
The atnext/atprevious Hierarchy

on the Starfree Languages

Bernd Borchert
Pascal Tesson

WSI-2004-11

Universität Tübingen
Wilhelm-Schickard-Institut für Informatik

Arbeitsbereich Theoretische Informatik/Formale Sprachen
Sand 13

D-72076 Tübingen

borchert@informatik.uni-tuebingen.de

c© WSI 2004
ISSN 0946-3852

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/56755032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




The atnext/atprevious Hierarchy on the Starfree Languages

Bernd Borchert Pascal Tesson

Universität Tübingen, Germany

{borchert,tesson}@informatik.uni-tuebingen.de

Abstract

The temporal logic operators atnext and atprevious are alternatives for the operators until

and since. P atnext Q has the meaning: at the next position in the future where Q holds it
holds P . We define an asymmetric but natural notion of depth for the expressions of this linear
temporal logic. The sequence of classes atn of languages expressible via such depth-n expressions
gives a parametrization of the starfree regular languages which we call the atnext/atprevious
ierarchy, or simply the at hierarchy. It turns out that the at hierarchy equals the hierarchy given
by the n-fold weakly iterated block product of DA. It is shown that the at hierarchy is situated
properly between the until/since and the dot-depth hierarchy.

1 Introduction

This paper continues the study of the expressiveness of fragments of linear temporal logic LTL.
Kamp [Ka68] showed already 1968 that LTL and first-order expressibility conincide, especially for
languages of finite words. Together with the (later) results of McNaughton & Papert [MP71] this
shows that LTL expresses exactly the starfree regular languages. The natural hierarchy on the starfree
regular sets is the dot-depth hiearchy. It was shown 1982 by Thomas that dot-depth corresponds to
quantifier alternation depth of first-order expressions [Th82]. For the LTL logic, on the other hand,
no hierarchy is known which corresponds to the dot-depth hierarchy. The two best-known LTL
hierarchies, the until hierarchy [EW96, TW01] and until/since hierarchy [EW96, TW04], do exhaust
the starfree languages but do this much more slowly than the dot-depth hierarchy: It was shown by
Etessami & Wilke [EW96] that already the second-lowest level of the dot-depth hierarchy contains
languages of every level of these two LTL hierarchies. In this paper we present an LTL hierarchy
based on the two temporal operators atnext, introduced 1984 by Kröger [Kr84], and atprevious
instead of the operators until and since. We define a certain notion of depth on these expression
and call the resulting hierarchy the at hierarchy. We show that the at hierarchy takes a small step
in the direction of the dot-depth hierarchy in the sense that the at hierarchy is situated properly
between the until/since and the dot-depth hierarchy.

The standard set of LTL operators consists, in addition to the letter symbols and the Boolean
operators, of the future operators until (2-ary), (eventually in the future, 1-ary), and g(next,
1-ary), and of the corresponding past operators since, (eventually in the past), and g(previous).

1



The 2-ary temporal logic operator atnext, introduced by Kröger [Kr84], is an alternative for the
operator until. “P atnext Q” has the meaning as its name suggests: at the next position in
the future where Q holds it holds P . As a simple example, the expression “1 atnext (1 ∨ 2)” on
alphabet {0, 1, 2} looks whether the first non-0 is a 1, i.e. it describes the language 0∗1{0, 1, 2}∗. The
temporal logic operator until can be expressed via an atnext expression and vice versa, see Table 1.
atprevious is defined to be the past operator corresponding to atnext. The LTL expressions using
only the two operators atnext and atprevious will be called at expressions. We define a notion
of depth for at expressions which is asymmetric in the sense in an expression only the depth of
nested right subexpressions is counted, nested left subexpressions are for free. This definition will be
justified by the complexity of model-checking of atprevious/atnext expressions which mainly depends
on the rightmost depth. The sequence of classes L(atn) of languages expressible via such depth-n
expressions gives a parametrization of the starfree regular languages which we call the at hierarchy.

Our main result will be that the at hierarchy equals the hierarchy given by the n-fold weakly iterated
block product of DA. In this paper DA (in normal face) is a synonym for ∆L

2 of the dot-depth
hierarchy. We prove as our main lemma that the pointed languages given by at expressions of depth
1 correspond to the pointed languages of DA. Together with the block product/substitution principle
from [TW04] this lemma gives the characterization of the n-th level of the at hierarchy.

We compare the at hierarchy with the until/since hierarchy and the dot-depth hierarchy. It is easy to
see that the ∆-levels of the dot-depth hierarchy cap the levels of the at hierarchy which in turn cap
the levels the until/since hierarchy, and for some area the three hierarchies grow at the same rate. For
the other two directions of these two hierarchy comparisons we show that, besides on their bottom
level which is DA for all three, the three hierarchies are incomparable: the second-lowest level of the
at hierarchy contains languages from every level of the until/since hierarchy, and the second-lowest
level of the dot-depth hierarchy contains languages from every level of the at hierarchy, see Figure 3.
In other words: the at hierarchy is situated between the until/since hierarchy and the dot-depth
hierarchy, and for all levels besides the bottom level these two inclusions are proper.

The paper is organized as follows. In Section 2 we introduce the syntax and semantics for a proposi-
tional linear temporal logic using the atnext and atprevious operators. We define the at hierarchy
and show some easy facts about the levels of the hierarchy. In Section 2 the main lemma is shown,
saying that the pointed languages of expressions of level 1 of the at hierarchy are the pointed lan-
guages of DA, and we conclude that the n-fold weakly iterated block product of DA equals the n-th
level of the at hierachy. We use this characterization together with results from [EW96, Bo04] to
completely settle the levelwise relation of the at hierarchy in comparison with the dot-depth and the
until/since hierarchy. In Section 4 we add the g(next) and the g (previous) operators to the at
logic, and we will see that this just adds some “generalized definite” complexity to it, like this is
known for the until/since hierarchy and the dot-depth hierarchy.

2 A temporal logic with the atnext and atprevious operators

We consider the following propositional linear temporal logic on words. It uses besides the symbol
b for every letter b of the alphabet Σ and besides the Boolean connectives true, false, ¬, ∧, and
∨, the two 2-ary operators atnext and atprevious. The first was introduced by Kröger [Kr84]
as an alternative for the operator until, the latter was not defined in that paper but is just the
past pendant of the future operator atnext, like since is the past pendant of until. Intuitively,

2



“ϕ atnext ψ” means “for the smallest position in the future such that ψ holds it also holds ϕ”,
while “ϕ atprevious ψ” looks analogously into the past: “for the largest position in the past such
that ψ holds it also holds ϕ’. The operators will be defined formally as follows. An at expression is
any correctly built expression using the following connectives already mentioned above: b is an at
expression for every letter b of the alphabet Σ, true and false are at expressions, and if ϕ and ψ are at
expressions then also (¬ϕ), (ϕ∧ψ), (ϕ∨ψ), (ϕ atnext ψ), and (ϕ atprevious ψ) are. Parentheses
may be ommitted for readability. In Section 4 we will consider the case that the expressions can
moreover contain the 1-ary operators g (next) and g (previous), these expressions will be called
AT expressions. Note that at expressions do not contain explicit variables, like this is the case for
every propositional linear temporal logic.

