
An Exploratory Framework for Intelligent Labelling
of Fault Datasets

Muhammad Rizwan
Department of Computer Science

GC University
Lahore, Pakistan

rizwanabuahmad@gmail.com

Zulfiqar Habib
Faculty of Information and Technology

COMSATS University
Islamabad, Pakistan
drzhabib@cui.edu.pk

Sohail Sarwar
Faculty of Information and Technology

COMSATS University
Islamabad, Pakistan

sohail.sarwar@seecs.edu.pk

Muddesar Iqbal
Department of Computer Science

London South Bank University
London, Engalnd

m.iqbal@lsbu.ac.uk

Muhammad Safyan
Department of Computer Science

GC University
Lahore, Pakistan

m.safyan@gcu.edu.pk

Dr. Dhafer Almakhles
College of Engineering

Prince Sultan University
Riyadh 11586, Saudi Arabia

dalmakhles@psu.edu.sa

Abstract—Software fault prediction (SFP) has become a pivotal
aspect in realm of software quality. Nevertheless, discipline of
software quality suffers the starvation of fault datasets. Most
of the research endeavors are focused on type of dataset, its
granularity, metrics usedand metrics extractors. However, spo-
radic attention has been exerted on developmentof fault datasets
and their associated challenges. There are very few publicly
available datasets limiting the possibilities of comprehensive
experiments on way to improvising the quality of software.
Current research targets to address the challenges pertinent to
fault dataset collection and developmentif one is not available
publicly. It also considers dynamic identification of available
resources such as public dataset, open-source software archieves,
metrics parsers and intelligent labeling techniques. A framework
for datasetcollection and development process has been furnished
alongwith evaluation procedure for the identified resources.

Index Terms—Software bugs, Software faults, Software met-
rics, Metrics extractor, Threshold, Expert Opinion

I. INTRODUCTION

SFP is the process of identifying the fault prone modules
of a software system. It allows practitioners to optimally
allocate the testing resources on parts that are identified
as faulty compared to other modules of the software
system. This leads to the reduction of testing time and
improves its performance. SFP models are developed using
software fault datasets. These SFP models can be applied
to software under development/test. Hence practitioners
can identify defect-prone parts of a software system. SFP
research community is more active in recent years than ever
before[1, 2]. Likewise,reviews, SLRs, and mapping studies
have also been published quite frequently[1–20]. Such aspects
are clear evidence for acceptance and indispensability of
SFP process. However, software defect dataset is one of the
primaryrequirements for process of SFP[8].
SFP empirical studies have been observed of inclination
towards quality of data and suffer from limited generalizations.
The main reasons are non-availability of data and systematic

procedures of data collection. Dataset is a collection of
multiple records/instances that comprises of one or more
metrics and a label. The label is either a dichotomous
variable(such as presence or absence of fault) or a numeric
variable (such as number of faults). A wide variety of datasets
has been used for SFP that have been divided into three
categories based upon their availability: public, partially
public, private [15]. Public datasets refer to the dataset
wherein the metrics values and the fault data is publicly
available for all the modules in a software system. In a
Partially public, usually, the source code and fault data
is available, but not the metrics values, which need to be
extracted from the source code and mapped with the fault
data from the repository [15]. Finally, the Private datasets
do not provide source code as well as fault information, so
the studies based on these datasets may not be repeatable. In
addition to these three types, we have identified two more
types: Partially private and Absolute public. In Partially
private only source code and/or metrics values are available
without fault information. However, we need to employe
some existing labeling techniques for dataset labeling. This
type is further split into three different types based upon
the availabilityof any of metrics values and/or source code.
Finally, Absolute public is the public dataset having source
code availability also. Table I shows five types of dataset.
The SLR from years 1991 to 2013 concludes that 23% of the
papers use a private dataset, while 87% of papers use public
dataset [12]. This implies that researchers are more inclined
towards public datasets. The reason is the least availability
of fault information, in other words, lack of labeled dataset.
Catal and Diri [20] conduct a systematic literature review
(SLR) from the years 1990 to 2007. They conclude that
69% of papers have private datasets published before 2005,
which becomes 48% after 2005. SLR conducted by Radjenvic
et al. [15] covers the studies published between 1991 and
2011 declares that 62% of the studies used private, 22%



partially public and only 22 public datasets. Ronald reports
that from 1996 to 2012, 57% of the studies used publicly
available datasets. Likewise, [14] concludes that 64.89% of
the research studies published from Jan 2000 to Dec 2013
used public datasets and 35.21% of the research studies used
private datasets.

TABLE I
DATASETS TYPES W.R.T. AVAILABILITY OF METRICS VALUES, FAULT

INFORMATION, AND SOURCE CODE

Type of dataset Metrics’
values

Fault
information

Source
code

Absolute private 7 7 7

Private 7 3 7
Partially level-1 3 7 7

Private level-2 7 7 3
level-3 3 7 3

Partially public 7 3 3

Public 3 3 7

Absolute public 3 3 3

This collectively implies that researchers are more inclined
towards public datasets. The reason is the least availability of
sources for developing partially public/private datasets. The
sources include (but not limited to) fault information, software
source code, metrics extractor, etc. The research community
performs sporadic attention to the problem. Mostly, the studies
discuss the type of dataset, its granularity [2, 3, 5, 10], metrics
used and sometimes metrics extractor[4, 9, 10, 21]. However,
there is a lack of comprehensive study that addresses the issues
specific to datasets i.e. identification public dataset and how
to develop new dataset if one is not publically available.
The objective of current research is to provide the information
about basic sources of fault datasets and then providing a
framework for developing SFP datasets, in case of non-
availability of sources to perform the SFP task.
Rest the document is structured as follows: Section II briefly
discusses the problems related to datasets. Section III describes
the methodology of current work. Section IV identifies the
public dataset. In the absence of a public dataset alternate
option is to use software archives, which is discussed in
Section V and parsing metrics in Section VI. Since SFP
requires the labeled dataset. This requirement can be met
by either relating the fault information achieves or synthetic
labeling techniques, which are discussed in Section VII.

II. LITERATURE REVIEW

SFP research community is more active in the recently years
than ever before[1, 2]. Likewise,reviews, SLRs, and mapping
studies are also frequently being published. Since our focus is
on the dataset related aspect sporadic attention has been given
to it. This section briefly discussed such studies in reverse
chronological order.
Shabby et al. [3] focused on the code smell related studies
and the dataset used. Amongst the seventeen studies, fourteen
studies used open-source systems, while three studies used
industrial systems. The article identifies the metrics and size

