
Real-time Cartoon-like Stylization of AR Video Streams on the GPU

Jan Fischer Dirk Bartz

WSI/GRIS - VCM
University of Tübingen, Germany

e-mail:fischer@gris.uni-tuebingen.de

Abstract

The ultimate goal of many applications of augmented re-
ality is to immerse the user into the augmented scene, which
is enriched with virtual models. In order to achieve this im-
mersion, it is necessary to create the visual impression that
the graphical objects are a natural part of the user’s envi-
ronment. Producing this effect with conventional computer
graphics algorithms is a complex task. Various rendering
artifacts in the three-dimensional graphics create a notice-
able visual discrepancy between the real background image
and virtual objects.

We have recently proposed a novel approach to gener-
ating an augmented video stream. With this new method,
the output images are a non-photorealistic reproduction of
the augmented environment. Special stylization methods are
applied to both the background camera image and the vir-
tual objects. This way the visual realism of both the graph-
ical foreground and the real background image is reduced,
so that they are less distinguishable from each other.

Here, we present a new method for the cartoon-like styl-
ization of augmented reality images, which uses a novel
post-processing filter for cartoon-like color segmentation
and high-contrast silhouettes. In order to make a fast post-
processing of rendered images possible, the programmabil-
ity of modern graphics hardware is exploited. We describe
an implementation of the algorithm using the OpenGL
Shading Language. The system is capable of generating
a stylized augmented video stream of high visual quality
at real-time frame rates. As an example application, we
demonstrate the visualization of dinosaur bone datasets in
stylized augmented reality.

1. Introduction

Augmented reality (AR) has become a widespread
method for enriching the user’s environment with virtual

objects [3]. In video see-through augmented reality, a digi-
tal video camera continually acquires images of the real sur-
roundings. Graphical objects are then drawn over the cam-
era image, which is displayed as a background image plane.
In order to achieve a correct spatial positioning and ori-
entation when rendering the virtual objects, tracking tech-
niques like vision-based marker tracking are normally em-
ployed [15].

In conventional augmented reality systems, the graphi-
cal objects are rendered over the camera image using stan-
dard real-time graphics algorithms. Low level software li-
braries like OpenGL [20] or high level scene graphs based
on them are often used for this task. The real-time rasteri-
zation methods which constitute the core of such renderers
rely on simplified assumptions for illumination and shading.
During system setup, manually placed virtual light sources
are provided as input for the lighting calculations. Simple
interpolation methods like Gouraud shading then spread the
computed brightness values over the graphical models. The
resulting renderings tend to look artificial, and they stand
out from the background image. This visual discrepancy
between real and virtual scene elements in augmented real-
ity is illustrated in Figure 1(a). Here, the virtual dinosaur
bone model can be easily distinguished from the real back-
ground image.

We have recently presented a novel paradigm for gen-
erating augmented video streams. Our stylized augmented
reality technique attempts to create similar levels of realism
in both the camera image and the graphical objects. The
cartoon-like stylization mode, which we have described,
produces augmented images composed of mostly uniformly
colored regions, which are enclosed with black silhouette
lines [6]. Since the same type of stylization is applied to
both the background image and the virtual models, they be-
come much more difficult to distinguish. This can lead to
an improved immersion into the augmented environment.

Our previously published stylization method uses a spe-
cific pre-processing filter for the camera image and an
adapted non-photorealistic rendering (NPR) procedure for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/56755316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(a) Conventional augmented reality

(b) The new cartoon-like stylization method for AR

Figure 1. Model of a dinosaur bone displayed
in augmented reality. The stylized augmented
reality video stream is generated in real-time.

the virtual objects. It relies primarily on image processing
and object space computations performed on the CPU. In
this paper, we describe a new algorithm for the cartoon-like
stylization of AR images. This new method is a specialized
post-processing filter, which is applied to the augmented
image after the overlay of virtual objects. We present an
implementation of the new algorithm using vertex and frag-
ment shaders for the programmable GPUs of recent graph-
ics cards. This allows for a straightforward and efficient
design of the algorithm. The new method produces a styl-
ized augmented video stream of a better visual quality at a
significantly higher frame rate compared to the previously
described approach. In particular, it all but eliminates flick-
ering silhouettes in the processed video, which were often
generated by the previous algorithm.

