  Concept Lattices associated to the formal contexts from Fig. 1. The left concept lattice corresponds to the formal context �1 taking as 
threshold 1
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Throughout the paper, several results related to different 
VC dimensions are presented. Additionally, many examples 
are introduced to show how the extension of the hypothesis 
class modifies the VC dimension, that could even lead to 
an infinite dimension in some examples (and hence loos-
ing ERM consistency). Among other results, it is verified 
that VC and DVC dimensions agree for any hypothesis 
class (Prop. 3). Within FFCA, the DVC and SVC dimen-
sions agree in formal contexts, even in some cases in which 
a finite hypothesis class is extended to an infinite one. Con-
cerning the extension of the attribute set, it is shown that the 
extension obtained by the so-called contractions (roughly 
speaking, those obtained by varying the thresholds for 
decision-making) preserves the SVC dimension finiteness 
(Corollary 8). Moreover, the study of different dimensions 
on finite generated hypothesis class is carried out, showing 
that SVC dimension is preserved in interesting cases (Th. 2).

1.3  Structure of the paper

The paper aims to address the above issues from a 3WD 
inspired theoretical framework. The next section recalls the 
main elements of the 3WD paradigm, Machine Learning, 
and (fuzzy) Formal Concept Analysis needed along the 
paper. Section 3 is devoted to framing learning within the 
3WD trisecting-acting framework. In Sect. 4, the extension 
of the hypothesis class, by means of some 3WD technique, 
is formalized in functional terms. In Sect. 5, some variants 
of the VC dimension are introduced. These facilitate the 
analysis of the new ML models. The second part of the 
paper starts with Sect. 6, which is devoted to instantiate the 
above ideas for (F)FCA, considered as a model for Concept 
Mining. The main results on the VC dimension are shown 
for this case. The analysis follows in Sect. 7, where the so-
called DVC dimension for FFCA is studied. Several variants, 

related to finitely generated concepts, are also analyzed. In 
Sect. 8 it is proven that a particular type of 3WD closures 
-focused to refining indecision regions for functions of the 
hypothesis class- preserves PAC learnability. The paper 
ends with some final considerations, as well as future work 
(Sect. 9).

2  Background

The cardinal of the set A will be denoted by |A|, by P(A) its 
power set, and by CA its characteristic function. Throughout 
the paper U will denote a data space. The class of evalua-
tions on U is defined as the function class

Likewise, the class of binary functions U{0,1} is analogously 
defined.

2.1  Learning and VC dimension

Any ML model considered here has a hypothesis class F  
associated, where the ML procedure searches the solution 
to the learning problem of a set A (i.e., the decision prob-
lem of belonging to that set), under an unknown measure of 
probability, P(.).

There is a risk function Q ∶ ℝ
2 × F → ℝ to estimate the 

discrepancy between the decision value, y, for the input x 
and the result given by the function chosen as solution, f(x). 
By default, Q(x, y, f ) = |y − f (x)| is selected.

Definition 1 Under the above conditions, the (functional) 
risk of f is

U[0,1] ∶= {g ∶ g ∶ U → [0, 1]}

Table 1  Hypothesis classes and VC like dimensions studied in the paper

Hypothesis Class Description

F The initial hypothesis class

F
3WD Extension of F  by a 3WD method

F[�] The class of attributes as functions on [0, 1]

F[�]
3WD Extension of F[�] by a 3WD method

�(�) The concept set of �
�f (�) The concepts of � characterizable by a finite set of attributes
�≤k(�) The concepts of � characterizable by at most k attributes

 Dimension Description

dimVC(.) Vapnik-Chervonenkis dimension
dim3VC(.) VC dimension of some 3WD-extension of the hypothesis class
dimDVC(., .) Supremum of the VC dimensions of finite subclasses
dim

s
VC
(.) VC dimension of the concept extents of a formal context (SVC)
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When A is fixed, any reference to the set will be omitted in 
the notation, e.g. by writing Q(x, f) instead of Q(x,CA(x), f ).

The purpose of the ML-based method will be then to 
minimize the risk, by finding f0 ∈ F  such that

The learning process will use sample data; independent ran-
dom, identically distributed sets S. The solution proposed 
from S will also be a function of F  . Learning will be driven 
by the goal of minimizing the empirical risk associated with 
the sample data.

Definition 2 The empirical risk of f for the finite sample S 
is defined as:

A process is said to be a Empirical Risk Minimizer (ERM) 
(relative to Q) if it uses the empirical risk as an estimate of 
the soundness of the solution, in the following sense. Sup-
pose that, for a sample Sn of size n, the ERM-based process 
returns a function fn that minimizes the empirical risk for S.

Definition 3 The ERM is consistent if the two following 
limits converge in probability to the value sought;

2.2  Vapnik‑Chervonenkis dimension

A key measure for studying the consistency of ERM is the 
so-called Vapnik-Chervonenkis dimension (VC dimension) 
[52] (see also [10, 51]). Under certain conditions, a hypoth-
esis class with a finite VC dimension guarantees the consist-
ency of the (ERM-based) learning process. The VC dimen-
sion is also useful for other Data Science challenges such as 
Differential Privacy ([72], p. 64).

Definition 4 Let A be a set and B ⊆ P(U) a set class.

• The trace of A in B is the class A ∩ B = {A ∩ B ∶ B ∈ B}

.
• A set A is shattered by B if A ∩ B = P(A).
• The Vapnik-Chervonenkis dimension (thereafter VC 

dimension) of B , dimVC(B) , is the largest cardinal of a 
set shattered by B (it can be infinite).

R(A, f ) = ∫ Q(x,CA(x), f )dP(x)

(1)f0 = argminf∈FR(A, f )

Remp(S,A, f ) =
1

|S| ⋅
∑
z∈S

Q(z,CA(z), f )

R(fn)
P

�������������������→
n→∞

inf
f∈F

R(f ) and Remp(fn)
P

�������������������→
n→∞

inf
f∈F

R(f )

The notation dimVC(U,B) will be used when the aim is 
to make U explicit. The reader can find several illustrative 
examples of computing VC dimension in classical literature, 
as in [10, 35].

In this paper we work with pairs of the form (U,F) where 
F  is a hypothesis class on U. The VC dimension can also be 
defined for a real-valued hypothesis class F  . Given A ⊆ U , 
it is said that A is learned by means of F  if there exists 
f ∈ F  and � ∈ ℝ such that

That is, it is working with the set class

The VC dimension  of  (U,F) i s  def ined  as 
dimVC(U,F) ∶= dimVC(U,BF) . Without loss of gener-
ality, one can only work with set classes BF  defined as 
{pos(f ) ∶ f ∈ F} where pos(f ) = {x ∈ U ∶ f (x) > 0}

A key result in Statistical Learning states that, for any 
hypothesis class with bounded VC dimension, a consistent 
learner induces a PAC learning algorithm by providing a 
large enough training set [10, 31, 35] (see Thm. 1 below). 
In the case of convergence, the VC dimension is useful to 
bound the error of the ML-based algorithm [10, 51]. The 
VC dimension is used to find a bound -independent of the 
underlying distribution P- for the sample size that is needed 
to select a hypothesis with arbitrarily small error, and with 
arbitrarily high probability, no matter which set we are try-
ing to learn. We refer the reader to the references [9, 10] or 
[51] for technical details. Therefore, the VC dimension turns 
out to be a useful tool to analyze ERM-based ML models. 
To refer to this result throughout the paper, it is stated here 
in the following general terms:

Theorem 1 The following conditions are equivalent: 

1. F  is PAC-learnable.
2. dimVC(F) < ∞.
3. ERM is consistent.

The researcher can compare different ML models based 
on their VC dimensions, taking into account that the larger 
the VC dimension, the higher the size of the data sample to 
be used. Additionally, hypothesis classes with excessive VC 
dimension should be avoided since these might overfit [51]. 
That is, these could be focused on irrelevant features of the 
input dataset. Therefore, the aim is to work with a hypothesis 
class with a low VC dimension.

The following function is useful to estimate the growth of 
the VC dimension with respect to the size of the sample set.

∀x ∈ U (x ∈ A ⟺ f (x) > 𝛽)

BF = {f −1(�,+∞) ∶ � ∈ ℝ, f ∈ F}
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Definition 5 Consider (U,F) being F  a hypothesis class on 
U. 