of datasets used in each study.
Canedo et al. [4] performed SLR on the studies published
from 2007 to 2018. The authors identify metrics extractor
parsing used in the selected studies.
Hoang et al. [5] identified 98 studies published between
1995 to 2018 while focusing on the preprocessing/modeling
technique, kind of datasets, and performance metric used in the
selected studies. Regarding datasets, only types of the dataset
being used by the SFP community are discussed which include
public and private datasets. They further classified the used
datasets into seven classes; Apachi, Promise, Mozilla, Eclipse,
NASA, Student developed, and others.
Karu and Singh [6] identified the datasets used for the investi-
gating of refactoring activities on software quality. The authors
also provided an insight into the tools available for code smell.
The article reported that 26 primary studies provide sufficient
detail of the datasets used in 142 primary studies with 294
distinct datasets. Since, 15 datasets are used by more than
three studies. They provide three types of information of the 15
datasets; datasets name, programming language, dataset type,
and studies used them. The article included only three studies
related to fault prediction.
Sandeep and Santosh[7] discussed various dimensions of
SFP. However, the study has a very shallow focus on the types
of datasets, metrics extractors, and public source code and bug
repositories.
Li et al.[8] listed ten datasets repositories used in the studies
published from January 2014 to April 2017, while providing
few properties of each repository like number of projects,
metrics’ coverage, granularity, etc.
Mayra Nilsson [9] conducted the most comprehensive known
study on available metrics extractors. The author identified
and evaluated 130 commercial and non-commercial metrics
extraction for multiple languages such as .NET, Ada, C,
C++, Java, JAvaScript, Perl, PHP, Phyton, and Ruby, etc. The
author informed about the metrics covered by the identified
extractors. While drawing six evaluation criteria the author
shortlisted eight metrics extractors; QAC, Understand, CP-
PDepend, SourceMeter, SonarQube, Eclipse Metrics Plugin,
CodeSonar, and SourceMonitor.
A study conducted by [10] aimed to illustrate the taxonomy
of the methodologies used in SFP. The authors listed the four
datasets frequently used by the SFP community along with the
list of available metrics extractor.
S. S. Rathore [11] provided an overview of the public, partial
public, private datasets used since 1993 to 2017.
Hosseini et al. [2] provided a comprehensive list of public
and private datasets used in the 46 primary studies published
in the domain of cross-product defect prediction until 2015.
R. Malhotra [12] drawn five classes of datasets used in the
studies published from January 1991 to October 2013. The
authors briefly described the datasets and their corresponding
studies.
R. S. Wahono [14] performs an SLR on the studies published
from Jan 2000 to Dec 2013. The objective of the studies to
analyze the datasets, methods, and frameworks used by the

Page 2 of 11



SFP research community.
Mausa et al. [13] performed a study on approaches and tools
used in the development of SFP datasets. The authors pro-
vided a detail data collection procedure while identifying and
analyzing a comprehensive list of 35 extractors for software
product metrics.
Ronald et al. [? ] identifies 95 primary studies in their SLR.
The authors listed all the dataset used in the primary stud-
ies along with the programming language of corresponding
datasets.
Radjenović et al. [15] selected 106 primary studies published
from 1991 and 2011. The authors reported that 62 of the
studies used private, 22 partially public and only 22 public
datasets. They identified the programming languages and
software development life cycle used to implement software
from which data sets are extracted.
Bassey and Obeten [16] performed SLR and included 29
studies. They identified metrics extractors for building private
or partial public datasets. Moreover, they listed the public
datasets used by the studies. They reported that industrial
software systems are used by 79% of the studies while
non-industrial (student) software systems are taken for the
collection of datasets in 21% of the applications. Moreover,
they concluded that programming language of the software
systems used in the studies are C++, Java with 54% and 43%
respectively.
R. S. Wahono [17] plotted the percentage usage of private and
public datasets across the studies published between 2000 and
2013. Moreover, the authors provided information regarding
trends of usage of private and public datasets over time.
Hall et al. [18] discussed the Quality of dataset and fault
severity carrier datasets used by 208 studies published from
January 2000 to December 2010.
C. Catal [1] investigated 90 software fault prediction papers
published between year 1990 and 2009. The authors briefly
described the datasets with their types and metrics used in the
primary studies.
Kayarvizhy and Kanmani [? ] design an automated object
oriented metrics extractor having generic framework. The ex-
tractor converts the source code into XML format, from which
metrics can be computed. The authors took two extractors
CKJM and JMT to compare the metric values and compare
results with their extractor.
Catal and Diri [19] investigated the performance of machine
learning algorithms on large and/or public datasets when
different metrics metrics selection techniques are employed.
Catal and Diri [20] identified the kind and distribution of
dataset which are mostly used for fault prediction in the studies
published before and after 2005.
Mostly, the studies discuss the type of dataset, its granularity,
metrics used and sometimes metrics extractors are discussed.
However, there is a missing comprehensive study that ad-
dresses the issues specific to datasets i.e. available public
dataset and how to develop new dataset if one is not publically
available. Our study differs from the existing studies in both
the aim and scope of the selected studies. The objective of this

article is to provide the available resources and then providing
tools, techniques, and methodologies to address if the required
resource is not available in building a dataset to perform the
SFP task.

III. METHODOLOGY

We put an effort to develop a systematic solution of the
problem, which is shown in Figure 1. After that, we disclose
and resolve every trap in the process that can benefits the body
of knowledge.

Fault data 
available?

Synthetic 
Labeling

Software 
Fault dataset

End

Star t

Relevant
metrics 

extracted?
NSource code 

available?

Metrics 
extraction

Y

Fault mapping

N
Message: SFP 

cannot be 
performed

Y

Y

N

1

3

2

7
6

4

5

8 0

9

Fig. 1. Roodmap to meet the requirement of fault dataset

TABLE II
DATASET TO PATH MAPPING

Paths
(Best to
worst)

Absolute
private Private

Partially
private

(Level 1)

Partially
private

(Level 2)

Partially
private

(Level 3)

Partially
public Public Absolute

public

012379 3 3
01452379 3 3

012679 3 3 3 3
01452679 3 3 3 3

01489 3 3

Keeping in view the roadmap to the problems’ solutions,
we first identify the sources of public datasets, which is ex-
pected to have metrics’ information along with fault mapping.
However, in the absence of such a dataset, the procedure is
shown in Figure 1 guides to develop dataset. That comprises
the recognization of the open-source software achieves for the
input to metrics extractors. Once the metrics information is
collection labeling is done either by analyzing fault informa-
tion (if it is available) or applying synthetic labeling techniques
(if fault information is unavailable).
We can be lucky to have multiple sources to build fault data.
In such scenario, we can follow multiple paths to the graph
shown in Figure 1. Like, if we have absolute public dataset,
we can follow paths {012379}, {01452379}, {012679}, and
{01452679}. Table II shows the possible paths that can be
followed in the presence of corresponding specific datasets.
However, in such case we should follow the best path. The
rows in the Table II is sorted from best to worst path.

Page 3 of 11



Therefore, one should follow the best solution in the presence
of multiple possibilities.
We believe the procedure is applicable in industrial research as
well as in academics. We review the requirements, limitations,
and available resources to SFP community related to datasets
collection/development. More specifically followings are our
research objective:

1) Identifying the public dataset to perform SFP activities.
2) What are tools for extracting metrics from the software

source code?
3) Identifying the open-source software archives

with/without fault information?
4) Identifying the techniques to associate fault information

with the metrics data
5) Identifying the fault labeling methodologies/techniques

proposed/used by the SFP community.
Keeping in view the above objectives we draw the following
inclusion/exclusion criteria:

1) The datasets that comprise only the static product code
metrics are included. However, the datasets that comprise
process metrics are excluded.

2) The tools that extract static code metrics are included.
Therefore metrics extractor that requires other software
artifacts (like use case diagrams etc.) are excluded, like
SDMetrics[22]. This also excludes the tools which are
used to extract dynamic/semantic metrics or used to
visualize metrics from the source.

Since our primary focus is on the dataset exclusively, Section
IV identifies the public dataset. In the absence of a public
dataset alternate option is to use software archives (Section
V) and parsing metrics1 using metrics extractor (Section VI).
Since SFP requires the labeled dataset. This requirement can
be met by either relating the fault information achieves or
synthetic labeling techniques, which are discussed in Section
VII.