Some types of application exist for which the stylized
augmented reality technique may not be well suited. In
fields like medicine or security-critical scenarios, the fi-
delity of the displayed camera image is very important. Our
approach, which reduces the visual realism of the generated
video stream, can therefore not be utilized in such a context.
However, we believe that applications in many other fields
can benefit from the blurred barrier between real and vir-

tual. These include entertainment, education, training, and
research on human perception and presence in augmented
environments.

In the remainder of this paper, we give a brief summary
of previous work in Section 2. Section 3 contains the de-
scription of our new non-photorealistic image filtering algo-
rithm. Subsequently, Section 4 elaborates on some details
of our implementation. Experimental results obtained with
our algorithm are discussed in Section 5, and Section 6 de-
scribes the visualization of dinosaur bones as an example
application for our system. Finally, we give some conclud-
ing remarks in Section 7.

2. Related Work

An approach that is complementary to our method of ap-
plying stylization to AR images is the attempt to improve
the realism of virtual objects. This way, a better visual cor-
relation to the camera image can also be achieved. Research
has been done into methods of analyzing the real illumina-
tion conditions in an augmented reality setup. Examples
of this approach include the work of Kanbara and Yokoya
on analyzing the distribution of real light sources, which is
then used for adapting the representation of graphical ob-
jects [14]. Their method requires a special marker and mir-
ror ball to be visible in the camera image for computing the
environment light map. A similar technique for utilizing
an acquired environment illumination map is proposed by
Agusanto et al. [2]. In their system, a mirror ball and spe-
cial camera are used in a specific procedure for determining
the lighting conditions in the scene beforehand.

Another method for making virtual objects appear more
realistic is to add shadowing to the AR image. This creates
the impression that shadows are cast from virtual objects on
physical surfaces. Haller et al. describe an algorithm for
computing such shadows in augmented reality [11, 10]. A
similar technique is used for a user study on the effects of
shadowing in AR by Sugano et al. [22]. As a drawback of
these methods, a model of the geometry of the surfaces and
objects in the real world is required. This model needs to be
generated beforehand and is assumed to remain static.

Our new algorithm for generating a stylized augmented
video stream is based on a non-photorealistic image filter.
Non-photorealistic and artistic rendering and image pro-
cessing have been areas of very active research for several
years. Strothotte and Schlechtweg have published a good
survey of methods used in the field [21]. Another overview
over various NPR techniques is given by Gooch and Gooch
[8]. One example of an algorithm for the cartoon-like styl-
ization of photographs is the work presented by DeCarlo
and Santella [4]. Their technique uses a combination of
color segmentation and edge detection, which partly in-
spired our approach. However, this method requires several

minutes for processing an input image. An algorithm for
semi-automatic conversion of a real video sequence into a
cartoon-like video has been presented by Wang et al. [25].
This method produces results of good visual quality, but it
is an offline algorithm and computationally too expensive
for real-time applications. Moreover, a certain amount of
user interaction for the specification of semantic regions in
some video frames is necessary. Hertzmann and Perlin have
presented a method for the non-photorealistic processing of
video streams using an artistic painterly style [13].

A system that integrates non-photorealistic rendering
into augmented reality has been presented by Haller and
Sperl [10, 12]. However, their system applies artistic ren-
dering techniques only to the virtual objects, whereas the
background camera image is displayed in its original, un-
processed form.

Our stylized augmented reality concept can be consid-
ered to be related to the fields of mediated and diminished
reality (e.g. see [9, 17]). These approaches also aim at ap-
plying various filters to the user’s vision of the real world
instead of merely superimposing graphical models.

3. Description of the Algorithm

We present a new algorithm for the stylization of an
augmented video stream. For each frame, a standard aug-
mented reality pipeline first generates an output image con-
taining the camera image with overlaid virtual objects. This
original AR frame is rendered using the graphics hardware
and resides in its local frame buffer memory. A post-
processing filter is then applied to it, which is executed by
the graphics processing unit (GPU). An overview of the ap-
proach is shown in Figure 2.