1. L e t  X ⊆ U  .  I t  i s  d e f i n e d 
|X|F ∶= |{Y ⊆ X ∶ Y is learned by F}|.

2. s(U,F)(n)  i s  d e f i n e d  a s 
s(U,F)(n) ∶= max{|X|F ∶ X ⊆ U and |X| = n}.

Therefore 0 ≤ |X|F ≤ 2|X| , reaching the upper bound 
when X is shattered. It is interesting to note that, although 
s(S,F)(n) ≤ 2n , its growth is polynomially bounded under 
finite VC dimension.

Lemma 1  [46]  [Sauer -Shelah -Perles ]  Suppose 
dimVC(F) = d < ∞ . Then

In particular, if n > d + 1 then sF(n) ≤ (e ⋅ n∕d)d.

The question arising here is how to change the VC dimen-
sion if some processing is applied to data. Namely, either by 
(1) some data processing before applying the ML process, or 
either by (2) transforming the values returned by the classi-
fier function. The following result is about the first one (that, 
roughly speaking, is a data pre-processing).

Lemma 2 [6] Let f ∶ U� → U and F  be a hypothesis class 
on U. Let (U�,F◦f ) where F◦f ∶= {g◦f ∶ g ∈ F} . Then 
s(U�,F◦f )(n) ≤ s(U,F)(n) , and equality holds if f is surjective. 
In particular,

and equality holds if f is surjective.

2.3  Three‑way decision modeling 
through evaluation

Among the various 3WD frameworks put forward by the 
research community [63], only those based on evaluations 
will be considered here. Given an evaluation f ∈ U[0,1] , the 
elements belonging to U are classified as accepted, rejected, 
or unknown (identifying 0 as false and 1 as true) by means 
of the decision regions associated to f:

respectively (see [63] for more details). Since the three sets 
form a partition of U, the 3WD decision can be specified by 
the pair (Xf , Yf ) ∶= (POSf ,NEGf ).

s(U,F)(n) ≤
d∑
i=0

(
n

i

)

dimVC (U
�,F◦f ) ≤ dimVC(U,F)

POSf = f −1({1}), NEGf = f −1({0}), and BNDf = f −1((0, 1))

The class of all 3WD decisions on U is partially ordered 
in the following way. Consider that (X1, Y1) is more effective 
than (X2, Y2) [29], (X2, Y2) ⪯ (X1, Y1) (or (X2, Y2) is decision 
consistent with (X1, Y1) ) if X1 ⊆ X2 and Y1 ⊆ Y2.

The 3WD general framework considers two main tasks 
(see Fig. 3): trisecting and acting [64]. The first one splits 
the data space into the three regions, whilst the second one 
is devoted to applying specific strategies to each. Thinking 
in the Learning Problem, the second task has to solve the 
decision on the uncertainty region.

Other different decision regions can be obtained by taking 
thresholds on the evaluations. The idea would be to con-
sider as decided data having an uncertain value close to a 
decision value. There are several ways to formalize the idea 
(including the use of fuzzy logic). For example, to show 
several examples in the paper, the following regions will be 
considered, given � and � with 0 ≤ � + � ≤ 1:

• POS
�,�

f
= {u ∈ U ∶ 1 − � ≤ f (u) ≤ 1} = f−1([1 − �, 1])

• NEG
�,�

f
= {u ∈ U ∶ 0 ≤ f (u) ≤ �} = f −1([0, �])

• BND
�,𝛿

f
= {u ∈ U ∶ 𝛿 < f (u) < 1 − �} = f−1((𝛿, 1 − �))

Please note that this notation extends the previous one (for 
� = � = 0 ), and produce more effective 3WD decisions, that 
is

2.4  (Fuzzy) formal concept analysis

The information format used in Formal Concept Analysis 
(FCA) is organized in the so-called Formal Context, a three 
elements set � = (G,M, I) , where G is a set of objects, M 
is a non-empty set of attributes, and I ⊆ G ×M . For exam-
ple, Fig. 4 (left) shows a formal context describing fishes 

(POSf ,NEGf ) ⪯ (POS�,�
f
,NEG

�,�

f
)

Fig. 3  Trisecting-and-acting model (extracted from [64])
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(objects) living on different aquatic ecosystems (attrib-
utes). Attributes can be considered as boolean functions 
m ∶ G → {0, 1} , defined by: m(g) = 1 iff (g,m) ∈ I.

A formal context induces a pair of operators, which are 
called derivation operators. Given A ⊆ G and B ⊆ M , they 
are defined by

FCA [20] mathematizes the philosophical understanding 
of a concept as a unit of thought, comprising its extent and 
its intent. The extent covers all objects belonging to the con-
cept, and the intent comprises all common attributes valid 
for all objects under consideration:

Definition 6 A formal concept is a pair C = (A,B) of object 
and attribute sets (called extent, ext(C) = A , and intent, 
int(C) = B , of C) verifying that A� = B and B� = A.

The set of concepts of � is endowed with the structure of 
lattice by means of the subconcept relationship, ≤ . The lat-
tice, denoted by �(�) , is complete [20]. The Hasse diagram 
of the concept lattice associated with the formal context of 
Fig. 4 left is shown in Fig. 4, right. In this representation, 
each node is a concept and its intent (extent, resp.) is formed 
by the set of attributes (objects, resp.) included along the 
path to the top (bottom resp.) concept. For example, the bot-
tom concept

is a concept that could be interpreted as euryhaline-fish. 
Note that for this concept there is not a proper term of the 
language within the attribute set to denote it, thus it is some-
thing new. This is an example of how FCA can be used as a 
concept mining tool.

A� ∶= {m ∈ M | ∀g ∈ A (g,m) ∈ I},

B� ∶= {g ∈ G | ∀m ∈ B (g,m) ∈ I}

({eel}, {Coast, Sea,River})

2.4.1  Fuzzy formal concept analysis

There is an extensive bibliography on extending FCA to 
work with vagueness employing Fuzzy Logics [38, 48], 
which has become a subfield of its own, the so-called Fuzzy 
FCA (FFCA). There are general proposals of what a formal 
fuzzy context/concept would be [11, 34], as well as others 
for specific applications (e.g., [41, 50, 57, 67]). Although 
there exist more general approaches, the selected here relies 
on inducing crisp sets by selecting thresholds for fuzzy rela-
tions. More specifically, for the attributes if they are consid-
ered as fuzzy predicates.

Definition 7 A fuzzy formal context (f.f.c.) is a triple 
K = (G,M, I), where I is a fuzzy relation on G ×M (with 
membership relation �I).

Example 1 already shows a f.f.c. The fuzzy relation I 
induces a fuzzy membership function for each atttibute 
m ∈ M , defined by

which would turn it as a fuzzy predicate.
There exist several ways for defining concepts in FFCA 

[50, 67]. The formalization selected here is similar to, for 
example, that of [8], but making the attributes fuzzy instead 
of the object sets.

Definition 8 Let � = (G,M, I) be a fuzzy formal context and 
t ∈ [0, 1] be a threshold.

• The fuzzy derivation operator ′ on objects is 

 a n d ,  o n  a t t r i b u t e s ,  i s 
B� =

{
g ∈ G ∣ ∀m ∈ B ∶ �I(g,m) ≥ t

}
.

• A fuzzy formal concept C is (A,�(B)) such that A� = B 
and B� = A , where �(B) is the fuzzy predicate with mem-
bership function 

�m(g) ∶= �I(g,m)

A� =
{
m ∈ M ∶ ∀g ∈ A �l(g,m) ≥ t

}

Fig. 4  Formal context on fishes, 
and its associated concept 
lattice

K River Coast Sea
Carp ×
Escatofagus × ×
Bream × ×
Sparus × ×
Eel × × ×
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It is simply written �B instead of ��(B) . This way, an struc-
ture analogous to the concept lattice for classic formal con-
texts, can be obtained.

3  On 3WD and learning

As it was already discussed in the introduction, extensions 
of F  , by using some 3WD-method, are considered. Then 
F

3WD
⊆ U[0,1] . The trisecting-and-acting model can be, thus, 

reformulated as follows (Fig. 5): the new class F
3WD

 refines 
the boundary region in the trisecting task. This way, the 
decision-making task has to be refined as well.

In functional terms, the overall result of the refinement of 
the Trisecting-and-Acting model sketched in Fig. 3 should 
be an answer function; a decision function (values in {0, 1} ) 
that extends the decision regions of the initial function.

Definition 9   

• The class of answer functions, ANS , is the class of 
functions U{0,1}.