IV. PUBLIC DATASETS REPOSITORIES

Public datasets refer to the dataset wherein the metrics
values and the fault data is publicly available for all the
modules in a software system. The SLR from years 1991 to
2013 concludes that 23% of the papers use a private dataset,
while 87% of papers use public dataset [12]. This implies that
researchers are more inclined towards public datasets. The
reason is the least availability of fault information, in other
words, lack of labeled dataset. Catal and Diri [20] conduct
a systematic literature review (SLR) from the years 1990 to
2007. They conclude that 69% of papers have private datasets
published before 2005, which becomes 48% after 2005. SLR
conducted by Radjenvic et al. [15] covers the studies published
between 1991 and 2011 declares that 62% of the studies used
private, 22% partially public and only 22 public datasets.
Ronald [? ] reports that from 1996 to 2012, 57% of the studies
used publicly available datasets. Likewise, [14] concludes that
64.89% of the research studies published from Jan 2000 to

1This is sometimes referred to as mining software repositories(MSR)

Dec 2013 used public datasets and 35.21% of the research
studies used private datasets. This collectively implies that
researchers are more inclined towards public datasets. This
section is dedicted to identify the availabe publicized datasets
to perform SFP activity.

1) NASA [23] dataset repository consists of 13 software
projects in PROMISE version and 14 software projects in
MDP version, with considerable difference in the number
of features set also [24]. Besides having the quality
problems [24], it is the most used dataset by the SFP
community [25].

2) SOFTLAB [26] dataset contains five projects, i.e., AR1,
AR2, AR3, AR4, and AR5, which are embedded con-
troller software for white goods. All these projects are
written in C.

3) AEEEM [27] is collected by D’Ambros et al. sometime
named as Bug prediction dataset [28]. It contains class
level datasets of five software systems; Eclipse JDT
Core, Eclipse PDE UI, Equinox Framework, Lucene and
Mylyn. These datasets have 61 metrics, which include
code metrics, process metrics, and churn metrics.

4) ReLink [29] is a file-level dataset of three projects;
Apache, Safe, and ZXing having 194, 56, and 399 in-
stances, respectively. Each dataset contains 26 features,
including complexity and count metrics.

5) Jureczko and Madeyski[30] collected 92 versions of 38
different software development projects. These projects
are open source, proprietary and academic software
projects. Each of these datasets contains 20 metrics,
including McCabe’s cyclomatic metrics, CK metrics, and
other OO metrics. Few of these datasets are Tomcat, Ant,
Camel, Ckjm, Forrest, Ivy, JEdit, Log4j, Lucene, PBeans,
Poi, Prop, Synapse, velocity, Xalan, Xerces, etc.

6) ECLIPSE [31] contains file and package level datasets of
three versions of Eclipse, i.e., 2.0, 2.1, and 3.0 released
on 27th June 2002, 27th March 2003, and 25th June 2004
respectively. Zimmermann et al. computed code metrics
on the file level and 40 metrics on the package level to
detect pre- and post-release defects. However, the last
extension/modification was made on March 2010.

7) AEV data set was collected by Altinger et al. [32]. It
is a novel industry dataset obtained from three different
automotive embedded software projects developed by
Audi Electronics Venture GmbH. Each project has a total
of 29 software metrics.

8) Columba [28]. Columba is an email client hosted at
sourceforge.net. The project migrated to SVN in July
2006 without migrating the CVS history. Sunghun et
al. learned from the sourceforge.net support that keeps
old versioning data, even when project switch to a new
system.

9) Scarab is an issue tracker that is hosted at tigris.org whose
CVS repository is not publicly available anymore. As for
ArgoUML, Jack Repenning from tigris.org sent us the
archive.

Page 4 of 11



10) Bug catcher dataset [33]. It is based upon three open-
source systems. Eclipse, ArgoUML, and Apache Com-
mons

11) GitHub Bug Dataset [? ]. is a collection of 15 Java
systems from GitHub and constructed a bug dataset at
class and file level. These systems are Android Universal
Image Loader, Antlr 4, Broadleaf Commerce, Ceylon IDE
Eclipse Plugin, Elasticsearch, Hazelcast, JUnit, MapDB,
mcMMO, MCT, Neo4J, Netty, OrientDB, Oryx, and
Titan.

In addition to the above public repositories, Chakkrit Tan-
tithamthavorn collected all the public bug datasets and make
it available [34].

V. OPEN SOURCE SOFTWARE ARHIEVES

There are two frequently used repositories Eclipse [31] and
Mozilla used by numerous studies [40, 41, 65, 66, 77, 85].
Besides these Mockus [94] is a suite that contains the defect
data for about 235K projects hosted on SourceForge and
GoogleCode [2]. Few of such repositories are: Mozilla [95]
, Apache, Eclipse, KDE, PostgreSQL [28]. Besides this

1) Savannah
2) Google Code
3) Sourceforge
4) Git
5) FreshMeat
6) Free Software Foundation (FSF)
7) Ruby- Forge
8) ObjectWeb2

This type of repositories mainly contained the source code
for different software artifacts. Open-source software systems
provide a facility to the researchers for collecting the datasets
and building their own software fault dataset. However, there
is one important requirement i.e. software system may be
developed using a bug tracking system and have the provision
of storing software development information. In presence of
fault archieves, researchers need to mine these repositories for
collecting the software fault dataset. The key problem with
collecting datasets from the open-source systems is that it
consumes an ample amount of resources. So, it is very difficult
to ensure the accuracy of the dataset. Having these practical
problems in obtaining software fault data, a lot of effort is
made to propose alternative approaches for labeling the fault
data.

VI. METRICS EXTRACTORS

Once the open source archieves are identified, next step
is to extract the required metrics. The availability of metrics
extractor significantly eases the task of code analysis. This
section aims to emumerates metrics extractors out of static
code.
Table III depicts various such extractors that are available

2While there is clear benefit of open source code, yet there is a need to
consider the concerns of the parties that provide the data to pertain the ethics
associated.

for the the research community. Availability can have three
possible values; Properietry (P) or Free, whereas N/A is
marked where authentic status of availability can not be
identified. Some of the extractors support multiple languages
[78, 90], however, we mentioned only the well known pro-
gramming lanagues. Same is done in case of metrics support
[35, 38, 62, 63, 70, 82, 86]. Most of the extractors compute
the metrics related to static aspect of object oriented paradigm.
There is a good number of free extractors supporting multiple
languages. Last column shows the studies which used the cor-
responding extractor. However, metrics extractors have three
main limitations:

1) Properietry extractors have lack of extensibility, hence
may not be used to integrate with existing frame-
works/extractors.

2) Extractors are usually language specific and may not be
able to work on all the programming languages.

3) Extractors are metrics specific and may not parse new
metrics. Hence they are not easy to adapt to other metrics.

4) Extractors have ambiguous interpertation of some met-
rics. Hence, more than one variant of the same metric
exists which is reported in [9].

The table depicts that there are multiple extractors can be used
to extract the same metrics, however, additional criteria can be
applied to further find the most useful extractor. These criteria
can be availability of IDE, reporting mechanism, etc. Most of
the properietry extractors provide limited funcationalities like
reports cannot be saved or printed or exported. Keeping in
view the constraints may narrow the selection, as is done in
[9].