Figure 2. Overview of the new stylized aug-
mented reality pipeline.

The stylization filter consists of two steps. In the first
step, a simplified color image is computed from the origi-
nal AR frame. The simplified color image is made up of
mostly uniformly colored regions. A non-linear filter us-
ing a photometric weighting of pixels is the basis for this

computation. The photometric filter is applied to a shrunk
version of the input image. This way, a better color simpli-
fication is achieved, and the required computation time can
be reduced. Several filtering iterations are consecutively ap-
plied to the image. The repetition of the filter operation is
necessary in order to achieve a sufficiently good color sim-
plification.

The second stage of the non-photorealistic filter is an
edge detection step. The simplified color image is the pri-
mary input for this operation. This way, the generated sil-
houette lines are located between similarly colored regions
in the image, which is an approximation of a cartoon-like
rendering style. To a lesser degree, edges detected in the
original AR frame are also taken into account when draw-
ing the silhouette lines. The higher resolution of the original
image compared to the shrunk color image can contribute
some additional detail to the edge detection result. Figure 3
shows an overview of this filter stage.

Figure 3. Edge detection results from the orig-
inal image and the shrunk color image are
combined.

In typical setups, most of the input for the edge detec-
tion step is taken from the simplified color image. It con-
sists of mostly uniformly colored regions generated by the
photometric filter. Therefore, edges detected in the simpli-
fied color image typically correspond quite well to the outer
boundaries of physical or virtual objects.

Finally, the simplified color image is combined with the
edge detection results. The color image is enlarged to the
size of the original input image. The combined responses of
the edge detection filters are drawn over the enlarged image
as black lines. A specific weight function is used for com-
puting a transparency for the detected edge pixels, which
produces a smooth blending over the color image.

3.1. Generation of Simplified Color Image

A shrunk version of the original AR frame is ren-
dered into the local frame buffer of the graphics card.
This is done by drawing a rectangle textured with the
original image. The texturing process is configured so
that a smoothly scaled version of the image is pro-
duced. User-definable parameters shrunkImageWidth
and shrunkImageHeight specify the dimensions of the
new image. The non-linear filter is then applied iteratively

by using the output image of the last iteration as input tex-
ture for the next filtering step.

(a) Original AR frame

(b) Simplified Color Image

Figure 4. Generation of the simplified color
image for an original AR frame. In the aug-
mented reality scene, a virtual plane model
is overlaid over the camera image. (Pa-
rameters: shrunkImageWidth=240, shrunkImage-
Height=180, σp=0.025, numFilterSteps=7)

Our non-linear filter is inspired by bilateral filtering,
which is a widespread method for creating uniformly col-
ored regions in an image [23]. The bilateral filter algo-
rithm combines geometric and photometric weights when
adding up pixels in the neighborhood of the currently re-
garded pixel. While the geometric factor gives a greater
weight to pixels closer to the current location, the photomet-
ric weight suppresses the influence of pixels with very dis-
similar color values. We have found the photometric weight
to be sufficient for our application. Ignoring the geometric
weight simplifies the algorithm and reduces the computa-
tional complexity. Moreover, this simplified non-linear fil-

ter produces very good results.
In addition to disregarding the geometric weight, we

have also modified the filter so that the photometric weight
only depends on the actual color of each pixel. Each pixel is
converted into the YUV color space before the filter is ap-
plied. In the YUV color space, the Y component represents
the brightness of a pixel, while U and V are the chromi-
nance (color) components [18]. For computing the weight
of each pixel in the neighborhood, our filter only takes the
U and V coordinates into account.

