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SUMMARY/ ZUSAMMENFASSUNG 

 

Summary 

 

Aminocoumarin antibiotics, such as novobiocin, clorobiocin and coumermycin A1, are 

produced by various Streptomyces strains and are very potent against gram-positive 

pathogenic bacteria including methicillin-resistant Staphylococcus strains. Bacterial 

DNA gyrase is the target of the aminocoumarin antibiotics. Until recently, novobiocin 

(Albamycin®, Pharmacia-Upjohn) was licensed in the United Sta tes for the treatment 

of infections with gram-positive bacteria and has been shown to enhance the 

cytotoxic activities of the anti-tumor drugs etoposide and teniposide. So far, the 

therapeutic use of aminocoumarin antibiotics is limited due to their low solubility in 

water, toxicity in eukaryotes and poor penetration in gram-negative bacteria. 

Combinatorial biosynthesis may offer a chance to develop novel aminocoumarins 

with improved properties. The biosynthetic gene clusters of novobiocin and 

coumermycin A1 were already sequenced in our laboratory.  

The first task of my thesis was to identify the biosynthetic gene cluster of the third 

“classical” aminocoumarin antibiotic, clorobiocin. The cluster was cloned by 

screening a cosmid library of Streptomyces roseochromogenes DS 12.976 with two 

heterologous probes from the novobiocin biosynthetic gene cluster. Sequence 

analysis revealed 29 open reading frames with striking similarity to the biosynthetic 

gene clusters of novobiocin and coumermycin A1. A comparison of the gene clusters 

of clorobiocin, novobiocin and coumermycin A1 showed that the structural differences 

between the three antibiotics were remarkably well reflected by differences in the 

organization of the biosynthetic gene clusters. 

The second part of my thesis was to elucidate the biosynthesis of 3-dimethylallyl-4-

hydroxybenzoate moiety (Ring A) of clorobiocin and novobiocin by biochemical and 

molecular biological studies. Comparison of the three aminocoumarin clusters 

allowed us to identify three genes in the novobiocin and clorobiocin clusters for which 

no homologues existed in the coumermycin cluster. We speculated that these genes 

might be involved in the biosynthesis of Ring A (which is absent in coumermycin A1). 

These genes were: a) cloR and novR, which showed sequence similarity to putative 
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aldolases; b) cloF and novF, which showed sequence similarities to dehydrogenases; 

c) cloQ and novQ, which did not show sequence similarities to known genes in the 

database. A biosynthetic pathway for clorobiocin was proposed in which activated ß-

hydroxytyrosine was a common intermediate in the formation of the aminocoumarin 

ring (Ring B) and Ring A (Fig. 7, p. 40). 

However, analysis of S. roseochromogenes mutants (cloI- mutant, cloQ- mutant and 

cloR- mutant) revealed that Ring A and Ring B are formed by two distinct and 

independent pathways and that cloQ and cloR are essential for the formation of Ring 

A. 

CloQ was expressed in E. coli, purified and identified as an aromatic 

prenyltransferase. It is a soluble, monomeric, 35 kDa protein. 4-

Hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate (DMAPP) were 

identified as the substrates of this enzyme, with Km values determined as 25 and 35 

µM, respectively. CloQ was found to be dissimilar from most prenyltransferases 

described so far and may indicate the existence of a new class of prenyltransferases. 

CloR was expressed in E. coli, purified and identified as a bifunctional non-heme iron 

oxygenase. It is a soluble, tetrameric protein. CloR converts 3-dimethylallyl-4-

hydroxyphenylpyruvate via 3-dimethylallyl-4-hydroxymandelic acid (3DMA-4HMA) to 

Ring A. Therefore it catalyzes two consecutive oxidative decarboxylation steps. 18O2 

labelling experiments showed that two oxygen atoms are incorporated into the 

intermediate 3DMA-4HMA in the first reaction step, but only one further oxygen is 

incorporated into the final product Ring A during the second reaction step. CloR does 

not show sequence similarity to known oxygenases. It apparently presents a novel 

member of the diverse family of the non-heme iron (II) and a-keto dependent 

oxygenases, with 3DMA-4HPP functioning both as a-ketoacid and as hydroxylation 

substrate. The reaction catalyzed by CloR represents a new pathway to benzoic 

acids in nature. 

 

In the third part of my thesis, a novO- mutant was created from the novobiocin 

producer S. spheroides, using a new inactivation method: the PCR targeting system. 

This mutant produced a derivative of novobiocin lacking the methyl group on the 

aminocoumarin ring.This provided functional proof for the role of novO in novobiocin 

biosynthesis. The mutant will be used for further experiments in combinatorial 

biosynthesis. 
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Zusammenfassung 

 

Aminocoumarin-Antibiotika wie Novobiocin, Clorobiocin und Coumermycin A1 werden 

von verschiedenen Streptomycetenstämmen produziert und besitzen große 

Wirksamkeit gegenüber grampositiven pathogenen Bakterien, einschließlich 

Methicillin-resistenter Staphylococcusstämme. Das Zielmolekül der Aminocoumarin-

Antibiotika ist die bakterielle DNA-Gyrase. Bis vor kurzen wurde Novobiocin 

(Albamycin®, Pharmacia-Upjohn) in den Vereinigten Staaten zur Behandlung von 

Infektionen mit grampositiven Bakterien eingesetzt. Es konnte gezeigt werden, dass 

es die cytotoxische Aktivität von Cytostatika wie Etoposid und Teniposid verstärkt. 

Aufgrund ihrer schlechten Wasserlöslichkeit, ihrer Toxizität für Eukaryoten und ihrer 

schlechten Aufnahme in gramnegative Bakterien ist der therapeutische Einsatz der 

Aminocoumarin-Antibiotika bislang stark eingeschränkt. Kombinatorische 

Biosynthese könnte eine Möglichkeit zur Entwicklung neuer Aminocoumarine mit 

verbesserten Eigenschaften darstellen. Voraussetzung dafür ist die genaue Kenntnis 

der Biosynthese der betreffenden Antibiotika. Die Biosynthesegencluster von 

Novobiocin und Coumermycin A1 waren bereits in unserem Labor sequenziert 

worden. 

 

Die erste Aufgabe meiner Doktorarbeit war die Identifizierung des 

Biosynthesegenclusters des dritten „klassischen“ Aminocoumarin-Antibiotikums 

Clorobiocin. Das Cluster wurde durch Screening einer Cosmidbank von 

Streptomyces roseochromogenes DS 12.976 mit zwei heterologen Sonden des 

Novobiocin-Biosynthesegenclusters kloniert. Vergleichende Sequenzanalyse ergab 

29 offene Leserahmen mit deutlicher Übereinstimmung zu den 

Biosynthesegenclustern von Novobiocin und Coumermycin A1. Ein Vergleich der 

Gencluster von Clorobiocin, Novobiocin und Coumermycin A1 zeigte, dass sich die 

strukturellen Unterschiede zwischen den drei Antibiotika erstaunlich genau in der 

Organisation der Cluster widerspiegeln. 

 

Der zweite Teil meiner Arbeit bestand in der Aufklärung der Biosynthese der 3-

Dimethylallyl-4-hydroxybenzoat Gruppe (Ring A) von Clorobiocin und Novobiocin, 

sowohl durch biochemische als auch durch molekularbiologische Untersuchungen. 

Der Vergleich der drei Aminocoumarin-Cluster ermöglichte uns die Identifizierung von 
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drei Gene, die sowohl im Novobiocin- als auch im Clorobiocin-Cluster vorkommen, 

für die aber keine Homologe im Coumermycin A1-Cluster existieren. Wir vermuteten, 

dass diese Gene an der Biosynthese von Ring A beteiligt sein könnten, da dieser in 

Coumermycin A1 nicht vorhanden ist. 

Diese Gene sind: a) cloR und novR, die Sequenzähnlichkeit zu putativen Aldolasen 

zeigten; b) cloF und novF, die Sequenzähnlichkeit zu Dehydrogenasen zeigten; und 

c) cloQ und novQ, welche keinerlei Sequenzähnlichkeit zu bekannten Genen in den 

Datenbanken aufwiesen. Es wurde ein Weg für die Biosynthese von Clorobiocin 

vorgeschlagen demzufolge aktiviertes ß-Hydroxytyrosin als gemeinsames 

Zwischenprodukt bei der Bildung des Aminocoumarinrings (Ring B) und des Ring A 

fungiert (Fig. 7, p. 40). 

Es konnte jedoch durch die Herstellung und Analyse von S. roseochromogenes 

Mutanten (cloI-, cloQ-, und cloR-) gezeigt werden, dass Ring A und Ring B auf zwei 

verschiedenen, unabhängigen Wegen gebildet werden. 

 

CloQ wurde in E. coli exprimiert und gereinigt und als eine aromatische 

Prenyltransferase identifiziert. CloQ ist ein lösliches, monomeres, 35 kD Protein. 4-

Hydroxyphenylpyruvat (4HPP) und Dimethylallyldiphosphat (DMAPP) wurden als 

Substrate dieses Enzyms identifiziert und die Km-Werte mit 25 µM bzw. 35 µM 

bestimmt. Wir konnten zeigen, dass CloQ sich von den meisten bisher bekannten 

Prenyltransferasen unterscheidet und möglicherweise einer neuen Klasse von 

Prenyltransferasen angehört. 

 

CloR wurde in E. coli exprimiert und gereinigt und als eine bifunktionale non-Häm 

Eisen-Oxygenase identifiziert. Es ist ein lösliches, tetrameres Protein. CloR setzt 3-

Dimethylallyl-4-hydroxyphenylpyruvat über 3-Dimethylallyl-4-hydroxymandelsäure zu 

Ring A um. Dies erfolgt in zwei aufeinanderfolgenden Decarboxylierungsschritten. 
18O2-Markierungsexperimente zeigten, dass im ersten Reaktionsschritt zwei 

Sauerstoffatome in das 3DMA-4HMA Zwischenprodukt eingebaut werden, 

wohingegen aber im zweiten Schritt nur ein weiteres Sauerstoffatom in das Ring A 

Endprodukt inkorporiert wird. CloR zeigt keine Sequenzähnlichkeit zu bekannten 

Oxygenasen. Anscheinend stellt es ein neues Mitglied der divergenten Familie der 

non-Häm Eisen (II) und a-Ketosäure-abhängigen Oxygenasen dar, bei dem 3DMA-

4HPP sowohl als a-Ketosäure als auch als Hydroxylierungssubstrat fungiert. Die von 
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CloR katalysierte Reaktion stellt einen neuen Weg zur Biosynthese von 

Benzoesäuren dar. 

 

Weiterhin wurde aus dem Novobiocin-Produzenten S. spheroides eine novO- 

Mutante mit Hilfe einer neuen Inaktivierungsmethode erzeugt, dem „PCR targeting“-

System. Diese Mutante produzierte ein Derivat von Novobiocin, das keine 

Methylgruppe mehr am Aminocoumarin-Ring trug. Dies bewies die Funktion von 

novO in der Biosynthese von Novobiocin. Die Mutante soll in zukünftigen 

Experimenten zu kombinatorischen Biosynthese eingesetzt werden.
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I. INTRODUCTION 

1.  Aminocoumarin antibiotics 

 

Novobiocin, clorobiocin and coumermycin A1 are the “classical” members of the class 

of aminocoumarin antibiotics. They all contain three structural moieties: a 3-amino-

4,7-dihydroxy coumarin moiety (called Ring B), a deoxysugar moiety (called Ring C) 

and an acyl component (Fig. 1, p. 22). Ring B is linked to the acyl component via an 

amide bond, and to Ring C via a glycoside bond. Clorobiocin and novobiocin share 

the same 3-dimethylallyl 4-hydroxybenzoate moiety (called Ring A) as acyl 

component. Clorobiocin differs from novobiocin at two positions: novobiocin bears a 

carbamoyl group at position 3 of the noviose moiety, while clorobiocin possesses a 5-

methylpyrrole 2-carboxylic acid, and clorobiocin, as indicated by its name, carries a 

chlorine atom at position 8 of Ring B, while novobiocin carries a methyl group. 

Coumermycin A1 contains two noviosyl aminocoumarin moieties, and carries a 

different acyl component as novobiocin and clorobiocin, i.e. a 3-methyl-pyrrole 2,4-

dicarboxylic acid. Coumermycin A1 shares with novobiocin the same methyl group at 

position 8 of Ring B, and with clorobiocin the same 5-methylpyrrole 2-carboxylic acid 

at position 3 of the noviose moiety (Fig. 1, p. 22).  

The simocyclinones of the D class and rubradirin are two further aminocoumarins 

found in nature (Fig. 1, p. 22). They also show antibacterial activity, but their 

mechanism of action is unknown (Bhuyan et al., 1965; Holzenkämpfer et al., 2002; 

Yoo et al., 2000). They possess the same aminocoumarin ring as the “classical” 

aminocoumarins described above. Simocyclinone D8 carries a chlorine atom at 

position 8 of its aminocoumarin ring just as clorobiocin. In contrast to the “classical” 

aminocoumarins, simocyclinones and rubradirins do not carry a noviose moiety, and 

their acyl components are large and complicated structures (Galm et al., 2002; 

Schimana et al., 2000; Schimana et al., 2001; Trefzer et al., 2002; Bannister and 

Zapotocky, 1992; Bhuyan et al., 1965; Yoo et al., 2000).  
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Fig. 1: Structure of aminocoumarin antibiotics.  

(A) The three “classical” aminocoumarins: clorobiocin, novobiocin and 

coumermycin A1.  

(B) The “unusual” aminocoumarins: simocyclinones and rubradirin. 
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Early investigation of the biosynthesis of the aminocoumarin antibiotics revealed that 

the deoxysugar moiety is derived from intact glucose, while the aminocoumarin ring 

and the prenylated 4-hydroxybenzoate moiety are derived from tyrosine (Bunton et 

al., 1963; Calvert et al., 1972; Kominek and Sebek, 1974). Recently, 18O2  

incorporationexperiments on simocyclinone D have shown that the ring oxygen of the 

aminocoumarin ring is derived from molecular oxygen, not from the carboxyl group of 

tyrosine (Holzenkämpfer and Zeeck, 2002). The dimethylallyl side chain of Ring A is 

derived from the methylerythritol phosphate pathway (mevalonate-independent 

pathway) (Li et al., 1998; Orihara et al., 1998). 

 

All these aminocoumarins are secondary metabolites from various Streptomyces (S.) 

species. Novobiocin is produced by S. spheroides NCIMB 11891 and S. niveus. 

However, Southern blot experiments have shown that these two strains may actually 

be independent isolates of the same strain. Recently, Sasaki et al. (2001) have 

isolated a Streptomyces strain from the stem of the plant Aucuba japonica that also 

produces novobiocin. Clorobiocin is produced by Streptomyces hygroscopicus DS 

9.751, S. albocinerescens DS 21.647 and S. roseochromogenes var. oscitans DS 

12.976 (Ninet et al., 1972). Coumermycin is produced by S. rishiriensis DSM 40489, 

S. hazeliensis var. hazeliensis, S. spinichromogenes and S. spinicoumarensis 

(Claridge, 1968; Kawaguchi et al., 1965). Besides the main product coumermycin A1, 

several closely related metabolites have been identified in these strains, e.g. 

coumermycin D, which lacks the two acyl groups at the 3-OH of the deoxysugars 

(Fig. 1, p. 22) (Claridge et al., 1984). Berger and Batcho (1978) have reviewed the 

production and isolation of novobiocin, clorobiocin and coumermycin A1.  

The simocyclinones are produced by S. antibioticus TÜ 6040 (Schimana et al., 2000; 

Theobald et al., 2000) and Rubradirin by S. achromogenes var. rubradiris NRRL 

3061 (Bannister and Zapotocky, 1992; Bhuyan et al., 1965; Meyer, 1965).  

 

The mechanism of action of the three “classical” aminocoumarin antibiotics is well 

known. They exert their antibacterial activity via the inhibition of the DNA gyrase 

(Lewis et al., 1996; Maxwell, 1999). Recently, novobiocin was also shown to target 

the DNA topoisomerase IV (Hardy et al., 2003). Gyrase and topoisomerase IV have 

vital roles in DNA replication, chromosome segregations, and DNA compaction. 

Gyrase is responsible for maintaining negative supercoiling of the bacterial 
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chromosome, whereas topoisomerase IV’s primary role is in the decatenation of 

daughter chromosomes following DNA replication. Both enzymes carry out their 

functions by coupling the energy of ATP hydrolysis to the directional passage of one 

double-strand of DNA through another. The enzymatic activity is divided between the 

two subunits of each enzyme: GyrA and GyrB for gyrase and ParC and ParE for 

topoisomerase IV. The GyrB and ParE subunits contain nucleotide binding sites, 

whereas the GyrA and ParC subunits are responsible for DNA breakage and reunion. 

Gyrase and topoisomerase IV are A2B2 and C2E2 heterotetramers (Fig. 2, p. 25).  

The aminocoumarin antibiotics target the GyrB subunit of gyrase, and/or the ParE 

subunit of topoisomerase IV (Fig. 2, p. 25). In contrast, the fluoroquinolone drugs, 

such as ciprofloxacin, target the GyrA subunit of gyrase, and also the ParC subunit of 

topoisomerase IV (Fig. 2, p. 25). X-ray crystallographic examinations demonstrated 

that the aminocoumarin moiety, the substituted deoxysugar moiety and the 

prenylated 4-hydroxybenzoate moiety of novobiocin and clorobiocin are important for 

binding to the B subunit of bacterial gyrase (Lafitte et al., 2002; Maxwell and Lawson, 

2003). Coumermycin A1 contains two aminocoumarin-deoxysugar moieties and has 

been shown to stabilize a dimeric form of the 43 kDa fragment of GyrB (Farrar et al., 

2000). The affinity of the aminocoumarin antibiotics for bacterial gyrase is very high. 

The inhibition constants of these antibiotics are in the 10 nM range, i.e. two orders of 

magnitude lower than those of modern fluoroquinolones. 

An additional mechanism of action of these antibiotics appears to be the formation of 

ion channels (Feigin et al., 1995). Recently, novobiocin was shown to interact with 

the eukaryotic chaperone heat shock protein 90 (Hsp90) (Marcu et al., 2000). 

Novobiocin also exhibits immunomodulating properties, downregulating the secretion 

of tumour necrosis factor α in human peripheral blood mononuclear cells (Luhrmann 

et al., 1998). 

 

Aminocoumarin antibiotics are very potent against gram-positive pathogenic bacteria 

including methicillin-resistant Staphylococcus strains. In addition, the 

aminocoumarins act synergistically with anticancer compounds such as etoposide 

and can be used to overcome drug resistance in tumour cell lines (Rappa et al., 

2000a; Rappa et al., 2000b).  
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Fig. 2: Schematic model of gyrase and topoisomerase IV.  

 

Dramatic increases in the number of antibiotic-resistant pathogenic bacteria in the 

past decade have focused attention on the need for new antibiotics (Walsh, 2002). 