VII. LABELING METHOLOGIES

A. Intelligent Labeling through Fault Mapping

Software source code repositories having fault data is used
to build the datasets by parsing metrics information from the
source code and then associating the metrics’ values with the
fault data. The task of the association is quite challenging.
Kim Herzig and Sascha [96] analyzed seven thousand issue
reports in five open-source projects. They found that more than
40% of a fixed set of issue reports are inaccurately classified,
with 33.8% of all ”bug reports” bug database misclassified
the reports. Due to this reason, 39% of files are classified as
faulty actually never had a bug. Likewise, Bird et al. reported
that out of 24 thousand fixed bugs, only 10 thousand could
be linked to an entry in the bug database [97]. Aranda and
Venolia [98] manually inspected ten bug reports in Microsoft
and interviewed developers related to the reports. They found
lots of important information missing in bug reports. Some of
the reasons (but not limited to) for such ambiguity and overly
impreciseness are:

1) Some developer has a habit of committing all pending lo-
cal changes before the weekend in one single transaction.
If any changes are classified as a fix, then all contained
modules will be marked as having had a defect in the past
even if only one of them was actually defective. [99]

Page 5 of 11



TABLE III
BRIEF SUMMARY OF THE METRICS EXTRACTORS

Metrics extractor Availability Language Metrics coverage Used by
AEA tool[35] N/A Java NOC, DIT -
Amadeus[36] N/A C++ 35 code metrics [37]
AMT[? ] N/A C# and Java CBO, RFC, MPC, DAC
Borland Together[38] Free Java CK suite, CC, etc [39–42]
Brooks and Buell’s tool [43] N/A C++ CK suite
CCCC[44] Free C++ and Java LoC, McCabe, CK suites, Fan-in, and Fan-out -
CCMETRICS[45] Free Java Coupling and Cohesion metrics
ckjm[46] Free Java WMC, DIT, NOC, CBO, RFC, LCOM, Ca, NPM [47, 48]
Columbus[49] P C++ CK suite, LOC [50, 51]
Concerto/ AUDIT[52] N/A C++ CK and Briand Suite, Cohesion, inheritance metrics. [53]
Dependency Viewer[54] Free Java Ca and Ce
Fraunhofer IESE[55] P C++ CK and Briand Suite, Cohision metrics [56]

FrontEndART[57] P C, C++, C#, Java, and
Python Cohesion, Complexity, Coupling , Inheritance, and Size metrics -

Ghamdis Tool[35] N/A Java 23 metrics including, CK suite, compelxity metrics, etc. -
JArchitect[58] P Java 82 code metrics -
Java static analysis tool N/A Java CK suite [59]
JCAT[60] N/A Java PCC, ECC, GCCC, and ICCC
JCTIViz[61] N/A Java CBO and CTI
JDepend[62] Free Java Martin metrics, No. of classes, Package dependency, etc. -

JHawk[63] Free Java Halstead, McCC, LoC,LCOM, MPC, Fan-out, Fan-in, CK, and Martin suite
etc. [64–66]

JMCT[67] Free Java CBO, RFC
JMetric[68] Free Java Martins suite, and few coupling metrics. [69]
JMT[70] Free Java CK suite, PIM, NMI, NAI, NMO, NOP, LOC, MIF, AIF, COF, etc. -
Krakatau[71] N/A C, C++, and Java About 70 metrics, including Halstead, complexity, OO metrics [39]
M-System[55] P C++ 28 coupling measures, 10 cohesion measures, and 11 inheritance measures. [72–75]
MaX[76] P C and C++ Function calls, imports, exports, RPC, COM, and Registry access [77]

McCabe IQ[78] P C, C++, C#, Java, VB,
etc. McCabe metrics

OOMetDaGa Environment
[79] N/A C++, Java, Smalltalk CK suite

OOMeter[80] N/A C# and Java CK suite, Cohision metrics, and LOC
Rational Rose[81] P XML CK suite [75]

Sonargraph-Explorer[82] P C, C++, C#, Java, and
Python Fan-in, Fan-out, Instability, Cyclicity, Component Dependencies, etc. [83]

srcML[84] P C, C++ and Java CK suite and LOC [85]
JCMT[86] P Java CK suite, Martin suite, CC, LOC, etc. -
TAC++ [87, 88] P C++ 15 metrics -
Ucinet[89] P C and C++ Dependency graph [77]

Understand[90] P C++, Java, FORTRAN,
etc. Project Metrics, File Metrics OO Metrics, Program Unit Metrics, etc. [91]

WebMetrics[92] P C++ CBO, RFC, Fan-in, and Fan-out [50, 93]

2) Bug archives do not explicitly state which version the
patch file was applied.

3) Sometime bugs associated with classes that are generated
at run-time. This would lead to the erroneous association
of the bugs to static classes.

4) Mostly, association depends upon the time-based inter-
vals, which is susceptible to the erroneous mapping of
data to bugs.

5) Defect collection practices, which are based on ’bug’
like, keywords or bug report links in changelogs do not
specify the module being addressed, therefore include
noises [100].

6) Given a set of linked commits, there is no way to know
if commit feature bias exists, lacking access to the full
set of bug-fix commits [97]

Due to any of the above reasons all the bug-fixing commits
cannot be identified without extensive and costly effort [97].
As for as the automation is concerned, there is no completely
accurate way in which to collect fault data from open-source
projects [101]
Nevertheless, few authors put effort to standardize the pro-
cedure of bug information extraction from the open-source
repositories and association with the data [13, 31]. The defect
information of many software systems is managed in Bugzilla
[102]. Bugzilla is a Web-based general-purpose bug tracker
that allows developers to keep track of both defects that cause
loss of functionality and requirements requests.

B. Synthetic fault labeling

In SFP studies label can be a dichotomous variable (Faulty
or Clean) or it can be a number of faults. This section aims

Page 6 of 11



to elaborate different methods to accomplish the labeling task.
These methods can broadly be catagories into five types;

1) Cross product defect prediction [103]
2) Bad Smell based defect labeling [33]
3) Clustering and expert opinion [104, 105]
4) Heuristic based approaches [106–109]
5) Threshold based approaches [110, 111]

1) Summary of the Syntheitc labeling techniques: These
studies conducted to address the specific techniques are dis-
cussed below:

(a) Zimmermann [103] is a well-known approach used
by many researchers [103, 112–119]. However, varying
distributions of datasets across the projects would not
make it useful.

(b) Bug catchers [33] operate with bad smells (solely), and
found that coding rule violations have a small but signif-
icant effect on the occurrence of faults at file level. Bug
catchers used Bugzilla and Jira as sources of information.

(c) Zhong et al. [104] used K-means and Neural-Gas clus-
tering methods to cluster modules, and then 15 years
experienced engineer, labeled each cluster as fault-prone
or not fault-prone by examination.

(d) Seliya et al. [105] perform clustering through k means
and label the centroids using software engineers.

(e) Nam and Kim [106] propose CLA/CLAMI. The tech-
nique neither requires prior fault data nor is influenced by
the problem of data distribution. However, the technique
drops a significant number of instances and metrics, thus
makes it nearly useless.

(f) Yang et al. [107] label their using certain beliefs sup-
ported by some other researchers. Like, highly distributed
change is more likely to be a defect inducing change;
likewise, larger change is expected to have a higher
likelihood of being a defect-inducing change.

(g) Andrew et al. [108] labeling is based upon the heuris-
tic that ”For most metrics, software entities containing
defects generally have larger values than software en-
tities without defects.” They took three datasets with
26 projects in total. They proved that the connection
between buggy and clean is smaller than the connection
between buggy instances and the connection between
clean instances.

(h) Yan et al. [120] used both supervised and unsupervised
learning approaches on file level defect prediction and
conclude that within the project later is not better how-
ever, across the project later is better. However, labeling
is done based on the experiment of [107].

(i) The most recent work is done by Yang et. al [109].
The authors propose cluster ensembles and labeling ap-
proach (CEL) and apply an experiment on 15 different
datasets from three different repositories. CEL first makes
multiple sub-optimal clusters and then combines into a
single better cluster. The clustering and labeling are done
through ACL [121].