An at expression ϕ will define a language Lϕ over the alphabet Σ. For this we first define by induction
the following relation (x, i) |= ϕ where (x, i) is a pointed word, i.e. a pair such that x is a word from
Σ∗ and i is a position in x, i.e. i ∈ {1, . . . , |x|}.

(x, i) |= b

iff the letter of x at position i is b.

(x, i) |= ϕ ∧ ψ
iff (x, i) |= ϕ and (x, i) |= ψ. Likewise for the other Boolean connectives.

(x, i) |= ϕ atnext ψ
iff (x, j) |= ψ does not hold for any position j with j > i, or it holds for some position j > i

and (x, j) |= ϕ for the smallest such j.

(x, i) |= ϕ atprevious ψ
iff (x, j) |= ψ does not hold for any position j with j < i, or it holds for some position j < i

and (x, j) |= ϕ for the largest such j.

For a word x define x |= ϕ as follows:

x |= b

does not hold for any letter b.

x |= ϕ ∧ ψ
iff x |= ϕ and x |= ψ. Likewise for the other Boolean connectives.

x |= ϕ atnext ψ
iff (x, i) |= ψ does not hold for any position i, or it holds for some position i and (x, i) |= ϕ for
the smallest such i.

x |= ϕ atprevious ψ
iff (x, i) |= ψ does not hold for any position i, or it holds for some position i and (x, i) |= ϕ for
the largest such i.

Finally, define Lϕ := {x | x |= ϕ}. For a set of at expressions E let L(E) be the class of languages
of finite Boolean combinations of languages Lϕ for ϕ ∈ E.

Variants atnext∗ and atprevious∗ of the atnext and the atprevious operators, resp., are defined
as follows:

3



(a) ϕ until ψ ≡ (ψ atnext (¬ϕ ∨ ψ)) ∧ ¬(false atnext ψ)
(b) ϕ until ψ ≡ ψ atnext∗ (¬ϕ ∨ ψ)
(c) ϕ atnext ψ ≡ (¬ψ until (ϕ ∧ ψ)) ∨ ¬(true until ψ)
(d) ϕ atnext ψ ≡ (ϕ atnext∗ ψ) ∨ ¬(true atnext∗ ψ)
(e) ϕ atnext∗ ψ ≡ ¬ψ until (ϕ ∧ ψ)
(f) ϕ atnext∗ ψ ≡ (ϕ atnext ψ) ∧ ¬(false atnext ψ)

Table 1: Translating the temporal operators into each other

(x, i) |= ϕ atnext∗ ψ
iff (x, j) |= ψ holds for some position j > i and (x, j) |= ϕ for the smallest such j.

(x, i) |= ϕ atprevious∗ ψ
iff (x, j) |= ψ holds for some position j < i and (x, j) |= ϕ for the largest such j.

x |= ϕ atnext∗ ψ
iff (x, i) |= ψ holds for some position i and (x, i) |= ϕ for the smallest such i.

x |= ϕ atprevious∗ ψ
iff (x, i) |= ψ holds for some position i and (x, i) |= ϕ for the largest such i.

The difference is that in case ψ does not hold in the future the whole expression fails. This “stared”
definition, which we prefer to use in the following, and its analogue for atprevious are closer to the
until and since definition, resp., see Table 1. Note that in the Abstract and in the Introduction
we actually used the “stared” definition, in order to state things more easily. Expressions using the
stared versions will also be called at expressions. The depth of an at expression, which we define
below, is independent of the choice (with or without star) of this variant.

Examples of at expressions:

ϕ1 = “true atnext∗ 1”
on alphabet {0, 1} looks whether there exists a 1, i.e. Lϕ1

= 0∗1{0, 1}∗, a language in ΣL
1 and

in DA (see below for the definition of the levels of the dot-depth hierarchy and the definition
of DA and its block products)

ϕ2 = “1 atnext∗ (1 ∨ 2)”
on alphabet {0, 1, 2} looks whether the first 1 or 2 is a 1, i.e. Lϕ2

= 0∗1{0, 1, 2}∗, a language
in ∆L

2 = DA.

ϕ3 = “((true atnext∗ 2) atprevious∗ 1) atnext∗ 0”
on alphabet {0, 1, 2} describes the turtle language “ starting at the left border look for the first
0, from there look left for the first 1, and from there look right for the first 2, if any of the
searches fails, reject”, i.e. Lϕ3

is also a DA language. See the next section for the definition of
turtle languages.

ϕ4 = “true atnext∗ (2 ∧ (2 atnext∗ (1 ∨ 2)))”
on alphabet {0, 1, 2} looks whether there exists a position i with letter 2 such that right of i

4



atprevious

1

3

atnext

1    2 v

v v(3     4)

atnext

1

0atprevious

atnext

atnext

true 2

1 v1     2

  

Figure 1: Depth 1 (left and middle) vs. depth 2 (right) expressions

the smallest position having letter 1 or 2 has letter 2, i.e. Lϕ4
= Σ∗20∗2Σ∗, a language in ΣL

2

and in DA � DA.

ϕ5 = “3 atprevious∗ ((3 ∨ 4) ∧ (1 atnext∗ (1 ∨ 2)))”
on alphabet {0, 1, 2, 3, 4} looks whether the first position i with a 3 or 4 such that the largest
position j < i with a letter 1 or 2 has letter 1, has letter 3. Lϕ5

is a language in ∆L
3 and

DA � DA.

The line of the examples ϕ2 and ϕ5 can be continued: Let {0, 1, . . . , 2n−1, 2n} be the alphabet
for the following at expression δn. Define δ2 to be ϕ2 from above, and let δn be the expression
2n−1 atnext\atprevious ((2n−1 ∨ 2n) ∧ δn−1), where atnext and atprevious alternate with
every odd/even n. The language Lδn

is an element of ∆L
n − ∆L

n−1 in the dot-depth hierarchy by
the results of [BLSTT04] combined with oracle results separating the polynomial and the Boolean
hierarchy.

Define the at-depth dat(ϕ) of an at expression ϕ the following way.

dat(b) := 0 for every letter b.

dat(ϕ ∧ ψ) := max(dat(ϕ), dat(ψ)), likewise for the other Boolean connectives.

dat(ϕ atnext ψ) := dat(ϕ atprevious ψ) := max(dat(ϕ), 1 + dat(ψ)).

Note the asymmetry in the definition of at-depth. Let atn be the set of at expressions of at-depth at
most n, and let L(atn) be the set of languages expressible with them. Examples from above: ϕ1, ϕ2

and ϕ3 have at-depth 1 while ϕ4 and ϕ5 have at-depth 2, see Figure 1 where ϕ2, ϕ3 and ϕ5 are
sketched. Note that by the translations (d) and (f) in Table 1 every at∗ expression of depth n is
equivalent to an at expression of depth n, and vice versa, so at-depth is independent of the “star”.