The antibacterial activity of novobiocin has been demonstrated in preclinical and 

clinical studies (Arathoon et al., 1990; Eder et al., 1991;. Raad et al., 1995; Raad et 

al., 1998). However, due to their toxicity in eukaryotes, their poor solubility in water, 

and their low activity against gram-negative bacteria, clinical use of these antibiotics 

remains restricted (Maxwell, 1993). Therefore, it is of interest to test whether new, 

structurally modified aminocoumarin antibiotics may be able to overcome the 

limitations of existing compounds. Such new aminocoumarins could be created by 

combinatorial biosynthesis (Hutchinson, 1998). Up-to-now, the derivatives of 

novobiocin were only obtained by chemical synthesis (Ferroud et al., 1999; Laurin et 

al., 1999b; Laurin et al., 1999a; Musicki et al., 2000; Periers et al., 2000; Schio et al., 

2001). 

 

There are some basic requirements that have to be met for the production of hybrid 

antibiotics by combinatorial biosynthesis. First, this method requires the existence of 

microorganisms that produce antibiotics whose biosynthetic pathways show common 

features. Second, it has to be possible to manipulate and analyze pathways by 

creating mutants that accumulate intermediate compounds. The third requirement is 

the identification of the genes encoding the biosynthetic enzymes. In addition, the 
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creation of hybrid antibiotics is dependent on the ability to introduce one or more 

genes of interest into these microorganisms (Hutchinson, 1999). 

 

Aminocoumarin antibiotics fullfill these criteria and are therefore ideal candidates for 

the production of new hybrid antibiotics by combinatorial biosynthesis. Our group 

worked towards this goal by sequencing the biosynthetic gene cluster of novobiocin 

from S. spheroides NCIB 11891 (Steffensky et al., 2000b) and of coumermycin A1 

from S. rishiriensis (Wang et al., 2000) (Fig. 3, p. 31).  

 

The sequence of the novobiocin cluster revealed the presence of 20 putative open 

reading frames (ORFs), including a gene for novobiocin resistance, gyrBR, and at 

least 11 additional ORFs to which a possible role in novobiocin biosynthesis could be 

assigned. The sequence of the coumermycin cluster revealed the presence of 29 

putative ORFs upstream of two aminocoumarin resistance genes gyrBR and parYR. 

The coumermycin cluster shows striking similarity to the novobiocin biosynthetic gene 

cluster: 15 of the identified ORFs were found to display, on average, 84% amino acid 

identity to corresponding ORFs of the novobiocin cluster, and all of these ORFs were 

arranged in identical orientation in both clusters. Comparison of the clusters of 

novobiocin with the one of coumermycin A1 allowed us to predict the function of a 

number of these genes in the biosynthesis. NovL, for example, was predicted to 

encode an amide synthetase, which catalyzed the formation of the amide bond 

between Ring A and Ring B of novobiocin. In vitro experiments demonstrated that, 

indeed, NovL is a novobiocic acid synthetase (Steffensky et al., 2000a). Recently, the 

biosynthetic genes for the aminocoumarin moiety of simocyclinone (Galm et al., 

2002; Trefzer et al., 2002) and for rubradirin (Sohng et al., 1997) have been cloned 

and sequenced. 
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2. Objectives of this study 

 

My first objective was to identify the biosynthetic gene cluster of the third “classical” 

aminocoumarin antibiotics, clorobiocin. Comparison of the biosynthetic gene clusters 

of novobiocin, coumermycin A1 and clorobiocin was expected to allow the generation 

of hypotheses for the function of the genes contained in these clusters in the 

biosynthesis of the aminocoumarin antibiotics, especially in the formation of Ring A.  
 

In order to clone and sequence the biosynthetic gene cluster of clorobiocin, the 

following experiments were necessary: 

• Optimisation of culture conditions for clorobiocin production and establishment 

of extraction methods for analysis of secondary metabolites by mass 

spectrometry (MS) and nuclear magnetic resonance (NMR). 

• Construction of a cosmid library from S. roseochromogenes and screening 

with probes from novobiocin biosynthetic genes (novT and novL). 

• Sequencing and analysis of cosmids containing the clorobiocin biosynthetic 

gene cluster, and comparison of the sequence with the novobiocin and 

coumermycin A1 clusters. 

• Establishment of a model for clorobiocin biosynthesis. 

 

Comparison of the three biosynthetic gene clusters indeed allowed us to determine 

three genes which were present in clorobiocin and novobiocin clusters but not in 

coumermycin A1 cluster and which might therefore be involved in the formation of 

Ring A.  

 

The second objective of my thesis was to elucidate in detail the biosynthesis of Ring 

A, i.e. the prenylated 4-hydroxybenzoate moiety of clorobiocin and novobiocin. This 

involved following experiments: 

• sequence analysis of the three genes (cloR, cloQ and cloF) presumably 

involved in Ring A formation and subsequently establishment of a model for 

the formation of Ring A. 

• Creation of three S. roseochromogenes mutants (cloQ-, cloR- and cloI-) by in-

frame deletion, analysis of their secondary metabolites by HPLC, mass 
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spectrometry or LC-ESI-CID, and by feeding experiments in order to 

determine the roles of these genes in clorobiocin biosynthesis. 

• Expression and purification of CloQ. Biochemical investigation of this enzyme 

and confirmation of its role in Ring A biosynthesis. 

• Expression and purification of CloR. Biochemical investigation of this enzyme 

and confirmation of its role in Ring A biosynthesis. 

 

My third objective was the inactivation of novO in the novobiocin producer S. 

spheroides, using a new method of gene inactivation (PCR targeting system). This 

should provide functional evidence for novO, and form a basis for future experiments 

in combinatorial biosynthesis. 
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II. RESULTS 

 

1. Identification of the clorobiocin biosynthetic gene cluster. 

 

1.1 Introduction 

 

The biosynthetic gene clusters of novobiocin from Streptomyces (S.) spheroides 

NCIMB 11891 and of coumermycin A1 from S. rishiriensis DSM 40489 were recently 

identified (Steffensky et al., 2000b; Wang et al., 2000). Comparison of these two 

biosynthetic gene clusters provided first indications about the function of some gene 

in the biosynthesis of Ring B and the sugar moiety. Unfortunately, this comparison 

did not provide any information about the biosynthesis of Ring A of novobiocin and 

clorobiocin or of the centrale pyrrol ring of coumermycin A1 (Fig. 1, p. 22). The first 

task of my thesis was to identify the biosynthetic gene cluster of the third “classical” 

aminocoumarin antibiotic, clorobiocin. Comparison of the three biosynthetic gene 

clusters was expected to allow a better understanding of the genes involved in the 

formation of the aminocoumarin antibiotics, and would also offer prospects for the 

production of new aminocoumarins by combinatorial biosynthesis. 

Clorobiocin is produced by three different Streptomyces strains (see Introduction, p. 

21). S. roseochromogenes var. oscitans DS 12.976 was shown to be the best 

producer of clorobiocin (see Materials and methods, p. 79) and was therefore used in 

all experiments. 

1.2 Cloning and sequencing of the clorobiocin biosynthetic gene cluster. 

 

Novobiocin (Steffensky et al., 2000b) and coumermycin A1 (Wang et al., 2000) 

biosynthetic gene clusters were previously cloned and sequenced (Fig. 3, p. 31). In 

the novobiocin cluster, the gene novT codes for a dNDP-glucose 4,6-dehydratase 

involved in the biosynthesis of the deoxysugar moiety of novobiocin. The gene novL 

encodes the novobiocic acid synthetase which catalyzes the formation of the amide 

bond between Ring A and Ring B of novobiocin (Fig. 3, p. 31) (Steffensky et al., 

2000a). Similar reactions were expected to be involved in clorobiocin biosynthesis. 
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Therefore, Southern hybridizations of genomic DNA of the clorobiocin producer S. 

roseochromogenes were carried out with probes for novT and novL, each resulting in 

a single band. 

A cosmid library from S. roseochromogenes was constructed into Supercos-1, and 

screened with the novT and novL probes (see Materials and methods, p. 81). Four 

cosmids (VIIIA7-c, K1F2, D1A8 and F1A4) hybridize with both probes. These 

cosmids are different but overlapp each other (Fig. 34, p. 82). Cosmid K1F2 was 

sequenced on both strands. 36 open reading frames (ORFs) were identified. 29 of 

these ORFs showed striking similarity to genes of the novobiocin and/or 

coumermycin A1 biosynthetic gene cluster (Table 1, p. 32). In addition a partial 

sequence of the aminocoumarin resistance gene gyrBR  was found at the 3’ end of 

the cluster. Recently, our group has sequenced the genes downstream of gyrBR, and 

also found a gene with homology to topoisomerase IV (parYR), as in the cluster of 

coumermycin A1 (Fig. 3, p. 31) (Eustáquio et al., 2003b; Schmutz et al., 2003). 

Strikingly, in all three clusters, the corresponding ORFs were arranged in exactly the 

same order and oriented in the same direction (Fig. 3, p. 31). 

The sequence of cosmid K1F2 was deposited in the GenBank database under 

accession no. AF 329398. 
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Fig. 3: Comparison of the three “classical” aminocoumarin biosynthetic gene clusters. 

(A) Structures of the aminocoumarin antibiotics.  

(B) Map of the clorobiocin biosynthetic gene cluster of S. roseochromogenes DS 12 

976 (clo), compared to the biosynthetic gene clusters of novobiocin (nov) and 

coumermycin A1 (cou). 

O

OH
NH

OH
Cl

O

O

OCH3
CH3

O

OH

NH

OHO

O

O

CH3
O

OHO

O
CH3

CH3

O

H2N

Ring ARing BRing C

CH3
OO

OH

O
CH3

CH3

H

O

ON
H3C

CH3 CH3

O

OH
O O

OH
NH

N

CH3
NH

OO

OH

CH3

O
O

OH
O

CH3

CH3

H

O

O N
CH3

H ON
H3C

O

OHO

O
CH3

CH3

A

B

clorobiocin novobiocin

coumermycin A 1

gyrBR

gyrBR

gyrBR

1kb

nov

cou

clo

E F G H I J K L M N O PQ R S T U V W

E F G H I J K L M1 P Q R S T U V W ZY 2 3 4 5 6 7 hal
N

G H I J K L M 1 P S T U VWY 2 3 4 5 6 7

N
O2 3 4 5 6 1 4 62 3 5

R

ParYR

ParYRE

2

345
6

8

1’’
2’’3’’

4’’
5’’

6’’

7’’

8’’

11

1’ 2’

3’

4’5’
6’

7’

8’

9’

10’

11’12’

2’’’

4’’’

2’’’6’’’



Results 
 

 32

Table 1: Identified ORFs in the biosynthetic gene cluster of clorobiocin (cosmid K1F2). 

 
ORF 

size of the product  
(amino acids [aa]) 

Similar entity or entitiesa % identity of 
products  

accession 
number 

ORF1 
ORF2 
ORF3 
ORF4 
ORF5 
ORF6 
ORF7 
ORF8 
ORF9 

306 
197 
962 
93 
406 
406 
218 
149 
78 

Fkbl (lysine cyclodeaminase) from S. hygroscopicus 
sarcosine oxidase gamma subunit from Corynebacterium sp. 
sarcosine oxidase alpha subunit from Corynebacterium sp. 
sarcosine oxidase delta subunit from Corynebacterium sp. 
sarcosine oxidase beta subunit from Corynebacterium sp. 
serine hydroxymethyltransferase from  S. coelicolor 
putative transcriptional regulator from S. coelicolor 
unknown protein 
transposase from S. coelicolor  

37 
44 
59 
66 
80 
75 
45 
 
68 

AAF86391 
Q46338 
Q46337 
Q46336 
P40875 
O86565 
AL596248.1 
 
AL109949.1 

cloE 
 
cloF 
 
cloG 
 
cloY 
 
cloH 
 
cloI 
 
cloJ 
 
cloK 
 
cloL 
 
cloM 
 
cloN1 
cloN2 
 
cloN3 
 
cloN4 
 
cloN5 
 
cloN6 
 
cloN7 
 
clo-hal 
cloP 
 
cloQ 
cloR 
 
cloS 
 
cloT 
 
cloU 
 
cloV 
 
cloW 
 
cloZ 
gyrBR 

217 
 
362 
 
319 
 
71 
 
600 
 
407 
 
258 
 
245 
 
527 
 
390 
 
95 
355 
 
376 
 
501 
 
89 
 
561 
 
278 
 
524 
277 
 
324 
277 
 
288 
 
336 
 
420 
 
296 
 
198 
 
253 
partial sequence 

novE (217 aa)/couE (217 aa) 
lmbU protein from S. lincolnensis 
novF (362 aa) 
prephenate dehydrogenase from S. lavendulae 
novG (318 aa)/ couG (319 aa) 
regulatory protein (StrR) from S. glaucescens 
couY (71 aa) 
hypothetical protein from S. coelicolor 
novH (600 aa)/ couH (599 aa) 
peptide synthetase-like protein from S. antibioticus 
novI (407 aa)/ couI (407 aa) 
cytochrome P-450 enzyme from S. antibioticus 
novJ (262 aa)/ couJ (258 aa) 
3-oxoacyl reductase from bacillus halodurans 
novK (244 aa)/ couK (245 aa) 
reductase from S. antibioticus 
novL (527 aa)/ couL (529 aa) 
amide synthetase from S. antibioticus 
novM (379 aa)/ couM (402 aa) 
glycosyltransferase from S. argillaceus 
couN1 (95 aa)/ hypothetical protein 
couN2 (355 aa) 
dpsC from S. peucetius 
couN3 (373 aa) 
acyl-CoA dehydrogenase (pltE) from Pseudomonas fluorescens 
couN4 (501 aa) 
acyl-CoA synthetase (pltF) from Pseudomonas fluorescens 
couN5 (89 aa) 
hypothetical protein (pltL) from Pseudomonas fluorescens 
couN6 (560 aa) 
hypothetical protein 
couN7 (281 aa) 
putative hydrolase from S. coelicolor 
non-heme halogenase from S. lavendulae 
novP (262 aa)/ couP (276 aa) 
O-methyltransferase III from S. olivaceus 
novQ (271 aa)/ 4HPP-prenyltransferase (this work) 
novR (270 aa)/ non-heme iron oxygenase (this work) 
putative aldolase from S.coelicolor  
novS (288 aa)/ couS (288 aa) 
4-ketoreductase from S. antibioticus 
novT (336 aa)/ couT (336 aa) 
dNDP-glucose-4,6-dehydratase from S. globisporus 
novU (420 aa)/ couU (420 aa) 
D-mycarose 3-C-methyltransferase from S.argillaceus 
novV (297 aa)/ couV (296 aa) 
dTDP-glucose synthase from S.spectabilis 
novW (207 aa)/ couW (198 aa) 
dTDP-4-keto-6-deoxyglucose 3,5-epimerase from S. glaucescens 
hypothetical protein 
gyrBR-nov (novobiocin cluster) /gyrBR-cou (coumermycin cluster) 

82 
43 
73 
30 
79/80 
40 
81 
68 
75/80 
50 
90/95 
66 
72/77 
48 
77/81 
35 
86/86 
37 
78/78 
38 
86 
86 
32 
81 
45 
87 
45 
91 
34 
94 
 
82 
34 
35 
91/89 
58 
80 
95 
47 
84/87 
50 
82/87 
66 
88/90 
48 
89/92 
74 
86/91 
54 
 
 

 
S44974 
 
AAK81837 
 
S44506 
 
T36310 
 
AAG34184.1 
 
AAK06805.1 
 
BAB06210 
 
AAG34182 
 
AAG34183 
 
AAC64927 
 
 
1093565 
 
AAD24879 
 
AAD24881 
 
T17418 
 
 
 
CAB95984 
AAK81830 
 
CAC32469 
 
 
CAB82026 
 
AAD55455 
 
AAF13998 
 
CAB96549 
 
AAD31796 
 
S44236 

a nov genes are from the novobiocin biosynthetic gene cluster of S. spheroides (accession number AF170880), 
cou genes are from the coumermycin A1 biosynthetic gene cluster of S. rishiriensis (accession number AF235050) 
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1.3 Genes involved in the biosynthesis of deoxysugar moiety (Ring C). 

 

At the 3’ end of the cluster, five ORFs with high homology to genes involved in the 

deoxysugar biosynthesis were discovered (cloSTUVW) (Table 1, p. 32). Homologous 

genes are found in the same position in the clusters of novobiocin (novSTUVW) and 

coumermycin A1 (couSTUVW) (Fig. 3, p. 31). Based upon their homology to known 

genes of deoxysugar biosynthesis, we previously assigned these genes to the five 

steps required for the biosynthesis of the deoxysugar moiety (Fig. 4), and evidence 

for this hypothesis was provided by an inactivation experiment with novT in the 

novobiocin producer (Steffensky et al., 2000b). The presence of these genes in the 

clorobiocin cluster provides additional support to our previous functional assignment 

of these genes. 

O-methylation at position 4 of the deoxysugar moiety is regarded as the last step in 

aminocoumarin biosynthesis (Fig. 30, p. 69) (Queener S.W. et al., 1978). The genes 

cloP, novP and couP, situated in the same relative position of the clusters, show 

homology to known deoxysugar O-methyltransferases. couP was shown, by gene 

inactivation, to methylate the hydroxyl group on position 4 of the deoxysugar (Li et al., 

2002). cloP shows 89 % homology to couP and is likely to catalyze the same reaction 

in clorobiocin biosynthesis. 
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Fig. 4: Proposed biosynthetic pathway of the deoxysugar moiety. 
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1.4 Genes presumably involved in the formation of pyrrole ring.  

 

Clorobiocin and coumermycin A1 contain pyrrole carboxylic acid rings attached to 

position 3 of their deoxysugar moieties (Fig. 3, p. 31). Novobiocin contains a 

carbamoyl group at the corresponding position.  

These structural similarities and differences between the three antibiotics are 

reflected in the organization of the gene clusters (Fig. 3, p. 31): downstream of the 

glycosyltransferase gene novM, the novobiocin cluster contains a gene (novN) with 

homology to carbamoyl transferases, whereas in the same relative position of the 

clorobiocin and coumermycin clusters, a group of seven genes is found (cloN1-N7 or 

couN1-N7, respectively) which show very high homology between the two clusters 

(87% aa identity on average). These genes can be assigned to pyrrole biosynthesis, 

which has very recently been elucidated genetically as well as biochemically. cloN3, 

cloN4 and cloN5 show sequence similarity to pltE, pltF and pltL, respectively, 

involved in the biosynthesis of the pyrrole moiety of pyoluteorin in Pseudomonas 

fluorescens Pf-5 (Nowak-Thompson et al., 1999) and to redW, redM and redO, 

respectively, involved in the biosynthesis of the pyrrole moiety of undecylprodiginin in 

S. coelicolor (Cerdeno et al., 2001). PltF and RedM convert L-proline into its acyl 

adenylate (Fig. 5, p. 35) and the small proteins PltL and RedO act as peptidyl carrier 

proteins (PCP) (Thomas et al., 2002). The same functions may therefore be assigned 

to the homologous CloN4 and CloN5, respectively. CloN3, like CouN3, PltE and 

RedW, shows homologies to flavine-dependent acyl-coenzyme A dehydrogenases. 

PltE and RedW catalyze the dehydrogenation of the PCP-bound proline (Thomas et 

al., 2002). The resulting pyrroline derivative (presumably ?2) undergoes spontaneous 

oxidation to the aromatic pyrrole derivative (Fig. 5, p. 35).  