(j) B. Ralf [110] take threshold through experience [122]

TABLE IV
EVALUATION OF SYNTHETIC LABELING TECHNIQUES

Class Study Automatability
(C/P/N)

Coverage
(C/P)

Data loss
(Y/N)

Difficulty
(S/C)

CPDP Zimmermann [103] C C N C
Bad Smell Hall et al. [33] C C N S
Clustering and Zhong et al. [104] N C N C
Expert Opinion Seliya et al. [105] N C N C

Heuristic

Nam and Kim [106] C C Y S
Yang et al. [107] C P N C

Andrew et al. [108] C P N C
Yan et al. [120] C P N C
Yang et. al [109] C C N C

Threshold Bender Ralf [110] N P N C
Catal et al. [111] P P N C

and hints from literature, Tuning machine and Analysis
of Multiple Versions.

(k) Catal et al. [111] clusters using X-means. Compute mean
vector of each cluster which is then compared with the
thresholds vector. The complete cluster is predicted as
fault-prone if at least one metric of the mean vector is
higher than the threshold value of that metric. X-means
need kmin and kmax value. It uses a posterior probability
to select the right number of clusters. {LOC, CC, UOp,
UOpnd, TOp, and TOpnd} was chosen as {65, 10, 25, 40,
125, and 70} . Values are taken from Integrated software
metrics (ISM). Currently, the website is not working.

2) Evaluation of the synthetic labeling techniques: The
labeling techniques discussed in last section vary in scope and
usefulness. In this section, we try to evaluate the discussed
synthetic labeling techniques through six parameters. These
parameters are:

1) Automatability implies the ability to be automate the
technique. It can be complete (C), partial (P) or none(N).
Complete automatability implies no human intervention
at all, while minor intervention is pronounced as partial
automatiability.

2) Coverage: Since SFP task heavily dependent on the
metrics. However a labeling technique may or may not
cover all the metrics. This performance measure aims
to address coverage of the labeling technique. It can
have two values Complete (C) coverage and partial (P)
coverage. Complete coverage shows that the technique
can be applied to any type of metric, while partial
coverage implies that the technique can only be applied
on some metrics.

3) Data loss:. Labeling technique is used to label data keep-
ing in view the metrics’ values provided. However, mod-
ifying the data (loss/alter) is beyond the expectation of
a labeling technique. This performance measure capture
the data modifying (trimming, etc.) quality of a technique.
The performance measure has a dichotomous value Yes
or No. The Y implies that the tequnique requires the
data to be truncate during the process, whereas N shows
that there is no data loss during the applicaiton of the
technique.

4) Difficulty refers to the degree of effort requires to

Page 7 of 11



implement a technique. Techniques are pronounced as
complex(C) if it requires multiple techniques for imple-
mentation, otherwise, the technique is simple(S)

Table IV shows the comparison of the labeling techniques
w.r.t. the performance measures. The user can adopt the
technique that best suites the requirement.

VIII. CONCLUSION AND FUTUREWORK

The usefulness of SFP is accpeted by both academia and
research industry. Dataset is a key requiremnt of any SFP
activity. Static-code based dataset are the most used type
of dataset in the discipline. Since, few publicly available
dataset and the least availability of fault information limit the
possibilities of experiments, a framework to solve the dataset
problem has been proposed for SFP. We put an effort to
identify the available resources i.e. publicly available dataset,
open-source software achieves, metrics extractors, and label-
ing tools/techniques. The study also provides an evaluation
procedure for the identified resources.
In future, a comprehensive study is required to address the
collection/development of non-static code dataset, open-source
arhieves and metrics extractors. It is found that multiple
extractors can be used to extract the same metrics. However,
additional criteria can be applied to further find the most useful
tools.

REFERENCES

[1] C. Catal, “Software fault prediction: A literature review and
current trends,” Expert systems with applications, vol. 38,
no. 4, pp. 4626–4636, 2011.

[2] S. Hosseini, B. Turhan, and D. Gunarathna, “A systematic
literature review and meta-analysis on cross project defect pre-
diction,” IEEE Transactions on Software Engineering, vol. 45,
no. 2, pp. 111–147, 2019.

[3] A. Al-Shaaby, H. Aljamaan, and M. Alshayeb, “Bad smell
detection using machine learning techniques: A systematic lit-
erature review,” Arabian Journal for Science and Engineering,
pp. 1–29, 2020.

[4] E. Dias Canedo, K. Valença, and G. A. Santos, “An analysis
of measurement and metrics tools: A systematic literature
review,” in Proceedings of the 52nd Hawaii International
Conference on System Sciences, 01 2019.

[5] L. H. Son, N. Pritam, M. Khari, R. Kumar, P. T. M. Phuong,
P. H. Thong et al., “Empirical study of software defect
prediction: a systematic mapping,” Symmetry, vol. 11, no. 2,
p. 212, 2019.

[6] S. Kaur and P. Singh, “How does object-oriented code refac-
toring influence software quality? research landscape and
challenges,” J. Syst. Softw., vol. 157, 2019.

[7] K. Sandeep and S. R. Santosh, Software Fault Prediction, A
Road Map. Singapore: Springer Singapore, 2018.

[8] Z. Li, X. Jing, and X. Zhu, “Progress on approaches to
software defect prediction,” IET Software, vol. 12, no. 3, pp.
161–175, 2018.

[9] M. Nilsson, “A comparative case study on tools for internal
software quality measures,” 2019.

[10] A. Singh, R. Bhatia, and A. Singhrova, “Taxonomy of machine
learning algorithms in software fault prediction using object
oriented metrics,” Procedia computer science, vol. 132, pp.
993–1001, 2018.

[11] S. Rathore, Santosh S.and Kumar, “A study on software fault
prediction techniques,” Artificial Intelligence Review, vol. 51,
no. 2, pp. 255–327, Feb 2019.

[12] R. Malhotra, “A systematic review of machine learning tech-
niques for software fault prediction,” Applied Soft Computing,
vol. 27, no. C, pp. 504–518, Feb. 2015.

[13] G. Maua, T. G. Grbac, and B. D. Bai, “Data collection for
software defect prediction - an exploratory case study of
open source software projects,” in 2015 38th International
Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 2015, pp. 463–
469.

[14] R. S. Wahono, “A systematic literature review of software de-
fect prediction: research trends, datasets, methods and frame-
works,” Journal of Software Engineering, vol. 1, no. 1, pp.
1–16, 2015.

[15] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič,
“Software fault prediction metrics: A systematic literature
review,” Information and Software Technology, vol. 55, no. 8,
pp. 1397–1418, 2013.

[16] B. Isong and E. Obeten, “A systematic review of the empirical
validation of object-oriented metrics towards fault-proneness
prediction,” International Journal of Software Engineering and
Knowledge Engineering, vol. 23, no. 10, pp. 1513–1540, 2013.

[17] R. S. Wahono, “A systematic literature review of software de-
fect prediction: research trends, datasets, methods and frame-
works,” Journal of Software Engineering, vol. 1, no. 1, pp.
1–16, 2015.

[18] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic literature review on fault prediction performance in
software engineering,” IEEE Transactions on Software Engi-
neering, vol. 38, no. 6, pp. 1276–1304, Nov 2012.

[19] C. Catal and B. Diri, “Investigating the effect of dataset size,
metrics sets, and feature selection techniques on software fault
prediction problem,” Information Sciences, vol. 179, pp. 1040–
1058, 03 2009.

[20] ——, “A systematic review of software fault prediction stud-
ies,” Expert Syst. Appl., vol. 36, no. 4, pp. 7346–7354, May
2009.