• Given f ∶ U → [0, 1] , an answer for f is an answer 
g ∈ ANS such that POSf ⊆ POSg and NEGf ⊆ NEGg.

In general, the step from F  to F
3WD

 may not preserve 
decision regions.

Definition 10 Let F  be a hypothesis class

• An operator � ∶ F → F
3WD

 is answer preserving if 

��(B)(g) ∶= min
m∈B

�m(g)

POSf ⊆ POS𝛩(f ) and NEGf ⊆ NEG𝛩(f ) for any f ∈ F

• Let G be a class of functions on [0,  1]. It is said 
that G uniformly preserves the decisions of F  if 
POSf ⊆ POSg◦f and NEGf ⊆ NEGg◦f  for any g ∈ G and 
f ∈ F .

Please note that 3WD-based decision techniques would 
produce an answer function from f, which could be con-
sidered as a post-processing of the output of f. An exam-
ple of an answer that comes from a 3WD technique could 
be the functional version of the well-known Closed World 
Assumption (CWA) from Nonmonotonous Reasoning in AI 
(cf. [21]).

Definition 11 Let f ∶ U → [0, 1] . The closed answer 
induced by f is the function

where cwa is defined by

Thus, (Xf , Yf ) ⪯ (Xfcwa
, Yfcwa)

Since any f ∈ F  induces a default answer fcwa , VC 
dimension can be assigned by default to any evaluation class.

Definition 12 Let F ⊆ U[0,1] . The VC dimension of F  is 
defined as

In functional terms, the description of a 3WD-based 
decision-making improvement process (sketched in Fig. 5) 
consists in the design of two operators,

The first operator submerges F  into F
3WD

 , in order to pro-
vide more learning power (it is possibly the simplest inclu-
sion). The second one will be an operator on F

3WD
 to obtain 

answers. The operator �2 aims to solve the indecision prob-
lem for any f ∈ F

3WD
 and would reflect the modification of 

strategy II (shown in Fig. 5). The composition �2◦�1 could 
be answer preserving.

4  Extending the hypothesis class

At this point, it is necessary to consider the issue of how the 
extension of the hypothesis class would affect the learning 
consistency. To address this issue, by Thm. 1 it would suffice 
to study how the VC dimension changes. In particular, we 

fcwa ∶= cwa◦f ∶ U → {0, 1}

cwa ∶ [0, 1] → {0, 1}

cwa(u) = 1 ⟺ u = 1

dimVC(F) = dimVC({fcwa ∶ f ∈ F})

F ↪
Θ1−−→ F3WD Θ2−−→ ANS (2)

Fig. 5  Enhancing Trisecting-and-acting model for learning by refin-
ing the boundary region
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are interested in the following question, expressed using the 
following notation:

(equivalent to whether the 3WD technique preserves PAC-
learning). Of course, the answer to such a question depends 
on the particular selection of the 3WD closure.

Example 2 (taken from [55]) Suppose F  is a finite set of 
linearly independent real-valued functions on U. Consider 
F

3WD
 the ℝ-vector space generated by F  . Then

Thus, in this case, F
3WD

 preserves PAC learnability.

To illustrate the results, throughout the paper, we will 
use a particular example of 3WD-closure (that we will call 
contraction). Nevertheless, the study can be carried out for 
any F

3WD
.

4.1  Extending the hypothesis class by contraction

The 3WD closure introduced in this section focuses on refin-
ing BNDf .

Definition 13 Given 0 ≤ � + 𝛿 < 1 , the �-� contraction 
function is

The class of contraction functions is denoted by CON  . This 
class is amenable to performing a modification of the tri-
secting task.

Proposition 1 CON  uniformly preserves the decisions for 
any hypothesis class.

A particular case of F
3WD

 using CON  is defined as 
follows:

dimVC(F) < ∞
?

⟹ dimVC(𝛩2◦𝛩1[F]) < ∞,

or dim(𝛩2[F
3WD

]) < ∞

dimVC(F
3WD

) = |F| + 1

c�,𝛿(x) =

⎧⎪⎨⎪⎩

0 x ≤ 𝛿

x 𝛿 < x < 1 − �

1 1 − � ≤ x ≤ 1

Definition 14 Let 0 ≤ � + 𝛿 < 1.

• The �-� contraction of f is 

 (if � = 0 , it is written f �).
• The 3WD closure by contraction of F  is 

The transformation of a function f ∈ F  employing the 
contraction is a relatively simple (computable) operation that 
extends the decision regions (see Fig. 6). In the Fuzzy logic 
realm, the definition of the contraction itself, f �,� = c�,�◦f  , 
shows how the contraction functions can be interpreted as 
(restrictive) external modifiers. Its implementation in the 
ML model is expected to be possible. Moreover, one can 
easily reestimate the empirical risk for f �,�).

By using 3WD contractions, the acceptance/rejection 
regions are expanded whilst the boundary region is retracted. 
Thus produces a more effective 3WD decision,

The problem of learning is transformed through 3WD to the 
problem of finding f , �0, �0 such that:

being R(A, f) the risk associated to the function f. It is equiv-
alent to address the classical problem of learning under ERM 
using functions from Fc instead of F  , with the possibility of 
obtaining a minor risk.

In some cases, the learning problems for both classes, F  
and F

3WD
 are equivalent since both classes allow to learn the 

same sets. However, this might not be true in general (as it 
will be shown when analyzing the case of FCA).

The issue of extending F  is whether the consistency of 
the ERM process is preserved. Or equivalently, whether 
dimVC(𝛩2[F

c]) < ∞ for some �2.

f �,� ∶= c�,�◦f

Fc ∶= CON◦F = {f �,𝛿 ∶ f ∈ F and 0 ≤ � + 𝛿 < 1}

(Xf , Yf ) ⪯ (Xf �,� , Yf �,� )

(3)R(A, f �0,�0 ) = min
f∈F,0≤�+�≤1R(A, f

�,�)

Fig. 6  �, � contraction of a func-
tion of the hypothesis class
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5  Introducing 3WD VC dimension

To address the problem of PAC learnability preservation, in 
this section, a rewriting of the VC dimension is introduced. 
Please recall that, although the study will be made for Fc , 
any 3WD closure F

3WD
 would support a similar one. To sim-

plify the notation, � = 0 will be considered (definitions and 
results are analogous for the general case). Thus, it is neces-

sary to work with the extension of the hypothesis class F  to

(Note that Fc
0
= F ).

Definition 15 The 3WD VC dimension of level � is

R e c a l l  t h a t  t h e  V C  d i m e n s i o n  i s 
dimVC(F

c
�
) = dimVC({fcwa ∶ f ∈ Fc

�
}) . In terms of classes 

of sets associated to functions, the definition would be as 
follows.

Definition 16 Let (U,F) , with F  being a hypothesis class on 
U, and A ⊆ U and � ∈ [0, 1] . 

1. The �-cut of A by f ∈ F  is A ∩ f−1([1 − �, 1]) = A ∩ (f �)−1({1})

.
2. A is 3WD-shattered by Fc

�
 if A ∩ {f−1({1}) ∶ f ∈ Fc

�
} = P(A)

.

Proposition 2 The 3WD Vapnik-Chervonenkis dimension, 
dim3VC(F, �) , is the maximum size of a set 3WD-shattered 
by Fc

�
 (it may be infinite).

As it was already mentioned, it may occur that 
dim3VC(F, �) = dimVC(F) , or even that BFc

�
= BF  for some 

3WD closures. Let us show an example.

Example 3 (extension by contraction preserving VC 
dimension). Consider the class FuzzyCirc of membership 
degree functions associated to circles in the plane with 
center (0, 0).

Fc
�
= {f � ∶ f ∈ F and 0 ≤ � ≤ �}

dim3VC(F, �) ∶= dimVC(F
c
�
)

FuzzyCirc = {f𝜆 ∶ ℝ
2 → [0, 1] ∶ 𝜆 > 0}

where

It is not difficult to check that the VC dimension of this class 
is 1. Given 0 ≤ � ≤ � , the contraction f �

�
 is:

Thus

f o r  �� =
√
(2�)2 ⋅ � + �2 ⋅ (1 − �)  .  T h e r e f o r e 

BFuzzyCirc = BFuzzyCircc
�
 , hence

Bearing in mind that dim3VC(F, �) ≥ dimVC(F) , and that 
both are natural numbers, the following cases are possible: 

1. dim3VC(F, �) = dimVC(F) for all � . In this case, if 
dimVC(F) < ∞ then Fc

�
 preserves PAC learnability.

