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Zusammenfassung in deutscher

Sprache

In dieser Arbeit untersuchen wir Cauchyprobleme höherer Ordnung der Form

(ACPn) 



u(n)(t) +
n−1∑
i=0

Aiu
(i)(t) = 0, t ≥ 0,

u(k)(0) = uk, 0 ≤ k ≤ n− 1,

wobei A0, A1, · · · , An−1 lineare Operatoren auf einem Banachraum X sind . Dazu

führen wir in Kapitel 1 Operatoren, sogenannte Existenzfamilien, ein, die einen

weiteren Banachraum Y in X abbilden. Damit erhalten wir eine grosse Flexi-

bilität und können Existenz und stetige Abhängigkeit der Lösungen von (ACPn)

und seiner inhomogenen Version beweisen. Analog werden Eindeutigkeitsfamilien

definiert zur Charakterisierung der Eindeutigkeit der Lösungen. Die Verbindung

dieser beiden Konzepte gestattet die Verallgemeinerung aller bisher bekannten Re-

sultate zur Lösung von (ACPn).

In Kapitel 2 werden dann multiplikative und additive Störungsresultate vom

Desch-Schappacher-Typ für (ACPn) bewiesen und angewandt.

Im zweiten Teil der Arbeit untersuchen wir dynamische Randbedingungen für

Cauchyprobleme erster und zweiter Ordnung. Dynamische Randbedingungen kom-

men in verschiedenen konkreten Problemen vor, zum Beispiel in Modellen von dy-

namischen Vibrationen von linearen viscoelastischen Stäben mit Spitze-Masse (tip

masses) auf ihren bewegenden Enden. Die mathematische Untersuchung von Evo-

lutionsgleichungen mit dynamische Randbedingungen geht auf 1961 zurück, als J.

L. Lions solche Gleichungen behandelte und schwache Lösungen mit Hilfe von Vari-

ationsmethoden gab.

Kapitel 3 presentiert eine Lösung für ein Problem, das A. Favini, G. R. Gold-

stein, J. A. Goldstein and S. Romanelli [34] gestellt haben bezüglich des gemischten

Problems für Wellengleichungen mit verallgemeinerten Wentzell Randbedingungen.

Im vierten Kapitel wird der zugehörige nichtautonome Fall betrachtet. Hier er-

halten wir nicht nur Existenz- und Eindeutigkeitsresultate sondern auch präzise

Aussagen zur Regularität der Lösungen.

Schliesslich enthalten Kapitel 5 und 6 eine einheitliche Behandlung gemischter
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Probleme (Anfangs-Randwert Probleme) mit dynamischen Randbedingungen für

parabolische und hyperbolische oder allgemeine Gleichungen zweiter Ordnung. Wir

beschäftigen uns direkt mit Problemen zweiter Ordnung, ohne sie auf erste Ordnung

zu reduzieren. Es stellt sich heraus, daß diese direkte Methoden starke Lösungen

von erwünschter Regularität liefern und sogar allgemeine Theoreme ermöglichen.

Eine Reihe von ganz neuen Resultaten werden bewiesen. Die Ergebnisse werden

dann auf konkrete partielle Differentialgleichungen angewandt.
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Introduction

Higher order evolution equations

A very interesting and important area of modern mathematical study are evo-

lution equations. The reason for this stems from the fact that many problems in

partial differential equations arising from mechanics, physics, engineering, control

theory, etc., can be translated into the form of initial value or initial boundary value

problems for evolution equations in appropriate infinite dimensional spaces.

A considerable effort has been devoted since the well-known Hille-Yosida theorem

came out in 1948 for the investigation of the Cauchy problem for first order evolution

equations {
u′(t) = Au(t), t ≥ 0,

u(0) = u0,
(ACP1)

(A being a linear operator in an infinite dimensional space) and related equations.

The general theory and basic results for first order abstract Cauchy problems and

operator semigroups are available in the monographs of Arendt, Batty, Hieber and

Neubrander [5], Davies [15], deLaubenfels [19], Engel and Nagel [26], Fattorini [30,

31], Goldstein [38], Hille [41], Hille and Phillips [42], Lions and Magenes [60], Pazy

[67], Reed and Simon [71], Xiao and Liang [84] and others.