[21] E. Fregnan, T. Baum, F. Palomba, and A. Bacchelli, “A survey
on software coupling relations and tools,” Information and
Software Technology, vol. 107, 11 2018.

[22] SDMetrics, “Sdmetrics,” Mar 2020. [Online]. Available:
www.sdmetrics.com

[23] G. Boetticher, T. Menzies, and T. Ostrand, “{PROMISE}
repository of empirical software engineering data,” ArXiv, 01
2007.

[24] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality:
Some comments on the nasa software defect datasets,” IEEE
Transactions on Software Engineering, vol. 39, no. 9, pp.
1208–1215, Sept 2013.

[25] L. Son, N. Pritam, M. Khari, R. Kumar, P. Phuong, and
T. Pham, “Empirical study of software defect prediction: A
systematic mapping,” Symmetry, vol. 11, p. 212, 02 2019.

[26] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano,
“On the relative value of cross-company and within-company
data for defect prediction,” Empirical Software Engineering,
vol. 14, no. 5, pp. 540–578, Oct 2009. [Online]. Available:
https://doi.org/10.1007/s10664-008-9103-7

[27] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive
comparison of bug prediction approaches,” in Proceedings of
MSR 2010 (7th IEEE Working Conference on Mining Software
Repositories). IEEE CS Press, 2010, pp. 31 – 41.

[28] S. Kim, “Columba, eclipse jdt.core and scarab,” Sep. 2015.
[Online]. Available: https://doi.org/10.5281/zenodo.268448

[29] R. wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: Recov-
ering links between bugs and changes,” 09 2011, pp. 15–25.

Page 8 of 11

www.sdmetrics.com
https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.5281/zenodo.268448


[30] M. Jureczko and L. Madeyski, “Towards identifying software
project clusters with regard to defect prediction,” in Proceed-
ings of the 6th International Conference on Predictive Models
in Software Engineering, ser. PROMISE ’10. New York, NY,
USA: ACM, 2010, pp. 9:1–9:10.

[31] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting
defects for eclipse,” in Proceedings of the Third International
Workshop on Predictor Models in Software Engineering, ser.
PROMISE ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 9–. [Online]. Available: http://dx.doi.org/
10.1109/PROMISE.2007.10

[32] H. Altinger, S. Siegl, Y. Dajsuren, and F. Wotawa, “A novel
industry grade dataset for fault prediction based on model-
driven developed automotive embedded software,” in 2015
IEEE/ACM 12th Working Conference on Mining Software
Repositories, 2015, pp. 494–497.

[33] T. Hall, M. Zhang, D. Bowes, and Y. Sun, “Some code smells
have a significant but small effect on faults,” ACM Trans.
Softw. Eng. Methodol., vol. 23, no. 4, Sep. 2014. [Online].
Available: https://doi.org/10.1145/2629648

[34] “Defect data,” https://github.com/klainfo/DefectData,
accessed: 2020-04-05.

[35] J. AlGhamdi, M. Elish, and M. Ahmed, “A tool for measuring
inheritance coupling in object-oriented systems,” information
SCiences, vol. 140, no. 3-4, pp. 217–227, 2002.

[36] A. S. Research, Getting Started With Amadeus. Amadeus
Measurement System, 1994.

[37] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation
of object-oriented design metrics as quality indicators,” IEEE
Transactions on Software Engineering, vol. 22, no. 10, pp.
751–761, Oct 1996.

[38] R. C. Gronback, “Software remodeling : Improving design and
implementation quality using audits , metrics and refactoring
in borland,” 2003.

[39] R. Shatnawi, “A quantitative investigation of the acceptable
risk levels of object-oriented metrics in open-source systems,”
IEEE Transactions on Software Engineering, vol. 36, no. 2,
pp. 216–225, March 2010.

[40] R. Shatnawi and W. Li, “The effectiveness of software metrics
in identifying error-prone classes in post-release software
evolution process,” Journal of Systems and Software, vol. 81,
no. 11, pp. 1868–1882, Nov. 2008.

[41] R. Shatnawi, W. Li, and H. Zhang, “Predicting error probabil-
ity in the eclipse project,” in Software Engineering Research
and Practice, 01 2006, pp. 422–428.

[42] F. B. Abreu and R. Carapuça, “Object-oriented software engi-
neering: Measuring and controlling the development process,”
in Proceedings of the 4th international conference on software
quality, vol. 186, 1994, pp. 1–8.

[43] C. L. Brooks and C. G. Buell, “A tool for automatically
gathering object-oriented metrics,” in Proceedings of National
Aerospace and Electronics Conference (NAECON’94), 1994,
pp. 835–838 vol.2.

[44] tim littlefair, “C and c++ code counter,” Mar 2020. [Online].
Available: https://sourceforge.net/projects/cccc/

[45] S. Husein and A. Oxley, “A coupling and cohesion metrics
suite for object-oriented software,” in 2009 International Con-
ference on Computer Technology and Development, vol. 1,
2009, pp. 421–425.

[46] D. Spinellis, “Tool writing: a forgotten art? (software tools),”
IEEE Software, vol. 22, no. 4, pp. 9–11, 2005.

[47] M. Jureczko and D. Spinellis, “Using object-oriented design
metrics to predict software defects,” Models and Methods
of System Dependability. Oficyna Wydawnicza Politechniki
Wrocławskiej, pp. 69–81, 2010.

[48] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study
on software defect prediction with a simplified metric set,”

Information and Software Technology, vol. 59, no. C, pp. 170–
190, Mar. 2015.

[49] R. Ferenc and A. Beszedes, “Data exchange with the columbus
schema for c++,” in Proceedings of the Sixth European Con-
ference on Software Maintenance and Reengineering, 2002,
pp. 59–66.

[50] A. Janes, M. Scotto, W. Pedrycz, B. Russo, M. Stefanovic, and
G. Succi, “Identification of defect-prone classes in telecommu-
nication software systems using design metrics,” Information
Sciences, vol. 176, no. 24, pp. 3711–3734, Dec. 2006.

[51] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of
object-oriented metrics on open source software for fault pre-
diction,” IEEE Transactions on Software engineering, vol. 31,
no. 10, pp. 897–910, 2005.

[52] FAST, “Programmers manual,” Mar 1997.
[53] L. Briand, J. Wst, and H. Lounis, “Replicated case studies

for investigating quality factors in object-oriented designs,”
Empirical Software Engineering, vol. 6, pp. 11–58, 03 2001.

[54] M. Wilhelm and S. Diehl, “Dependency viewer - a tool for
visualizing package design quality metrics,” in 3rd IEEE Inter-
national Workshop on Visualizing Software for Understanding
and Analysis, 2005, pp. 1–2.

[55] P. T. Devanbu, “Genoa: A customizable language- and
front-end independent code analyzer,” in Proceedings of
the 14th International Conference on Software Engineering,
ser. ICSE 92. New York, NY, USA: Association for
Computing Machinery, 1992, p. 307317. [Online]. Available:
https://doi.org/10.1145/143062.143148

[56] L. C. Briand, J. Daly, V. Porter, and J. Wust, “A comprehensive
empirical validation of design measures for object-oriented
systems,” in Proceedings Fifth International Software Metrics
Symposium. Metrics (Cat. No.98TB100262), Nov 1998, pp.
246–257.

[57] F. S. Ltd., “Front end art,” Mar 2020. [Online]. Available:
http://www.frontendart.com

[58] C. Gears, “Jarchitect,” Mar 2020. [Online]. Available:
https://www.jarchitect.com/

[59] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object
oriented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493, June 1994.