Recently, members of our group showed by gene inactivation in the coumermycin 

producer S. rishiriensis, that CouN3 and CouN4 are indeed involved in the 

biosynthesis of the pyrrole ring (Xu et al., 2002). Expression of the putative 

carbamoyltransferase gene, novN, in these mutants led to the formation of bis-

carbamoylated coumermycin D, also providing evidence for the function of the novN 

gene in novobiocin biosynthesis (Xu et al., 2002).  

CloN6 (CouN6) belongs to the BchE-like/methyltransferase subgroup of radical SAM 

proteins, which has recently been identified by bioinformatic techniques (Sofia et al., 
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2001), and catalyzes the transfer of a methyl group to position 5 of the pyrrole-2-

carboxylic acid (Westrich et al., 2003).  

cloN2 (couN2) shares homology with dpsC, which encodes an enzyme with 

acyltransferase activity. cloN2 is indeed involved in the transfer of the activated 

pyrrole-2-carboxylic acid to the 3 -OH of the deoxysugar moiety (Xu et al., 2003). 

The small ORF cloN1 (95 amino acids) does not show homology to other database 

entries, and its function remains unknown at present.  
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Fig. 5: Proposed biosynthetic pathway of the pyrrole ring. 

 

1.5 Genes presumably involved in the biosynthesis of the aminocoumarin 

ring (Ring B). 

 

The genes for the biosynthesis of the characteristic aminocoumarin ring must be 

present in all three clusters, and a comparison of the three clusters therefore 

presents an obvious method to identify possible candidate genes for the biosynthesis 

of this ring. In the clorobiocin cluster, cloHIJK showed, on average, 85% homology to 

the corresponding genes in the novobiocin (novHIJK) and the coumermycin A1 

(couHIJK) clusters (Table 1, p. 32). It appears likely that the gene products of these 

genes are involved in the formation of the aminocoumarin ring from tyrosine (Fig. 6, 

p. 36). A detailed discussion of the role of these genes is presented page 67.  
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Clorobiocin contains a chlorine atom at position 8 of the aminocoumarin ring, 

whereas novobiocin and coumermycin A1 contain a methyl group at the same 

position (Fig. 3, p. 31). This structural difference of the antibiotics is perfectly 

reflected in the organization of the gene clusters: the novobiocin and coumermycin 

clusters contain a C-methyltransferase gene, novO or couO, respectively. In the 

clorobiocin cluster, in contrast, clo-hal, a homologue of non-heme halogenase genes, 

is found at the same relative position. Another gene, cloZ, is also exclusively found in 

clorobiocin and could, therefore, play a role in the halogenation of clorobiocin 

together with clo-hal. Recently, gene inactivations of cloZ and clo-hal have shown 

that Clo-hal is responsible for the halogenation of clorobiocin. However, CloZ was 

demonstrated not to be involved in the halogenation, nor to be essential for 

clorobiocin biosynthesis (Eustáquio et al., 2003a). 
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Fig. 6: Proposed biosynthetic pathway of Ring B. 

 

1.6 Genes presumably involved in the biosynthesis of the 3-dimethylallyl-4-

hydroxybenzoic acid (Ring A). 

 

Clorobiocin and novobiocin contain a prenylated 4-hydroxybenzoate moiety (Ring A). 

Coumermycin A1 contains a pyrrole dicarboxylic acid moiety instead, linking the two 

aminocoumarin rings of this molecule (Fig. 3, p. 31). The aromatic nucleus of Ring A 

of clorobiocin and novobiocin is derived from tyrosine (Bunton et al., 1963; Kominek 

and Sebek, 1974), but the exact reaction sequence is unknown. 

Sequencing of the clorobiocin gene cluster revealed three genes, which were also 

present in the novobiocin cluster but not in the coumermycin cluster, i.e. cloF, cloQ 

and cloR. This fact led us to hypothesize that these genes may be involved in Ring A 

biosynthesis.  
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cloF shows homology to putative oxido-reductases (49% from S. coelicolor) and to 

putative prephenate dehydrogenases (36% from Amycolatopsis orientalis). 

CloR has 47% identity to a putative Class II aldolase from S. coelicolor. cloQ did not 

show homologies to other genes in the database, except novQ. cloQ and cloR, like 

novQ and novR, show transcriptional coupling (i.e. the stop codon of cloQ is fused 

with the start codon of cloR) and are likely to be transcribed as a single operon. 

Unusually large intergenic regions are found upstream and downstream of cloQR 

(1001 bp and 830 bp, respectively).  

The role of these proteins in the formation of Ring A was elucidated in the second 

part of my thesis (see Results, p. 39). 

1.7 Genes involved in the linkage of Ring A, B and C of clorobiocin. 

 

Attachment of the deoxysugar to the 7-OH group of the aminocoumarin ring should 

require very similar glycosyl transferases in clorobiocin, novobiocin and coumermycin 

A1 biosynthesis, and indeed three very similar putative glycosyltransferase genes, 

cloM, novM  and couM , are found at the same relative position in all three clusters 

(Fig. 3, p. 31). Recently, NovM was expressed in E. coli and purified as a C-terminal 

His8 fusion protein. The aglycone novobiocic acid and TDP-L-noviose were shown to 

be the preferred substrates for NovM (Freel Meyers et al., 2003). 

In clorobiocin and novobiocin, the aminocoumarin moiety (Ring B) and the prenylated 

4-hydroxybenzoate moiety (Ring A) are linked by an amide bond (Fig. 3, p. 31). It has 

been demonstrated that the enzyme NovL catalyzes this reaction, i.e. adenylation of 

the substituted benzoyl moiety and its transfer to the amino group (Steffensky et al., 

2000a). The gene cloL shows high homology to novL and is most probably involved 

in the formation of the amide bond of clorobiocin.  

 

1.8 Resistance and regulatory genes. 

 

A gene encoding for a aminocoumarin-resistant gyrase B subunit (gyrBR) is located 

downstream of the deoxysugar biosynthesis genes cloSTUVW in the clorobiocin 

cluster, and similarly at the corresponding position of the novobiocin and 

coumermycin clusters. This gene has previously been identified as the principal 
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novobiocin resistance gene in the novobiocin producer S. spheroides (Thiara and 

Cundliffe, 1988).  

Unexpectedly, the clorobiocin and coumermycin A1 clusters were found to contain an 

additional, similar gene, named parYR. Its predicted gene product showed sequence 

similarity with the B unit of type II topoisomerases. Recently, expression of gyrBR, 

and likewise of parYR, in Streptomyces lividans TK24 resulted in resistance against 

novobiocin and coumermycin A1, suggesting that both genes function as resistance 

genes against the aminocoumarins (Schmutz et al., 2003). 

cloG, novG and couG are homologous to strR, a regulatory gene from the 

streptomycin cluster. Streptomycin biosynthesis is known to be regulated by (-

butyrolactones (Horinouchi and Beppu, 1995). It may therefore be speculated that (-

butyrolactones are involved in the regulation of the biosynthesis of clorobiocin and 

other aminocoumarin antibiotics. A catalytic function of the gene product of these 

genes appears very unlikely. 

cloE has homology to the lmbU gene of the lincomycin biosynthetic gene cluster of S. 

lincolnensis 78-11. It was suggested that LmbU may have a regulatory function, but 

no experimental evidence is available so far (Peschke et al., 1995). Recently, 

inactivation of novE by gene replacement demonstrated that novE does not have an 

essential catalytic role in novobiocin biosynthesis, but is likely to have a regulatory 

function (Eustáquio et al., 2003b).  

 

1.9 Genes with unknown function. 

 

At present, no function can be suggested for the small ORFs cloY, cloN1 and cloN7 , 

which have homologues in the coumermycin A1 cluster.  
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2. Identification of CloQ as an aromatic prenyltransferase. 

 

2.1 Introduction. 

 

The 3-prenylated 4-hydroxybenzoic acid moiety of novobiocin (called Ring A) has 

been shown to be derived from tyrosine and an isoprenoid precursor (Li et al., 1998), 

but conflicting suggestions have been made for the prenylation substrate (Calvert et 

al., 1972; Chen and Walsh, 2001; Kominek, 1972; Steffensky et al., 1998). 3-

Prenylated 4-hydroxybenzoic acid moieties are known as intermediates in the 

biosynthesis of ubiquinones (Melzer and Heide, 1994) and shikonin (Yazaki et al., 

2002), where they are formed from 4-hydroxybenzoic acid (4HB) under catalysis of 

membrane-bound prenyltransferases. These enzymes contain the characteristic 

prenyl diphosphate binding site ((N/D)DxxD) known from trans-prenyltransferases 

(Koyama et al., 1996; Liang et al., 2002). Surprisingly, cloning of the novobiocin and 

the clorobiocin biosynthetic gene clusters (Pojer et al., 2002; Steffensky et al., 2000b) 

revealed neither a gene with sequence similarity to known prenyltransferases, nor 

genes which could be assigned to 4HB biosynthesis, e. g. similar to the benzoate 

biosynthesis genes recently described in S. maritimus (Fig. 3, p. 31 and Table 1, p. 

32) (Hertweck and Moore, 2000). 

A new hypothesis for the formation of Ring A was derived from studies on the 

biosynthesis of the aminocoumarin moiety (Ring B) of novobiocin. Chen and Walsh 

(2001) showed that the first two steps in Ring B formation are the activation of L-

tyrosine by NovH, and the subsequent hydroxylation to ß-hydroxytyrosyl-NovH (ß-

OH-Tyr-S-NovH) under catalysis of the cytochrome P450 enzyme NovI (Fig. 7, p. 40). 

Alkali treatment of this product led to the formation of 4-hydroxybenzaldehyde 

(4HBAL), resulting from a retro-aldol cleavage of ß-OH-Tyr-S-NovH. It therefore 

appeared possible that Ring A of novobiocin may also be derived from ß-OH-Tyr-S-

NovH by a retro-aldol reaction, occurring either before or after prenylation of the 

aromatic nucleus (Fig. 7, p. 40). Further support for this hypothesis came from the 

detection of novR and cloR in the biosynthetic gene clusters of novobiocin and 

clorobiocin since their gene products show similarity to Class II aldolases, and the 
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involvement of cloR in Ring A biosynthesis was demonstrated by a gene inactivation 

experiment (see Results ,p. 54). 

CloQ shows no homology to any database entries. To test if cloQ is involved in the 

formation of Ring A, a gene inactivation was done.  
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Fig. 7: Possible biosynthetic pathways to the prenylated 4-hydroxybenzoate moiety 
(Ring A).  

4HBAL, 4-hydroxybenzaldehyde; 3DMA, 3-dimethylallyl. 

 

2.2  Inactivation of cloQ and feeding of Ring A. 

 

Sequence analysis of the novobiocin and clorobiocin gene clusters (see Results, p. 

29) (Pojer et al., 2002; Steffensky et al., 2000b) did not reveal any genes with 

similarity to known prenyltransferases, nor genes containing the typical prenyl 

diphosphate binding site (N/D)DxxD (Koyama et al., 1996) (Table 1, p. 32). The 

identification of candidates for prenyltransferase genes was facilitated, however, by a 

comparison of the biosynthetic gene clusters of novobiocin (Steffensky et al., 2000b), 

clorobiocin (Pojer et al., 2002) and coumermycin A1 (Wang et al., 2000) (Fig. 3, p. 

31). The prenylated 4-hydroxybenzoate moiety (Ring A) is present in novobiocin and 
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clorobiocin, but not in coumermycin A1 (Fig. 3, p. 31). Correspondingly, three genes 

were found to be present in the novobiocin and the clorobiocin clusters, but absent in 

the coumermycin A1 cluster: i) the putative aldolase genes novR and cloR; ii) novF 

and cloF, with sequence similarity to dehydrogenases; iii) novQ and cloQ, which did 

not show any similarity to known genes in the database. If the prenyltransferases 

were contained within the clusters and were dissimilar to prenyltransferases 

described previously, novQ and cloQ would be possible candidate genes for these 

enzymes. 

A gene inactivation experiment was therefore carried out with cloQ. To avoid polar 

effects on the genes downstream of cloQ, especially on cloR, an in-frame deletion of 

810 base pairs within the coding sequence of cloQ was created (see Materials and 

methods, p. 85), and the correct genotype of the mutant was confirmed by Southern 

blotting (Fig. 8 and Fig. 9, p. 42). Chromosomal DNA from S. roseochromogenes 

wild-type as well as from mutants QSCO8 and cloQ- mutant (QDCO30) was digested 

by BamHI and PvuII and hybridized with a probe containing a part of the cloR gene 

immediately downstream of cloQ. A band at 1.5 kb was detected in the S. 

roseochromogenes wild-type, while chromosomal DNA from cloQ- mutant showed 

the expected band of 2.9 kb corresponding to the in-frame deletion of cloQ (Fig. 9, p. 

42). 

HPLC analysis of the culture extracts showed that clorobiocin production was 

completely abolished in the cloQ- mutant (Fig. 10, p. 43). However, upon addition of 

Ring A to the culture, the production of clorobiocin was restored to one third of the 

wild type level (Fig. 10, p. 43). This showed that cloQ is involved in Ring A 

biosynthesis. 3-dimethylallyl 4-hydroxybenzaldehyde (3-DMA-4HBAL) is a possible 

intermediate of Ring A biosynthesis (Fig. 7, p. 40). Adding this compound to cloQ- 

mutant culture proved to be equally effective in restoring clorobiocin production as 

the addition of Ring A. 
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Fig. 8: Schematic representation of the inactivation of cloQ by in-frame deletion. 

The indicated 1469 bp PvuII fragment was used as a probe. 

Fig. 9: Southern blot analysis of cloQ defective mutants.  

Wild-type S. roseochromogenes (WT), single cross-over mutant (QSCO8) and 
double cross-over mutant (cloQ- mutant) are depicted. Genomic DNA was restricted 
by PvuII and BamHI.  
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Fig. 10: HPLC analysis of culture extracts of the cloQ defective mutant.  

The identity of clorobiocin ([M-H]-= 695) was confirmed by LC-ESI-CID and the mass 
spectroscopic fragments are indicated. 
 

2.3 Expression and purification of CloQ. 

 

CloQ was expressed in E. coli as a soluble GST fusion protein of 61.6 kDa. After 

purification, GST was cleaved from CloQ by thrombin treatment and removed (see 

Materials and methods, p. 90). This resulted in apparently homogenous CloQ protein 

as judged by SDS-PAGE (Fig. 11, p. 44). The observed molecular weight 

corresponded to the calculated mass (35.6 kDa). A protein yield of 6 mg pure CloQ 

per liter of culture was obtained.  
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Fig. 11: Purification of CloQ after overexpression as a fusion protein with glutathion-
S-transferase.  

The 12% SDS-PAGE gel was strained with Coomassie Brilliant Blue. Lane 1, 
molecular weight standard; lane 2, total protein after IPTG induction; lane 3, soluble 
protein after induction, lane 4, eluate from glutathion sepharose chromatography after 
thrombin treatment. 
 

2.4 Investigation of 4HB and ß-hydroxytyrosyl-S-NovH as substrate of CloQ 

 

4-Hydroxybenzaldehyde (4HBAL) can be formed from ß-hydroxytyrosyl-S-NovH (ß-

OH-Tyr-S-NovH) by retro-aldol cleavage (Chen and Walsh, 2001). Subsequent 

prenylation and oxidation may lead to the formation of Ring A of novobiocin or 

clorobiocin (Fig. 7, p. 40). However, when the purified CloQ protein was incubated 

with 4HBAL, or with the corresponding acid 4HB, in the presence of DMAPP and 

Mg2+, no prenylated products were observed (see Materials and methods, p. 92). 

Alternatively, prenylation of ß-OH-Tyr-S-NovH may preceed the retro-aldol cleavage 

reaction in novobiocin and clorobiocin formation, rendering 3-dimethylallyl-ß-

hydroxytyrosine, in its enzyme-bound form, as an intermediate of Ring A biosynthesis 

(Fig. 7, p. 40). A natural product containing a 3-dimethylallyl ß-hydroxytyrosyl residue 

has been identified previously in a fungus (Barrow et al., 1994). We therefore 

prepared ß-OH-Tyr-S-NovH by incubation of L-[U-14C]tyrosine with NovH and NovI, 

as described by Chen and Walsh (2001). When the resulting products were 

precipitated with trichloroacetic acid and cleaved with alkali, [14C]4HBAL was 
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detected by HPLC, representing the retro-aldol reaction product from ß-OH-Tyr-S-

NovH. However, when CloQ, DMAPP and Mg2+ were included in the enzyme 

incubation, no prenylated products were observed (Fig. 12, p. 45) (see Materials and 

methods, p. 90). 

Therefore, neither ß-OH-Tyr-S-NovH nor 4HB or 4HBAL were readily identified as 

substrates for CloQ.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: HPLC analysis of [UL14C]-tyrosyl-S-NovH/NovI/CloQ incubation products 
released by KOH treatment.  

Plot of radioactivity versus retention time (RT) from the complete reaction (A) and 
from the control reaction (B). The realized radioactive compounds were proven to be 
tyrosine + ß-OHtyrosine (RT= 4 min) and 4-hydroxybenzaldehyde (RT= 17.3 min) by 
co-chromatography. No peak was found corresponding to 3-dimethylallyl-4-
hydroxybenzaldehyde (RT= 26.3 min).  
 

2.5  Inactivation of cloI: Proof for an independent pathway for Ring A 

biosynthesis. 

 

The cytochrome P450 enzyme CloI is responsible for the hydroxylation of Tyr -S-CloH 

to ß-OH-Tyr-S-CloH (Fig. 6, p. 36) (Chen and Walsh, 2001). If the latter compound is 

indeed an intermediate in Ring A biosynthesis, inactivation of cloI should lead to the 

abolishment of Ring A formation. cloI was inactivated by in-frame deletion (Fig. 13, p. 

47) (see Materials and methods, p. 85), and the genotype of the resulting mutant was 

confirmed by Southern blotting (Fig. 14, p. 47). Chromosomal DNA from S. 
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roseochromogenes wild-type as well as from mutants ISCO4 and cloI- mutant 

(IDCO169) was digested by NcoI and hybridized with a 2 kb probe containing cloI 

gene. A band at 2 kb was detected in the S. roseochromogenes wild-type, while 

chromosomal DNA from cloI- mutant showed the expected band of 0.9 kb 

corresponding to the in-frame deletion of cloI. 

HPLC analysis of culture extracts of the cloI- mutant showed complete abolishment of 

the clorobiocin production (Fig. 15A, p. 48). This was expected since CloI had been 

shown to catalyze an essential step in Ring B biosynthesis (Chen and Walsh, 2001). 

The same cultures were subsequently analyzed for the accumulation of Ring A, using 

a different UV wavelength for detection (Fig. 15B, p. 48). The wild-type did not 

accumulate detectable amounts of this compound. However, Ring A was clearly 

detected in the cloI- mutant (approximately 3.5 mg/l culture). This compound was 

identified mass spectroscopically, using LC-ESI-CID, by comparison to an authentic 

reference sample. Moreover, addition of Ring B of novobiocin to the cloI- mutant led 

to the formation of a new clorobiocin analogue, termed novclobiocin C102, in which 

the chlorine atom of clorobiocin is replaced by a methyl group. This compound was 

identified mass spectroscopically, using negative LC-ESI-CID (m/z= 675 [M-H]-, 488, 

206). 