On the other hand, since the pioneer work of Lions [57] in 1957, the Cauchy

problem for higher order (n ≥ 2) evolution equations





u(n)(t) +
n−1∑
i=0

Aiu
(i)(t) = 0, t ≥ 0,

u(k)(0) = uk, 0 ≤ k ≤ n− 1,

(ACPn)

where A0, A1, · · · , An−1 are linear operators in an infinite dimensional space, has

been extensively explored (see, e.g., Engel and Nagel [26], Fattorini [31], Goldstein

[38], Krein [51], Xiao and Liang [84]). However, this theory is far from being perfect,

as compared with that of first order abstract Cauchy problems. Many interesting

problems connected closely to (ACPn) still remain open.

In Chapter 1, we introduce a new operator family of bounded linear operators

from another Banach space Y to X, called an existence family for (ACPn), to study

the existence and continuous dependence on initial data of the solutions of (ACPn)
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and its inhomogeneous version (IACPn), and obtain some basic results in a quite

general setting. A sufficient and necessary condition ensuring (ACPn) to possess an

exponentially bounded existence family, in terms of Laplace transforms, is presented.

As a partner of the existence family, we define, for (ACPn), a uniqueness family of

bounded linear operators on X to guarantee the uniqueness of the solutions. These

two operator families are generalizations of strongly continuous semigroups and sine

operator functions, C-regularized semigroups and sine operator functions, existence

and uniqueness families for (ACP1), and C-propagation families for (ACPn). They

have a special function in treating those illposed (ACPn) and (IACPn) whose coef-

ficient operators lack commutativity.

Chapter 2 is intended to establish Desch-Schappacher type multiplicative and

additive perturbation theorems for existence families for (ACPn) (with A1 = · · · =
An−1 = 0). As a consequence, perturbation results for regularized semigroups and

regularized cosine operator functions are obtained generalizing the previous ones.

An example is also given to illustrate possible applications.

Dynamic boundary value problems

Dynamic boundary conditions occur in diverse practical problems, for instance,

in those modelling the dynamic vibrations of linear viscoelastic rods and beams

with tip masses attached at their free ends (see, e.g., [6]). The study of evolution

equations with dynamic boundary conditions from the mathematical point of view

dates back to 1961, when J. L. Lions [59, p. 117, 118] treated such equations and gave

weak solutions by means of the variational method. Since then, this issue has been

investigated to a large extent (see, e.g., [8, 9, 25, 27, 32–35, 37, 43, 50, 53, 59, 74] and

references therein). I would like to mention that A. Favini, G. R. Goldstein, J. A.

Goldstein and S. Romanelli have recently done a systematic study and established

a series of very interesting and significant theorems for parabolic problems of first

order in time with (generalized) Wentzell boundary conditions (see, e.g., [32–35] and

references therein). Most recently, K. -J. Engel, R. Nagel et al made also very nice

contributions to this field (see, e.g., [9, 25, 50]). While most of the previous research

concerns the case of first order in time, there have been few results regarding the

second order (in time) case, for which there seems to be a lack of general theory

of wellposedness. In this dissertation, following an investigation of wave equations

and heat equations in the space C[0, 1] of continuous functions, we consider second
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order dynamic boundary value problems of both parabolic and hyperbolic type in

the setting of general Banach spaces, and deal with them in a direct way without

reduction to first order systems. One will see that the direct approach will yield

strong solutions with desirable regularity, as well as build up theorems of a general

nature.

Chapter 3 presents a solution to an open problem put forward by A. Favini, G.

R. Goldstein, J. A. Goldstein and S. Romanelli [34], concerning the mixed problem

for wave equations with generalized Wentzell boundary conditions.

The subsequent chapter concerns the nonautonomous heat equation with gener-

alized Wentzell boundary conditions. It is shown, under appropriate assumptions,

that there exists a unique evolution family for this problem and that the family sat-

isfies various regularity properties. This enables us to obtain, for the corresponding

inhomogeneous problem, classical and strict solutions having optimal regularity.

In Chapter 5, we exhibit a unified treatment of the mixed initial boundary value

problem for second order (in time) parabolic linear differential equations in Banach

spaces whose boundary conditions are of a dynamical nature. Results regarding

existence, uniqueness, continuous dependence (on initial data) and regularity of

classical and strict solutions are established. Moreover, two examples are given as

samples for possible applications.