[60] J. Offutt, A. Abdurazik, and S. R. Schach, “Quantitatively
measuring object-oriented couplings,” Software Quality
Journal, vol. 16, no. 4, p. 489512, Dec. 2008. [Online].
Available: https://doi.org/10.1007/s11219-008-9051-x

[61] P. Rosner and S. Viswanathan, “Visualization of coupling and
programming to interface for object-oriented systems,” in 2008
12th International Conference Information Visualisation, 2008,
pp. 575–581.

[62] jdepend, “jdepend,” Mar 2020. [Online]. Available: https:
//github.com/clarkware/jdepend

[63] virtualmachinery.com, “Jhawk,” Mar 2020. [Online].
Available: http://www.virtualmachinery.com/jhawkprod.htm

[64] M. O. Elish, A. H. Al-Yafei, and M. Al-Mulhem, “Empirical
comparison of three metrics suites for fault prediction in
packages of object-oriented systems: A case study of eclipse,”
Advances in Engineering Software, vol. 42, no. 10, pp. 852–
859, oct 2011.

[65] K. Johari and A. Kaur, “Validation of object oriented metrics
using open source software system: An empirical study,” ACM
Sigsoft Software Engineering Notes, vol. 37, pp. 1–4, 01 2012.

[66] D. Kumari and K. Rajnish, “Investigating the effect of object-
oriented metrics on fault proneness using empirical analysis,”
International Journal of Software Engineering and its Appli-
cations, vol. 9, pp. 171–188, 01 2015.

[67] V. S. Bidve and P. Sarasu, “Tool for measuring coupling
in object-oriented java software,” International Journal of
Engineering and Technology, vol. 8, no. 2, pp. 812–820, 2016.

Page 9 of 11

http://dx.doi.org/10.1109/PROMISE.2007.10
http://dx.doi.org/10.1109/PROMISE.2007.10
https://doi.org/10.1145/2629648
https://github.com/klainfo/DefectData
https://sourceforge.net/projects/cccc/
https://doi.org/10.1145/143062.143148
http://www.frontendart.com
https://www.jarchitect.com/
https://doi.org/10.1007/s11219-008-9051-x
https://github.com/clarkware/jdepend
https://github.com/clarkware/jdepend
http://www.virtualmachinery.com/jhawkprod.htm


[68] R. Farnese, W. Melo, and A. Veiga, JMetrics: Java Metrics
Extractor. Oracle Consulting Services. Brazil, 1999.

[69] K. El-Emam and W. Melo, “The prediction of faulty classes
using object-oriented design metrics,” Journal of Systems and
Software, vol. 56, 02 2001.

[70] J.-J. M. Tool, “Java measurement tool,” Mar 2020. [On-
line]. Available: www2.informatik.hu-berlin.de/swt/intkoop/
jcse/tools/jmt.html

[71] K. T. Website, “Power software,” Mar 2020. [Online].
Available: http://www.powersoftware.com/

[72] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, “Exploring
the relationships between design measures and software quality
in object-oriented systems,” Journal of Systems and Software,
vol. 51, no. 3, pp. 245–273, 2000.

[73] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer,
“Managerial use of metrics for object-oriented software: An
exploratory analysis,” IEEE Trans. Softw. Eng., vol. 24,
no. 8, p. 629639, Aug. 1998. [Online]. Available: https:
//doi.org/10.1109/32.707698

[74] Mei-Huei Tang, Ming-Hung Kao, and Mei-Hwa Chen, “An
empirical study on object-oriented metrics,” in Proceed-
ings Sixth International Software Metrics Symposium (Cat.
No.PR00403), Nov 1999, pp. 242–249.

[75] R. Subramanyam and M. S. Krishnan, “Empirical analysis of
ck metrics for object-oriented design complexity: implications
for software defects,” IEEE Transactions on Software Engi-
neering, vol. 29, no. 4, pp. 297–310, April 2003.

[76] A. Srivastava, J. Thiagarajan, and C. Schertz, “Efficient inte-
gration testing using dependency analysis,” Technical Report
MSR-TR-2005-94, Microsoft Research, Tech. Rep., 2005.

[77] T. Zimmermann and N. Nagappan, “Predicting defects using
network analysis on dependency graphs,” in Proceedings of
the 30th International Conference on Software Engineering,
ser. ICSE ’08. New York, NY, USA: ACM, 2008, pp. 531–
540.

[78] mccabe software, “mccabe software,” Mar 2020. [Online].
Available: http://www.mccabe.com/iq.htm

[79] M. Hericko, I. Rozman, R. V. Horvat, T. Domajnko, and
J. Gyorkos, “Oo metrics data gathering environment,” in Pro-
ceedings. Technology of Object-Oriented Languages. TOOLS
24 (Cat. No.97TB100240), 1997, pp. 80–85.

[80] J. S. Alghamdi, R. A. Rufai, and S. M. Khan, “Oometer: a
software quality assurance tool,” in Ninth European Confer-
ence on Software Maintenance and Reengineering, 2005, pp.
190–191.

[81] R. Software, “Rational rose,” Mar 2020. [Online]. Available:
https://www.ibm.com/products/software

[82] Sonargraph, “hello2morrow,” Mar 2020. [Online]. Available:
https://www.hello2morrow.com/products/sonargraph/explorer

[83] R. Roveda, “Identifying and evaluating software architecture
erosion,” 2018.

[84] S. development laboratory., “Software development
laboratory,” Mar 2020. [Online]. Available: http:
//www.sdml.info/projects/srcml/

[85] S. Kpodjedo, F. Ricca, G. Antoniol, and P. Galinier, “Evolution
and search based metrics to improve defects prediction,” in
2009 1st International Symposium on Search Based Software
Engineering, May 2009, pp. 23–32.

[86] STAN, “stan,” Mar 2020. [Online]. Available: http://stan4j.
com/

[87] G. Bucci, F. Fioravanti, P. Nesi, and S. Perlini, “Metrics and
tool for system assessment,” in Proceedings. Fourth IEEE In-
ternational Conference on Engineering of Complex Computer
Systems (Cat. No.98EX193), 1998, pp. 36–46.

[88] F. Fioravanti, P. Nesi, and S. Perlini, “A tool for process and
product assessment of c++ applications,” in Proceedings of the
Second Euromicro Conference on Software Maintenance and

Reengineering, 1998, pp. 89–95.
[89] S. P. Borgatti, M. G. Everett, and L. C. Freeman, “Ucinet for

windows: Software for social network analysis,” 2002.
[90] S. T. Inc., “Scitools maintenance, metrics and documentation

tools for ada, c, c++, java and fortran,” Mar 2020. [Online].
Available: http://www.scitools.com/

[91] M. English, C. Exton, I. Rigon, and B. Cleary, “Fault detection
and prediction in an open-source software project,” in Proceed-
ings of the 5th International Conference on Predictor Models
in Software Engineering, ser. PROMISE ’09. New York, NY,
USA: ACM, 2009, pp. 17:1–17:11.

[92] M. Scotto, A. Sillitti, G. Succi, and T. Vernazza, “A
relational approach to software metrics,” in Proceedings
of the 2004 ACM Symposium on Applied Computing, ser.
SAC 04. New York, NY, USA: Association for Computing
Machinery, 2004, p. 15361540. [Online]. Available: https:
//doi.org/10.1145/967900.968207

[93] R. Malhotra, A. Kaur, and Y. Singh, “Empirical validation
of object-oriented metrics for predicting fault proneness at
different severity levels using support vector machines,” In-
ternational Journal of System Assurance Engineering and
Management, vol. 1, no. 3, pp. 269–281, 2010.