2. dim3VC(F, �) = ∞ and dimVC(F) < ∞ . The new class Fc
�
 

has more shattering capacity than the original one. By 
Thm. 1 a convergent learning method based on minimiz-
ing ERM, is not available for such �.

3. In the case of finite and distinct dimensions, PAC learn-
ability is preserved.

• dim3VC(F, �) ≠ dimVC(F)  b u t 
lim�→0 dim3VC(F, �) = dimVC(F) . Since the dimen-
sion is a natural number, from a certain � , both 
dimensions are equal (we might reduce ourselves to 
the case (1), being � small enough).

• lim�→0 dim3VC(F, �) ≠ dimVC(F) . In this case, for 
some small enough � , the dimension remains con-
stant and greater than dimVC(F) . Therefore it is 
possible to use contractions of F  to work with the 
regions BNDf � , in order to be able to shatter sets of 
greater size. However, the bounds for empirical error 
could be greater than that of the original hypothesis 
class.

Despite increasing the VC dimension (that may suppose a 
problem), case (3) could be interesting when working with 
discrete data. Even it could be interesting to study what 
would be the maximum value for dim3VC(F, �) (e.g. for 

f𝜆(x, y) =

⎧⎪⎨⎪⎩

1 x2 + y2 < 𝜆2

(2𝜆)2 − (x2 + y2)

(2𝜆)2 − 𝜆2
𝜆 < x2 + y2 < (2𝜆)2

0 (2𝜆)2 < x2 + y2

f 𝜀
𝜆
(x, y) =

⎧⎪⎨⎪⎩

1 x2 + y2 < (2𝜆)2𝜀 + 𝜆2(1 − 𝜀)

(2𝜆)2 − (x2 + y2)

(2𝜆)2 − 𝜆2
(2𝜆)2𝜀 + 𝜆2(1 − 𝜀) < x2 + y2 < (2𝜆)2

0 (2𝜆)2 < x2 + y2

(f �
�
)−1({1}) = f −1

�
([1 − �, 1]) = f −1

��
({1})

dim3VC(FuzzyCirc, �) = dimVC(FuzzyCirc)
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tasks as Categorization). This would imply a better abil-
ity for characterizing datasets (learning) from their avail-
able attributes/features. However, on the downside, the new 
concepts may not be easily interpretable. This issue will be 
revisited in the second part of the paper in a particular case.

5.1  Differential VC dimension

The change of F  by F
3WD

 can be traumatic for the efficiency 
of the ML model because it can cause an increase of both the 
VC dimension (even becoming infinite) and the dimension 
of the dataset itself. However, the ML procedure usually 
works on finite subclasses of F

3WD
 . This option suggests 

studying a version of the VC dimension for finite extensions.

Definition 17 The differential VC dimension of F
3WD

 is

The following result guarantees that it is possible to work 
with finite extensions for any hypothesis class.

Proposition 3 dimDVC(F) = dimVC(F)

Proof Of course dimDVC(F) ≤ dimVC(F) . Consider now 
A ⊆ G a finite set shattered by F  . Then there exists F0 ⊆ F  
finite such that A ∩ BF0

= P(A) . Therefore

hence dimVC(F) ≤ dimDVC(�, �) .   ◻

The relationship between dimVC(F) and dimVC(F
3WD

) for 
a selected 3WD closure, remains to be studied.

A general analysis of the enhancement of F  to F
3WD

 has 
been developed so far. The following sections are devoted 
to instantiating the general framework outlined above, for 
the case of FFCA.

6  The semantic VC dimension

This section aims to study how in FCA the extension/trans-
formation of the attribute set influences the ability of a for-
mal context to approximate a set by using concepts. FCA 
provides a learning model; a formal context � = (G,M, I) 
induces a hypothesis class ext(�) composed of (the extents 
of) its concepts, i.e., from �(�) [26, 28].

The concepts (actually, their characteristic functions) can 
be extended (or transformed) to another class of functions 
through some 3WD method, obtaining new contexts of the 

dimDVC(F
3WD

) ∶= sup

F0 ⊆ F
3WD

|F0| < ∞

dimVC(F0)

|A| ≤ dimDVC(F)

type (G,F, IF) , as it was defined in the introduction. First, let 
us examine the case of FCA (crisp). The so-called semantic 
VC dimension is the straight translation of the VC dimen-
sion to FCA.

Definition 18 Let � = (G,M, I) be a formal context and 
O ⊆ G . 

1. O ⊆ G is learned by � if O is the extent of a concept.
2. � shatters O if 

3. The semantic VC dimension of � (also called SVC 
dimension, denoted by dims

VC
(�) ) is the maximum size 

of an object set shattered by �.

Since |�(�)| ≤ 2|M| , and 2|O| concepts are required to 
shatter an object set O, then dims

VC
(�) ≤ |M| . In functional 

terms, the hypothesis class would be

Example 4 Considering � from Fig. 4, it holds dims
VC
(�) ≥ 2 , 

because

and it can not be 3 since in that case it would be necessary 
that |�(�)| ≥ 8.

6.1  Related notions

The dimension defined above is global and exogenous in 
nature. That is, all the elements of the lattice �(�) (global) 
can be used to shatter any set of the data space; it is not 
restricted to shatter concept extents only (exogenous). This 
feature contrasts with another VC dimension for lattices 
introduced in [12].

In [12] Cambie et al. introduce a dimension of type VC 
partial in the sense that it is computed for subsets F of a 
ranked lattice ⟨L,≤⟩ , instead of the full lattice. Additionally, 
it is endogenous in nature, that is, it concerns those elements 
of the lattice itself that F shatters using the meet operation. 
Formally, it is said that F ⊂ L shatters an element c ∈ L if 
and only if

 From this notion of shattering, the definition of the corre-
sponding VC dimension follows naturally: dim∗

VC
(F) is the 

maximum rank of the elements shattered by F. A lattice is 

O ∩ {ext(C) ∶ C ∈ �(�)} = P(O)

F = {fD ∶ D ∈ �(�) and fD(g) = min
m∈int(D)

m(g)}

{Scatofagus,Bream} ∩�(�) = P({Scatofagus,Bream})

(∀d ≤ c)(∃e ∈ F)[c ∧ e = d]
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called a SSP lattice [12] if the following Sauer-Shelah-Perles 
Lemma version is satisfied for any F

Whether SSP lattices are the relatively complemented ones 
(which are those that does not have any 3-element interval), 
is an open problem.

In the case of finite concept lattices, one can endow a 
concept lattice with the rank height. This is defined as the 
supremum of the lengths of all chains that join the smallest 
element of the lattice with the considered element. In this 
case, any shattered concept in the sense of our definition 
induces the lattice of all its subsets. Therefore the height 
(that we used as rank) of a concept C is |ext(C)|, and conse-
quently, both shattering notions coincide on concept extents.

The so-called contranominal scale represents a bridge 
between the semantic dimension and other studies on con-
cept lattices. Given a set A, the context Nc(A) = (A,A,≠) 
is its contranominal scale. If A is shattered, then the for-
mal context �A = (A,M, I↾A×M) is isomorphic to Nc(A) ([3], 
lemma 29)). In the particular case of A being the extent of a 
concept, then �(�A) is also a sublattice of �(�) . The seman-
tic dimension would be

This way, the following result, stated by Albano (Th. 3 
from [2]), follows from the bound on the size of the concept 
lattice:

In a later work [3], Albano and Chornomaz complement 
the results of [2] by studying B(k)-free contexts. These are 
contexts in which B(k), the boolean lattice of k atoms, can 
not be (order-)embedded in them. In our terms, those that 
dims

VC
(�) < k . In this case:

Moreover, this bound is sharp (Sect. 4 in [3]).

6.2  Semantic dimension and Learning consistency 
in FCA

Via semantic VC dimension, it is possible to analyze features 
of FCA as a model for ML. Please note that the use of FCA 
could involve working with complex ML models.

Example 5 (Formal context with dimVC(M) < ∞ but 
dims

VC
(�) = ∞ ). Let 𝕂C = (ℝ2,H,∈) where H is the set of 

|F| ≤ |{d ∶ d is shattered by F}|

dims
VC
(�) = max{k ∶ (∃A ⊆ G)[|A| = k and Nc(A) sublattice of �]}

dims
VC
(�) ≥

log
(|�(�)|

3

)

log(min{|G|, |M|}

|�(�)| ≤
k−1∑
i=0

( |ext(C)|
i

)

half-planes in ℝ2 , and let Convex be the class of plane closed 
convex sets.