In the final Chapter 6, we continue to deal with the mixed initial boundary value

problem for complete second order (in time) linear differential equations in Banach

spaces, in which time-derivatives occur in the boundary conditions. General well-

posedness theorems are obtained (for the first time) which are used to solve the

corresponding inhomogeneous problems. Examples of applications to initial bound-

ary value problems for partial differential equations are also presented.

Acknowledgements

I am very grateful to Rainer Nagel for his constant help and encouragement in

these years and the suggestion to prepare this dissertation. My deep thanks also

go to W. Arendt, C. J. K. Batty, E. B. Davies, K. J. Engel, H. O. Fattorini, A.

Favini, G. R. Goldstein, J. A. Goldstein, G. Huisken, H. Ruder, U. Schlotterbeck,

E. Sinestrari and J. van Casteren for kind support, help and encouragement. I

am very thankful to my husband, Jin Liang, for helpful discussions and pleasant

cooperation, and also to my parents and my daughter for putting up with me and

3



the project. Finally, I wish to thank all my teachers and friends both in China and

in Germany.

4



Chapter 1

Existence and uniqueness families
for higher order abstract Cauchy
problems

1.1 Summary

Of concern are the higher order abstract Cauchy problem (ACPn) in a Banach space

X and its inhomogeneous version (IACPn). We introduce a new operator family of

bounded linear operators from another Banach space Y to X, called an existence

family for (ACPn), to study the existence and continuous dependence on initial data

of the solutions of (ACPn) and (IACPn), and obtain some basic results in a quite

general setting. A sufficient and necessary condition ensuring (ACPn) to possess an

exponentially bounded existence family, in terms of Laplace transforms, is presented.

As a partner of the existence family, we define, for (ACPn), a uniqueness family of

bounded linear operators on X to guarantee the uniqueness of the solutions. These

two operator families are generalizations of the strongly continuous semigroups and

sine operator functions, the C-regularized semigroups and sine operator functions,

the existence and uniqueness families for (ACP1), and the C-propagation families

for (ACPn). They have a special function in treating those illposed (ACPn) and

(IACPn) whose coefficient operators lack commutativity.
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1.2 Introduction

Let A0, . . . , An−1 be linear operators on a Banach space X. Of concern are the

abstract Cauchy problem for higher order linear differential equations





u(n)(t) +
n−1∑
i=0

Aiu
(i)(t) = 0, t ≥ 0,

u(k)(0) = uk, 0 ≤ k ≤ n− 1,

(ACPn)

and its inhomogeneous version (IACPn) in X (see the beginning of Section 3). As

indicated in Fattorini [31, Preface, p. v - vi], Favini and Obrecht [36], Pazy [67,

p. 253], and Xiao and Liang [82] and [84, Preface, p. vii - viii], there are many

advantages to treat (ACPn) directly instead to reduce it to first order systems in a

suitable phase space and then use the theory of operator semigroups. Although it is

usually hard to deal with (ACPn) directly (cf., e.g., [31, 36, 82, 84]), we will obtain

quite general results. As one will see, it seems to be impractical to deduce these

results using the theory of first order systems.

Let C ∈ L(X) be injective. Based on Lions [58] and the paper [12], Da Prato [13]

introduced C-regularized semigroups on X in 1966. Since Davies and Pang ([16])

rediscovered it in 1987, these semigroups have been investigated extensively (cf.,

e.g., [19, 21, 39, 44, 62, 78, 84]) and have been applied to deal with many ill-posed

(in classical sense) abstract Cauchy problems for which strongly continuous semi-

groups are not applicable. Following these works about C regularized semigroups,

we introduced in [84, Section 3.5] a strong C-propagation family {S0, . . . , Sn−1} on X

to govern (ACPn) for both wellposed and illposed problems (see also [83] regarding

(ACP2)). Here C serves as a regularizing operator which is injective and commutes

with each of coefficient operators A0, . . . , An−1 (when C = I, the operator family

S0, . . . , Sn−1 controls the wellposed problems in the classical sense (cf. [29, 31] and

[83, Chapter 2]). Here we are concerned with another important problem:

How to treat those (ACPn) for which it is impossible or difficult to find

a regularizing operator commuting with the coefficient operators?