These experiments demonstrated that Ring A can still be formed in the absence of 

CloI. Therefore, ß-OH-Tyr-S-CloH cannot be an intermediate in the biosynthesis of 

Ring A of clorobiocin (Fig. 7, p. 40). This prompted us to test additional compounds 

as substrates for CloQ. 
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Fig. 13: Schematic representation of the inactivation of cloI by in-frame deletion.  

thio, thiostrepton resistance gene.  
The indicated 1987 bp NcoI fragment was used as probe. 

 

Fig. 14: Southern blot analysis of cloI defective mutant. 

Wild-type S. roseochromogenes (WT), single cross-over event (ISCO4) and double 
cross-over event (cloI- mutant) are depicted. Genomic DNA was restricted by NcoI.  
 

 

 

cloI (1221 bp)

NcoI
NcoIprobe

Hind
I II

PstI

Wild-type 
(WT)

pEW02

cloI- mutant

thio

Xba
I

CloI*  (102 bp)

NcoINcoI

NcoINcoI

cloH CloJ

CloJ

CloJ

cloH

cloH

1.9-kb

0.9-kb

pE
W

02

W
T

IS
CO4

 

m
ut

an
t

CloI
 -



Results 
 

 48

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: HPLC analysis of culture extracts of the cloI  defective mutant. 

    (A) Clorobiocin standard; wild-type; cloI- mutant. Detection at 340 nm. (B) Ring A 
standard; wild-type; cloI- mutant. Detection at 254 nm. The identity of clorobiocin 
([M-H]-= 695) and Ring A ([M-H]-= 205) were confirmed by LC-ESI-CID. Mass 
spectroscopic fragments are indicated. 

 

2.6  Identification of 4-hydroxyphenylpyruvate as substrate of CloQ. 

 

When CloQ was incubated with 4-hydroxyphenylpyruvate (4HPP) and [1-
14C]DMAPP, the formation of a prenylation product was readily detected (Fig. 16A, p. 

49) (see Materials and methods, p. 92). This product was absent in control 

incubations with heat-denaturated CloQ. The incubation was repeated with non-

radioactive substrates, and the product was analyzed mass spectroscopically using 

LC-ESI-CID, resulting in the following ions: m/z= 247 ([M-1]-), 203 ([M-44]-), 175 ([M-

72]-), 119 ([M-128]-) (Fig. 17, p. 50). This is identical to the mass spectrum of a 

previously isolated sample of this compound, which had been identified by both mass 

spectroscopy and 1H-NMR (Steffensky et al., 1998). 

4HPP is an unstable compound and decomposes to 4-hydroxybenzaldehyde 

(4HBAL), especially in the presence of alkali (DOY, 1960). When the enzymatic 

prenylation products were treated with 0.5 M NaOH, a nearly complete conversion of 

3DMA-4HPP to 3DMA-4HBAL was observed (Fig. 16B, p. 49). The latter compound 

was identified in comparison to an authentic reference sample, synthesized 

according to Gluesenkamp and Buechi (1986).  

m/z:
205, 161, 106

0 2514

m/z:
695, 588, 507, 226

0 3723
min.

clorobiocin 

wild-type

cloI - mutant

Ring A 

wild-type

A

wild-type

min.

340 nm 254 nm

B

cloI - mutant

m/z:
695, 588, 507, 226

m/z:
205, 161, 106



  Results 

 49

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16: HPLC analysis of the prenyltransferase assay. 

(A) HPLC analysis of the incubation product of CloQ with [114C] DMAPP and 4-
hydroxyphenylpyruvic acid before NaOH treatment: plot of radioactivity versus 
retention time (RT) from the complete reaction and from the control reaction in 
which CloQ was denaturated. The radioactive peak (RT= 24.9 min) was proven to 
be 3-dimethylallyl-4-hydroxyphenylpyruvate by LC-ESI-CID. 

(B) HPLC analysis of the incubation product of CloQ with [114C] DMAPP and 4-
hydroxyphenylpyruvic acid after NaOH treatment: plot of radioactivity versus 
retention time from the complete reaction and from the control reaction in which 
CloQ was denaturated. The new radioactive peak (RT= 26.35) has the same RT 
as 3-dimethylallyl-4hydroxybenzaldehyde.  

(C) Retro-aldol conversion of radioactive 3DMA-4HPP to radioactive 3DMA-
4HBAL by NaOH treatment. 
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Fig. 17: Mass spectrometry data obtained of 4HPP and 3DMA-4HPP.  

(A). Negative-ion-ESI-CID data of authentic 4 -hydroxyphenylpyruvic acid (4HPP).  
(B) Negative-ion-ESI-CID data of prenylated 4-hydroxyphenylpyruvic acid (3DMA-

4HPP) 
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2.7 Biochemical properties and kinetic parameters of 4HPP 

dimethylallyltransferase. 

 

The native molecular mass of CloQ was determined as 34.6 kDa using gel 

chromatography, showing that the protein was monomeric in solution. Moreover, the 

enzyme was soluble in the absence of detergents.  

Product formation showed a linear dependence on the amount of protein (up to 3 µg 

per assay), and on the reaction time (up to 15 min).  

The reaction was strictly dependent on the presence of active CloQ, 4HPP and 

DMAPP. The presence of Mg2+ enhanced prenyltransferase activity, with 2.5 mM 

being the most effective concentration (Fig. 18, p. 52). However, in the absence of 

divalent cations and in the presence of 5 mM of EDTA, the enzyme retained 25% of 

its original activity. This is in contrast to the absolute requirement for divalent cations 

reported for most prenyltransferases (Liang et al., 2002). The addition of Ca2+ (2.5 

mM) instead of Mg2+ resulted in 70% of the activity obtained with Mg2+. No product 

formation could be detected by addition of ZnCl2, CuCl2, CoCl2 or MnCl2 due to 

degradation of the substrate 4HPP by these metal ions. 

In contrast to many protein prenyltransferases that contain a tightly bound zinc atom 

(Harris et al., 2002), purified CloQ protein was found to contain neither zinc nor 

magnesium (see Materials and methods, p. 95).  

CloQ was found to be specific for the substrate 4HPP. No product formation was 

observed using L-tyrosine, 4HB, 4HBAL or prephenic acid. Only with ß-hydroxy-L-

tyrosine, formation of dimethylallyl-ß-hydroxytyrosine was observed. The identity of 

the product was confirmed by LC-ESI-CID (m/z: 264 [M-H]-, 189, 134). The reaction 

velocity, however, was only 2% of that obtained with 4HPP. When DMAPP was 

replaced with isopentenyl diphosphate (IPP) or geranyl diphosphate (GPP), no 

product formation was observed.  

The CloQ reaction apparently followed Michaelis-Menten kinetics, and the Km values 

were determined by the Lineweaver-Burk method as approximately 25 µM for 4HPP 

and 35 µM for DMAPP (Fig. 19 and Fig. 20, p. 52, respectively). The maximum 

reaction velocity observed was 3690 pKat mg-1, corresponding to a turnover number 

of 7.9 min-1. 
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Fig. 18: Influence of MgCl2 in the 4HPP prenyltransferase assay. 
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Fig. 19: Lineweaver-Burk Plot for calculation of the K m of 4HPP.  
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Fig. 20: Lineweaver-Burk Plot for calculation of the K m of DMAPP. 
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3. Identification of CloR as a non-heme iron dependent oxygenase. 

3.1 Introduction. 

 

Three genes were identified in the novobiocin and clorobiocin clusters for which no 

homologues existed in the coumermycin cluster (Fig. 3, p. 31). We speculated that 

these genes might be involved in the biosynthesis of Ring A (which is absent in 

coumermycin A1). These genes were: a) cloR and novR, which showed sequence 

similarity to putative class II aldolases; b) cloF and novF, which show sequence 

similarities to prephenate dehydrogenases; c) cloQ and novQ; the protein CloQ was 

identified to code for a prenyltransferase (see Results, p. 39-52). The substrate of 

this enzyme is 4-hydroxyphenylpyruvate (Fig. 7, p. 40). The product of the reaction, 

i.e. 3-dimethylallyl-4HPP, was easily degraded to 3-dimethylallyl-4-

hydroxybenzaldehyde (3DMA-4HBAL), suggesting a biosynthesis of Ring A by the 

mechanism depicted in Fig. 7, p. 40, i.e. via oxidation of 3DMA-4HBAL to the 

corresponding acid. 

My work was to investigate the conversion of 3DMA-4HPP to Ring A and the role of 

CloR in this reaction sequence.  

3.2 Sequence analysis of CloR and NovR 

 

The gene cloR from the clorobiocin cluster and the corresponding gene novR from 

the novobiocin cluster (Fig. 3, p. 31 and Table 1, p. 32) encode proteins of 277 and 

270 amino acids, respectively, and show 95% identity with each other. A database 

search revealed sequence similarity to class II aldolases which are represented e.g. 

by L-fuculose-1-phosphate aldolase (Dreyer and Schulz, 1996) and L-rhamnose-1-

phosphate aldolase (Kroemer and Schulz, 2002), and to the structurally related L-

ribulose-5-phosphate-4-epimerase (Luo et al., 2001). These enzymes contain a 

catalytic zinc residue in their active center and are involved in the catabolism of 

sugars in E. coli. 

cloR is transcriptionally coupled to the gene cloQ, which encodes the aromatic 

prenyltransferase involved in Ring A formation (see Results, p. 39) (Pojer et al., 

2003). The same situation is found in the novobiocin cluster for the corresponding 

genes novQ and novR. 
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3.3 Inactivation of cloR and feeding of Ring A. 

 

In order to test whether cloR was involved in Ring A biosynthesis, a gene inactivation 

experiment was carried out. An inactivation vector carrying a thiostrepton resistance 

gene (pFP02) was constructed in which cloR was disrupted by in-frame deletion (see 

Materials and methods, p. 84) (Fig. 21, p. 55). Chromosomal DNA from S. 

roseochromogenes wild-type as well as from mutants RSCO2, RDCO30 and 

RDCO32 was digested by SacII and hybridized with a probe containing a part of the 

cloR gene (Fig. 21, p. 55). A band of approximately 1.1 kb in size was detected upon 

hybridization of the wild-type S. roseochromogenes, whereas hybridization of the 

chromosomal DNA from mutant strain RDCO30 with the probe produced the 

expected 2.2 kb band, which corresponded to the in-frame deletion of cloR (Fig. 22, 

p. 55). 

The deletion mutant, RDCO30, was subsequently cultured and examined by HPLC 

for secondary metabolites. As shown in Fig. 23, p. 56, the production of clorobiocin 

was abolished in this mutant. Another thiostrepton sensitive strain obtained in the 

screening for double cross-over mutants, RDCO32, represented a reversion to the 

wild-type (Fig. 22, p. 55) and showed clorobiocin production identical to that in the 

wild-type strain. 

In order to restore clorobiocin biosynthesis in the cloR defective mutant RDCO30, 

Ring A (3-dimethylallyl-4-hydroxybenzoic acid) was added to the culture of this strain. 

This led to the reconstitution of clorobiocin production (Fig. 23, p. 56), to a third of the 

original wild-type level. The identity of this product was confirmed by MS and 1H-

NMR, in comparison to authentic reference substance (see Materials and methods, 

p. 86).  

Besides the major peak of clorobiocin (peak A), a minor peak of identical mass (peak 

B) was detected both in the wild-type and in the complemented mutant. This 

substance is likely to present an isomer of clorobiocin, possibly carrying the pyrrole 

carboxylic acid moiety in position 2 instead of position 3 of the deoxysugar. Recently, 
1H-NMR confirmed that peak B is, indeed, an isomer of clorobiocin (S.-M. Li, 

personal communication). Such isomers have been reported previously for 

novobiocin (Hinman et al., 1957). 
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Fig. 21: Schematic representation of the inactivation of cloR by in-frame deletion.  

thio, thiostrepton resistance gene. A 1122 bp SacII fragment was used as probe.   
 

 

Fig. 22: Southern blot analysis of cloR defective mutant.  

Genomic DNA was restricted by SacII (S/S). 
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Fig. 23: HPLC analysis of the cloR defective  mutant.  

Analysis of secondary metabolites produced by S. roseochromogenes wild-type, cloR 
defective mutant , and complementation of cloR defective mutant with 3-dimethylallyl-
4-hydroxybenzoic acid (Ring A). Peak A and B correspond to clorobiocin ([M-H]-= 
695, 697).  
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3.4 Expression and purification of CloR  

 

We decided to express CloR as a glutathion-S-transferase (GST) fusion protein 

rather than as a His-tagged protein, since CloR showed sequence similarity to class 

II aldolases, and these enzymes require zinc for their activity (Dreyer and Schulz, 

1993). A purification as His-tagged protein can lead to a complete loss of aldolase 

activity due to interactions between the hexahistidyl tag and the metal ion (Zn2+).  

E. coli cells harboring CloR expression constructs yielded only insoluble protein when 

grown at temperatures of 20°C or higher. To obtain soluble CloR-GST fusion protein, 

cells were cultured at 15°C and induced with 250 µM IPTG. After purification, GST 

was cleaved from CloR by thrombin treatment and removed. This procedure resulted 

in apparently homogenous CloR protein as judged by SDS-PAGE (Fig. 24). The 

molecular mass observed in SDS corresponded to the calculated mass of the protein 

(30.5 kDa). A protein yield of 1 mg of pure CloR per liter of culture was obtained. By 

using gel chromatography, the molecular mass of native CloR was determined as 

124.5 kDa showing that the protein was tetrameric in solution (see Materials and 

methods, p. 88). 

Fig. 24: Purification of CloR after overexpression as a fusion protein with glutathion-
S-transferase.  

The 12% SDS-PAGE gel was stained with Coomassie Brilliant Blue. Lane 1, 
molecular weight standard; lane 2, total protein after IPTG induction; lane 3, soluble 
protein after induction, lane 4, eluate after thrombin treatment. The calculated 
molecular weights were 56.5 kDa (CloR-GST) and 30.5 kDa (CloR). 
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3.5 Characterization of the reaction products of the CloR reaction 

 

In order to investigate the catalytic activity of CloR, we first produced 3DMA-4HPP 

(Fig. 7, p. 40), the putative substrate of CloR, by incubation of 4-

hydroxyphenylpyruvate (4HPP) with DMAPP and the prenyltransferase CloQ (see 

Materials and methods, p. 92). Subsequently, CloR and different cofactors, e.g. Zn2+ 

and NADH (Wehmeier, 2001), were added to the reaction mixture. However, no 

formation of 4-hydroxybenzaldehyde (3DMA-4HBAL) or Ring A could be detected by 

HPLC. 

A more sensitive analysis using a radioactive assay with 4HPP and [1-14C] DMAPP 

as substrates, however, revealed the presence of a small amount of a new 

radioactive compound (termed product X), with a retention time of 11.1 min in HPLC 

(Ring A: 16.7 min; 3DMA-4HBAL: 20.7 min; 3DMA-4HPP: 18.4 min). This product 

was absent if heat-denaturated CloR was used, or if 4HPP or DMAPP were omitted 

from the prenylation assay. This indicated that the new metabolite X was derived 

enzymatically from 3DMA-4HPP. 

In the biosynthesis of chloroeremomycin in Amycolatopsis orientalis, 4HPP is 

converted to 4-hydroxymandelic acid under catalysis of the non-heme iron 

dioxygenase HmaS (=ORF21) (Choroba et al., 2000; Hubbard et al., 2000). As 

described by Hubbard et al. (2000), HmaS and similar enzymes need to be activated 

by preincubation with an excess of Fe2+ immediately before incubation and Fe3+, 

generated by oxidation, has to be reduced to Fe2+ by ascorbic acid in order to 

maintain an active enzyme. Although CloR did not show sequence similarity to HmaS 

or other non-heme iron dependent enzymes, we decided to test CloR under similar 

conditions. After preincubation of CloR for 20 min with 1 mM FeSO4, ascorbic acid 

and enzymatically generated 3DMA-4HPP were added (see Materials and methods, 

p. 93). After incubation for 1 hour, the products of the reaction were analyzed by 

HPLC (Fig. 25, p. 60). Under these conditions, formation of the new product X was 

approximately 15-fold higher than in the absence of Fe2+ and ascorbate. Furthermore, 

an additional product was detected which showed the same retention time as an 

authentic Ring A standard. LC-ESI-CID analysis in comparison with an authentic 

reference compound confirmed that this latter product was indeed Ring A (m/z: 205, 

161, 150, 106).  
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When product X was isolated by HPLC and incubated with holo-CloR in presence of 

ascorbic acid, again the formation of Ring A was clearly demonstrated by LC-ESI-

CID analysis, proving that product X was an intermediate in the formation of Ring A. 

LC-ESI-CID analysis of product X revealed that this compound showed the 

calculated mass ([M-H]-= 235) of 3-dimethylallyl-4-hydroxymandelic acid (3DMA-

4HMA). Furthermore, it showed the characteristic fragmentation pattern of a 4-

hydroxymandelic acid derivative (m/z: 235 [M-1]-, 191 [M-44]-, 189 [M-46]-); the same 

pattern was observed from an authentic 4-hydroxymandelic acid (m/z: 167 [M-1]-, 123 

[M-44]-, 121 [M-46]-). 

Therefore, CloR catalyzes two consecutive reactions (Fig. 25, p. 60): first, the 

conversion of 3DMA-4HPP to 3DMA-4-hydroxymandelic acid (3DMA-4HMA), and 

second, the conversion of 3DMA-4HMA to 3DMA-4-hydroxybenzoic acid, i.e. Ring A.  

CloR was found to be specific for 3DMA-4HPP and 3DMA-4HMA as substrates. No 

product formation was observed with the non-prenylated substrates 4-

hydroxyphenylpyruvate or DL-4-hydroxymandelic acid, nor with D-mandelic acid, L-

mandelic acid, ß-hydroxytyrosine or 4-hydroxyphenyllactic acid. Additional 

experiments confirmed that the prenyltransferase CloQ specifically prenylated 4HPP 

and was not able to react with DL-4-hydroxymandelic acid or 4-hydroxybenzoic acid.   

Replacement of Fe2+ with other monovalent or divalent metal ions (1 mM Cu+, Zn2+, 

Mg2+or Mn2+) resulted in almost complete (95- 98%) loss of enzymatic activity of 

CloR, as described previously for non-heme iron oxygenases (Que and Ho, 1996). 

Many non-heme iron dependent oxygenases require, besides Fe2+, an a-ketoacid as 

cofactor, e.g. a-ketoglutaric acid (Choroba et al., 2000). However, the activity of CloR 

was not stimulated by addition of a-ketoglutarate. 

Purified CloR was a colorless protein. UV-VIS spectrometry showed an absorption 

maximum at 283 nm, but no absorption in the visual range. Therefore, CloR is not a 

heme protein, as are e.g. the cytochrome P450 monooxygenases 
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Fig. 25: HPLC analysis of the CloR reaction produc ts.  

Detection was carried out at 277 nm. The identity of each product was confirmed by 
LC-ESI-CID analysis, and the fragmentation pattern is indicated. 
 