It is straightforward to see that C = (X, Y) ∈ �(�) if and 
only if X is a closed convex set, Y = {h ∈ H ∶ X ⊆ h} and 
X =

⋂
Y  . Therefore, �(�) is the class of convex sets in the 

plane. Thus,

although dimVC(H) = 3

Example 6 (formal context with finite VC dimension dis-
tinct from the VC dimension of the original hypothesis 
class). Let 𝕂R = (ℝ2,F,∈) where

Then dimVC(F) = 2 , but dims
VC
(�R) = 4 because the extents 

of concepts are the axis parallel rectangles and (infinite) 
bands (also parallel to the axes).

According to what has been shown, for the semantic VC 
dimension, finite class approximations can be used.

Corollary 1 dimDVC(�) = dims
VC
(�)

Proof Apply Prop. 3 to the class F = M .   ◻

Definition 19 Let � = (G,M, I) be a formal context and 
X ⊆ M . The semantic granularity is

and

Roughly speaking, the following result states that -for 
formal contexts with finite SVC dimension- it should not be 
expected that many subsets of big concepts can be semanti-
cally characterized.

Corollary 2 Let C ∈ �(�) . If dims
VC
(�) = d < ∞ then

Proof Let C = (X, Y) ∈ �(�).
Since C is a concept, any subset of ext(C) ∩�(�) 

is already the extent of a concept. The reason is that 
i f  A = ext(C) ∩ ext(D) for  some D ∈ �(�) ,  then 
A = ext(C ∧ D) . Therefore

dims
VC
(�) = dimVC(Convex) = ∞

F = {y ≶ c ∶ c ∈ ℝ} ∪ {x ≶ c ∶ c ∈ ℝ}

|X|
�
= |{A ⊆ X ∶ A = X ∩ ext(D) for someD ∈ (�)}|

s
�
(n) = max{|X|

�
∶ X ⊆ � and |X| = n}

|{D ∈ �(�) ∶ D ≤ C}| ≤
d∑
i=0

( |ext(C)|
i

)
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  ◻

Please note that by Thm. 1 the following consequence 
holds, which is interesting for infinite formal contexts.

Corollary 3 Any formal context with finite SVC dimension 
is PAC learnable.

Moreover, due to Lemma 2, the SVC dimension would 
not be increased after applying some type of pre-processing:

Corollary 4 Let � = (G,M, I) and f ∶ G� → G . Let 
�f = (G�,M, If ) where

Then dims
VC
(�f ) ≤ dims

VC
(�).

The new notion of dimension that will be introduced 
comes from the application of the 3WD paradigm, intro-
duced in Sect. 5, to fuzzy formal contexts.

A fuzzy f.c. � = (G,M, I) has a default semantic dimen-
sion, associated with the operator cwa,

where gIcwam ⟺ �I(g,m) = 1 (i.e. cwa(�m(g)) = 1 ). The 
following example will be taken up later.

Example 7 Let 𝕂circ = (ℝ2,ℝ2, I) where

Thus

Therefore Icwa is the identity relationship on ℝ2 , “=”. It is not 
difficult to check that dims

VC
((ℝ2,ℝ2,=)) = 1.

6.3  Semantic differential dimension

The Differential VC dimension (DVC dimension, Sub-
sect.  5.1) can be instantiated for fuzzy formal contexts 
once the extension Fc has been built. The hypothesis class 

|{D ∈ �(�) ∶ D ≤ C}|
= |{D ∈ (�) ∶ ext(D) ⊆ ext(C)}| ≤

≤ s
�
(|ext(C)|) ≤

≤
d∑
i=0

( |ext(C)|
i

)
[Lemma 1]

(g�,m) ∈ If ⟺ (f (g�),m) ∈ I

dims
VC
(�) ∶= dimVC((G,M, Icwa))

�I(p,m) =
1

1 + ||p − m||2 p,m ∈ ℝ
2

cwa◦�m(p) = 1 ⟺ �I(p,m) = 1 ⟺ m = p

associated with � is composed of the membership functions 
of their fuzzy attributes,

Therefore, we will actually work with its contraction, 
Mc

�
∶= F[�]c

�
 . That this,

Definition 20 Let m ∈ M and 𝜀 < 1 . The crisp predicate 
defined by �-contraction, m� , is the attribute defined by

That is,

Remark 1 In this way, it is possible to make the FCA deriva-
tion operator on attributes compatible with the idea intro-
duced in the first part of the paper;

Definition 21 Given F ⊆ Mc
𝛾
 , the crisp formal context 

induced by F  is the formal context

where (g,m�) ∈ IF ⟺ m�(g) = 1 for all (g,m�) ∈ G × F .

This way, for all A ⊆ G and B ⊆ F ,

 and B� = {g ∈ G ∶ 1 − � ≤ �m(g) for all m� ∈ B}}.
Two issues should now be addressed. On the one hand, it 

has already been commented that if the attributes are con-
sidered as data dimensions, the step from F  to Fc involves 
a dimensionality increase. On the other hand, please recall 
that the contractions c�,� apply to the outputs of attributes. 
That is, it is necessary to work with

(in terms of fuzzy logic, these could be, for example, exter-
nal modifiers of the fuzzy predicates as it was illustrated in 
Ex. 1). Thus, the bound on VC dimension presented in the 
Lemma 2 does not apply. As consequence, the considera-
tion of the new class F

3WD
 may cause an increase in the VC 

dimension.

F[�] ∶= {�m ∶ m ∈ M}

Mc
𝛾
= {𝜇𝜀

m
∶ m ∈ M, 𝜀 < 𝛾}

m� ∶= cwa◦��
m
(g)

m� ∶ G → {0, 1}

m�(g) =

{
1 1 − �m(g) ≤ �

0 in other case

{m�}� = (m�)−1({1}) = m−1([1 − �, 1])

�[F] ∶= (G,F, IF)

A� = {m� ∈ F ∶ 1 − � ≤ �m(g) for all g ∈ A}}

CON◦M = {c�,�◦�m ∶ m ∈ M, c�,� ∈ CON}
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Example 8 Consider, for example, the context � from Fig. 7. 
To transform � into a classic formal context it is necessary to 
solve the no decision issue of the attribute m, for each object 
g when 0 < m(g) < 1 . That is, for those objects belonging to 
the region BNDm , by selecting crisp attributes m�.

It is possible to choose more than one crisp predicate for 
the same fuzzy attribute (e.g., as a consequence of using 
several external modifiers). Thus, the SVC dimension can 
be increased over |M|. For example, if only one defuzzi-
fication for each attribute is taken (as occurs with �2 ), it 
would not be possible to shatter the three object set, since 
dims

VC
(�1) ≤ 2 . However, by making multiple defuzzifica-

tions (that is, multiple decisions about the region BND�m
 ), 

such bound could be surpassed (see formal context �2).

In general, it may occur that dimS
VC
(�[F]) = ∞ . This phe-

nomenon suggests to consider the FFCA version of the DVC 
dimension (based on finite classes) in order to avoid this.

Definition 22 Let � = (G,M, I) be a fuzzy formal context 
and 0 ≤ 𝛾 < 1

1. A 3WD defuzzification of � of level � is a set F ⊆ Mc
𝛾
.

2. The differential semantic VC dimension (DVC) of � 
of level � is 

dimDVC(�, 𝛾) ∶= sup
F⊆Mc

𝛾
,|F|<∞

dims
VC
(�[F])

E x a m p l e  9  ( F o r m a l  c o n t e x t  �  w i t h 
dimDVC(�, �) ≠ dims

VC
(�) ) In Fig. 7 two defuzzifications of 

a fuzzy formal context � are shown. The first one considers 
the set {m0.2

1
,m0.2

2
,m0.15

3
} . The formal context obtained has 

a SVC dimension equal to 2. However, for �2 it holds that

(G itself is shattered), so dimDVC(�, 0.4) = 3.