The asymmetry in the definition of at-depth it is justified the following way via the space complexity
of the model checking problem for at expressions. Given an input 〈ϕ,w〉 where ϕ is an at expression
for alphabet Σ and x is a word from Σ∗ it is possible to check within alternating space

|φ| + dat(φ) · log(|w|)

5



whether w ∈ Lφ, and alternation depth is bounded by |φ|. The algorithm just follows the definition
of w |= ϕ resp. (w, i) |= ϕ: The recursive procedure eval(ϕ,w, i, new, top) will compute whether
(w, i) |= ϕ, the pseudo code is sketched in Table 2. The Boolean parameter new set to ’true’ will
cause the creation of a new variable in case the procedure steps into an atnext/atprevious operator,
while for new = ’false’ it will not need new space (“call-by-reference”). The Boolean parameter top
just indicates that there is no atnext/atprevious operator above in the expression tree of ϕ. The
main call is eval(ϕ, x, 1, true, true) and gives the right answer to the question whether x |= ϕ. The
observation that the at-depth corresponds to the number of nested calls with the new parameter
set to ’true’ gives the space estimate stated above. The alternation, as a variant of parallelism, is
launched by the 2-ary Boolean operators. Note that in case ϕ is small and/or shallow, or even fixed,
the at-depth gives a reasonable upper bound for a very space-efficient model-checking algorithm, its
run-time is O(|w|n) where n is the at-depth of ϕ. In other words: if space is limited to logarithmic
space, i.e. only a fixed numer of variables (= heads) pointing into the input, then the at-depth gives
a very sensitive estimation of the running time. If one allows linear space, i.e. arrays of length |w|,
then of course the algorithm computing for every position i the value (w, i) |= ψ subsequently for all
sub-expressions ψ of ϕ, starting with the bottom ones, will do the model-checking in linear-time.

Usually, LTL logic uses the until, the since, and the two operators and (eventually in the
future, eventually in the past) which are defined as follows. Like the atnext/atprevious operators
they are defined the way their names indicate it. First we state the definition for pointed words, and
afterwards for words. All quantifications are again over the set of positions in x.

(x, i) |= ϕ until ψ
if there exists a position j > i such that (x, j) |= ψ and for all positions k with i < k < j it
holds (x, k) |= ϕ.

(x, i) |= ϕ since ψ
if there exists a position j < i such that (x, j) |= ψ and for all positions k with j < k < i it
holds (x, k) |= ϕ.

(x, i) |= ϕ

if there exists a position j > i such that (x, j) |= ϕ.

(x, i) |= ϕ

if there exists a position j < i such that (x, j) |= ϕ.

x |= ϕ until ψ
if there exists a position j such that (x, j) |= ψ and for all positions k with k < j it holds
(x, k) |= ϕ.

x |= ϕ since ψ
if there exists a position j such that (x, j) |= ψ and for all position k with j < k it holds
(x, k) |= ϕ.

x |= ϕ ⇐⇒ x |= ϕ

if there exists a position i such that (x, i) |= ϕ.

The eventually operators are definable by the until operator through the equivalences ϕ ≡
true until ϕ, and ϕ ≡ true since ϕ. Nevertheless they are important for the definition of

6



Input: at expression ϕ, word w, position i in w; Boolean values new and top
Output: true if (w, i) |= ϕ, false otherwise;

Boolean eval(ϕ,w, i, new, top) {
if ϕ = b for a letter b return true if wi = b, return false otherwise;
if ϕ = true return true;
if ϕ = false return false;
if ϕ = ϕ1 ∧ ϕ2 return AND(eval(ϕ1, w, i, new, top), eval(ϕ1, w, i, new, top));
if ϕ = ϕ1 ∨ ϕ2 return OR(eval(ϕ1, w, i, new, top), eval(ϕ1, w, i, new, top));
if ϕ = ¬ϕ1 return NEG(eval(ϕ1, w, i, new, top));
if new = true {

if ϕ = ϕ1 atnext ϕ2 {
integer j;
if top = true set j := 1 otherwise set j := i+ 1;
while j ≤ |w| do {

if eval(ϕ2, w, j, true, false) return eval(ϕ1, w, j, false, false);
else set j := j + 1 };

return 0 };
if ϕ = ϕ1 atprevious ϕ2 {

integer j;
if top = true set j := |w| otherwise set j := i− 1;
while j ≥ 1 do {

if eval(ϕ2, w, j, true, false) return eval(ϕ1, w, j, false, false);
else set j := j − 1; }

return 0; } }
otherwise {

if ϕ = ϕ1 atnext ϕ2 {
if top = true set i := 1 otherwise set i := i+ 1;
while i ≤ |w| do {

if eval(ϕ2, w, i, true, false) return eval(ϕ1, w, i, false, false);
else set j := j + 1 };

return 0 };
if ϕ = ϕ1 atprevious ϕ2 {

if top = true set i := |w| otherwise set i := i− 1;
while i ≥ 1 do {

if eval(ϕ2, w, i, true, false) return eval(ϕ1, w, i, false, false);
else set j := j − 1; }

return 0; } }

Table 2: The model checking procedure eval

7



until/since depth because they are “for free”: the until/since depth dus(ϕ) of until/since expression
ϕ is defined as the maximal number of since and until operators on a path of the expression tree of
ϕ. and operators on a path are not counted. Let usk denote the set of until/since expression
of depth at most k. In Section 4 the g (next) and the g operators will be added to the logic,
again like the eventually operators not counting for depth, and USk will denote the expressions of
that extended syntax which have until/since depth k [TW04]. Again, Lϕ := {x | x |= ϕ} for an
until/since expression ϕ. For a set E of until/since expressions let L(E) be the class of languages of
finite Boolean combinations of languages Lϕ for ϕ ∈ E.

The until, atnext, and atnext∗ operators can be translated into each other as shown in Table 1,
see also [Kr84]. The analogous equivalences hold of course for the past operators, for example
“ϕ atprevious∗ ψ ⇐⇒ ¬ψ since (ϕ ∧ ψ)”.

It does not seem to be possible to redefine depth of until/since expressions in a way such that
it corresponds to at-depth of the translated expression: this may be due to the fact that in the
translations the right subexpression in the original expression (in Table 1 this is ψ) appears on both
sides of the translated expression. If we would define depth for at expressions the usual way, the
hierarchy we get is the same as the until/since hierarchy, this can be verified by the translations in
Table 1, and was mentioned already in [TW04][p. 115].

3 The at hierarchy and iterated block products of DA

In this section we first state some simple facts about the at hierarchy. Then we characterize the
pointed languages resulting from at expression of depth 1, and use this to characterize the levels of
the at hierarchy via the block product/substitution lemma of [TW04]. Finally we compare the at
hierarchy with the dot-depth and the until/since hierarchy.

We define the classes of the Straubing-Thérien, which a version of the dot-depth hierarchy (in Sec-
tion 4 we will consider the other version of it, the Cohen-Brzozowski hierarchy). For n ≥ 1 let ΣL

n

and ΠL
n be the class of languages definable with a first-order Σn or Πn quantifier prefix over signature

[<], see for example the textbook [St94] for the definition of first-order logic on words. ∆L
n is defined

as the intersection of ΣL
n and ΠL

n . The following observations state that the at hierarchy is infinite
and exhausts the starfree regular languages. Part (a) gives a first level-wise comparision with the
dot-depth hierarchy. Later we will obtain for k ≥ 2 the properness of this inclusion, see Theorem 5.