We denote the original RGB image function as f and the
corresponding color coordinates in YUV space as fUV . The
non-linear filter computes the simplified RGB image h us-
ing the following equation:

h(x) = k−1(x)
∑

ξ ∈ Ωx

f(ξ) s(fUV (ξ), fUV (x)) (1)

In Equation 1, x is the currently regarded point in the
output image. A weighted sum is computed over image
points ξ in the neighborhood Ωx of x in the input image. We
use a quadratic image area as neighborhood for the summa-
tion. The weight s(fUV (ξ), fUV (x)) depends on the simi-
larity of values in the color channels fUV (ξ) − fUV (x). In
our algorithm, s is a Gaussian function:

s(fUV (ξ), fUV (x)) = e
− 1

2

(
|fUV (ξ)−fUV (x)|

σp

)2

(2)

Note that s is a function of the absolute value of the color
difference fUV (ξ) − fUV (x) (Equation 2). The standard
deviation σp of the Gaussian function determines the prop-
erties of the color simplification and can be chosen by the
user as a parameter for our algorithm. In order to maintain
the overall brightness of the image, the weighted sum is di-
vided by the normalization factor k(x), which is computed
as shown in Equation 3.

k(x) =
∑

ξ ∈ Ωx

s(fUV (ξ), fUV (x)) (3)

The effect of this non-linear filter is that an averaging of
pixels only occurs in places where nearby pixels have simi-
lar colors. In such places in the image s(fUV (ξ), fUV (x)) is
large. If near the currently regarded pixel colors are present
which are far away in color space, they are not taken into
account. Thus strong edges in the image are preserved.

We use a small local neighborhood of 5 x 5 pixels for the
weighted summation. As described above, the non-linear
filter is applied several times. For each filtering step, the
resulting image from the previous iteration is used as input.
The number of color simplification iterations performed by
the algorithm, numFilterSteps, can be chosen by the user.
Figure 4 shows an example of a simplified color image com-
puted for an augmented reality frame.

3.2. Adaptive Edge Detection based on Intensity and
Color Contrasts

After the simplified color image has been generated, the
edge detection step is performed. We use the Sobel edge de-
tection filter for computing the partial derivatives of color
channel values along the x-axis and the y-axis [7]. Here
again, we convert the pixels into the YUV color space be-
fore the edge detection step. We denote the image function
of the simplified color image as S, consisting of the chan-
nels (SY , SU , SV). Correspondingly, the original AR frame
A contains the YUV channels (AY , AU , AV).

For each of the color channels of both images, two par-
tial derivatives are calculated. In the case of the Y com-
ponent, these are the derivatives ∂SY

∂x , ∂SY

∂y , ∂AY

∂x , and
∂AY

∂y . The U and V color channels are processed accord-
ingly. Based on the partial derivatives, gradient magni-
tudes (|∇SY |, |∇SU |, |∇SV |) are computed for the simpli-
fied color image, and (|∇AY |, |∇AU |, |∇AV |) for the orig-
inal AR frame.

An edge detection response is then calculated for each
pixel using the gradient magnitudes. This response value is
obtained through the weighted averaging of the local con-
trast in the intensity (Y) and color (U,V) channels. The rela-
tive weight of the intensity and color contrasts is determined
by the parameter α ∈ [0; 1]. Equation 4 shows the computa-
tion of the edge detection response for the simplified color
image, edge(S), and the original AR frame, edge(A). Us-
ing this method, the edge detection process can generate
responses in locations with homogeneous intensities, where
the color channel gradient is large. The user can emphasize
intensity contrasts or color contrasts for locating silhouette
edges by adjusting the value of α. Edge detection responses
computed for the example AR scene in Figure 4 are shown
in Figure 5.

edge(S) = (1 − α) · |∇SY | + α · |∇SU | + |∇SV |
2

(4)

edge(A) = (1 − α) · |∇AY | + α · |∇AU | + |∇AV |
2

The two edge detection responses are then combined
for determining the final silhouette intensity in the full-
resolution output image. For every pixel position (xo, yo) in
the output image, we denote the corresponding coordinates
in the simplified color image as (xs, ys). The parameter β
introduced in Equation 5 specifies the relative influence of
the simplified color image and the original AR frame for sil-
houette detection. Note that the output coordinates (xo, yo)
are also used for accessing the edge detection responses of
the original AR frame because it has an identical image res-
olution.

(a) edge(S)

(b) edge(A)

Figure 5. Edge detection responses for the
original AR frame and simplified color image
shown in Figure 4. (Parameter α=0.3. Images
have been brightened for better clarity.)