3.6 Investigation of the reaction mechanism of CloR 

 

The requirement of CloR for Fe2+ and ascorbate suggested that it belongs to the non-

heme iron oxygenases (Prescott and Lloyd, 2000; Que and Ho, 1996; Serre et al., 

1999). To confirm whether indeed molecular oxygen was the substrate of the CloR 

reaction, and whether one or both oxygen atoms of O2 were incorporated into the 

product, we carried out isotope-labelling experiments with 18O2 (see Materials and 

methods, p. 93). Incorporation of the label was analyzed by LC-ESI-CID analysis. 

In the first experiment, CloR (after pre-incubation with Fe2+) was incubated with 

3DMA-4HPP and ascorbate in an 18O2 atmosphere. A control incubation was carried 

out in the usual 16O2 atmosphere. The reaction products 3DMA-4HMA and 3DMA-

4HB were separated by HPLC and analyzed by MS-MS. Fig. 26A (p. 62) shows the 

molecular ions obtained in usual and in 18O2 atmosphere. Unlabeled 3DMA-4HMA 

showed the molecular ion at [M-H]-=235. In contrast, most of the 3DMA-4HMA 

produced under 18O2 atmosphere showed the molecular ion at [M-H]-=239, 

demonstrating incorporation of two 18O atoms. The position of the label was revealed 

by MS-MS analysis: the decarboxylation product (m/z= 193) was 46 Da smaller than 
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the parent compound, indicating that one of the 18O atoms had been incorporated 

into the carboxyl group of 3DMA-4HMA. Both the direct decarboxylation product 

(m/z= 193) and the corresponding keto compound arising from oxidation (m/z= 191) 

were 2 Da larger than the corresponding ions of the unlabeled 3DMA-4HMA, 

indicating that the other 18O2 had been incorporated into the a-hydroxyl group. For the 

molecular ion of 3DMA-4HMA, an additional minor peak at [M-H]-=237 was detected 

(Fig. 26A, p. 62), resulting from the incorporation of a single 18O atom into the 

product. This shows a certain dilution of the label and has been reported previously 

for HmaS as well as for other non-heme iron oxygenases (Choroba et al., 2000). This 

dilution has been suggested to result from an exchange of a presumed FeIV=O 

intermediate with water (Choroba et al., 2000; Rohde et al., 2003). The product 

mixture also contained some unlabeled 3DMA-4HMA ([M-H]-=235), most likely due to 

the presence of residual 16O2 in the incubation vial. In addition to 3DMA-4HMA, the 

CloR reaction also produced 3DMA-4HB. Incorporation of two 18O atoms into this 

product was demonstrated by the molecular ion at [M-H]-=209, in comparison to [M-

H]-=205 for the unlabeled compound (Fig. 26A, p. 62). As expected both these 

labeled oxygens were located in the carboxyl group (Fig. 26A, p. 62). 

For a second labelling experiment, the intermediate 3DMA-4HMA was first produced 

in unlabeled form and isolated by HPLC. This compound was then incubated in an 
18O2 atmosphere with CloR (preincubated with Fe2+) and ascorbate. The resulting 

3DMA-4HB was analyzed by LC-ESI-CID (Fig. 26B, p. 62), and this clearly showed 

the incorporation of one 18O atom into the carboxyl group of the product, as 

demonstrated by the molecular ion at [M-H]-=207, and the decarboxylation product at 

m/z= 161 (Fig. 26B, p. 62). 

Fig. 26C (p. 62) summarizes the Results of the 18O2 incorporation experiments. Two 
18O atoms are incorporated in the first reaction step, and one 18O atom in the second 

reaction step. The other 18O atom involved in this second step is most likely 

converted to water (see Discussion, p. 73). 
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Fig. 26: 18O2 labelling experiment with the bifunctional oxygenase CloR. 
    (A) Molecular ions of 3DMA-4HMA and 3DMA-4HB resulting from 3DMA-4HPP under 

unenriched (left) and 18O2-enriched (right) atmospheres. Fragmentation patterns are 
indicated. (B) Molecular ions of 3DMA-4HB resulting from 3DMA-4HMA under unenriched 
(left) and 18O2-enriched (right) atmospheres. Fragmentation patterns are indicated. (C) 
Schematic summary of the incorporation of 18O2 into 3DMA-4HB (Ring A) during the CloR 
reaction. 
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4. Inactivation of the methyltransferase gene novO in S. spheroides by PCR 

targeting. 

 
Introduction 
 
The characteristic aminocoumarin moiety of the aminocoumarin antibiotics is 

substituted with a methyl group at position 8 in novobiocin and coumermycin A1 and 

with a chlorine atom in clorobiocin (Fig. 3, p. 31). This structural difference is perfectly 

reflected in the organization of the gene clusters: the novobiocin and coumermycin A1 

clusters contain a putative C-methyltransferase gene, i.e. novO and couO, 

respectively (Li et al., 2002), whereas the clorobiocin cluster contains the gene clo-

hal, encoding for a halogenase (Eustáquio et al., 2003a; van Pée, 2001), at the 

corresponding position (Fig. 3, p. 31). 

The aims of the present experiment were, first, to provide functional proof for the role 

of novO in novobiocin biosynthesis by gene inactivation, second, to generate a new 

derivative of novobiocin lacking the methyl group on the aminocoumarin ring, and 

third, to further establish the new inactivation method called PCR-targeting in S. 

spheroides.  

 
Inactivation of novO by PCR targeting 
 
Recently, a rapid method to disrupt chromosomal genes in Escherichia coli was 

adapted for use in Streptomyces coelicolor by Gust et al. (Gust et al., 2002; Gust et 

al., 2003) and for use in S. spheroides NCIMB 11891 by A. Eustáquio in our 

laboratory (Eustáquio et al., 2003b). This method was developed by Datsenko and 

Wanner (2000). A given chromosomal locus is disrupted by replacement of the 

endogenous gene with a selectable marker. The marker is generated by PCR, using 

primers with 36-50 nt extensions which are homologous to the targeted gene. 

Recombination of these short homologous sequences with chromosomal DNA is 

promoted by the λ RED functions (gam, bet, exo). I used this PCR targeting system 

to inactivate novO in S. spheroides  

Within cosmid 10-9C, which contained the biosynthetic gene cluster of novobiocin in 

the Supercos-1 vector (carrying a kanamycin resistance gene), novO was replaced 

by an apramycin resistance/oriT cassette (Fig. 27, p. 64) (see Materials and 

methods, p. 85). The modified cosmid (named 10-9C-novO) was introduced into S. 
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spheroides by conjugation. Apramycin-resistant, kanamycin-sensitive colonies, 

resulting from double crossover events, were selected. One colony was found named 

novO--1. The presence of a ~ 1.7 kb PCR fragment instead of a ~ 1 kb PCR fragment 

confirmed that novO was replaced by the apramycin resistance/oriT cassette (Fig. 

28, p. 65). 

 

These experiments proved again that the PCR targeting system could be used 

successfully in S. spheroides allowing gene inactivation experiments to be carried out 

much more simply and quickly than by previous methods (Steffensky et al., 2000b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 27: Schematic representation of the inacti vation of novO by PCR targeting. 

aac(3)IV: apramycin resistance gene, Paac: promoter of the apramycin 
resistance gene, FRT: FLP recognition target, oriT: origin of transfer from RK2, 
neo: kanamycin resistance gene.  
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Fig. 28: PCR analysis of novO defective mutant. 

 
Characterization of the secondary metabolites of novO defective mutant 
 

novO defective mutant (novO- -1) as well as the wild-type were cultured in novobiocin 

production medium (see Materials and methods, p. 79). The secondary metabolites 

were analyzed by HPLC in comparison with novobiocin standard (Fig. 29, p. 66) (see 

Materials and methods, p. 87). 

The production of novobiocin was abolished in novO defective mutant. This mutant 

produced, instead, a new substance with a shorter retention time than novobiocin. 

LC-ESI-CID analysis showed a fragmentation pattern with molecular ion [M-H]- at m/z 

597/ 554/ 409/ 366/ 192, consistent with the loss of a methyl group on the 

aminocoumarin ring in comparison to novobiocin ([M-H]- at m/z 611/ 568/ 423/ 380/ 

206). In the 1H-NMR spectrum of the new compound, the signal at 2.31 ppm 

corresponding to H-11 of the methyl group of novobiocin had disappeared. Instead, a 

signal at 7.04 ppm for two protons was observed as a broad singlet, which could be 

assigned to H-6 and H-8 (Eustáquio et al., 2003a). The coincidence of the signals of 

H-6 and H-8 as a broad singlet is in accordance with the spectrum reported from a 

naturally occurring novobiocin derivative lacking the 8-methyl group (Sasaki et al., 

2001). The new compound was named novclobiocin B106.  
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Fig. 29: HPLC analysis of culture extracts of the novO defective mutant. 

The identity of novobiocin ([M-H]-= 611) and novclobiocin B106 were confirmed by 
LC-ESI-CID and the mass spectroscopic fragments are indicated. 
 
 
Conclusion  

 

This experiment provides experimental evidence for the function of novO of the 

novobiocin gene cluster. Moreover, a new novobiocin analogue lacking the methyl 

group at C-8 of the aminocoumarin ring was produced by genetic manipulation. 

The PCR targeting system was confirmed to be a fast and effective method for gene 

inactivation in S. spheroides and improves our ability for genetic engineering of 

Streptomyces.  

It is not clear at present at which step of aminocoumarin biosynthesis the methylation 

takes place. Chen and Walsh (2001) provided some evidence that the methylation 

occurs after activation of tyrosine (Fig. 30, p. 69), and an inactivation experiment by 

Steffensky et al. (2000b) indicated that methylation takes place before glycosylation 

of novobiocic acid. In Fig. 30 (p. 69), we suggest that the aminocoumarin ring is the 

substrate of the methylation. 
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III. DISCUSSION 

1. Comparison of the three classical aminocoumarin biosynthetic gene 

clusters. 

 

The first objective of my thesis was to clone and sequence the clorobiocin 

biosynthetic gene cluster. A comparison of the three “classical” aminocoumarin 

biosynthetic gene clusters was expected to allow a better understanding of the role of 

the different genes in the biosynthesis of these antibiotics, which is one of the 

prerequisite for creating new hybrid antibiotics by combinatorial biosynthesis. 

The clorobiocin cluster spans approximately 35.5 kb and comprises 29 ORFs. The 

suggested functions of these ORFs in clorobiocin biosynthesis are depicted in Fig. 

30, p. 69. 

Upstream of the cloE gene, primary metabolic genes were found (Table 1, p. 32) 

suggesting that cloE represents the 5´ border of the cluster. The gene adjacent to 

cloE, i.e. ORF9, encodes a putative transposase, and it may be speculated that this 

gene is related to the introduction of the cluster into the S. roseochromogenes 

genome. Also at the 3´ end, downstream of the gyrBR and parYR resistance genes, 

primary metabolic genes were found, suggesting that parYR is the right border (Fig. 3, 

p. 31). It cannot be excluded, however, that additional biosynthetic enzymes for 

clorobiocin formation are encoded at different loci of the genome. 

The putative role of the genes found in the clorobiocin cluster were already discussed 

in the results part (p. 29). In this discussion part, I would like to discuss in detail the 

genes involved in the important common ring of the aminocoumarin antibiotics, Ring 

B.  

The clorobiocin cluster contains the genes cloHIJK, for which homologues exist in the 

novobiocin cluster (novHIJK) and the coumermycin cluster (couHIJK) and which 

therefore could be involved in Ring B biosynthesis. NovH has recently been shown to 

activate tyrosine by covalent binding to the 4-phosphopantetheinyl cofactor, and the 

P450 enzyme NovI catalyzes the ß-hydroxylation of the activated tyrosine (Chen and 

Walsh, 2001). A central, unresolved question in aminocoumarin biosynthesis is how 

activated ß-hydroxytyrosine is then converted to the coumarin ring, especially how 

the ring oxygen is introduced. cloJ and cloK, the genes immediately downstream of 

cloH and cloI, are homologous to novJK and couJK of the novobiocin and the 
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coumermycin clusters. The detection of cloJ and cloK in the clorobiocin cluster and 

the homologous simJ1 and simK in the biosynthetic gene cluster of the 

aminocoumarin antibiotic simocyclinone (Galm et al., 2002; Trefzer et al., 2002) now 

strongly supports the hypothesis that these genes are indeed involved in the 

aminocoumarin biosynthesis. cloJ shows homology to 3-oxo-acyl-[ACP] reductases 

and may likely be involved in the oxidation of a ß-hydroxytyrosyl to a ß-ketotyrosyl 

intermediate (Fig. 30, p. 69). Also, cloK shows homology to oxidoreductases, but this 

homology is not very high (average 35% on the amino acid level). Chen and Walsh 

(2001) speculated that NovJ and NovK might act together to oxidize the ß-hydroxyl 

function to a keto group. The unresolved step in the postulated Ring B biosynthesis, 

however, is the hydroxylation of the activated tyrosyl derivative in position 2 of the 

aromatic nucleus (Fig. 30, p. 69). Bunton et al. (1963) had reported that the ring 

oxygen of the aminocoumarin might be derived from the carboxyl group of tyrosine 

rather than from molecular oxygen. This was recently disproven by Holzenkämpfer 

and Zeeck (2002). It was shown that the ring oxygen of the aminocoumarin moiety of 

simocyclinone is in fact derived from molecular oxygen. Therefore, coumarin ring 

formation most likely proceeds via the 2-hydroxylation of a tyrosine derivative. It has 

been speculated that the predicted flavine dioxygenase NovC, encoded by a gene 

near the novobiocin cluster, may catalyze this reaction (Chen and Walsh, 2001). An 

important finding of our study is that no novC homologue was detected in or near the 

clorobiocin gene cluster. Likewise, no novC homologue was detected in the 

simocyclinone cluster (Galm et al., 2002; Trefzer et al., 2002). We therefore suggest 

that novC is not related to aminocoumarin biosynthesis. The enzyme responsible for 

the 2-hydroxylation of the ß-ketotyrosyl intermediate remains unknown at present. 

Whether cloK is involved in this or in another reaction of aminocoumarin biosynthesis 

has yet to be demonstrated. 

Halogenation of the aminocoumarin ring by Clo-hal may occur after ring formation, as 

depicted in Fig. 30 (p. 69) or at an earlier stage. 

The prenylated 4-hydroxybenzoate moiety (Ring A) of clorobiocin and novobiocin is 

formed from tyrosine (Kominek and Sebek, 1974) and an isoprenoid precursor. The 

reaction sequence and the genes involved are unknown. The second objective of my 

thesis was to elucidate the formation of Ring A by in vivo and in vitro experiments.  
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Fig. 30: A model for the biosynthesis of clorobiocin.  

The role of CloQ and CloR has been elucidated in the present thesis. 
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The cloning and sequencing of the clorobiocin gene cluster has completed the 

genetic information on the biosynthesis of three “classical” aminocoumarin antibiotics 

novobiocin, clorobiocin and coumermycin A1. Comparison of the three gene clusters 

revealed a striking correspondence between the structures of the antibiotics and the 

organization of the biosynthetic genes (Fig. 3, p. 31), unprecedented so far in any 

class of natural products outside the polyketide and the peptide antibiotics. For each 

structural moiety of the aminocoumarin antibiotics, the biosynthetic genes are 

grouped together, resulting in a “modular” structure of the clusters. The order of the 

modules, and the order of the genes within each module are perfectly identical for the 

three “classical” aminocoumarins, and nearly all the genes within the clusters are 

oriented in the same direction. The comparison of the three clusters greatly facilitates 

the prediction of functions for the different genes. The similarity between the three 

clusters also provides excellent opportunities for the production of hybrid 

aminocoumarins by genetic methods. 

 

2. Complete identification of Ring A biosynthesis of clorobiocin. 

 

The second objective of my thesis was to elucidate the formation of Ring A of 

clorobiocin and novobiocin. 

The biosynthesis of Ring A requires: a) the assembly of the isoprenoid precursor 

(probably dimethylallyl diphosphate) via the methylerythritol phosphate pathway (Li et 

al., 1998); b) the conversion of the phenylpropanoid compound tyrosine to a benzoic 

acid derivative; c) the prenylation of the aromatic nucleus in a prenyltransferase 

reaction. The conversion of the phenylpropanoid intermediate to a benzoic acid 

derivative may proceed by a mechanism analogous to the oxidation of fatty acids, as 

demonstated in S. maritimus (Hertweck and Moore, 2000). Alternatively, this 

conversion may occur by retro-aldol cleavage of a 3-hydroxylated phenylpropanoid 

compound as found in Pseudomonas fluorescens (Gasson et al., 1998) and 

Amycolatopsis sp. (Achterholt et al., 2000). Retro-aldol cleavage would result in a 

benzaldehyde derivate, which would subsequently be oxidized to the benzoic acid 

derivative. 

An additional model for the formation of Ring A was derived from studies on the 

biosynthesis of the aminocoumarin moiety (Ring B) of novobiocin. It was proposed 
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that ß-hydroxytyrosyl-NovH might be a common intermediate in the biosynthesis of 

Ring B and Ring A (Fig. 7, p. 40) (Chen and Walsh, 2001). However, creation of a S. 

roseochromogenes mutant blocked in the biosynthesis of Ring B (cloI- mutant) and 

accumulation of Ring A by this mutant demonstrated that Ring A and Ring B are 

formed by two distinct and independent pathways.  

Comparison of the clorobiocin biosynthetic gene cluster with the one of novobiocin 

and coumermycin revealed three genes which could be involved in the formation of 

Ring A. CloQ was identified as a soluble aromatic prenyltransferase, which 

prenylates 4-hydroxyphenylpyruvate in clorobiocin biosynthesis. CloQ was found to 

be dissimilar from most prenyltransferases described so far and may indicate the 

existence of a new class of prenyltransferases. CloR was identified as a bifunctional 

non-heme iron oxygenase, which catalyzes the conversion of 3-dimethylallyl-4-

hydroxyphenylpyruvate (3DMA-4HPP) to Ring A in two oxidative decarboxylation 

steps, via 3-dimethylallyl-4-hydroxymandelic acid (3DMA-4HMA) as intermediate. 

The formation of Ring A of clorobiocin or novobiocin represents a new pathway to 

benzoic acid. 

 

2.1 First step: prenylation of 4-hydroxyphenylpyruvate by CloQ. 

 

cloQ was identified as the structural gene for the prenyltransferase involved in the 

biosynthesis of the 3-dimethylallyl-4-hydroxybenzoate moiety of clorobiocin (Ring A) 

(Fig. 30, p. 69). 4-Hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate 

(DMAPP) were identified as the substrates of CloQ.  

Inactivation of cloQ led to abolishment of clorobiocin formation, which could be 

restored by addition of Ring A. This showed that the reaction catalyzed by CloQ is an 

essential step of the biosynthesis of Ring A of clorobiocin. 

 

Novobiocin, just as clorobiocin, contains a 3-dimethylallyl-4-hydroxybenzoate moiety, 

and the novobiocin biosynthetic gene cluster contains the gene novQ. The predicted 

gene product NovQ (323 amino acids) shows 84 % identity on the amino acid level to 

CloQ (324 amino acids) (Pojer et al., 2002; Steffensky et al., 2000b). Therefore, 

NovQ is likely to catalyze the prenyltransferase reaction in novobiocin biosynthesis.  