Proposition 1 Let k ≥ 1.

(a) L(atk) ⊆ ∆L
k+1,

(b)
⋃

k≥1 L(atk) = STARFREE,

(c) There exists a language Dk+1 which is in ∆L
k+1 ∩ L(atk) ∩ L(usk−1) but not in ∆L

k ,

(d) L(atk) ⊂ L(atk+1).

Proof. (a) Consider first the case k = 1. Given an at1 expression ϕ with n atnext/atprevious
searches nested to the left, guess the set of positions x1, . . . , xn where the single atnext/atprevious
searches are successful, check whether at position xi the condition searched for is met and check
universally whether xi+1 is in fact the earliest/latest position seen from xi for which this is the case.
This gives a Σ2 expression for the languages expressed by ϕ. Also ¬ϕ can be expressed in ΣL

2 : build

8



for every prefix of the atnext/atprevious searches of ϕ the Σ2 expression like above but now guess
with an universal quantifier that it fails exactly at this step, i.e. does not find any of the letters it
is looking for. The disjunction of all these expressions says that ϕ fails. Moving the disjunctions
behind the quantifiers and using de Morgan’s law we have that Lϕ can be be expressed by a Π2 first
order expression. This shows that ϕ is in ΣL

2 ∩ΠL
2 = ∆L

2 . For larger k ≥ 2 the same procedure on the
topmost path of atnext/atprevious operators leads to an Σ2 expression with atk−1 subexpressions,
for which the Πk−1 first-order expressions – which exist by induction hypothesis – are taken, resulting
into a Σk expression because two subsequent ∀ levels collapse into one. Dually, a Πk expression is
obtained by plugging the Σk−1 translation of an atk−1 subexpressions into a Π2 expression for the
topmost path of atnext/atprevious operators.

(b) Given the classical result FO = LTL = STARFREE mentioned in the Introduction, the direction
⊆ follows from (a), and the direction ⊇ follows from the fact that an until/since expression can be
translated into an at expression, see Table 1.

(c) Let Dk+1 be the languages Lδk+1
defined above after the examples. Dk+1 is not only in L(atk) by

the at expression δk+1 which has at-depth k but can even be expressed by an until/since expression
with until/since depth k − 1.

(d) the ⊆ relation holds by definition, and the properness follows from (c) together with (a).

q.e.d.

We are in this paper interested especially in ∆L
2 , i.e. the languages L for which there exist two

quantifier-free expressions ϕ1(~x, ~y) and ϕ2(~u,~v) over signature [<] such that L equals the language
expressed by ∃~x∀~yϕ1(~x, ~y) and also equals the language expressed by ∀~u∃~vϕ2(~u,~v). It holds that a
language is in ∆L

2 iff its syntactic monoid is in the variety DA [Sch76, PW97], where DA is defined
as the class of finite monoids which fulfill the equality (xyz)ωy(xyz)ω = (xyz)ω. This equality
∆L

2 = L(DA) was shown by Pin & Weil [PW97], building on earlier research on DA and ∆L
2 ,

started by Schützenberger [Sch76]. By this equality we let DA (in normal face) in this paper be
another name for ∆L

2 from the Straubing-Thérien hierarchy. DA has many characterizations, see
the survey [TT02], for example the following one by Schwentick et al. [STV01], building on earlier
notions and results by [TW98].

DA is the class of turtle languages, which we define here as languages expressed by certain restricted
at1 expressions: A turtle expression is either the expression “true”, or an expression

t atnext∗ b

t atprevious∗ b

where t is a turtle expression and b is a letter. A turtle language is a finite Boolean combination
of languages Lϕ for a turtle expression ϕ. By definition, turtle languages are a subset of L(at1).
Schwentick et al. [STV01] showed that the class of turtle languages equals DA. This gives the
direction ⊇ of the following corollary, the inclusion ⊆ is the case k = 1 from Proposition 1.

Corollary 1 L(at1) = DA

We generalize turtle languages a little bit. A search expression is either the expression true, or a
single letter b, or an expression

s atnext∗ (b1 ∨ · · · ∨ bm)

9



s atprevious∗ (b1 ∨ · · · ∨ bm)

where s is a search expression and b1, . . . , bm are letters. A search language is a finite Boolean
combination of languages Lϕ for a search expression ϕ. The examples ϕ1, ϕ2 and ϕ3 from above are
search expressions, ϕ2 and ϕ3 are sketched as the left and the middle expression in Figure 1. Search
expressions are slightly more general than turtle expressions, φ2 is an example of a search expression
which is not a turtle expression. Because search languages are in between turtle languages and L(at1)
they also represent exactly the DA languages. Moreover, it obviously holds the equivalence

(ϕ1 ∧ ϕ2) atnext∗ ϕ ≡ (ϕ1 atnext∗ ϕ) ∧ (ϕ2 atnext∗ ϕ), (1)

similarly for disjunction and negation, for atprevious∗, and also for the non-stared versions. By
the iterated application of this equivalence it is possible to move all Boolean operators within an
at1 expression, besides the disjunctions of the letters at the right leaves, to the top of the expression
(with at most a quadratic blow-up of the size of the expression), resulting in a finite number of
search expressions combined by a Boolean expression. Therefore, search expression may serve as a
kind of “normalized” form of at1 expression, even in the context of pointed languages, see below.
Search expressions, and turtle expression as a special case, may be considered as a list of searches
(s1, . . . , sm) where s1 corresponds to the topmost atnext/atprevious operator in the expression tree
and sm is the bottom one. Call m the length of the search expression. Each si is determined by
(i) the set of letters searched for, (ii) the direction right/left given by the operator type atnext
resp. atprevious, and (iii) – only for sm – the information about the final check which is true or a
letter b.

A pointed word over alphabet Σ is a pair (x, i) such that x ∈ Σ∗ and i is a position of x, i.e. i ∈
{1, . . . , |x|}. A pointed language over an alphabet Σ is a set of pointed words over alphabet Σ. A
pointed class is a set of pointed languages. Note that in order to define the semantics x |= ϕ for
expressions of a temporal logic like at expressions (likewise for until/since) we actually first had to
specify the meaning of (x, i) |= ϕ for pointed words before we could define the meaning of x |= ϕ, this
seems to be typical and even unavoidable for temporal logics with both future and past operators.
Let ϕ be a temporal logic expression, like an atnext/previous expression or an until/since expression,
over alphabet Σ. The pointed language Pϕ is defined to consist of the the pointed words (x, i) over
alphabet Σ∗ such that (x, i) |= ϕ, while the pointed language P 0

ϕ consists of the pointed words (x, i)
over alphabet Σ∗ such that x |= ϕ, independent of i. For a set F of at expressions the pointed class
P (F ) is defined as the set of all pointed languages which are a finite Boolean combination of pointed
languages Pϕ or P 0

ϕ for expressions ϕ ∈ F .