We will define an operator family {E(t)}t≥0 of bounded linear operators from a

Banach space Y (may be different from X) to X, called an existence family for

(ACPn) (Definition 1.3.1 (1)), as a new tool for handling (ACPn). The family is

associated with a regularizing operator E0 := E(0) which may not be injective and
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may not commute with Ai (0 ≤ i ≤ n − 1) even if Y = X. It will be shown that

if (ACPn) has an existence family {E(t)}t≥0, then it admits a solution which can

be represented explicitly by {E(t)}t≥0 and depends continuously on initial data in

some sense (Theorem 1.3.4 (1) and Theorem 1.3.7 (b)). We will also exhibit how an

existence family of (ACPn) gives the solutions of (IACPn) (Theorem 1.4.1). A suffi-

cient and necessary condition ensuring (ACPn) to possess an exponentially bounded

existence family, in terms of Laplace transforms, will be presented (Theorem 1.3.7

(a)). Moreover we will define, as a companion of {E(t)}t≥0, a uniqueness family

{U(t)}t≥0 (Definition 1.3.1 (2)) of bounded linear operators on X which guarantees

the uniqueness of solutions to (ACPn) (see Theorem 1.3.4 (2) and Theorem 1.3.9).

An example will be given to show that the flexibility of Y , sometimes produces a

larger set of initial data for which the solutions exist (Example 1.3.5). Also two

concrete initial value problems for partial differential equations will be investigated

as samples of possible applications (Examples 1.5.1 and 1.5.2).

We mention here that the study of the existence families and uniqueness families

for (ACP1), which are more general than the regularized semigroups as well as

the classical strongly continuous semigroups (cf., e.g., [15, 18, 19, 26, 38, 67, 71]), was

initiated by deLaubenfels ([18]). Moreover, deLaubenfels introduced in [17] the

semi-closed (Y,X) semigroup where Y is continuously embedded in X. It will be

seen that the existence families and uniqueness families for (ACPn) given below are

extensions of the operator families in [17, 18] as well as the classical sine operator

functions, the C regularized sine operator functions, and the C-propagation families

for (ACPn). In addition, specializations of our theorems to the case n = 1 extend

some related results in [17–20] (see Remarks 1.3.2, 1.3.6, 1.3.8 and 1.4.3).

In this chapter, X, Y are Banach spaces, L(Y, X) is the space of all bounded

linear operators from Y into X, and L(X, X) is abbreviated to L(X).

For a linear operator A in X, D(A), R(A), and ρ(A) stand for its domain, range,

and resolvent set, respectively. By [D(A)] we mean the normed space D(A) with

the graph norm

‖x‖[D(A)] := ‖x‖+ ‖Ax‖ (x ∈ D(A)).

When C ∈ L(Y, X), [R(C)] denotes the Banach space R(C) with the norm

‖x‖[R(C)] := inf{‖y‖; Cy = x}.
By Ci(R+, X), i ∈ N , we denote the space of all i-times continuously differentiable

7



X-valued functions on R+ := [0,∞), and by C(R+, X) the space of all continuous

X-valued functions on R+.

For a function F : (ω, ∞) −→ L(Y, X), we write F ∈ LTω − L(Y, X) (or LT −
L(Y, X)) to mean that there exists a strongly continuous mapping H : [0, ∞) −→
L(Y, X) satisfying

‖H‖ ≤ Meωt (t ≥ 0) for some constants M > 0 and ω ∈ R

(with this estimate it is called an O(eωt) mapping) such that

F (λ)y =

∫ ∞

0

e−λtH(t)ydt (y ∈ Y ), for λ > ω.

We refer the reader to [4, 5] and [84, Section 1.2] for the Widder-type theorems

which characterize the space LTω − L(Y, X).

Definition 1.2.1. By a solution of (ACPn), we mean a function u(·) ∈ Cn(R+, X)

such that u(i)(t) ∈ D(Ai) (t ≥ 0, 0 ≤ i ≤ n− 1), Aiu
(i)(·) ∈ C(R+, X), and (ACPn)

is satisfied.

We write, for λ ∈ C,

Pλ := λn +
n−1∑
i=0

λiAi and Rλ := P−1
λ

if the inverse exists.