Io(xo, yo) = (1 − β) · smoothsteps1
s0

(edge(S)(xs, ys)) (5)
+β · smoothstepa1

a0
(edge(A)(xo, yo))

As shown in Equation 5, each of the two edge detection
responses is filtered with the smoothstep function. This
function is provided by the shading language used for the
implementation (see below). It returns a value of zero for
edge detection responses below the threshold s0 (a0), and a
value of one for responses above s1 (a1). Between the two
thresholds, smooth Hermite interpolation is used (see [16]
for a complete definition). The parameters s0, s1, a0 and
a1 are specified by the user. They determine the minimum
edge detection response necessary for generating a silhou-
ette, and how steeply the silhouette intensity increases.

The combined edge detection response Io is computed
for every pixel location (xo, yo) in the output image. The
final output image is then generated as follows: For every

output pixel, a corresponding simplified color image pixel is
looked up with an interpolated texture access to S(xs, ys).
This pixel is then rendered at (xo, yo), possibly with a sil-
houette edge blended over it. The silhouette edge inten-
sity is computed as the factor (1 − Io), which is used for
scaling the values in the RGB color channels of the output
pixel. This way, the output pixel is dark, if a large combined
edge detection response has been computed. The resulting
output image is a magnified version of the simplified color
image with black silhouette lines rendered over it. This is
illustrated in Figure 6, which shows the final output image
generated for the original AR frame in Figure 4(a).

Figure 6. The final output of the non-
photorealistic filter (Parameters: s0=0.054,
s1=0.064, a0=0.3, a1=0.7, β=0.3)

4. Implementation Details

We have implemented the non-photorealistic image fil-
tering algorithm using the OpenGL Shading Language [19].
The shading language makes it possible to execute the code
of the non-photorealistic filter on the graphics processing
unit (GPU). All necessary computations are performed on
data which are stored in the local memory of the graphics
card. This eliminates the need for a time-consuming read-
back of graphics memory contents.

The implementation of the algorithm uses three different
textures stored in graphics card memory:

• During program startup, a one-dimensional exponen-
tial texture is defined. This exponential texture con-
tains a sequence of function values computed as shown
in Equation 2. The non-linear filter in the color sim-
plification step looks up the photometric weights for
neighboring pixels in this one-dimensional texture.

This way, an explicit evaluation of the Gaussian func-
tion for every pixel is unnecessary. The exponential
texture is updated whenever σp is changed by the user.

• For each frame, the original AR image is copied from
the frame buffer into a separate texture. This origi-
nal AR texture is then used for rendering a scaled-
down version of the image. Moreover, this texture is
later accessed as image function A by the edge detec-
tion filter for computing the edge detection response
edge(A). Standard OpenGL functionality is used for
copying the frame buffer content into the texture mem-
ory (glCopyTexSubImage2D()1 , see [20]).

• The scaled-down version of the original AR image
is also stored in a separate texture. This texture is
repeatedly overwritten with the results of the itera-
tions of the non-linear filter. Finally, it contains the
simplified color image. Since this texture serves as
buffer for intermediate images generated by the fil-
tering passes, we also refer to it as the multipass
texture. Again, the scaled-down original image and
the filtering passes are copied into the texture using
glCopyTexSubImage2D().

Each of the textures is bound to a separate texture unit
of the GPU. This way, they can be accessed simultaneously
from the shaders. The filtering passes are performed by ren-
dering 2D rectangles into the OpenGL back buffer. Before
each rectangle is rendered, the respective image filtering
shaders are activated. The final result image is again ren-
dered into the back buffer, overwriting data from intermedi-
ate passes before the buffer is displayed to the user.

Both the color simplification and the edge detection
stages are implemented as a pair of vertex and fragment
shaders. The actual image filtering is performed in the
fragment shaders, which require a large number of texture
lookups. In order to achieve real-time performance for the
non-photorealistic filter, a scheme for pre-computing tex-
ture coordinates in the vertex shaders is used. This way,
no nested loops and vector multiplications are necessary for
generating texel addresses in the neighborhood of the cur-
rently processed texture coordinate. A detailed description
of this technique has been given by Viola et al. [24]. As
mentioned in Sections 3.1 and 3.2, the non-photorealistic
filter converts pixels into the YUV color space. This con-
version is performed by multiplying RGB vectors with a

1As an alternative solution, a technique for directly rendering into
texture memory could be used. However, render-to-texture is currently
not supported in the software environment that we use for develop-
ment. We have run comparative benchmarks which showed that the
glCopyTexSubImage2D() calls in our implementation do not have
any measurable impact on the frame rate. This is due to the limited mem-
ory requirement of the camera image and the small number of actual copy-
ing operations.

constant matrix, which is an operation that can be computed
very efficiently on the GPU.