Note that by the equivalence in equation (1) above it holds

P (S) = P (at1) (2)

where S is the set of search expressions. Therefore, search expressions are a kind of normal form for at1

expressions, even in the context of pointed languages. Because it holds L(T) = L(S) = L(at1) = DA,
where T is the set of turtle expressions, one may expect that P (T) = P (S). This is not the case:
Let Q be the pointed language over alphabet {a, b} consisting of the pairs (x, i) such that if xi = a

then xi+1 = b. This is a language in P (S), as witnessed by the Boolean combination ¬Ps1
∨ Ps2

of the search expressions s1 = “a” and s2 = “b atnext∗ (a ∨ b)”, but there is no turtle language
recognizing Q: if its turtle expressions have maximal length k they will fail to distinguish the pointed
words ((ab)kaa(ab)k, 2k + 1) and ((ab)kab(ab)k, 2k + 1), simply because for both strings all turtles

10



starting at the pointer position 2k+1will succeed, and the ones starting at the border will not reach
position 2k + 2. This shows that P (T) 6= P (at1), i.e. turtle expressions are not powerful enough for
a “normal form” of at1 expressions for pointed languages.

Let two languages L1, L2 over the same alphabet Σ and a letter b ∈ Σ be given. The triple language
P (L1, b, L2) is the set of pointed words (x, i) such that x<i ∈ L1, xi = b, and x>i ∈ L2. For a class
C its class of pointed languages P (C) consists of the finite Boolean combinations of tripel languages
P (L1, b, L2) such that L1 and L2 are from C (and of course L1 and L2 are over the same alphabet
of which b is also an element).

The following lemma is our main technical result. It gives a characterization of the pointed languages
of DA in terms of a temporal logic – which was not yet known to exist.

Lemma 1 P (at1) = P (DA).

Proof. P (at1) ⊆ P (DA): Let according to equation (2) a language L from P (at1) be given as a
Boolean combination of pointed languages P (ϕ1), . . . P (ϕk), P 0(ϕk+1), . . . , P

0(ϕn) for search expres-
sions ϕ1, . . . , ϕk, ϕk+1, . . . , ϕn. Consider for such a search expression ϕ = (s1, . . . , sm) all its “factor
search expressions”, i.e. all search expressions of the form (si, . . . , sj) such that 1 ≤ i ≤ j ≤ sm. Let
Qϕ be the set of pointed languages consisting of the triple languages P (Σ∗, a,Σ∗), P (Lf , a,Σ

∗) and
P (Σ∗, a, Lf ) such that a is a letter from Σ and f is a factor search expression of ϕ. Note that every
language Lf is in L(at1) = DA, therefore Qϕ consists of tripel languages from DA. Given a pointed
word (x, i), these pointed languages from Qϕ can be used to find the answer to the questions whether
xi = a?, x<i ∈ Lf? and x>i ∈ Lf? (via P (Σ∗, a,Σ∗), P (Lf , a,Σ

∗) and P (Σ∗, a, Lf ), respectively).

It is now possible to determine whether (x, i) ∈ Pϕ by the following “decision tree algorithm” which
only asks Boolean membership queries of the above mentioned kind to the pointed languages in Qϕ:
The algorithm first finds out what letter xi is. Then it “traces” the behaviour of ϕ on x, started
in i: if the first search s1 is a right (= atnext) search, it is queried whether it holds x>i ∈ L(s1). If
the answer is ’false’ then we know that s1 will hit the right border, and so also ϕ will fail on (x, i).
Otherwise we ask if x>i ∈ L(s1,s2). Again, if this is a right search and fails then we know that also
ϕ will fail on (x, i). If it is a left search and fails then we know that the search s2 has hit the left
border of x>i, and so in (x, i) the search (s1, s2) is traversing the position i. If the letter xi is in the
set of letters s2 was searching for then we know that i is the position on which the search (s1, s2)
is successful – in that case we continue the tracing algorithm by tracing the search (s3, . . . , sm) on
x, starting in i. If the letter xi is not in the set of letters s2 was searching for then we continue the
tracing algorithm by tracing the search of (s2, . . . , sm) on x, starting in i.

This way, we can trace the full search expression ϕ = (s1, . . . , sm) via queries xi = a?, x<i ∈ Lf?
and x>i ∈ Lf?, in other words, success of ϕ on (x, i) can be expressed by a Boolean function on
Qϕ. Therefore the pointed language Pϕ is a Boolean combination of the triple languages from Qϕ.
The pointed languages P 0

ϕ instead of Pϕ can be decided by the same by the idea and the same
construction of the set Qϕ, but in this case the tracing is not started at the pointer but at the
border of the word. For the union Q of all Qϕ1

, . . . , Qϕk
, Qϕk+1

. . . , Qϕn
it holds that every set

P (ϕ1), . . . P (ϕk), P 0(ϕk+1), . . . , P
0(ϕn) is a finite combination of pointed languages in Q. Because

L is a finite Boolean combination of the former, it is also a finite Boolean combination of the pointed
languages in Q, i.e. L ∈ P (DA).

P (DA) ⊆ P (at1):

Consider a pointed language A from P (DA) over alphabet Σ. By definition this is a finite Boolean

11



s
1

s
2

s
3b c aa

dc

d

bae
10

ss
11

s
7

s
9

s
8

s
5

s
4

s
6

i p p
x> i

11 10 9
p

5
p

6
p

e

Figure 2: A turtle with its left and right searches

combination of triple languages P (K1, b, L1), . . . , P (Kn, bn, Ln) such that K1, L1, . . . ,Kn, Ln ∈ DA,
all of them over the same alphabet Σ, and b1, . . . bn ∈ Σ. Let L be one of the languages Li. We first
show as the main step of the proof that the pointed language {(x, i) | x>i ∈ L} is in P (at1).

Because L ∈ DA there exists a finite set of turtle expressions t1, . . . , tc such that L is a finite Boolean
combination of Lt1 , . . . , Ltn

. Let t = (s1, . . . , sk) be one of these turtle expressions. Assume as the
first case that s1 is a right (= atnext) search. We show, as another sub-step of the proof, that the
following pointed language can be described by an at1 expression e: the set of pairs (x, i) such that
the turtle expression t is successful on x>i, in other words (x, i) ∈ Pe iff x>i ∈ Lt for all pointed
words (x, i).