Example 10 (extension of an infinite formal context with 
finite attribute set which preserves finiteness of VC 
dimension) Consider the fuzzy formal context � = (G,M, I) 
being G = {gn ∶ n ∈ ℕ} , M = {m1,m2} and I is defined by

Consider the hypothesis class F ⊆ Mc
1
 defined by

where

dims
VC
(�2) = dims

VC
(�[{m0.2

1
,m0.35

1
,m0.2

2
,m0.3

2
,m0.15

3
}]) = 3

�I(gn,mi) =

⎧⎪⎨⎪⎩

n−1

n
i = 1

1

n
i = 2

F = {m
�(i,k)

i
∶ k ∈ ℕ, i = 1, 2}

Fig. 7  Fuzzy formal context and 
two formal contexts built from 
Mc

�
 using different thresholds, 

and their corresponding concept 
lattices

K m1 m2 m3

g1 1 0.6 0.9
g2 0.7 0.7 0.9
g3 0.8 0.8 0.8

K1 m0.2
1 m0.2

2 m0.15
3

g1 X X
g2 X
g3 X X X

K2 m0.1
1 m0.35

1 m0.2
2 m0.3

2 m0.15
3

g1 X X X
g2 X X
g3 X X X

Fig. 8  The formal context �[F] 
from Example 10

m
ε(1,1)
1 m

ε(1,2)
1 m

ε(1,3)
1 · · · m

ε(1,n)
1 · · · m

ε(1,1)
2 m

ε(1,2)
2 m

ε(1,3)
2 · · · m

ε(1,n)
2 · · ·

g1 1 0 0 · · · 0 · · · 1 1 1 · · · 1 · · ·
g2 1 1 0 · · · 0 · · · 0 1 1 · · · 1 · · ·
g3 1 1 1 · · · 0 · · · 0 0 1 · · · 1 · · ·
...

...
...

...
...

...
...

...
gn 1 1 1 · · · 1 · · · 0 0 0 · · · 1 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
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Thus the relationship I for the formal context �[F] can be 
expressed as (see Fig. 8):

In view of the above, (X, Y) ∈ �(�[F]) if and only if

• X = {gn ∶ k0 ≤ n ≤ k1}  ,  w h e r e 
k0 = sup{k ∶ m

�(1,k)

1
∈ Y} and k1 = inf{k ∶ m

�(1,k)

2
∈ Y} ; 

and
• Y = {m

�(1,1)

1
,… ,m

�(1,k0)

1
} ∪ {m

�(1,k1)

2
,…}

Reasoning as with the intervals in ℝ , it is easy to see that 
dims

VC
(�[F]) = 2.

The above example suggests the following issue. For a 
formal context with an infinite object set, it could be possible 
that the VC-dimension of some defuzzification was infinite, 
even if M is finite. In Sect. 8, it is shown that this is not 
possible using Mc

�
 . Also, finite approximations can be used:

Proposition 4 dimDVC(�, �) = dims
VC
(�[Mc

�
])

Proof Apply Thm. 3.   ◻

A straightforward consequence of the proposition is that 
it achieves PAC learnable classes with concepts from finite 
subcontexts that are induced by finite subclasses of Mc

�
.

Example 11 (Fuzzy formal context with DVC dimension 
different from its default VC dimension) In Example 7 
it was shown that dims

VC
(�circ) = 1 . Consider 𝜖 > 0 . Then

Thus

Therefore, Mc
�
 define the class of circles (with radius 

bounded by �∕(1 − �) ).  Then dimVC(M
c
�
) = 3 ,  and 

dims
VC
(�[Mc

�
]) = ∞ (see Example 12).

�(i, k) =

⎧
⎪⎪⎨⎪⎪⎩

1

k
i = 1

k − 1

k
i = 2

𝜇I(gn,m
𝜀(1,k)

1
) =

{
1 k ≤ n

0 k > n
𝜇I(gn,m

𝜀(2,k)

2
) =

{
1 n ≤ k

0 n > k

m�(p) =

⎧⎪⎨⎪⎩

1 1 − �I(m, p) ≤ �

0 in other case

p ∈ {m}� ⟺ ||m − p||2 ≤ �

1 − �

Corollary 5 Suppose that dims
VC
(�[Mc

𝛾
]) < +∞ . Then the 

class

is a PAC class.

Suppose that dims
VC
(�) < +∞ . Regarding the relation-

ship between dims
VC
(�) and dimDVC(�, �) , by Prop. 4, the 

possible cases are:

• dims
VC
(�) = dimDVC(�, �) . Then, the use of functions 

from Mc
�
 does not provide more shattering capacity. The 

new context preserves the PAC learnability.
• dims

VC
(�) < dimDVC(�, 𝛾) < +∞ . Then there exists 

{m
�j

i
}i,j finite such that 

 that provides an extension of � with maximum VC 
dimension and preserving PAC learnability. This kind 
of formal context could be interesting for concept learn-
ing: a new (finite) set of functions can be added and PAC 
learnability is preserved.

• There would exist the possibility that dimDVC(�, �) = +∞ . 
In this case, the new contexts are not useful to PAC-
learning. It would be necessary to refine the set of new 
predicates to be used. We will see that this is not possible 
if M is finite.

The result corresponding to Lemma 1, which shows that any 
finite subclass of F  can be used, would be the following:

Corollary 6 Suppose dimDVC(�, 𝛾) < +∞ . Then for any finite 
F ⊆ �

c
𝛾

Proof Let d = dimDVC(�, 𝛾) < +∞ . Note that by Prop. 3 we 
have

Let F0 ⊆ Mc
𝛾
 finite, such that dimS

VC
(�[F0]) = d . Note that, 

in general, if F ⊆ F′ , s(�[F],F)(n) ≤ s(�[F�],F�)(n) . We have:

{ext(C) ∶ C ∈ �(�[F]) for some finite F ⊆ Mc
𝛾
}

dims
VC
(�[{m

�j

i
}i,j], �) = dimDVC(�, �)

s(�[F],F)(n) ≤
dimDVC(�,�)∑

i=0

(
n

i

)

dimDVC(K, �) = dims
VC
(�[Mc

�
])



International Journal of Machine Learning and Cybernetics 

1 3

  ◻

7  Learning with finitely generated concepts

The use of FFCA as a conceptual learning model can also 
have its drawbacks, as it occurs with FCA. For example, it 
involves the use of concepts that can not be specified by a 
finite set of attributes. In this section this issue is examined.

In the case of a formal context with finite VC dimension, 
Thm. 1 ensures the convergence. That is, if for each sample 
Sn , a function fDn

 minimizing empirical risk is selected, then

which in the case of FCA and Q(x, y, f ) = |y − f (x)| , will be 
rewritten as:

Hence, in the sample, the difference between A and the cho-
sen concept is close in probability to 0.

For FFCA, the defuzzification of the class Fc
�
 brings the 

learning problem back to FCA, although with the peculiar-
ity that it is necessary to work with a potentially infinite 
attribute set. This could represent a difficulty (thinking that 
the natural processes of conceptualization often involve con-
cept characterization by finite attribute sets). Therefore, it 
is necessary to study ERM consistency using only finitely 
generated concepts, in the following sense:

Definition 23 Let � = (G,M, I) be a formal context.

• C = (X, Y) ∈ �(�) is a finitely generated concept if there 
exists Y0 finite such that Y ��

0
= Y .

• � is finitely generated if any concept of � is finitely gen-
erated.

• �f (�) is the sub-lattice of �(�) whose elements are 
finitely generated concepts.

s(�[ ], )(n) ≤ s(�[∪0],∪0)(n) ≤

≤
dims

VC(�[∪0])
∑

i=0

(

n
i

)

= [Lemma 1]

=
d
∑

i=0

(

n
i

)

[dims
VC(�[ ∪ 0]) = d]

Remp(Sn,A, fDn
)

P
�������������������→
n→∞

inf
f∈F

R(f )

1

n

(
|Sn ∩ A ∩ ext(Dn)| + |Sn ∩ A ∩ ext(Dn)|

)
P

�������������������→
n→∞

inf
f∈F

R(f )

7.1  Some examples

Example 12 (fuzzy formal context with infinite VC dimen-
sion, generated by a finite VC dimension class but with 
not f.g. concepts) Consider the class

the functions are fuzzy membership functions for circles in 
ℝ

2 , f
�,r ∶ ℝ

2 → ℝ is defined by

It is defined the fuzzy formal context

(where �I(p, f ) = f (p)).
It is verified that dimVC(F) = 3 , whilst dims

VC
(�O) = ∞ . 

To see the latter, note, for example, that a segment AB is the 
extent of a concept, since

It is also true for any convex polygon. Thus they are not f.g. 
in �O , although they are f.g. in other formal contexts as �C 
(Example 5).