5. Results

We have tested our new algorithm for generating stylized
augmented video streams with various AR scenes. The soft-
ware containing the implementation of the algorithm pro-
vides functionality for importing 3-d models in standard file
formats. Vision-based marker tracking using the ARToolKit
library delivers the pose information necessary for correctly
rendering graphical objects (see [15]). The user can trans-
late, rotate and scale the virtual models in relation to the
marker coordinate system. Moreover, material parameters
and textures can be assigned to the models. A comprehen-
sive user interface for choosing the parameters of the styl-
ization algorithm is also provided.

Figure 7 shows images of three test scenes. In each col-
umn of images, the first row contains the original AR frame,
and the result of the stylization algorithm is shown in the
second row. A virtual Santa Claus model is the virtual ob-
ject in Fig. 7(a) and 7(d). In Fig. 7(b) and 7(e), a virtual
Moka Express coffeemaker is located over the ARToolKit
marker. The graphical model of a DC10 plane is displayed
in the AR scene shown in Fig. 7(c) and 7(f).

For rendering these example images, the adaptive edge
detection was performed with a strong emphasis on the sim-
plified color image. The factor for edges in the original AR
frame (parameter β in Equation 5) was set to values smaller
than 0.5. This way, thick silhouette lines between large, ho-
mogeneously colored image regions were generated. The
selected size of the multipass texture, which is also the size
of the final simplified color image, typically was less than
half of the dimensions of the original AR frame. Therefore,
some detail was removed from the image, and uniformly
colored regions were created. As illustrated in Figure 7, real
and virtual scene elements look very similar in the stylized
output video frames.

In Table 1, frame rates of our stylized augmented re-
ality system measured for different algorithm parameters
are listed. These measurements were made on a computer
system with an Intel Pentium 4 Xeon processor running at
2.66 GHz and a graphics card based on an NVidia GeForce
FX 6800 chipset. The webcam used in the AR system de-
livers video images with a resolution of 640 by 480 pix-
els. The first column in the table lists the selected res-
olution of the multipass texture (shrunkImageWidth x
shrunkImageHeight). In the second column, the number
of non-linear filter iterations (numFilterSteps) is listed.
The third column contains the measured runtimes of the
non-photorealistic filter in milliseconds. Finally, column
four shows the overall system frame rate including the en-
tire augmented reality pipeline.

Table 1. Runtimes of the non-photorealistic
filter and overall frame rates for different al-
gorithm parameters.

Resolution Filtering Post-processing Overall fps
(multipass tex.) iterations (msecs)

240x180 5 19 27.84
240x180 7 25 24.22
240x180 9 30 21.51
400x300 5 44 16.68
400x300 7 59 13.37
400x300 9 74 11.12

We have found a multipass texture resolution of 240x180
texels to be sufficient for generating an output video stream
of good visual quality in most cases. Moreover, no more
than 7 filter iterations are normally necessary. Assuming
that the graphical models contained in the AR scene do not
consist of an excessive number of polygons, our system can
generate stylized augmented video streams at 25 fps or more
in a typical setup.

6. Example Application

We demonstrate the visualization of dinosaur bones as
an example application for our stylized augmented reality
method. Figure 8 shows three different bone segments ren-
dered in an AR scene using our stylization algorithm. The
datasets were generated from the actual bones of a Pla-
teosaurus. They were acquired with a computed tomo-
graphy (CT) scanner. Subsequently, the volume datasets
created by the scanning procedure were converted into a
polygonal representation, which is imported into our aug-
mented reality system.

In the output video stream generated by our stylization
method, real and virtual objects look very similar. This im-
proves the immersion in the augmented environment. When
viewing the dinosaur bones, a convincing experience is cre-
ated for users of the stylized augmented reality system.
Such an application could be used for instance in a museum
setting and for educational purposes.