This will be done by a careful checking of the string x>i according to the known moves of the turtle
t = (s1, . . . , sk). Let (R1, L1, . . . , Rp, Lp, Rp+1) be the partition of {0, . . . , k} such that each set Rj

and Lj is a nonempty set of consecutive indices of right resp. left searches, and this partition is
ordered consecutively, i.e. the indices in Rj+1 and Lj+1 follow the ones in Lj resp. Rj . The last set
Rp+1 may be empty – it is the last set of right searches, so it will not matter for our construction.
In the example in Figure 2 this partition is (R1, L1, R2, L2) with R1 = {1, 2, 3, 4}, L1 = {5, 6},
R2 = {7, 8}, and L2 = {9, 10, 11}. Let L be the union of the Li. In the example in Figure 2,
L = {5, 6, 9, 10, 11}. We guess an order π : {1, . . . |L|} → L of the success positions pi of the left
searches, i.e. pπ(1) < pπ(2) < · · · < pπ(|L|). This order π has to respect the reverse order of each set
Lr, i.e. for s, s′ ∈ Lr it follows from s > s′ that pπ(s) < pπ(s′). Equality instead of < in the guess
pπ(1) < pπ(2) < · · · < pπ(|L|) is allowed given that the searched letters are the same. There are only
finitely many such orders on L, including the variants with equality. In the example in Figure 2 the
guessed order is p11 < p6 < p10 < p5 < p9. Our intention is to guess the order on the actual success

12



positions of the left searches of the turtle, in case it is successful within x>i. We will show that if the
turtle is not successful within x>i then for every guess it it will be noticed by our at1expression that
the turtle fails, and if the turtle is successful then at least for the “real guess” of the success positions
(and maybe some others, too), the order the at1 expressions will tell that the turtle does not pass
the position i. Let π be such a guessed order. We build the following at1 expressions e1, . . . , ep which
will tell whether t will pass i on a left search.

Consider R1 = {1, 2, . . . , r} and L1 = {r + 1, r + 2, . . . , r′}. Let for a search si of the turtle t li
be the letter searched for. We want to make sure with an at1 expression e1 that the two greedy
searches, starting in i, for the letters lπ(1), lπ(2), . . . , lr+1 (called it the L search) and l1, l2, . . . , lr (call
it the R1 search) have success positions qπ(1) < qπ(2) < · · · < qr+1 and q1 < q2 < · · · < qr such that
qr+1 < qr. In the example in Figure 2 this means that the greedy search for the letters e, c, a and
then d in that order finishes before the greedy search for the letters a, b, c and then again a in that
order, note this will guarantee that the left searches can be done safely, i.e. without passing i. Guess
an order ρ representing the overlapping order of the success positions of these two greedy searches,
in the example that would be the q1 < q11 < q6 < q2 < q10 < q5 < q3 < q4. Equality instead of <
is not only is allowed but necessary when two adjacent searches in this list search for the same and
are each from a different original lists. Note that there are only finitely many such guesses of such a
ρ, including the equality case. Given ρ, it can be expressed with an at1 formula that the two greedy
searches give positions in exactly this order: Let z1 be the expression “l atnext∗ (l ∨ l′)” where l is
the letter of the first success position in ρ and l′ is the letter of the first search in the other list. Note
that z1 checks if the first success position in ρ is guessed the right way. Let z2 be the expression
(l′′ atnext∗ (l′′ ∨ l′′′) atnext∗ (l ∨ l′) where l′′ is the letter of the second search in ρ, and l′′′ is the
letter of the next success position in ρ of the other list. For example, z2 in the example of Figure 2
for the guessed order is “(e atnext∗ (e ∨ c)) atnext∗ (a ∨ e)”. Continue building zn this way until
the whole list ρ is processed. Note that the case that both lists may at some point search for the
same letter is covered by the construction. Let the final at1 expression, call it eρ, be the conjunction
of all the zj . It evaluates to true if and only if the two greedy searches are succesful on x>i and the
success positions have exactly the order guessed by ρ. Let e1 be the disjunction of eρ over all possible
guesses ρ. e1 evaluates to true if the search the R1 letters is faster than the search for the L letters.
Note that in that case the turtle can do first the right search R1 (without hitting the right border)
and then can do the left search of L1 savely: all letters it searches for will appear in that (reverse)
order within x>i, at least the success positions from the above greedy search will be a break (or a
backing) point for the left searches Of course, in general the success positions of the left searches will
be larger than the corresponding success positions of the greedy right searches.

Still having the guess π fixed, we build an expression e2 telling whether the left searches of L2 are
save: this will be done basically like for L1 but now the two greedy right searches, R2 vs. L, start
not at position i but at the success position of the last search of L1. In the example in Figure 2 this
starting position will be p6, and the question is whether from there the letters a, d and then e can
be found earlier than the letters d and then e. The expression e2 is obtained by the translating the
turtle searches s1, . . . sr′ of R1 and L1 into the corresponding at1 expression f . Then “f atnext∗ g”
is the desired at1 expression telling whether the left searches of L2 are save. Like e2 we build for all
following pairs of Rj and Lj of the partition of t the corresponding expression ej . Define as a final
ep+1 the ati expression for t itself, in order to gurantee that also the last right search is successful.
The conjuction of all these ej , call it eπ will tell whether for the guess π it will be save for the turtle
t to run on x>i without hitting the position i.

13



The disjunction of all eπ for all guesses of orders π, call it e, will tell whether the run for the turtle
t will stay within x>i: In case the turtle stays within x>i the “real” order on the success position of
its left searches is such an order π that eπ will evaluate to true, note that in that case there may also
exist other π′ such that eπ′ evaluates to true, but that does not matter. And if the turtle leaves x>i,
say during left search Lj , then this will be “noticed” by eπ for every π. Therefore, the expression e

has the desired property: (x, i) ∈ Pe iff x>i ∈ Lt for all pointed words (x, i).

This shows that for a single turtle expression t (with a starting right search) one can construct an
at1 expression e such that (x, i) ∈ Pe iff x>i ∈ Lt for all pointed words (x, i). If the first search
command of the turtle expression is a left search then the same construction of e works – but now
with an empty set R1, see above, an the runs of the turtle t and its prefixes t′ have to start at the
right border, and exactly for this we need the “border’ semantics of of pointed languages: (x, i) ∈ P 0

t′

iff x>i ∈ Lt′ . This still shows that {(x, i) | x>i ∈ Lt} is in P (at1).

Because the above given L ∈ DA is finite Boolean combination of such Lt1 , . . . , Ltn
, and each of

them is in P (at1), also L is in P (at1).

We have shown that for a language L ∈ DA the pointed language {(x, i) | x>i ∈ L} is in P (at1). By
symmetry it holds that for a language K ∈ DA the pointed language {(x, i) | x<i ∈ K} is also in
P (at1). This means that a triple language P (K, b, L) with K,L ∈ DA is in P (at1) by the intersection
of these two together with the pointed language Pb. Because the given pointed language A from
P (DA) is a finite Boolean combination of such triple languages P (K, b, L) from DA, also A itself is
in P (at1). This finishes the proof of the direction ⊇.

q.e.d. (Proof of Lemma 1)

The block product of classes of languages is defined as follows – purely in terms of languages. The
block product K � (P1, . . . , Pn) of a language K over alphabet {0, 1}n and an n-tuple of pointed
languages P1, . . . , Pn over alphabet Σ consists of the words x ∈ Σ∗ such that the word

(P1(x, 1), . . . , Pn(x, 1)) (P1(x, 2), . . . , Pn(x, 2)) · · · (P1(x, |x|), . . . , Pn(x, |x|))) (3)

is in K. The block product K � J of two classes of languages K and J is the set of block products
K � (P1, . . . , Pn) such that K ∈ K and P1, . . . , Pn ∈ P (J ).