[94] A. Mockus, “Amassing and indexing a large sample of version
control systems: Towards the census of public source code
history,” in 2009 6th IEEE International Working Conference
on Mining Software Repositories, 2009, pp. 11–20.

[95] “The mozilla homepage,” http://www.mozilla.org, accessed:
2020-04-05.

[96] K. Herzig, S. Just, and A. Zeller, “Its not a bug, its a feature:
How misclassification impacts bug prediction,” in Proceedings
of the 2013 International Conference on Software Engineering,
ser. ICSE 13. IEEE Press, 2013, p. 392401.

[97] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. Devanbu, “Fair and balanced? bias in
bug-fix datasets,” in Proceedings of the 7th Joint Meeting
of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ser. ESEC/FSE 09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 121130.
[Online]. Available: https://doi.org/10.1145/1595696.1595716

[98] J. Aranda and G. Venolia, “The secret life of bugs: Going
past the errors and omissions in software repositories,” in 2009
IEEE 31st International Conference on Software Engineering,
2009, pp. 298–308.

[99] A. Zeller, Can We Trust Software Repositories?
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 209–215. [Online]. Available: https://doi.org/10.1007/
978-3-642-37395-4 14

[100] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise
in defect prediction,” in 2011 33rd International Conference
on Software Engineering (ICSE), 2011, pp. 481–490.

[101] T. Illes-Seifert and B. Paech, “Exploring the relationship
of history characteristics and defect count: An empirical
study,” in Proceedings of the 2008 Workshop on Defects in
Large Software Systems, ser. DEFECTS 08. New York, NY,
USA: Association for Computing Machinery, 2008, p. 1115.
[Online]. Available: https://doi.org/10.1145/1390817.1390821

[102] bugzilla, “Bugzilla for mozilla,” Mar 2020. [Online].
Available: http://bugzilla.mozilla.org

[103] T. Zimmermann and N. Nagappan, “Predicting defects with
program dependencies,” in 2009 3rd International Symposium
on Empirical Software Engineering and Measurement, Oct
2009, pp. 435–438.

[104] Shi Zhong, T. M. Khoshgoftaar, and N. Seliya, “Unsuper-
vised learning for expert-based software quality estimation,”
in Eighth IEEE International Symposium on High Assurance
Systems Engineering, 2004. Proceedings., March 2004, pp.

Page 10 of 11

www2.informatik.hu-berlin.de/swt/intkoop/jcse/tools/jmt.html
www2.informatik.hu-berlin.de/swt/intkoop/jcse/tools/jmt.html
http://www.powersoftware.com/
https://doi.org/10.1109/32.707698
https://doi.org/10.1109/32.707698
http://www.mccabe.com/iq.htm
https://www.ibm.com/products/software
https://www.hello2morrow.com/products/sonargraph/explorer
http://www.sdml.info/projects/srcml/
http://www.sdml.info/projects/srcml/
http://stan4j.com/
http://stan4j.com/
http://www.scitools.com/
https://doi.org/10.1145/967900.968207
https://doi.org/10.1145/967900.968207
http://www.mozilla.org
https://doi.org/10.1145/1595696.1595716
https://doi.org/10.1007/978-3-642-37395-4_14
https://doi.org/10.1007/978-3-642-37395-4_14
https://doi.org/10.1145/1390817.1390821
http://bugzilla.mozilla.org


149–155.
[105] N. Seliya and T. M. Khoshgoftaar, “Software quality esti-

mation with limited fault data: a semi-supervised learning
perspective,” Software Quality Journal, vol. 15, no. 3, pp. 327–
344, 2007.

[106] J. Nam and S. Kim, “Clami: Defect prediction on unlabeled
datasets (t),” in Automated Software Engineering (ASE), 2015
30th IEEE/ACM International Conference on. IEEE, 2015,
pp. 452–463.

[107] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and
H. Leung, “Effort-aware just-in-time defect prediction: simple
unsupervised models could be better than supervised models,”
in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM,
2016, pp. 157–168.

[108] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering:
Analysis and an algorithm,” in ADVANCES IN NEURAL
INFORMATION PROCESSING SYSTEMS. MIT Press, 2001,
pp. 849–856.

[109] Y. Yang, J. Yang, and H. Qian, “Defect prediction by using
cluster ensembles,” in 2018 Tenth International Conference on
Advanced Computational Intelligence (ICACI), March 2018,
pp. 631–636.

[110] R. Bender, “Quantitative risk assessment in epidemiological
studies investigating threshold effects,” Biometrical Journal:
Journal of Mathematical Methods in Biosciences, vol. 41,
no. 3, pp. 305–319, 1999.

[111] C. Catal, U. Sevim, and B. Diri, “Software fault prediction
of unlabeled program modules,” in Proceedings of the world
congress on engineering, vol. 1, 2009, pp. 1–3.

[112] F. Rahman and P. Devanbu, “How, and why, process metrics
are better,” in Proceedings of the 2013 International Confer-
ence on Software Engineering, ser. ICSE ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 432–441.

[113] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for
cross-company software defect prediction,” Information and
Software Technology, vol. 54, no. 3, pp. 248–256, 2012.

[114] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in
2013 35th International Conference on Software Engineering
(ICSE). IEEE, 2013, pp. 382–391.

[115] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the
relative value of cross-company and within-company data for
defect prediction,” Empirical Software Engineering, vol. 14,
no. 5, pp. 540–578, Oct. 2009.

[116] S. Watanabe, H. Kaiya, and K. Kaijiri, “Adapting a fault
prediction model to allow inter languagereuse,” in Proceedings
of the 4th International Workshop on Predictor Models in
Software Engineering, ser. PROMISE ’08. New York, NY,
USA: ACM, 2008, pp. 19–24.

[117] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the ”im-
precision” of cross-project defect prediction,” in Proceedings
of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ser. FSE ’12. New
York, NY, USA: ACM, 2012, pp. 61:1–61:11.

[118] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto,
A. Panichella, and S. Panichella, “Multi-objective cross-project
defect prediction,” in 2013 IEEE Sixth International Confer-
ence on Software Testing, Verification and Validation, March
2013, pp. 252–261.

[119] A. Panichella, R. Oliveto, and A. D. Lucia, “Cross-project de-
fect prediction models: L’union fait la force,” in 2014 Software
Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE), Feb
2014, pp. 164–173.

[120] M. Yan, Y. Fang, D. Lo, X. Xia, and X. Zhang, “File-
level defect prediction: Unsupervised vs. supervised models,”
in 2017 ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM), Nov 2017,
pp. 344–353.

[121] J. Yang and H. Qian, “Defect prediction on unlabeled datasets
by using unsupervised clustering,” in 2016 IEEE 18th Interna-
tional Conference on High Performance Computing and Com-
munications; IEEE 14th International Conference on Smart
City; IEEE 2nd International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), Dec 2016, pp. 465–472.

[122] R. Marinescu, “Detection strategies: metrics-based rules for
detecting design flaws,” in 20th IEEE International Conference
on Software Maintenance, 2004. Proceedings., Sep. 2004, pp.
350–359.

Page 11 of 11


	Introduction
	Literature review
	Methodology
	Public datasets repositories
	Open source software arhieves
	Metrics extractors
	Labeling methologies
	Intelligent Labeling through Fault Mapping
	Synthetic fault labeling
	Summary of the Syntheitc labeling techniques
	Evaluation of the synthetic labeling techniques


	Conclusion and Futurework