7. Conclusions

We have presented a new method for generating stylized
augmented reality images. Since the non-photorealistic fil-
ter is designed as a post-processing step, it can easily be
combined with any augmented reality rendering system. Its
GPU-based implementation is fast and delivers real-time

(a) Santa Claus model, conventional AR (b) Moka Express, conventional AR (c) DC10 plane model, conventional AR

(d) Santa Claus model, cartoon-like style (e) Moka Express, cartoon-like style (f) DC10 plane model, cartoon-like style

Figure 7. Three example scenes illustrating the effect of our new cartoon-like stylization for aug-
mented reality. In each column, the top image shows conventional AR rendering. The bottom row
contains the stylized versions of the respective video frames.

frame rates.
The algorithm consists of a color simplification step and

an adaptive edge detection method, which are computed on
a per-frame basis. They do not take temporal coherence in
consecutive images into account. Depending on the illumi-
nation conditions in the surroundings and the quality of the
video frames delivered by the camera, the parameters of the
algorithm need to be adapted in order to obtain a good sep-
aration of uniform regions in the image. However, good
results are normally generated with a constant parameter
set as long as a similar type of augmented scene is viewed.
Only if the video acquisition settings of the camera change
significantly or if the lighting in the observed environment
varies strongly, the algorithm parameters have to be cor-
rected. In our experience, a near-constant setup of the cam-
era image filter delivers acceptable results under most cir-
cumstances. However, very large or extremely small color
constrasts between regions in the observed scene can cause
the algorithm to produce unsatisfactory stylized images.

In order to achieve the objectives of stylized augmented
reality, it is essential that the real background image and the
virtual models look similar. We have found that the cartoon-
like stylization produces a similar level of realism for both
layers in the AR image. Since real and virtual scene el-

ements become much more difficult to distinguish, the im-
mersion in the augmented scene is improved. While it could
be argued that our method is based on effectively degrading
the visual quality of the camera image, we think that enough
information is preserved to be useful for many applications.
For these scenarios, which do not require a high fidelity ren-
dering of the camera image, our method can be considered
a realization of the principle of “functional realism” as de-
scribed by Ferwerda [5].

The new paradigm of stylized augmented reality can be
useful for applications in entertainment, education and art.
Due to the adapted degrees of realism in the real and virtual
environments, a more convincing experience can be created
for the user. Augmented reality games, art projects and in-
teractive courses could benefit from this advantage. As a
future development, various types of non-photorealism can
be used in stylized augmented reality, resulting in different
experiences for the user.

Acknowledgments

We would like to thank Ángel del Rı́o for his support
during the experiments and for proofreading this paper.

(a) Plateosaurus bone 1 (b) Plateosaurus bone 2 (c) Plateosaurus bone 3

Figure 8. Visualization of dinosaur bones in augmented reality. Due to the blurred barrier between
real and virtual in the stylized output video, a better immersion in the augmented environment is
created.

The volume datasets containing the scanned dinosaur bones
were provided by Prof. Dr. Hans-Ulrich Pfretzschner and
Heinrich Mallison from the research group Vertebrate Pale-
ontology of the Institute for Geosciences of the University
of Tübingen.

Some of the graphical models used in our experiments
were downloaded from the 3D Cafe website [1].

This work has been supported by project VIRTUE in the
focus program on ”Medical Robotics and Navigation” (SPP
1124) of the German Research Foundation (DFG).

References

[1] 3D Cafe’s Free Stuff. http://www.3dcafe.com/, 2005.
[2] K. Agusanto, L. Li, Z. Chuangui, and N. Sing. Photoreal-

istic Rendering for Augmented Reality using Environment
Illumination. In IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR), pages 208–216,
October 2003.

[3] R. Azuma. A Survey of Augmented Reality. Presence: Tele-
operators and Virtual Environments, 6(4):355–385, 1997.

[4] D. DeCarlo and A. Santella. Stylization and Abstraction of
Photographs. In Proceedings of ACM SIGGRAPH, pages
769–776, July 2002.