The block product is in general not associative, see for example [TS02]. Therefore, we have two
extrem cases (and many in between) concerning the bracketing: The strongly iterated block product
of n languages K1, . . . ,Kn is defined as

K1 � (K2 � (. . . (Kn−1 � Kn) . . . ))

while the n-fold weakly iterated block product is defined as

((. . . (K1 � K2) . . . ) � Kn−1) � Kn.

DAn� and DAn�w are the sets of all n-fold strongly, resp. weakly, iterated block products of DA
languages. It holds DAn�w ⊆ DAn�, see for example [TS02].

The following Theorem is an easy application of the so-called block product substition Lemma
from [TW04][Th. 6] to the result above saying that the pointed languages of at1 expressions and of DA
languages coincide. Note that exactly atk+1 is obtained when replacing letters in atk expressions by
at1 expressions, in the notation of [TW04] this denoted as atk+1 = atk ◦ at1. The prerequisites of the

block product/substitution lemma are fulfilled: L(atk) = DAk�w is given by induction hypothesis,
L(at1) = DA is given by Prop. 1, and and P (at1) = P (DA) is our main Lemma 1.

14



Theorem 1 It holds for every k ≥ 1:

L(atk) = DAk�w .

Compare this result with the following from Thérien & Wilke [TW04] which characterizes the levels
of the until/since hierarchy. MNB is the set of languages which are unions of the following equivalence
classes: two words are equivalent iff they contain the same set of letters and the order of first positions
of occurrences of these letters is the same, both when seen from the left and when seen from the
right side, see [TW04]. Note that MNB is a proper subset of DA.

Theorem 2 ([TW04]) It holds for every k ≥ 0:

L(usk) = DA � MNBk�w

It was shown by Etessami & Wilke [EW96] that the ΣL
2 languages {a, b}∗bbb{a, b}∗, {a, b}∗bbbbb{a, b}∗,

etc., are witnesses for the properness of the inclusions us0 ⊂ us1 ⊂ us2 ⊂ . . . of the levels of the
until/since hierarchy. By the the easy observation that each of these language is in DA � DA we
have the following result.

Theorem 3 ([EW96]) L(at2) = DA � DA contains for every n ≥ 1 languages from L(usn)\L(usn−1).

The above witnesses show that until/since depth is not the right measure for a starfree language L if
one is interested in a space efficient model-checking algorithm of L: the languages {a, b}∗b2k+3{a, b}∗

have until/since depth k but can be model-checked uniformly with a log-space algorithm running in
quadratic time since they all are in at2, see end of Section 2. The at-depth for these languages gives
a better estimate of their model-checking complexity, though it is still one too high. Note that the
witness languages have a practical significance: they express a certain kind of fairness for processes,
see [EW96].

In [Bo04] the ΣL
2 languages {1, 2}∗11{1, 2}∗, {1, 2, 3}∗11{1, 2}∗11{1, 2, 3}∗, etc., were proven to be

witnesses for the properness of the inclusions DA ⊂ DA � DA ⊂ DA�3 ⊂ . . . , etc.

Theorem 4 ([Bo04]) ΣL
2 contains for every n ≥ 1 languages from L(atn)\L(atn−1).

The preceeding results allow to determine for every two given levels of each of the three hierarchies
(at, until/since and dot-depth) whether one is included in the other or not, see also Figure 3.

Theorem 5 Let m,n ≥ 1.

(a) L(usm−1) ⊆ L(atn) ⇐⇒ m ≤ n. L(atn) ⊆ L(usm−1) ⇐⇒ n = 1.

(b) L(atm) ⊆ ∆L
n+1 ⇐⇒ m ≤ n. ∆L

n+1 ⊆ L(atm) ⇐⇒ n = 1.

(d) L(usm−1) ⊆ ∆L
n+1 ⇐⇒ m ≤ n. ∆L

n+1 ⊆ L(usm−1) ⇐⇒ n = 1.

(e) L(usm−1) ⊆ L(usn−1) ⇐⇒ L(atm) ⊆ L(atn) ⇐⇒ ∆L
m+1 ⊆ ∆L

n+1 ⇐⇒ m ≤ n.

15



∆3
L

∆4
L

∆2
L

5
L∆

L(us ) 

L(us )

L(at ) 

L(at ) 

L(at )

3

1

2

L(us )3

2

4

L(at )  = L(us )   = 0 = L(DA) 1

Figure 3: The at hierarchy (shaded) compared with the dot-depth and the until/since hierarchy

16



This theorem shows that the until/since hierarchy is properly contained in the at hierarchy which
again is properly contained in the dot-depth hierarchy (as given by its Delta levels). The properness
holds for every non-bottom level. It is irritating that the numbering of the levels of the three
hierarchies is shifted: the three bottom level of the three hierarchy conincide (= DA) but this
bottom level has number 0 in the until/since hierarchy, number 1 in the at hierarchy, and number
2 in the dot-depth hierarchy. Note that a level 0 of the at hierarchy could be defined, it consists of
the trivial languages. We prefer to ignore this level and call at1 the bottom level.

Let the at-depth, the until/since depth, and the ∆-dot-depth of a starfree regular language L be the
smallest number k such that L ∈ L(atk), L ∈ L(usk), and L ∈ ∆k, respectively. Then it follows
from the above theorem: For every starfree language it holds that its at-depth is greater or equal its
until/since depth plus 1 and is smaller or equal its ∆-dot-depth minus 1.

4 Adding the Operators next and previous

Up to now our temporal logic did not contain the g(next) and the g(previous) operator. We will
see that it only adds some “generalized definite” complexity, like the Cohen/Brzozowski hierarchy
adds just some “generalized definite” complexity to the Straubing/Thérien hierarchy. This effect
was also noticed for the until/since hierarchy of [TW04].

The semantics of the next and the previous operators gand g, which are both 1-ary operators, is
defined first for pointed words:

(x, i) |= gψ

iff i+ 1 is still a position in x and (x, i+ 1) |= ψ.

(x, i) |= gψ

iff i− 1 is still a position in x and (x, i− 1) |= ψ.

For a word x define x |= ϕ as follows:

x |= gψ

iff |x| > 0 and (x, 1) |= ψ.

x |= gψ

iff |x| > 0 and (x, |x|) |= ψ.

Note that the next and the previous operators are quite different from the atnext and atprevious
operators, though the names are similar. Besides that the former are 1-ary and the latter are 2-ary
there is the crucial difference that the former only have a “local” behaviour, as we will see below,
while the latter can search “globally”.

Let an AT expression be an LTL expression using the atnext/atprevious operators and the next/previous
operators. Extend the definition of at-depth to these expressions by

dat( gψ) = dat( gψ) = dat(ψ),

i.e. the next and previous operators can be used “for free”. Let ATk be the set of AT expression of
at-depth k ≥ 1.

17



The class of generalized definite languages GDEF consists of the languages L for which membership
can be determined by a constant-size prefix and suffix of the word, i.e. for which there exists a
constant c such that for all words x with length ≥ 2c it holds x ∈ L iff x<cx>|x|−c ∈ L.