Surprisingly, database searches did not reveal any similarities between NovQ or 

CloQ and known prenyltransferases. The only match found for CloQ in a BLAST 
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search was a hypothetical protein of S. coelicolor (e= 4×10-08). At present, very few 

sequences are available for “aromatic” prenyltransferases, i. e. enzymes catalyzing 

the formation of a carbon-carbon bond between a prenyl group and an aromatic 

nucleus. Among the few aromatic prenyltransferases, which have been cloned are 

those involved in the biosynthesis of ubiquinones (Meganathan, 2001), 

menaquinones (Suvarna et al., 1998), tocopherols (Schledz et al., 2001), 

plastoquinones (Collakova and DellaPenna, 2001), and the prenyltransferase 

involved in formation of the plant secondary metabolite shikonin (Yazaki et al., 2002). 

All these enzymes are integral membrane proteins, and their active centers include 

the prenyl diphosphate binding site (N/D)DxxD similar to that of the trans-

prenyltransferases (Koyama et al., 1996; Liang et al., 2002). In contrast, CloQ and 

NovQ do not show this motif and represent soluble enzymes, without membrane-

spanning domains. 

 

The only other soluble aromatic prenyltransferase cloned so far is 

dimethylallyltryptophan synthase (DMAT), which is involved in ergot alkaloid 

biosynthesis in the fungus Claviceps (Cress et al., 1981; Gebler and Poulter, 1992; 

Lee et al., 1976; Tsai et al., 1995; Tudzynski et al., 1999). DMAT was found to be 

active in a metal-free buffer containing EDTA, in contrast to all previously known 

prenyltransferases (Cress et al., 1981; Gebler and Poulter, 1992). It has been 

suggested that the reaction catalyzed by DMAT may not proceed via a carbonium ion 

(Cress et al., 1981), unlike the reaction of farnesyl diphosphate synthase (Poulter 

and Rilling, 1976). In common with DMAT, CloQ was also active in the presence of 

EDTA, i. e. the reaction did not show an absolute requirement for divalent cations. 

Moreover, the Km values, the specific activity and the turnover number determined for 

CloQ are similar to those reported for DMAT (Cress et al., 1981; Gebler and Poulter, 

1992; Lee et al., 1976). However, the bacterial enzyme CloQ (35 kDa) shows only 

low sequence similarity (19% identity, 33% similarity) to the 50 KDa protein cpd1, 

suggested as the structural gene for the fungal enzyme DMAT (Fig. 31, p. 73) 

(Tudzynski et al., 1999). Nevertheless, CloQ, NovQ and DMAT may belong to a 

novel class of prenyltransferases that exist as soluble enzymes, do not contain the 

prenyl diphosphate binding motif (N/D)DxxD, and are able to form carbon-carbon 

bonds between isoprenoid and aromatic substrates. 
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                   10         20         30         40         50 
CloQ    1 MPAL--PIDQ EFDCERFRAD IRATAAAI-- --GAPIAHRL TDTVLEAFRD 
Cpd1    1 MSTAKDPGNG VYEILSLIFD FPSNEQRLWW HSTAPMFAAM LDNAGYNIHD 
          *     *             *               **       *       * 
                   60         70         80         90        100 
CloQ   51 NFAQGATLWK TT-------S QPGDQLSYRF FSR------L KMDTVSRAID 
Cpd1   51 QYRHLGIFKK HIIPFLGVYP TKDKERWLSI LTRCGLPLEL SLNCTDSVVR 
                   *                         *      *     
                  110        120        130        140        150 
CloQ  101 AGLLDAAHPT LAVVDAWSSL YGGAPVQS-G DFDAGRGMAK TWL-YFGG-- 
Cpd1  101 YTYEPINEVT GTEKDPFNTL AIMASVQKLA QIQAGIDLE- -WFSYFKDEL 
                   *     *    *    * **       **       *  ** 
                  160        170        180        190        200 
CloQ  151 -LRPAEDI-L TVPALPASVQ ARLKDFLALG LAHVRFAAVD WRHHSANVYF 
Cpd1  151 TLDESESATL QSNELVKEQ- IKTQNKLALD LKESQFALKV YFYPHLKSIA 
           *   *   *     *            ***  *    **      
                  210        220        230        240        250 
CloQ  201 RGKGPLDTVQ FARIHALSGS TPPAAHVVEE VLAYMP---- --------ED 
Cpd1  201 TGKSTHDLI- FDSVFKLSQK HDSIQPAXQV LCDYVSRRN- ---HSAESDQ 
           **   *    *     **                 * 
                  260        270        280        290        300 
CloQ  251 YCVAITL--- ----DLHSGD IERVCFYALK ---------- ---------- 
Cpd1  251 HI---ALHAR LLSCDLIDPA KSRVXIYLLE KTVSLSVMED LWTLGGQRVD 
                *        **       **  * *                   
                  310        320        330        340        350 
CloQ  301 ---------- ---------- ---------- -----VPKNA LPRIP----- 
Cpd1  301 ASTMDGLDML RELWSLLKVP TGHLEYPKGY LELGEIPNEQ LPSMANYTLH 
                                                 *    ** 
                  360        370        380        390        400  
CloQ  351 -----TRIAR FLEVAPSHDV EECNVIGWSF GRSGDYVKAE R-------SY 
Cpd1  351 HNNPMPEPQV YFTVFGMNDA EISNALTIFF QRHGFDDMAK KYRVFLQDSY 
                        *    *  *  *     *  * *    *          ** 
                  410        420        430        440        450 
CloQ  401 TGNMAEILAG WNCF----FH GEEGR----D HDLRALH--- -QHTESTMGG 
Cpd1  401 PYHDFESLNY LHAYISFSYW PVGESTELYQ HGLRKLNNFL VADSPISFDA 
               * *                         * ** * 
                   
CloQ  451 AR 
Cpd1  451 YR 
           * 

Fig. 31: Multiple alignment of the amino acid sequences of CloQ with Cpd1.  

Cpd1 is a dimethylallyl-tryptophan-synthase of Claviceps purpurea (accession 
number: CAC37397). Identical amino acids are marked by asterisk and bold print. 
 

2.2 Second and last step: formation of Ring A from prenylated 4-

hydroxyphenylpyruvate by CloR. 

 

CloR was identified as a bifunctional oxygenase which converts 3-dimethylallyl-4-

hydroxyphenylpyruvate (3DMA-4HPP) in two consecutive reaction steps to 3-

dimethylallyl-4-hydroxybenzoate (3DMA-4HB), i.e. to the Ring A moiety of 

clorobiocin. An 18O2 labelling experiment unequivocally confirmed that molecular 

oxygen is used as substrate by CloR. The purified CloR protein did not contain a 

heme prosthetic group, and its activation by Fe2+ and ascorbate indicated that it 

belongs to the non-heme iron oxygenase. 

 



Discussion 
 

 74 

The first reaction catalyzed by CloR, the conversion of 3DMA-4HPP to 3-

dimethylallyl-4-hydroxymandelic acid (3DMA-4HMA), has a well-established 

precedent in the HmaS reaction in chloroeremomycin biosynthesis. HmaS belongs to 

the iron(II) and α-ketoacid dependent dioxygenases (reviewed in Prescott and Lloyd, 

2000; Que, 2000; Que and Ho, 1996). These enzymes utilize O2 and an α-ketoacid 

as cosubstrates. During the reaction, the α-ketoacid looses CO2 and the keto 

function is oxidized to a carboxyl group by introduction of one of the oxygen atoms of 

O2. The other oxygen may be used for a hydroxylation reaction, exemplified by the 

prolyl 3-hydroxylase reaction. However, iron(II) and α-ketoacid dependent 

oxygenases have been shown to catalyze not only hydroxylations but a wide range of 

diverse oxidative transformations, including epoxidations, desaturations, ring 

formation and ring expansion reactions. Some of these enzymes are bifunctional 

(e.g. deacetoxy-/deacetylcephalosporin synthase) or even trifunctional (e. g. 

clavaminic acid synthase or thymine hydroxylase), catalyzing several consecutive 

oxidative transformations within a single biosynthetic pathway.  

In the conversion of 4-hydroxyphenylpyruvate (4HPP) to homogentisate by 4HPP 

dioxygenase, 4HPP serves both as α-ketoacid and as hydroxylation substrate. CloR 

(in its first reaction step) and HmaS carry out a very similar reaction as 4HPP 

dioxygenase, but hydroxylate the benzylic position of the substrate instead of the 

phenyl ring. However, while HmaS shows obvious sequence similarity to 4HPP 

dioxygenase, CloR does not.  

 

The second reaction step catalyzed by CloR is the conversion of 3DMA-4HMA to 

3DMA-4HB. It is tempting to speculate that this reaction may involve a hydroxylation 

of the α-position of 3DMA-4HMA, resulting in a α,α-gem-diol which eliminates water 

to give the corresponding α-ketoacid, i.e. 4-hydroxybenzoylformate. Oxydative 

decarboxylation of this compound would result in the final product 3DMA-4HB. 

Thereby the overall reaction mechanism would be similar to that of the first reaction 

and resemble that of other iron(II) and α-ketoacid dependent dioxygenases.  

However, LC-ESI-CID analysis did not confirm the presence of 4-

hydroxybenzoylformate in the incubation mixture, and the exact mechanism of the 

CloR reaction remains speculative at present. It is believed that the reactions 

catalyzed by iron(II) and α-ketoacid dependent oxygenases involve a reactive FeIV=O 
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species (Prescott and Lloyd, 2000; Que and Ho, 1996; Rohde et al., 2003). Whether 

this turns out to be true for CloR remains to be shown.  

The different groups of iron(II) and α-ketoacid dependent oxygenases possess little 

overall sequence similarity to each other (Prescott and Lloyd, 2000; Que, Jr., 2000), 

and it is therefore not surprising that CloR does not show sequence similarity to 

known members of this family. However, a database search reveals that CloR does 

show significant similarity to several proteins of unknown function, deduced from 

genome sequences of different microorganisms. These may represent a family of 

enzymes with similar function as CloR.  

The common structural motif of iron(II) and α-ketoacid dependent enzymes is the so-

called 2-His-1-carboxylate facial triad (Hegg and Que, 1997; Que, 2000). It consists 

of two histidyl groups and one glutaryl or asparagyl residue, which together anchor 

the iron atom in the active site of the enzyme. Comparison of the primary sequence 

of CloR with that of NovR as well as with the sequences of six of the database 

entries of unknown function with high sequence similarity to CloR identifies His161, 

His176, His178, His241 and Asp170 of CloR as strictly conserved residues. These 

amino acids may be candidates for a potential 2-His-1-carboxylate facial triad of this 

oxygenase.  

The involvement of CloR in the biosynthesis of the prenylated 4-hydroxybenzoate 

moiety of clorobiocin was proven in vivo by a gene inactivation experiment. In vitro 

experiments allow to formulate a detailed hypothesis for the formation of this moiety 

of clorobiocin, as shown in Fig. 32 (p. 76). CloQ is a prenyltransferase which converts 

4HPP to 3DMA-4HPP. CloR converts the CloQ reaction product to Ring A. CloF 

shows sequences similarity to prephenate dehydrogenases and is therefore likely to 

produce 4HPP as the substrate for CloQ, similar to ORF1 of the chloroeremomycin 

biosynthetic gene cluster (van Wageningen et al., 1998). Notably, the coumermycin 

cluster does not contain a CloF homologue (Fig. 3, p. 31). 

Radioactive feeding experiments with the novobiocin producer (Calvert et al., 1972) 

showed that [U-14C]L-tyrosine was incorporated preferentially into Ring B whereas 

[U-14C]4HPP was incorporated preferentially in Ring A. This may suggest that a 

primary metabolic prephenate dehydrogenase provides tyrosine for the formation of 

Ring B, whereas CloF supplies 4HPP for Ring A biosynthesis, and that crosstalk 

exists between both pathways probably via a transaminase reaction (Fig. 32, p. 76).  
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Chen and Walsh (2001) have previously speculated that Ring A and Ring B of 

novobiocin may both be produced via ß-hydroxytyrosyl-S-NovH as a common 

precursor (Fig. 7, p. 40). These studies on CloQ and CloR, however, establish that 

these two aromatic moieties of clorobiocin (and very likely those of novobiocin as 

well) are produced by two independent pathways (Fig. 32). The discovery of CloR 

adds a new interesting member to the diverse family of the non-heme iron 

oxygenases, and demonstrates the existence of a new pathway to benzoic acids. 

 

 

 

 

 

 

Fig. 32: Biosynthetic pathways for the aminocoumarin moiety (Ring B) and the 
prenylated 4-hydroxybenzoate moiety (Ring A) of clorobiocin. 
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IV. MATERIALS AND METHODS 

 

1. Chemicals and Radiochemicals. 

 

[1-14C]Dimethylallyl diphosphate (DMAPP) and L-[U-14C]tyrosine were obtained from 

Moravek Biochemicals (Brea, CA, USA). 4-Hydroxyphenylpyruvate (4HPP), D- and L-

mandelic acid, DL p-hydroxymandelic acid, p-hydroxyphenyllactic acid was 

purchased from Sigma. ß-Hydroxy-L-tyrosine and unlabeled DMAPP were kindly 

provided by Dr. K.-H. van Pée (Dresden, Germany) and Dr. K. Yazaki (Kyoto, Japan), 

respectively. 3-Dimethylallyl-4-hydroxybenzaldehyde (3DMA-4HBAL) was 

synthesized as described by Gluesenkamp and Buechi (1986). Ring A of clorobiocin 

and novobiocin (3-dimethylallyl-4-hydroxybenzoic acid) was prepared as described 

by Kominek and Meyer (1975). Ring B of novobiocin (3-amino-4,7-dihydroxy-8-

methyl coumarin) was kindly provided by Pharmacia & Upjohn Inc.  

Oxygen-18O2 (99%) in a pyrex breaseal flask loaded to atmospheric pressure was 

purchased by Campro scientific (Berlin, Germany). 

2. Plasmids and bacterial strains. 

 

Plasmids and bacterial strains are listed in Appendix A and B, respectively, p. 95 to 

98. 

3. Culture conditions. 

3.1 Culture of E. coli. 

 

For cloning experiments, Escherichia coli (E. coli) strains were grown in liquid or solid 

Luria-Bertani medium at 37°C (Sambrook and Russell, 2001). 
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main culture pre- 
culture 

3.2 Culture of S. roseochromogenes. 

 

S. roseochromogenes var. oscitans DS 12.976 was routinely cultivated at 28°C for 2 

days in HA medium containing 1.0% malt extract, 0.4% yeast extract, 0.4% glucose, 

and 1.0 mM CaCl2 (pH 7.3).  

For production of clorobiocin and other secondary metabolites, wild-type and mutant 

strains of S. roseochromogenes were pre-cultured in 50 ml corn-starch medium (1% 

corn starch, 1% peptone, 0.5% meat extract, pH 7.0) for 2 days at 33°C and 210 rpm. 

5 ml of this pre-culture were inoculated into 50 ml of production medium adapted 

from Mancy et al. (1974), prepared from 4.8% distillers solubles, 3.7% glucose, 

0.0024% cobalt chloride (at this point, the pH of the mixture was adjusted to 7.8), 

0.6% calcium carbonate and 0.2% ammonium sulphate. Cultivation was carried out in 

500 ml baffled flasks for 4 to 6 days at 33°C and 210 rpm (Fig. 33). Clorobiocin and 

secondary metabolites were extracted and analyzed as described in Materials and 

methods, p. 86. 
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Fig. 33: Kinetic of clorobiocin production of S. roseochromogenes.  

Preculture was carried out in corn starch medium for 2 days; main culture in distillers 
solubles medium for 9 days. Culture extracts were extracted and analyzed as 
described in p. 87. 
 

Clorobiocin is also produced by S. hygroscopicus DS 9.751 and S. albocinerescens 

DS 21.647 (Mancy et al., 1974). The concentration of clorobiocin obtained was too 

low to continue to work with these two strains. 
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3.3 Culture of S. spheroides 

 

S. spheroides NCIMB 11891 was routinely cultivated at 28°C for 2 days in HA 

medium containing 1.0% malt extract, 0.4% yeast extract, 0.4% glucose, and 1.0 mM 

CaCl2 (pH 7.3).  

For production of novobiocin and other secondary metabolites, wild-type and mutant 

strains of S. spheroides were pre-cultured in 50 ml CDM medium (Kominek, 1972) at 

28°C and 180 rpm for 4 days. One ml of this pre-culture was inoculated into 50 ml of 

CDM medium and grown for 7 days (Steffensky et al., 2000). 

4. Endogenous antibiotic resistances of S. roseochromogenes. 

 

Endogenous resistance of S. roseochromogenes to different antibiotics was tested. 

Apramycin and thiostrepton were used. 80 µl of glycerol culture of S. 

roseochromogenes were grown in 50 ml YMG medium for 2 days. 100 µl were plated 

for the tests (Table 2).  

 

Apramycin → S. roseochromogenes is sensitive to apramycin. 

Conc. (µg/ml) 50 70 100* 150 

Nbr. of colonies 10 0 0 0 

 

Thiostrepton→ S. roseochromogenes is sensitive to thiostrepton. 

Conc. (µg/ml) 20 30 50* 100 

Nbr. of colonies 0 0 0 0 

* concentration normally used for selection. 

 

Table 2: Endogenous antibiotic resistances of S. roseochromogenes. 

 
For inactivation and transformation of S. roseochromogenes, the selection could be 

made with thiostrepton or Apramycin.  
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5. Genetic procedures. 

 

Standard methods for DNA isolation and manipulation were performed as described 

in Sambrook and Russell (2001) and Kieser et al. (2000).  

Isolation of cosmids and plasmids was carried out with ion-exchange columns 

(Nucleobond AX kit; Macherey-Nagel, Düren; Germany). DNA fragments were 

isolated from agarose gels using a NucleoSpin 2 in 1 extraction kit (Macherey-Nagel, 

Düren; Germany). 

Genomic DNA was isolated from S. roseochromogenes strains using the Kirby mix 

procedure (Kieser et al., 2000). Genomic DNA was isolated from the others 

Streptomyces strains by lysozyme treatment and phenol-chloroform extraction 

(Kieser et al., 2000). 

Southern blot analysis was performed on Hybond-N membranes (Amersham) with 

digoxigenin-labeled probes by using the DIG high prime DNA labeling and detection 

kit II (Roche Applied Science). 

 

6. Construction and screening of the cosmid library in S. 

roseochomogenes. 

 

The S. roseochromogenes cosmid library was constructed by Sau3A digestion of 

chromosomal S. roseochromogenes DNA and ligation into the BamHI sites of 

Supercos-1. 

 

Packaging: 

The packaging was performed using Gigapack III XL Packaging Extract 

(Stratagene). This kit packages preferentially large inserts (i.e., 47- to 51-Kb 

recombinants). E. coli XL1-Blue MRF’ was used as host strain. Some modifications 

were made to the protocol. Different OD600 of the cells were tried (OD=0,5; OD=1 and 

OD=2) with different concentrations of cosmid packaging reaction (concentration:2 X; 

1X and 1/10). After transfection, the cells were plated on LB with carbenicillin (50 

µg/ml) plates and incubated overnight at 37°C. 
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Screening of the cosmid Library: 

 

After packaging recombinant cosmids and transfection into E. coli.. 850 carbenicillin 

resistant clones were obtained. Clones were pooled in order to facilitate the 

screening procedure. In the first round, pools of 48 clones were screened, followed 

by a screening of subpools of 8 clones and eventually the testing of single colonies.  