[5] J. Ferwerda. Three Varieties of Realism in Computer Graph-
ics. In Proceedings SPIE Human Vision and Electronic
Imaging, pages 290–297, 2003.

[6] J. Fischer, D. Bartz, and W. Straßer. Stylized Augmented
Reality for Improved Immersion. In Proceedings of IEEE
Virtual Reality (VR), pages 195–202, March 2005.

[7] R. Gonzalez and R. Woods. Digital Image Processing.
Prentice-Hall, 2nd edition, 2002.

[8] B. Gooch and A. Gooch. Non-Photorealistic Rendering. A
K Peters, 2nd edition, 2001.

[9] R. Grasset, J. Gascuel, and D. Schmalstieg. Interactive Me-
diated Reality (poster). In IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR), page
302, October 2003.

[10] M. Haller. Photorealism or/and Non-Photorealism in Aug-
mented Reality. In ACM SIGGRAPH International Confer-
ence on Virtual Reality Continuum and its Applications in
Industry (VRCAI), pages 189–196, June 2004.

[11] M. Haller, S. Drab, W. Hartmann, and J. Zauner. A Real-
time Shadow Approach for an Augmented Reality Applica-
tion using Shadow Volumes. In ACM Symposium on Virtual
Reality Software and Technology (VRST), pages 56–65, Oc-
tober 2003.

[12] M. Haller and D. Sperl. Real-Time Painterly Rendering for
MR Applications. In International Conference on Com-
puter Graphics and Interactive Techniques in Australasia
and South East Asia (Graphite), pages 30–38, June 2004.

[13] A. Hertzmann and K. Perlin. Painterly Rendering for Video
and Interaction. In Proceedings of the 1st International
Symposium on Non-Photorealistic Animation and Render-
ing (NPAR), pages 7–12, 2000.

[14] M. Kanbara and N. Yokoya. Geometric and Photometric
Registration for Real-Time Augmented Reality (posters and
demo session). In IEEE and ACM International Sympo-
sium on Mixed and Augmented Reality (ISMAR), page 279,
September 2002.

[15] H. Kato and M. Billinghurst. Marker Tracking and HMD
Calibration for a video-based Augmented Reality Confer-
encing System. In Proceedings of IEEE and ACM Interna-
tional Workshop on Augmented Reality (IWAR), pages 85–
94, October 1999.

[16] J. Kessenich, D. Baldwin, and R. Rost.
The OpenGL R© Shading Language (v1.10).
http://www.opengl.org/documentation/oglsl.html, 2004.

[17] S. Mann and J. Fung. VideoOrbits on Eye Tap devices for
deliberately Diminished Reality or altering the visual per-
ception of rigid planar patches of a real world scene. In
International Symposium on Mixed Reality (ISMR), March
2001.

[18] W. Pratt. Digital Image Processing. John Wiley & Sons,
2nd edition, 1991.

[19] R. Rost. OpenGL Shading Language. Addison-Wesley Pub-
lishing Company, 2004.

[20] D. Shreiner, M. Woo, J. Neider, and T. Davis. OpenGL Pro-
gramming Guide. Addison-Wesley Publishing Company,
4th edition, 2003.

[21] T. Strothotte and S. Schlechtweg. Non-Photorealistic Com-
puter Graphics - Modelling, Rendering, and Animation.
Morgan Kaufmann Publishers, 2002.

[22] N. Sugano, H. Kato, and K. Tachibana. The Effects of
Shadow Representation of Virtual Objects in Augmented
Reality. In IEEE and ACM International Symposium on
Mixed and Augmented Reality (ISMAR), pages 76–83, Oc-
tober 2003.

[23] C. Tomasi and R. Manduchi. Bilateral Filtering for Gray
and Color Images. In International Conference on Computer
Vision (ICCV), pages 839–846, 1998.

[24] I. Viola, A. Kanitsar, and M. Gröller. Hardware-Based Non-
linear Filtering and Segmentation using High-Level Shad-
ing Languages. In Proceedings of IEEE Visualization, pages
309–316, 2003.

[25] J. Wang, Y. Xu, H. Shum, and M. Cohen. Video Tooning. In
Proceedings of ACM SIGGRAPH, pages 574–583, August
2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