Example 13 The extents of �f (�C) , the formal context from 
Example 5, are the convex polygons. Therefore, it is also 
dimVC(�f (�C)) = ∞

Example 14 (Formal context with finite semantic VC 
dimension but no finitely generated) Let

It is verified that dims
VC
(�r) = 2 , as any concept of � is an 

angular region, and the VC dimension of this class is 2. 
Consider the concept of �(�r)

It is easy to check that C ∈ 𝔅(�) ⧵ 𝔅f (�).

F = {f
�,r ∶ � ∈ ℝ

2, r ∈ ℝ}

f
�,r(�) =

{
1 ||� − �||2 ≤ r

max{
2r − ||� − �||2

r
, 0} ||� − �||2 ≥ r

𝕂O = (ℝ2,F, I)

(AB, {f ∶ f ∈ F ∶ AB ⊆ f −1({1})}) ∈ �(�O)

𝕂r = (ℝ2, {y ≶ a ⋅ x ∶ a ∈ ℝ},∈)

C = ({(a, b) ∈ ℝ
2 ∶ a ≤ 0}, {y ≥ mx ∶ m ∈ ℕ}��)
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Example 15 (Formal context which is not f.g. but 
dimVC(�f (�)) = dims

VC
(�) ). Let 𝕂≥ = (ℝ,ℝ,≥) . Please note 

that any m ∈ ℝ , considered as attribute, satisfies

With this in mind, it is straightforward to see that

Therefore

However, the concept C = (�,ℝ) is not f.g.

7.2  Preserving PAC learnability working with f.g. 
concepts

Since in conceptualization processes one usually works with 
concepts characterized by a finite number of attributes (that 
is, f.g. concepts), it has to be studied whether it is possible 
to achieve ERM consistency by only using f.g. concepts as 
hypothesis class.

Note that any concept is approximable by f.g. concepts in 
the following sense: for any D ∈ �(�)

since D =
⋀
{({m}�, {m}��) ∶ m ∈ int(D)} . Recall that this 

fact does not imply a finite VC dimension. For the formal 
context �C from Ex. 5dims

VC
(�C) = dimVC(�f (�)) = ∞.

However, it is not necessarily true that any concept is 
finitely approximable by an enumerable sequence of f.g. 
concepts. That is, it is not true in general that any D ∈ �(K) 
can be characterized as

for some sequence {Cn}n of f.g. concepts. This property 
would be useful to replace the concepts involved in ERM by 
f.g. concepts, preserving the convergence required in Def. 3.

Example 16 (Formal context with a concept not approxi-
mable by an enumerable sequence of f.g. concepts). Con-
sider the contranominal scale on ℝ , 𝕂≠ = (ℝ,ℝ,≠) . Then 
dims

VC
(�≠) = ∞ , since the concept set is

Since Y � = ℝ ⧵ Y  , and Y ′′
1
≠ Y ′′

2
 if Y1 ≠ Y2 , then it is easy to 

see that

Therefore, any sequence {Cn}n ⊆ �f (�≠) satisfies

{m}� = [m,+∞)

C = (X, Y) ∈ �(�≥) ⟺ (X = [sup Y ,+∞) ∧ Y = [0, supY])

dims
VC
(�≥) = dimVC(�f (�≥)) = 1

D =
⋀

{C ∈ �f (�) ∶ D ≤ C}

ext(D) = inf
n∈ℕ

{Cn}n

𝔅(𝕂≠) = {(X,ℝ ⧵ X) ∶ X ∈ P(ℝ)}

C = (X, Y) ∈ �f (�≠) ⟺ |Y| < ∞

Thus, the concept (�,ℝ) can not be approximated by an enu-
merable sequence of f.g. concepts.

The former example seems to suggest that there is no 
convergence to the infimum of the empirical risk using f.g. 
concepts. For example, when the infimum is reached with 
concepts that are not approximable by such an enumerable 
sequence. To prove that this circumstance does not occur, 
the strategy has to be reformulated. The idea is to use the lat-
tices instead of working with the limit of the empirical risk. 
The following theorem guarantees ERM consistency using 
f.g. concepts. The proof will be carried out by checking that 
the (finite) VC dimension is preserved.

Theorem 2 Let � be a formal context. Then

Pro o f  I t  i s  o n ly  n e c e s s a r y  t o  p rove  t h a t 
dims

VC
(�) ≤ dimVC(�f (�)).

Let A be a finite set shattered by �(�) . To prove that it is 
also shattered by �f (�) , it suffices to demonstrate that for 
all D ∈ �(�) exists C ∈ �f (�) such that

Since D is finitely approximable, let C0 ∈ �f (�) such that 
D ≤ C0.

For the same reason, for each z ∈ A ∩ ext(C0) ⧵ A ∩ ext(D) 
there exists Cz ∈ �f (�) such that D ≤ Cz and z ∉ ext(Cz) . 
Then

We need to check that the latter concept is f.g.
Since |A ∩ ext(C) ⧵ (A ∩ D)| < ∞ , and

then such concept is f.g.
Therefore, any set shattered by � is also shattered by 

�f (�) . Thus, dims
VC
(�) ≤ dimVC(�f (�)) .   ◻

Finally, combining the above results, we can restrict 
ourselves to f.g. concepts of the 3WD extension �[Mc

�
] . In 

formal terms:

Corollary 7 dimDVC(�, �) = dims
VC
(�f (�[M

c
�
]))

|ext( inf
n∈ℕ

{Cn}n)| = |ext(⋀
n∈ℕ

Cn)| = |⋂
n

(ℝ ⧵ int(Cn))| = 2ℵ0

dims
VC
(�) = dimVC(�f (�))

A ∩ ext(D) = A ∩ ext(C)

A ∩ ext(D) =A ∩
⋂

z∈A∩ext(C)⧵A∩D

ext(Cz)

=A ∩ ext(
⋀

z∈A∩ext(C)⧵A∩D

Cz)

int

( ⋀
z∈A∩ext(C)⧵A∩D

Cz

)
=

⋃
z∈A∩ext(C)⧵A∩D

int(Cz)
��
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Proof It verifies:

  ◻

Example 17 A consequence of the former result is that, for 
the formal context �O from Ex. 12

That is, the same dimension would be obtained for the ERM 
method using only finite intersections of circles.

7.3  Bounding the number of attributes in f.g. 
concepts

Some examples have shown that �f (�[F]) could have infi-
nite VC dimension, although dimVC(F) was finite. For these 
cases, it is interesting to consider other hypothesis classes 
that no longer comes from sublattices. For the sake of com-
pleteness, the following notes describe the class of concepts 
generated by attribute sets bounded by a constant.

Definition 24 Let k ∈ ℕ . The hypothesis class �≤k(�) is the 
class of all concepts of � that are finitely generated by an 
attribute set of size k at most.

Let us see an example in which the finiteness of VC 
dimension could be preserved with these classes.

Example 18 (formal context with finite VC dimension for 
bounded f.g. concepts) Ex. 5 started with the hypothesis 
class H , the set of half-planes in ℝ2 . Then dimVC(H) = 3 
whilst dims

VC
(�C) = +∞ . It is straightforward to see that

since the extent of the concepts generated by the three hyper-
planes are: hyperplanes, angular regions, bands and trian-
gles. In general,

as the concepts are the convex polygons with at most k sides.

The following result would be the translation, to formal 
contexts, of the fact that the finite Boolean combination of 
functions from a hypothesis class with finite VC dimension 
also has a finite VC dimension [14]. This shows that, when 
the formal context is PAC learnable, then there exist a k0 

dimDVC(�, �) = dims
VC
(�[Mc

�
]

[
Corollary 4 for �[Mc

�
]
]

= dims
VC
(�f (�[M

c
�
])

[
Thm. 2 for �[Mc

�
]
]

dimDVC(�O) = dimVC(�f (�O[FuzzyCirc
c
�
]))

dimVC(�≤3(�C)) = 7

dimVC(�≤d(�C)) = 2d + 1

such that �≤k0(�) is not only PAC learnable, but it can also 
be used granting the same error bounds as the original class.

Proposition 5 dims
VC
(�) = supk dimVC(�≤k(�))

Proof Since �f (�) =
⋃

k �≤k(�) , it is easy to see that

By Thm. 2, dims
VC
(�) = dimVC(�f (�)) hence the result is 

proved.   ◻

E x a m p l e  1 9  ( f r o m  t h e  e x a m p l e  1 4 ) 
dims

VC
(�) = dimVC(�≤2(�)).