Southern blot analysis was performed on Hybond-N membranes (Amersham, 

Braunschweig; Germany) with digoxigenin-labeled probes using the DIG high prime 

DNA labeling and detection kit II (Roche Molecular Biochemicals, Mannheim; 

Germany). Two probes, one containing a part of the dTDP-glucose 4,6-dehydratase 

gene novT and the other containing a part of gyrBR of novobiocin biosynthetic gene 

cluster were used for hybridization (Fig. 34, p. 82) (see Appendix A, p. 95). 

After this first screening, three cosmids were obtained. Cosmids VIA4-e and VIIIA7-c 

hybridized as well with novT probe as with gyrBR probe. Cosmid VA6-d hybridized 

only with gyrBR probe. Cosmid VIIIA7-c has been subcloned by digestion with BamHI 

and ligation of the fragments into pBluescript SK(-). The obtained plasmids pofl1A, 

pofl1B, pofl2, pofl3, polfl4, pofl5, pofl6, pofl6A, pofl6B, pofl6C, pofl7 and pofl8 are 

listed in Appendix A, p. 95 and depicted in Fig. 34, p. 82. Upon subcloning and partial 

sequencing, it was found that cosmid VIIIA7-c does not span the complete 

clorobiocin biosynthetic gene cluster (Fig. 34, p. 82). 

Therefore, a second screening was made in order to find another cosmid that spans 

the complete cluster. 1300 clones were screened with an heterologous probe 

containing a part of the amide synthetase novL gene of novobiocin biosynthetic gene 

cluster (novL probe) and a homologous probe containing a part of the glycosyl 

transferase of clorobiocin biosynthetic gene cluster (cloM probe) (see Appendix A, p. 

96). Three independent cosmids (K1F2, D1A8 and F1A4) were found to hybridize 

with novL, cloM and gyrBR probes (Fig. 34, p. 82). After restriction analysis, cosmid 

K1F2 was chosen to be entirely sequenced (Fig. 34, p. 82).  
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Fig. 34: Approximate alignment of cosmids VIIIA7-c, K1F2, F1A4 and D1A8.  

Cosmids were digested with BamHI (B). Cosmid K1F2 was completely sequenced 
and the BamHI (B) restriction sites are indicated. Cosmid VIIIA7-c was subcloned 
and the plasmids obtained are depicted. Both ends of cosmid D1A8 were sequenced 
by A. Eustáquio from our group and showed that this cosmid ends at the beginning of 
the parYR gene, which is situated immediately downstream of the gyrBR gene. 
Cosmids VIA4-e and VA6-d were not mapped. Note that this is an approximate map 
based on restriction analysis. No end sequencing was done for VA6-d, VIA4-e, 
VIIIA7-c and F1A4. 
 

7. DNA sequencing and computer-assisted sequence analysis. 

 

Double-stranded sequencing of the entire cosmid K1F2 (carrying an insert of 42, 291 

bp) was performed by the dideoxynucleotide chain termination method on a LI-COR 

automatic sequencer (MWG-Biotech AG, Ebersberg; Germany) using a shotgun 

library with DNA fragments of approximately 1.5 to 2.0-kb in length. 

The DNASIS software package (version 2.1; Hitachi Software EngineeRing, San 

Bruno; Calif.) was used for sequence analysis. Amino acid sequence homology 

searches were carried out in the GenBank database by using the BLAST program 

(release 2.0). 
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8. Construction of deletion mutants by In-frame deletion in S. 

roseochromogenes. 

8.1 Inactivation of cloR. 

 

For inactivation of cloR in S. roseochromogenes, the fragment cloR-1 (1282 bp) and 

the fragment cloR-2 (1301 bp) were amplified by PCR. The primer pairs were: cloR-

1/HindIII, 5´-GTCACCGGAAGCTTTGCCTG-3´; cloR-1/PstI, 5´-

GCATGTTCTGCAGAGCCTTG-3´; cloR-2/PstI, 5´-GCCTGCACTGCAGGCCCCAA-

3´; cloR-2/BamHI, 5´-TCGTAGGATCCTCCCGTCGTC-3´. Restriction sites 

introduced into the sequence are underlined in the primer sequences. The amplified 

DNA fragment cloR-1 was digested with HindIII and PstI and cloned into the 

corresponding sites of vector pBSKT, a pBluescript SK(+) derivative containing 

carbenicillin and thiostrepton resistances, resulting in pFP01. The PCR fragment 

cloR-2 was digested with PstI and BamHI and ligated into the same sites of pFP01 to 

give pFP02. 

Transformation of S. roseochromogenes with pFP02 was carried out by polyethylene 

glycol-mediated protoplast transformation (Kieser et al., 2000). For preparation of 

protoplasts, mycelia of S. roseochromogenes were grown in CRM medium, 

containing 10.3% sucrose, 2.0% tryptic soy broth, 1.0% MgCl2.6H2O, 1.0% yeast 

extract, and 0.75% glycine (pH 7.0), for 48 h, harvested, and incubated in 5 ml P-

buffer per gram mycelia, containing 1 mg of lysozyme per ml, for 30 to 60 min at 

30°C. For transformation, pFP02 was mixed with 200 µl P-buffer containing 109 S. 

roseochromogenes protoplasts and 500 µl T-buffer containing 50 % (wt/vol) 

polyethylene glycol 1000 (Roth, Karlsruhe; Germany). The resulting suspension was 

plated on R2YE agar medium (Kieser et al., 2000). After incubation for 20 h at 30°C, 

the plates were overlaid with 3 ml of soft R2YE agar containing a total of 500 µg 

thiostrepton for selection of recombinant mutants. 

After transforming S. roseochromogenes protoplasts with plasmid pFP02, 

thiostrepton-resistant colonies were obtained. The single cross-over mutant RSCO2 

was grown in the absence of thiostrepton, sporulated, and examined for loss of 

resistance as consequence of double cross-over events. Two mutants, named 

RDCO30 and RDCO32, were further examined by Southern blot analysis (see 

Results, p. 54). 
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8.2 Inactivation of cloQ. 

 

For in-frame deletion of cloQ in S. roseochromogenes, two fragments cloQ-1 (727 

bp) and cloQ-2 (1259 bp) were amplified. Primer pairs used were: cloQ-1/HindIII, 5´-

GTGCGCGAAGCTTGGCCCCG-3´, and cloQ-1/PstI, 5´-

GAAGGCCTGCAGGACGGT-3´; cloQ-2/PstI, 5´-CACGACCTGCAGGCACTTCA-3´, 

and cloQ-2/BamHI, 5 -́ACCGGGGGATCCCCTGCAA-3´. Introduced restriction sites 

are underlined. The fragments were cloned into the corresponding sites of pBSKT 

(Lombo et al., 1997), containing a thiostrepton resistance gene, resulting in pFP04. 

Transformation of S. roseochromogenes with pFP04 and selection for mutants 

resulting from single (QSCO8) and double cross-over recombination events were 

carried out as described above. One mutant, named cloQ- mutant (QDCO661), was 

further examined by Southern blot analysis (see Results, p. 40).  

8.3 Inactivation of cloI. 

 

For the in-frame deletion of cloI in S. roseochromogenes, two fragments, denoted 

cloI-1(1249 bp) and cloI-2 (1013 bp), were amplified. Primer pairs used were: cloI-

1/HindIII, 5’-CGGCCAAGCTTGCCACGATG-3’, and cloI-1/PstI, 5’-

GTACTCGGCCTGCAGAATCGG-3’; cloI-2/PstI, 5’-GCATCCTGCAGGGGATGAGC-

3’, and cloI-2/XbaI, 5’-GCCGGACTTCTAGATCCGTC-3’. As for pFP04, the two 

fragments cloI-1 and cloI-2 were cloned into pBSKT, resulting in pEW02. After 

transformation, a single cross-over mutant (ISCO4), and a double cross-over mutant 

(cloI- mutant: IDCO169) were obtained as described above and analyzed by 

Southern blot (see Results, p. 45). 

9. Feeding of deletion mutants with Ring A, Ring B and 3DMA-4HBAL. 

 

The defective mutants were grown in 50 ml “corn starch” pre-culture medium 

supplemented with 1 mg of Ring A. After 48 h, 5 ml of this pre-culture were 

inoculated into 50 ml “ distillers solubles” production medium, again supplemented 

with 1 mg of Ring A. Another 1 mg of Ring A was added after two days. After 7 days 

of cultivation, secondary metabolites were analyzed (see Results, p. 54).  

The feeding of cloI and cloQ defective mutants with Ring B of novobiocin was done in 

the same way. 
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The feeding of the cloQ defective mutant with 3DMA-4HBAL was done in the same 

way. 

10. Construction of novO mutant by PCR-targeting in S. spheroides. 

 

novO was inactivated using the PCR targeting system (Gust et al, 2002, Gust et al., 

2003), which takes advantage of the λ RED recombination functions (gam, bet, exo) 

to promote gene replacement. An aac(3)IV (=apramycin resistance gene)/oriT  

cassette for replacement of novO was generated by PCR using the primer pair 

NovO/P1 (5´- 

AGATCAGCTCACTGACCCAACACGAGGGGCATCGAGATGATTCCGGGGATCCG

TCGACC-3´) and NovO/P2 (5´- 

CGGGTCCAGGCGCTCTGTTCGGGACAATTCCGCCGCTCATGTAGGCTGGAGCT

GCTTC-3´). Underlined letters represent 39 nt homologous extensions to the DNA 

regions immediately upstream and downstream of novO, respectively, including the 

putative start and stop codons of novO. This cassette was introduced into E. coli 

BW25113/pIJ790, containing cosmid 10-9C (Supercos-1-based, kanamycin-resistant) 

which included the entire biosynthetic gene cluster of novobiocin. The gene 

replacement was confirmed by restriction analysis and PCR using test primers 

NovO/T1 (5´- CTGTGTCCGTGTAGGCTCAATTCA-3´) and NovO/T2 (5´- 

AGCACTTTCGATCATGAGGTCCAGA-3´). 

The mutated cosmid (termed 10-9C-novO) was introduced into Streptomyces 

spheroides by conjugation from E. coli ET12567 carrying the non-transmissible 

pUZ8002. The conjugation procedure was made as described in “REDIRECT© 

technology” handbook (Gust et al., 2002). 500 µl of the heat-shocked S. Spheroides 

spores was gently mixed with 500 µl of the E. coli suspension. The mixture was 

spread on two MS plates, and incubated at 30 ºC for about 18 h, then overlaid with 1 

ml water containing 1.25 mg apramycin and 0.5 mg nalidixic acid. Incubation at 30 °C 

was continued for about a week to allow outgrowth of the exconjugants. Apramycin-

resistant, kanamycin-sensitive colonies were identified by replica plating and 

characterized by PCR using the test primers mentioned above (see Results, p. 63). 
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11. Extraction and HPLC analysis of secondary metabolites. 

 

11.1 Analysis of S. roseochromogenes culture. 

 

Extraction:  

Bacterial culture (20 ml) was acidified to pH 4 with HCl and extracted twice with an 

equal volume of ethyl acetate. After centrifugation, the solvent was evaporated and 

the dried extract was resuspended in 1ml methanol.  

 

HPLC analysis: 

Metabolites were analyzed by HPLC with a Multosphere RP18-5 column (250x4 mm, 

5 µm) at a flow rate of 1 ml/min.  

For the analysis of the clorobiocin and novclobiocin C102 production, the solvents 

used were solvent A (50% methanol, 49% H2O, 1% formic acid) and solvent B (99% 

methanol, 1% HCOOH). The profile for separation was a linear gradient from 60%A/ 

40%B to 100%B in 27 min, 100%B for 5 min, and then a equilibration time with 

60%A/ 40%B for 6 min. Detection was at 340 nm. Authentic clorobiocin (Aventis) was 

used as standard.  

For the analysis of the accumulation of Ring A by cloI mutant, the solvents used were 

solvent A (99% H2O, 1% HCOOH) and solvent B (79% methanol, 20% H2O, 1% 

HCOOH). The profile for separation was a linear gradient 40%A/ 60%B to 100%B in 

13 min, 100%B for 6 min, and then equilibration with 40%A/ 60%B for 6 min. 

Detection was at 254 nm. Ring A was used as standard.  

For preparative isolation, the fractions from HPLC analysis were collected and the 

solvent was evaporated.  

 

MS and 1H-NMR analysis: 

Clorobiocin was analyzed by mass spectrometry (MS) and 1H-nuclear magnetic 

resonance (1H-NMR). Negative fast atom bombardement (FAB) mass spectra were 

recorded on a TSQ70 spectrometer (Finnigan, Bremen, Germany) using methanol as 

solvent. 
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Peak A and B (Fig. 23, p. 56) gave identical isotopic peaks, characteristic for 

substances with one chlorine atom, at m/z 697 and 695 [M-H]- corresponding to 

clorobiocin standard.  

The 1H-NMR spectrum was measured on an AMX 400 spectrometer (Bruker, 

Karlsruhe; Germany), and peak A (Fig. 23, p. 56) gave signals corresponding to 

those of clorobiocin standard: ∗ppm (CD3OD, 400 MHz): 7.90 (d, 9.2 Hz, H-5), 7.76 (d, 

2.5 Hz, H-2´), 7.72 (dd, 8.4 Hz, 2.5 Hz, H-6´), 7.33 (d, 9.2 Hz, H-6), 6.90 (d, 3.6 Hz, 

H-3´´´), 6.84 (d, 8.4 Hz, H-5´), 5.94 (d, 3.6 Hz, H-4´´´), 5.73 (d, 1.8 Hz, H-1´´), 5.71 

(dd, 10.3 Hz, 2.9 Hz, H-3´´), 5.35 (br.t, 7.1 Hz, H-8´), 4.34 (t, 2.7 Hz, H-2´´), 3.72 (d, 

10.3 Hz, H-4´´), 3.52 (s, 3H-8´´), 3.34 (d, 7.1 Hz, 2H-7´), 2.29 (s, 3H-6´´´), 1.75 (s, 

3H-11´), 1.74 (s, 3H-10´), 1.35 (s, 3H-7´´), 1.18 (s, 3H-6´´). 

 

LC-ESI-CID analysis: 

The extracts were also analyzed by liquid chromatography (LC) coupled to an 

electrospray ionization (ESI) mass spectrometer TSQ Quantum (ThermoFinnigan, 

San Jose, California) (250x4 mm, 5 µm) (electrospray voltage, 3 kV; heated capillary 

temperature, 300°C; sheath and auxiliary gas, nitrogen) in negative mode under 

addition of 10% ammonia (15 µl/min) with a Multosphere RP18-5 column. The 

solvents used were solvent A (99.9% H2O, 0.1% HCOOH) and solvent B (99.9% 

acetonitrile, 0.1% HCOOH). The profile for separation was a linear gradient 70%A/ 

30%B to 100%B in 14 min, 100%B for 15 min, and then equilibration time with 70%A/ 

30%B for 11 min. The flow rate was 500 µl/min. The collision-induced dissociation 

(CID) spectra of clorobiocin standard, Ring A and culture extracts during HPLC run 

were recorded with a collision energy of + 20 eV; the collision gas was argon, and the 

collision pressure of 1.0 x 10-3 torr (133 x 10-3 Pa).  

The negative-ion-ESI-CID mass spectrum of clorobiocin was as follows: (m/z)= 695 

([M-H]-), 588, 507, 226.  

The negative-ion-ESI-CID mass spectrum of Ring A was as follows: (m/z)= 205 ([M-

H]-), 161, 106 (see Results, p. 45). 

11.2 Analysis of S. spheroides culture. 

 

Extraction: 

Cells were centrifugated and the clear supernatant was analyzed by HPLC.  
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For preparative isolation, 150 ml bacterial culture was prepared as described above. 

After centrifugation, the clear medium was acidified with HCl to pH 2 and extracted 

twice with 150 ml ethyl acetate. The organic phase was dried with sodium sulfate, 

and after the solvent was removed, the residue was dissolved in 1 ml ethanol and 

purified by HPLC. 

 

HPLC analysis: 

Metabolites were analyzed by HPLC with a Multosphere RP18-5 column (250 x 4 

mm; 5 µm) at a flow rate of 1 ml/min. 

For the analysis of novobiocin, a linear gradient from 60 to 100% methanol in 1% 

aqueous formic acid and detection at 305 nm were used. Authentic novobiocin 

(Fluka, Buchs, Germany) was used as standard. 

For the analysis of ß-hydroxytyrosine, a linear gradient from 20 to 100% methanol in 

1% aqueous formic acid and detection at 270 nm were used. ß-Hydroxy-L-tyrosine 

Standard was kindly provided by Dr. K.-H. van Pée (Dresden, Germany). 

 

LC-ESI-CID analysis: 

The extracts were also analyzed by liquid chromatography (LC) using a Multosphere 

RP18-5 column (250x4 mm, 5 µm) at a flow rate of 500 µl/min, coupled to an 

electrospray ionization (ESI) mass spectrometer TSQ Quantum (ThermoFinnigan, 

San Jose, California) in negative ion mode under the addition of 10% ammonia (15 

µl/min). A linear gradient of acetonitrile (30-100%) in 0.1% aqueous formic acid was 

used (details see above, p. 87).  

The negative-ion-ESI-CID (collision-induced dissociation) mass spectrum of 

novobiocin was as follows: (m/z)= 611/ 568/ 423/ 380/ 206 and for novclobiocin B106 

as follows 597/ 554/ 409/ 366/ 192. 

 

12. Protein analysis 

 

Protein concentrations were determined by the Bradford method (1976) using bovine 

serum albumin as standard. SDS-polyacrylamide gel electrophoresis was carried out 

according to the method of Laemmli (1970), and protein bands were stained with 

Coomassie Brilliant Blue R-250. 
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The molecular weight of native CloQ and CloR was determined by gel filtration on a 

HiLoad 26/60 Superdex 200 column that has been equilibrated with 50 mM Tris-HCl 

buffer (pH 8.0), containing 150 mM NaCl. The column was calibrated with dextran 

blue 2000 (2,000 kDa), aldolase (158 kDa), albumin (67 kDa), ovalbumin (43 kDa) 

and ribonuclease A (13.7 kDa) (Amersham Pharmacia Biotech). 

 

13. Overexpression and purification. 

13.1 Holo-NovH and NovI. 

 

The NovH construct pHC10 and the NovI construct pHC21 were described in Chen 

and Walsh (2001) and the phosphopantetheinyl transferase gene (sfp) cloned into 

pSU20 was described in Bartolome et al. (1991). 

Holo-NovH was obtained by co-transformation of pHC10 and sfp/pSU20 into E. coli 

BL21(DE3). Cells were grown in LB medium supplemented with 50 µg/ml kanamycin 

and 50 µg/ml chloramphenicol at 25oC to an OD600 of 0.4-0.6. After cooling to 15°C 

they were further cultured at this temperature to an OD600 of 0.6-0.7 before induction 

with 50 µM isopropyl ß-D-thiogalactoside (IPTG). The cell were then allowed to grow 

for an additional 15 hours at 15°C. Holo-NovH was subsequently purified as 

described in Chen and Walsh (2001). Expression of pHC21 in E. coli BL21(DE3) and 

purification of NovI was carried out as described in Chen and Walsh (2001). 