Let np denote the set of expressions using only the letter symbols, the Boolean operators and the next
and the previous operator. It is easy to see that it holds L(np) = GDEF, and in [TW04][Lemma 10]
it is shown

P (np) = P (GDEF). (4)

As a similar characterization, GDEF is the set of languages expressible without quantifiers over the
signature [<,S, P,min,max], where S and P are the successor and predecessor function, resp. [Th82].
The classes ΣB

k and ΠB
k of the Cohen-Brzozowski hierarchy are defined as the languages definable

with a Σk and Πk quantifier alternation prefix over this signature [<,S, P,min,max] instead of the
one containing only [<]. It holds

ΣB
k = ΣL

k � GDEF

for all k ≥ 0, likewise for the ΠB
k and ∆B

k levels. The same effect was shown for the until/since
hierarchy [TW04][Th. 7]:

USk = usk � GDEF.

It comes with no surprise that the analogue also holds for the at hierarchy:

Theorem 6 It holds for every n ≥ 1:

L(ATn) = atn � GDEF = DAn�w � GDEF

This theorem follows from equality 4 above together with the block product/substitution lemma
from [TW04] and the the observation that ATk = atk ◦ np: The next and previous operators within
for at expressions can be moved to the leaves of the expression tree, like this is also possible for
until/since expressions [TW04]. This can easily be checked, as it holds for example the following
equivalence:

g(ϕ atnext ψ) ≡ ( gϕ ∧ gψ) ∨ (ϕ atnext ψ).

By the characterization 6 one can again tell for every pair of levels of the three hierarchies whether
one is included in the other. The witnesses of the Theorems 3 and 4 can be extended to this case by
shuffling the witness languages with a neutral letter.

Theorem 7 Let m,n ≥ 1.

(a) L(USm−1) ⊆ L(ATn) ⇐⇒ m ≤ n. L(ATn) ⊆ L(USm−1) ⇐⇒ n = 1.

(b) L(ATm) ⊆ ∆B
n+1 ⇐⇒ m ≤ n. ∆B

n+1 ⊆ L(ATm) ⇐⇒ n = 1.

(d) L(USm−1) ⊆ ∆B
n+1 ⇐⇒ m ≤ n. ∆B

n+1 ⊆ L(USm−1) ⇐⇒ n = 1.

(e) L(USm−1) ⊆ L(USn−1) ⇐⇒ L(ATm) ⊆ L(ATn) ⇐⇒ ∆B
m+1 ⊆ ∆B

n+1 ⇐⇒ m ≤ n.

At the end of this section it should mentioned that the authors started their investigations about
the at hierarchy when they were studying the languages and classes determining as so-called leaf

18



languages the class ∆p
k of the polynomial hierarchy, see [BLSTT04]. The following line of equalities

follows from the fact that already the language Dk from Prop. 1(c) as well as the class ∆B
k+1 lead

to ∆p
k+1 via the leaf language concept, as shown in [BLSTT04], the equalities for the intermediate

classes follow from Theorems 5 and 7.

Corollary 2 ([BLSTT04]) ∀k ≥ 1: Leafp(Dk+1) = Leafp(L(usk−1)) = Leafp(L(atk)) = Leafp(∆L
k+1)

= Leafp(L(USk−1)) = Leafp(L(ATk)) = Leafp(∆B
k+1) = ∆p

k+1.

5 Conclusion, Open Problems, and Acknowledgements

We introduced the atnext/atprevious hierarchy on the starfee regular languages and could show that
its n-th level equals the n-fold weakly iterated block product of DA. The main Lemma 1 characterized
the pointed languages of DA as the pointed languages defined by at1 expressions.

The at depth of a starfree language may serve as another measure of its inherent complexity, like
dot-depth or until/since depth.

Some open questions the authors could not answer yet:

• Do weak and strong bracketing coincide for block products of DA? For example,

(DA � DA) � DA = DA � (DA � DA)?

Could this possibly be shown by the methods of the proof of Lemma 1?

• Can the characterization as at2 help to see whether DA � DA is decidable or not?

• For the until/since hierarchy the eventually operators are “for free”, for the at hierarchy the
leftmost nesting is “for free”. Is it possible to define depth of expressions of an LTL logic based
on a set of operators mentioned in this paper in a way such that certain syntactic occurrences
are for free (like for example certain operators, onesided nesting, or subsequent non-alternating
occurrences of a pair of operators, etc.) such that the depth-n expressions describe exactly the
∆L

n+1 languages of the dot-depth hierarchy? In other words, is there a way of obtaining the
dot-depth hierarchy in terms of an LTL hierarchy?

Thanks to Denis Thérien for hints and comments.

References

[Bo04] B. Borchert: The dot-depth hierarchy vs. iterated block products of DA, Report 2004-09,
WSI Tübingen, 2004

[BLSTT04] B. Borchert, K.-J. Lange, F. Stephan, P. Tesson, D. Thérien, The dot-depth
and the polynomial hierarchy correspond on the Delta levels, DLT 2004

[EW96] K. Etessami, T. Wilke: An until hierarchy for temporal logic, LICS 1996: 108-117

19



[Ka68] J. Kamp: Tense Logic and the Theory of Linear Order, Ph.D. thesis, University of Cali-
fornia at Los Angeles, 1968

[Kr84] F. Kröger: A generalized nexttime operator in temporal logic, Journal of Computer and
System Sciences 29(1): 80-98 (1984)

[MP71] R. McNaughton, S. Papert: Counterfree Automata, MIT Press, Cambridge MA, 1971.

[PW97] J. E. Pin, P. Weil: Polynomial closure and unambiguous product, Theory Comput. Syst.
30: 383-422 (1997)

[PP86] D. Perrin, J. E. Pin: First-order logic and star-free sets, Journal of Computer and
System Sciences 32(3): 393-406 (1986)

[STV01] T. Schwentick, D. Thérien, H. Vollmer: Partially-ordered two-way Automata: a new
characterization of DA, DLT 2001: 239-250

[Sch76] M. P. Schützenberger: Sur le produit de concatenation non ambigu, Semigroup Forum
13: 47-75 (1976)

[St94] H. Straubing: Finite Automata, Formal Logic, and Circuit Complexity, Birkhäuser,
Boston, 1994.

[TT02] P. Tesson, D. Thérien: Diamonds are forever: the variety DA, in Semigroups, Algo-
rithms, Automata and Languages, WSP, 2002, 475-499.

[TS02] H. Straubing, D. Thérien: Weakly iterated block products of finite monoids, LATIN
2002: 91-104

[TW98] D. Thérien, T. Wilke: Over words, two variables are as powerful as one quantifier
alternation: FO2 = Σ2 ∩ Π2 , STOC 1998: 41-47

[TW01] D. Thérien, T. Wilke: Temporal logic and semidirect products: an effective characteri-
zation of the until hierarchy, SIAM Journal on Computing 31(3): 777-798 (2001)

[TW04] D. Thérien, T. Wilke: Nesting Until and Since in linear temporal logic, Theory Comput.
Syst. 37(1): 111-131 (2004)

[Th82] W. Thomas Classifying regular events in symbolic logic, Journal of Computer and System
Sciences 25: 360-376 (1982)

20