8  On 3WD closures preserving PAC 
learnability

Different examples showing how the VC dimension changes 
when F  is extended to F

3WD
 have been previously presented. 

This section presents a sufficient condition for the preserva-
tion of VC dimension finiteness, that can be applied to the 
particular case of Fc . The following result will be used.

Theorem 3 [55] Let C =
�⋂n

i=1
Ci ∶ Ci ∈ Ci, i = 1, 2, ..., n

�
 , 

where each Ci is a collection of subsets of U that is linearly 
ordered by inclusion. Then dimVC(C) ≤ n + 1.

The following theorem shows that, for formal contexts 
with a finite attribute set, any extension by contraction has 
a finite VC dimension.

Corollary 8 Let � = (G,M, I) be a formal context. If M is 
finite, then

Proof Suppose that M = {m1,… ,mn} . Note that any 
C ∈ �(�[Mc

1
]) can be expressed as

where Yk ∶= int(C) ∩ {mk}
c
�
 . On the one hand, since

then

On the other hand, it is verified that Y �
k
= {m�k}� taking

dims
VC
(�f (�)) = sup

k

dims
VC
(�≤k(�))

dims
VC
(�[Mc

�
]) ≤ |M| + 1

C = (X, Y1 ∪⋯ ∪ Yn)

(Y1 ∪⋯ ∪ Yn)
� = Y �

1
∩⋯ ∩ Y �

n

ext(C) =
⋂

1≤k≤n
Y �
k

�k = inf{� ∶ m� ∈ Yk}
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(since if 𝜀 < 𝜀′ , then {m𝜀}� ⊆ {m𝜀� }� ). Therefore

For each m ∈ M the class Cm formed by the extents of the 
concept set

is linearly ordered under ⊆ . Thus the assumptions of Thm. 
3 are satisfied, hence

  ◻

The above proof can be adapted for any 3WD closure 
obtained by extending the positive sets of each attribute as 
follows (see Fig. 9):

Theorem 4 Let � = (G,M, I) with |M| < ∞ . Suppose that 
the 3WD-closure has the structure

where each Fm where m ∈ F  and the class set 
{POSf ∶ f ∈ Fm} is linearly ordered. Then

Proof To adapt the above proof, let

ext(C) =
⋂

1≤k≤n
{m�k

}�

{({m�}
�, {m�}

��) ∶ � ∈ [0, 1]}

dims
VC
(�[Mc

�
]) ≤ |M| + 1

F
3WD

=
⋃
m∈M

Fm

dims
VC
(�[F

3WD
]) ≤ |M| + 1

F∗ ∶= F ∪ {fG ∶ G ⊆ F}

where fG(x) ∶= ming∈G g(x) . Note that for any G ⊆ F

and that Fm
∗ is linearly ordered. Reasoning as the 

above result, it has dimVC(�[F
∗]) ≤ |M| + 1 . Since 

dimVC(�[F]) ≤ dimVC(�[F
∗]) , we have the result.   ◻

9  Conclusions, related and future Work

This paper formalizes and analyzes the impact of the 3WD 
paradigm on ML models throughout the study of (variants 
of) the VC dimension. The study has been carried out at 
two levels. The first and more general one concerns the 
enhancement of the hypothesis class by means of some 3WD 
method. The idea lies in the fact that any 3WD technique 
that reduces the boundary regions of the hypothesis impacts 
on the VC dimension. Its finiteness is essential to preserve 
ERM consistency.

The second level concerns a case study instantiating the 
general analysis to (F)FCA, understood as a model for con-
cept mining (or categorization) from data. The starting idea 
has already been considered in other works (e.g., [19, 26, 
30]). In the present approach, the hypothesis class is the 
class of definable sets (the extents of concepts). The option 
of using only definable sets is not a new idea (e.g. o-min-
imality and VC dimension in [13]). In this work, we show 
how to extend the description language (i.e. attribute set) 
using a particular 3WD closure, Mc

�
 . However, the analysis 

can be performed for other options.

POSfG =
⋂
g∈G

POSg

Fig. 9  Extension of 
� = (G,M, I) according to the 
hypothesis of Thm. 4. To build 
�[

⋃
m∈M Fm] , each m ∈ M is 

expanded to a linearly ordered 
class Fm . � is an immersion, 
defined as �((X,Y)) ∶= (Y �,Y ��)
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There exists other multi-source search that aims to 
improve the quality of information (which enriches learn-
ing in turn) to enhance decision procedures. For example, 
for agents [59] and multi-source information systems [45], 
and even for combining both in multi-agency [36, 49]. We 
believe that the approach developed here can enhance such 
works and others as [30]. In the latter, Li et al. analyze how 
to learn one exact or two approximate cognitive concepts 
from a given object set or attribute set. Our proposal can be 
seen as complementary to that of [67] where authors seek 
to minimize the use of attributes by associating to them an 
estimation of their significance.

Our formalization can also help to enrich other 
approaches. For example, those addressing the granularity of 
selection/updating [30, 33, 53], as well as those addressing 
the management of data dynamics [33]. The analysis of both 
SVC and DVC dimensions for different hypothesis classes 
might be useful to analyze other (incremental) concept 
learning approaches [23, 29, 60, 68]. The consideration of 
more effective 3WD-decisions for shattering, complements 
-to some extent- the cited works. For example, allowing the 
use of 3WD-closures that imply managing contradictory 
3WD decisions (that is to say, it can exist (X1, Y1) , (X2, Y2) 
with X1 ∩ Y2 ≠ � or X2 ∩ Y1 ≠ � ). This extension could be 
useful to decision reconsideration. Moreover, due to the goal 
of estimating VC dimension, we use different (variable) 
thresholds for building 3WD-decisions. This fact differenti-
ates it from the above (multi-decision) 3WD approaches in 
that they are prefixed to build the 3WD cognitive operators 
[23, 29].

Other approaches that consider the idea of classifier spe-
cialization, in the context of FCA, were already mentioned 
in the introduction [19, 27]. In the first one, a specialization 
relation on the classifiers (thought as conceptual graphs) 
endows the hypothesis class with a semilattice structure. The 
second is focused on the version space, starting from three 
formal contexts induced by positive, negative, and unde-
cided examples. Its characterization using the correspond-
ing Galois connections allows, for example, to isolate the 
elements that can be classified positively for at least one 
classifier of the version space. Furthermore, working with 
the semilattice structure of the classifiers, the existence of 
a minimal positive hypothesis is granted. Both papers work 
on the specification of the version space and the existence of 
classifiers satisfying different requisites. We think that our 
approach could be adapted to estimate ERM consistency of 
learning procedures working on different hypothesis classes 
(subclasses of classifiers of the version space), in the case of 
infinite data spaces.

The use of the DVC dimension suggests a balance prob-
lem. On the one side, the need to manage a relatively small 
number of attributes (data dimensions), and on the other 
side, the use of a greater number of them implies achieving 

richer categorizations. The reduction of the number of 
attributes allows a better specification of the knowledge, for 
which factors such as the sensitivity to cost [16, 25] could 
be considered. Furthermore, the refinement of the speci-
fication facilitates the interpretation of concepts obtained 
by data processing [56]. The design of criteria to select (a 
minimal set of) adequate properties (features) represents an 
issue to solve in several 3WD models [18, 43]. Any attrib-
ute selection could modify the VC dimension. Thus, it will 
have an impact on error estimation. In the case of the DVC 
dimension, a selection exists. However, we do not deal 
with the minimal attribute sets. Thus, we are not concerned 
with selecting a minimal hypothesis class F ⊆ Mc such that 
dims

VC
(�[F], �) = dimDVC(�, �) . Moreover, no attempt has 

been made to satisfy some additional constraints, for exam-
ple, that a class contains only attributes that actually say 
something relevant about the objects [56]. Its refinement 
would represent a type of attribute reduction.

The attribute reduction problem was first considered by 
Ganter and Wille in seminal works [20]. The present case 
is slightly different and raises some algorithmic questions 
(in line with [67]), which will be the aim of future work. 
Another future research line is the analysis of the impact 
of techniques to optimize the SVC dimension, by studying 
the Attribute Topology [68] associated with defuzzifica-
tions. Algorithms working on this structure may offer more 
efficient solutions to the computation of VC dimension. In 
addition, the impact on implications of 3WD-closures will 
be considered in the future, following ideas of the paper [3].
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