 

13.2 CloQ 

 

For construction of the plasmid cloQ-pGEX4T1, cloQ was amplified using the primers 

cloQ-Nterm-BamHI (5’-GGAGGAAGTCGGATCCGCTCTCCCGATAGATC-3’) and 

cloQ-Cterm-XhoI (5’-AAGCCTCTCGAGTCGGGCACCTCCCATGGTC-3’). 

Introduced restriction sites are underlined. The product was digested with BamHI and 

XhoI and ligated into pGEX-4T-1 (Amersham) to give cloQ-pGEX4T1. E. coli BL21 

(DE3) cells were grown in 100 ml LB medium supplemented with 50 µg/ml 

carbenicillin at 28°C until an OD600 of 0.6 was reached. IPTG was added to a final 

concentration of 1 mM. After 5 hours, the cells were harvested by centrifugation and 

broken using a French Press (SLM Instruments, Urbana, USA). Cell debris was 
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removed by centrifugation (30 min; 20,000 g). Purification of CloQ as a glutathione-S-

transferase (GST) fusion protein and subsequent cleavage of the GST tag by 

thrombin treatment were carried out according to the manufacturer’s instructions 

(Amersham) using Glutathione Sepharose 4B and the batch method. 

 

13.3 CloR 

 

For construction of the plasmid cloR-pGEX4T1, cloR was amplified using the primers 

cloR-Nterm-BamHI (5’-AGGTGCCCGGGATCCAAGGCTTTGGCGAAC-3’) and cloR-

Cterm-XhoI (5’-TCGGCACTCGAGCCTTGCCAGGGCGGGCGTTTG-3’). Introduced 

restriction sites are underlined. The product was digested with BamHI and XhoI, gel 

purified and ligated into the same site of pGEX-4T-1 (Amersham) to give cloR-

pGEX4T1. For over-expression of CloR, the GST (glutathione-S-transferase) tagged 

plasmid was transformed into E. coli strain BL21 (DE3). 

E. coli BL21 (DE3)/ cloR-pGEX4T1 cells were grown in 100 ml LB medium containing 

50 µg/ml carbenicillin at 15°C until an OD600 of 0.6 was reached (~ 20 hours). IPTG 

was added to a final concentration of 250 µM. After 24 hours at 15°C, the cells were 

harvested by centrifugation (10 min; 5,000 g) and resuspended in binding buffer PBS 

(140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.3) containing 1 

mg/ml lysozyme (76,344 U/mg, Fluka). Resuspended cells were broken by 

sonification (Branson sonifier, 10 min sonification with 40% on). Cell debris was 

removed by centrifugation (30 min; 20,000 g). Purification of CloR as a GST fusion 

protein and subsequent cleavage of the GST tag by thrombin treatment were carried 

out according to the manufacturer’s instructions (Amersham) using Glutathione 

Sepharose 4B and the batch method.  

 

14. Assays incubation and HPLC analysis. 

14.1 Incubation of Holo-NovH, NovI, and CloQ with L-[U-14C]Tyrosine. 

 

Holo-NovH was loaded with L-[U-14C]Tyrosine at 24°C for 1.5 h in a reaction mixture 

(110 µl) that contained 75 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 2.5 µM L-[U-
14C]tyrosine (500 Ci/mol), 3 mM ATP, 2 mM TCEP (Tris(2-carboxyethyl)phosphine) 
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and 30 µg NovH. Subsequently, NADPH and spinach ferredoxin (Sigma) were added 

to a final concentration of 1.5 mM and 5 µM, and 0.1 U ferredoxin reductase (Sigma) 

and 25 µg NovI were added. Incubation was continued for 2 h at 24°C. Then 5 µg 

CloQ and 1mM DMAPP were added and incubation was continued for 1 h at 30°C 

prior to quenching with 500 µl of 10% trichloroacetic acid. The precipitated proteins 

were pelleted by centrifugation, washed twice with 500 µl distilled water, and 

redissolved in 100 µl of 0.1 N KOH. The tethered product was released from the 

carrier protein by incubating for 5 min at 60°C. The proteins were removed by 

acidifying the mixture with 5 µl of 50% trifluoroacetic acid followed by centrifugation.  

Product formation was analyzed by HPLC with a Multosphere RP18-5 column (250x4 

mm, 5 µm) coupled to a radiodetector (Berthold, Bad Wildbad, Germany), at a flow 

rate of 1ml/min. The elution profile started with 100% solvent A (99% H2O, 1% 

HCOOH) for 3 min, followed by a linear gradient from 0 to 100% solvent B (99% 

acetonitrile, 1% HCOOH) of 27 min. A control incubation was carried out in parallel 

under the same conditions except that CloQ was denaturated (30 min at 100°C). 

14.2 Assays for 4HPP dimethylallyltransferase activity. 

 

Non-radioactive 4HPP dimethylallyltransferase activity assay: 

The reaction mixture (100 µl) contained 75 mM Tris-HCl (pH 7.5), 2.5 mM MgCl2, 

0.25 mM 4HPP, 0.5 mM DMAPP and purified CloQ. After incubation for 60 min at 

30°C, the reaction was stopped with 2 µl formic acid. Products were analyzed by 

HPLC at 285 nm as described above.  

The same conditions were used for incubation with L-tyrosine, ß-hydroxytyrosine, 

prephenic acid, 4-hydroxybenzoic acid, 4-hydroxybenzaldehyde and p-

hydroxymandelic acid. 

For quantitative determinations, a maximum of 3 µg of purified enzyme and an 

incubation time of 15 min were used to ensure linearity of the product formation. 

Radioactive 4HPP dimethylallyltransferase activity assay: 

For radioactive assays, 19 µM [1-14C] DMAPP (3.4 GBq/ µmol) was used instead of 

unlabeled DMAPP. Otherwise, the incubation was carried out and terminated as 

described above, with an incubation time of 60 min. The reaction mixture was 

extracted twice with 500 µl of ethyl acetate. After evaporation, the residue was 
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dissolved in 100 µl ethanol. For the conversion of 3DMA-4HPP to 3DMA-4HBAL, 50 

µl of the ethanolic solution was mixed with 50 µl 1 M NaOH and incubated at room 

temperature for 15 min. The reaction was stopped with 10 µl formic acid. The 

products were analyzed by HPLC as described above, using a radioactivity detector. 

 

Large scale incubation for LC-ESI-CID analysis: 

For LC-ESI-CID analysis, the incubation mixture (500 µl) contained 75 mM Tris-HCl 

(pH 7.5), 2.5 mM MgCl2, 0.1 mM 4HPP, 0.1 mM DMAPP, and 12.5 µg CloQ and was 

incubated at 30°C for 1h. The reaction was stopped with 5 µl formic acid, and the 

mixture was extracted twice with 500 µl of ethyl acetate. After evaporation, the 

residue was dissolved in 60 µl ethanol. A control incubation was carried out with 

denaturated CloQ.  

Product formation was analyzed by liquid chromatography (LC) coupled to an 

electrospray ionization (ESI) mass spectrometer TSQ Quantum (ThermoFinnigan, 

San Jose, California) (electrospray voltage, 3 kV; heated capillary temperature, 

300°C; sheath and auxiliary gas, nitrogen) in negative mode with a Multosphere 

RP18-5 column (250x4 mm, 5 µm). The elution profile started with 100% solvent A 

(99.5% H2O, 0.5% HCOOH) for 3 min, followed by a linear gradient from 0 to 100% 

solvent B (99.5% acetonitrile, 0.5% HCOOH) of 27 min. The flow rate was 500 

µl/min. The collision-induced dissociation (CID) spectra of 4-hydroxyphenylpyruvate 

standard and enzymatic product during HPLC run were recorded with a collision 

energy of + 20 eV; the collision gas was argon, and the collision pressure of 1x 10-3 

torr (133 x 10-3 Pa). The negative-ion-ESI-CID mass spectrum of 4-

hydroxyphenylpyruvate was as follows: m/z= 179 ([M-H]-), 135, 107. The negative-

ion-ESI-CID mass spectrum of 3-dimethylallyl-4-hydroxyphenylpyruvate was as 

follows: m/z= 247 ([M-H]-), 203, 175 (see Results, p. 48). 

14.3 Incubation of holo-CloR with CloQ reaction products 

 

3DMA-4HPP, the substrate for CloR reaction, was obtained by incubating CloQ with 

4HPP and DMAPP as described above. A reaction mixture (50 µl) containing 75 mM 

Tris-HCl (pH 7.5), 0.25 mM 4HPP, 0.5 mM DMAPP, 2.5 mM MgCl2, and purified 

CloQ, was incubated at 30°C for 1 hour. This reaction produces about 7.5 nmol of 

3DMA-4HPP. 
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Holo-CloR was reconstituted by preincubation of apo-CloR (~ 4 µg) with 1 mM FeSO4 

for 20 min at room temperature. Reaction conditions for the incubation of holo -CloR 

with 3DMA-4HPP were as described for HmaS (Choroba et al., 2000; Hubbard et al., 

2000) with minor modifications. The reaction (150 µl) contained 50 µl of the CloQ 

reaction mixture (final concentration of 3DMA-4HPP approximately 50 µM), 0.2 M 

Tris-HCl (pH 7.5), 80 mM potassium phosphate (pH 7.5), 25 mM ascorbic acid and 4 

µg holo-CloR. After incubation for 1 hour at 30°C, the reaction was stopped with 5 µl 

of formic acid. Product formation was analyzed by high performance liquid 

chromatography (HPLC) at 277 nm (absorption maximum for 4-hydroxymandelic 

acid) with a Multosphere RP18-5 column (250x4 mm, 5 µm) at a flow rate of 1 

ml/min. A linear gradient of acetonitrile (25-75%) in 1% aqueous formic acid was 

used. A control incubation was carried out with denaturated holo-CloR. 

For incubation of holo-CloR with other substrates, 0.5 mM of the respective substrate 

(4-hydroxyphenylpyruvate, ß-hydroxytyrosine, 4-hydroxymandelic acid, D-mandelate, 

L-mandelate or 4-hydroxyphenyllactic acid) were used instead of 3DMA-4HPP, and 

analysis was carried out by HPLC at 254 nm with a linear gradient of acetonitrile (0-

100%) in 1% aqueous formic acid at a flow rate of 1 ml/min. Control incubations were 

carried out with denaturated holo-CloR. 

CloQ was also incubated with 4-hydroxymandelic acid or 4-hydroxybenzoic acid and 

DMAPP as described above. 

14.4 Incubation of 3-dimethylallyl-4-hydroxymandelic acid with CloR 

 

The incubation mixture (1 ml) contained 500 µl of CloQ reaction product (~ 75 nmol 

of 3DMA-4HPP), 0.2 M Tris-HCl (pH 7.5), 80 mM potassium phosphate (pH 7.5), 25 

mM ascorbic acid and ~ 40 µg holo -CloR and was incubated for 1 hour at 30°C. The 

reaction was stopped with 50 µl of formic acid and extracted twice with 1 ml ethyl 

acetate. After evaporation the residue was dissolved in 150 µl of ethanol. 3DMA-

4HMA was isolated by HPLC as described above and its identity was confirmed by 

mass spectrometry.  

14.5 CloR assays in the presence of 18O2 

 

Two flasks, one containing enzymatically produced 3DMA-4HPP (see above) and 

one containing holo-CloR reaction mixture (see above) were degassed by application 
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of a vacuum and flushed with argon for three times. The anaerobic holo -CloR 

solution was transferred to the substrate vial containing 3DMA-4HPP. The argon was 

removed by application of a vacuum and finally 18O2 was allowed to enter into the 

flask. After incubation for 1 hour at 30°C, the reaction was stopped with formic acid 

and analyzed by liquid chromatography (LC) coupled to an electrospray ionization 

(ESI) mass spectrometer TSQ Quantum (ThermoFinnigan, San Jose, California) in 

negative ion mode. A linear gradient of acetonitrile (25-75%) in 0.1% aqueous formic 

acid was used. In a parallel 18O2 labelling experiment, 3DMA-4HMA (isolated as 

described above) was used as substrate instead of 3DMA-4HPP. 

15. Analysis of metal content of CloQ 

 
Zinc was determined using a UNICAM atom absorption spectrometer. Magnesium 

was determined spectrophotometrically using the Roche/ Hitachi 902 clinical 

chemistry analyser. Both the zinc and the magnesium content was less than 0.1 mol 

per mol CloQ 
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APPENDIX A – Plasmids and probes. 

 

 

Name Description/ Publication 

Plasmids:  

Supercos-1 Cosmid vector/ Pojer et al. (2002) 

pBluescript SK(-) Cloning vector/ Stratagene 

pBSKT pBluescript SK(+) derivative (Lombo et al., 1997) 

pFP01 1282 bp HindIII-PstI PCR fragment, cloned into pBSKT/ Pojer et al. (2002) 

pFP02 1301 bp PstI-BamHI PCR fragment, cloned into pFP01/ Pojer et al. (2002) 

pFP04 727 bp HindIII-PstI and 1259 bp PstI-BamHI PCR fragments,cloned into pBSKT/ Pojer et al. (2003a) 

pEW02 1249 bp HindIII-PstI and 1013 bp PstI-XbaI PCR fragments,cloned into pBSKT/ Pojer et al. (2003a) 

pHC10 novH gene from novobiocin cluster, cloned into pET24b (C-terminal Hisx6 tag)/ Chen and Walsh (2001)  and Pojer et 

al. (2003a) 

pHC21 novI from novobiocin cluster, cloned into pET16b (N-terminal Hisx6 tag)/ /Chen and Walsh (2001) and Pojer et al. 

(2003a) 

sfp/pSU20 PPTase gene cloned into pSU20 (no tag)/ Bartolome et al. (1991) and Pojer et al. (2003a) 

pGEX-4T-1 Glutathione-S-transferase fusion vector/ Pojer et al. (2003a and b) 

cloQ-pGEX4T1 974 bp BamHI-XhoI PCR fragment, cloned into pGEX-4T-1/ Pojer et al. (2003a) 

cloR-pGEX4T1 833 bp BamHI-XhoI PCR fragment, cloned into pGEX-4T-1/ Pojer et al. (2003b) 

pofl1A 0.9 Kb BamHI fragment from cosmid VIIIA7-c, cloned into pBluescript SK (-). 

pofl1B 0.9 Kb BamHI fragment from cosmid VIIIA7-c, cloned into pBluescript SK (-) 

pofl2 1.3 Kb BamHI fragment from cosmid VIIIA7-c, cloned into pBluescript SK (-) 
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Pofl3 2.5 Kb BamHI fragment from cosmid VIIIA7-c, cloned into pBluescript SK (-) 

Pofl4 5.1 Kb BamHI fragment from cosmid VIIIA7-c, cloned into pBluescript SK (-) 

Pofl5 5.5 Kb BamHI fragment from cosmid VIIIA7-c, cloned into pBluescript SK (-) 

Pofl6 7 Kb BamHI fragment from cosmid VIIIA7-c, cloned into pBluescript SK (-) 

Pofl6A 1.5 kb BamH1-SalI fragment from pofl6, cloned into the same sites of pBluescript SK (-) 

Pofl6B 2.5 kb SalI fragment from pofl6, cloned into pBluescript SK (-) 

Pofl6C 2.8 kb BamH1-SalI fragment from pofl6, cloned into the same sites of pBluescript SK (-) 

Pofl7 10 Kb BamHI fragment from cosmid VIIIA7-c, cloned into pBluescript SK (-) 

Pofl8 14 Kb BamHI fragment from cosmid VIIIA7-c, cloned into pBluescript SK (-) 

cosmid 10-9C cosmid vector containing the novobiocin biosynthetic gene cluster/ Steffensky et al. (2000) 

10-9C-novO novO replaced by an apramycin resistance/oriT cassette in cosmid 10-9C 

pIJ773 disruption cassette : aac(3)IV (ApraR) + OriT 

Probes. 

novL 1.58 kb sphI-BamHI fragment from PMS81(from Marion Steffensky) 

cloM 900 bp BamHI fragment from poflA1 

gyrBR 900 bp BglII from pGES11 (from Elisabeth Schmutz) 

novT Steffensky et al. (2000) and Wang et al. (2000) 

cloR 1122 bpSacII fragment from pofl4 

cloQ 1469 bp pvuII fragment from pofl4 

cloI 1987 bp NcoI fragment from K1F2 
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APPENDIX B – Bacterial strains. 

strains genotype plasmid Description/ Origin 
S. roseochromogenes var. oscitans 
DS 12.976 

Wild-type  Aventis 

S. albocinerescens DS 21.647 Wild-type  Aventis 
S. hygroscopicus DS 9.751 Wild-type  Aventis 
S. spheroides NCIMB 11891 Wild-type  E. Cundliffe (Leicester, U.K.) 
E.coli XL1 blue MRF´   Stratagene 
E.coli XL1 blue MRF´ + supercos-1  supercos-1 cosmid vector in E.coli XL1 blue MRF´ 
E.coli ET 12567   DNA methylase-negative strain/ (MacNeil et al., 1992) 
S. roseochromogenes RSCO2 mutant  Single cross over event of cloR- inactivation/ Pojer et al. (2002) 
S. roseochromogenes RDCO30 mutant  cloR- in-frame deletion in S. roseochromogenes/ Pojer et al. (2002) 
S. roseochromogenes RDCO32 Reversion to 

wild-type 
 Reversion to S. roseochromogenes wild type/ Pojer et al. (2002) 

S. roseochromogenes QSCO8 mutant  Single cross over event of cloQ- inactivation/ Pojer et al. (2003a) 
S. roseochromogenes QDCO661 mutant  cloQ- in-frame deletion in S. roseochromogenes/ Pojer et al. (2003a) 
S. roseochromogenes ISCO4 mutant  Single cross over event of cloI- inactivation/ Pojer et al. (2003a) 
S. roseochromogenes IDCO169 mutant  cloI- in-frame deletion in S. roseochromogenes/ Pojer et al. (2003a) 
E.coli BL21 (DE3)   Pojer et al. (2003a) 
E.coli BL21 (DE3) + pHC10  pHC10 Pojer et al. (2003a) 
E.coli BL21 (DE3) + pHC10 + 
sfp/pSU20 

 pHC10 + 
sfp/pSU20 

Pojer et al. (2003a) 

E.coli BL21 (DE3) + pHC21  pHC21 Pojer et al. (2003a) 
E.coli BL21 (DE3) + sfp/pSU20  sfp/pSU20 Pojer et al. (2003a) 
E.coli XL1 blue MRF´ + pGEX-4T-1  pGEX-4T-1 Pojer et al. (2003a) 
E.coli BL21 (DE3) + cloQ-pGEX4T1  cloQ-

pGEX4T1 
Pojer et al. (2003a) 

E.coli BL21 (DE3) + cloR-pGEX4T1  cloR-
pGEX4T1 

Pojer et al. (2003b) 

S. spheroides novO- -1 mutant  novO-  number 1 in S. spheroides created by PCR targeting 
E. coli BW25113 + pIJ790  pIJ790 Gust et al. (2002) and Gust et al. (2003) 
E. coli ET12567 + pUZ8002  pUZ8002 Gust et al. (2002) and Gust et al. (2003) 
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