1.3 Existence and uniqueness families for (ACPn)

and wellposedness of (ACPn)

Let E0 ∈ L(Y, X), and let U0 ∈ L(X) be injective. We first give the definitions of

the existence and uniqueness families for (ACPn).

Definition 1.3.1. (1) A strongly continuous family of operators {E(t)}t≥0 ⊂
L(Y, X) is called an E0-existence family for (ACPn) if E(·)y ∈ Cn−1(R+, X),

8



E(i−1)(t)y ∈ D(Ai), AiE
(i−1)(·)y ∈ C(R+, X) (for all y ∈ Y , t ≥ 0,

0 ≤ i ≤ n− 1), and

E(t)y +
n−1∑
i=0

Ai

∫ t

0

(t− s)n−i−1

(n− i− 1)!
E(s)yds =

tn−1

(n− 1)!
E0y. (1.3.1)

Here and in the sequel, for s ≥ 0, y ∈ Y , we write

E(j)(s)y :=
dj

dsj
(E(s)y) , j ∈ N ∪ {0},

E(−j)(s)y :=

∫ t

0

(t− s)j−1

(j − 1)!
E(s)yds, j ∈ N. (1.3.2)

We also say that (ACPn) has an E0-existence family {E(t)}t≥0.

(2) A strongly continuous family of operators {U(t)}t≥0 ⊂ L(X) is called a U0-

uniqueness family for (ACPn) if for all x ∈ ∩n−1
i=0D(Ai), t ≥ 0,

U(t)x +
n−1∑
i=0

∫ t

0

(t− s)n−i−1

(n− i− 1)!
U(s)Aixds =

tn−1

(n− 1)!
U0x. (1.3.3)

We also say that (ACPn) has a U0-uniqueness family {U(t)}t≥0.

Remark 1.3.2. When n = 1 and Y = X, the E0-existence family {E(t)}t≥0 in

Definition 1.3.1 is just the mild E0-existence family for −A0 in [19, p. 8] denoted

by {W (t)}t≥0 there (see also [18, 20]). Let n = 1, Y be continuously embedded

in X, and E0 = I. Then {E(t)}t≥0 reduces to the semi-closed (Y, X)-semigroup

introduced by deLaubenfels [17].

It is known from [18–20] that for each u0 ∈ R(E0), u(·) := E(·)v0 (E0v0 = u0) is

a mild solution of (ACP1), i.e.,

u(t) + A0

∫ t

0

u(s)ds = u0, t ≥ 0.

Moreover, for all u0 ∈ E0(D(A0)), u(·) is a (strict) solution of (ACP1) provided A0

is closed and

E(·)x ∈ C(R+, [D(A0)]), x ∈ D(A0). (1.3.4)

Condition (1.3.4) is automatically satisfied when E(·) is a C-regularized semigroup

for −A0 (which implies that E(t)A0 ⊂ A0E(t) for all t ≥ 0). We will show (Theorem

9



1.3.4 (1) for n = 1) that, without condition (1.3.4), {E(t)}t≥0 also yields (strict)

solutions of (ACP1) for a set D0 of initial data (see Definition 1.3.3 below) which is

larger than E0(D(A0)) in many cases (cf. Example 1.3.5 and Remark 1.3.6).

When Y = X and E0 commutes with Ai (0 ≤ i ≤ n − 1), E(·) becomes, under

some conditions, the Sn−1(·) of the strong E0-propagation family {S0, . . . , Sn−1}
for (ACPn) in ([84, p. 115]) where S0, . . . , Sn−2 are determined by Sn−1 (cf. [84,

p. 116]). Moreover, if n = 2 and A1 = 0, then Sn−1(= S1) is a E0-regularized sine

operator function.

For n = 1, {U(t)}t≥0 in Definition 1.3.1 coincides with the uniqueness family in

[20].

Next, we define a class of sets, which will be used as spaces of initial data for

solutions of (ACPn).

Definition 1.3.3. For 0 ≤ k ≤ n− 1,

Dk :=

{
x ∈

k⋂
j=0

D(Aj); Ajx ∈ R(E0) for all 0 ≤ j ≤ k

}
.

Theorem 1.3.4. (1) Assume that Ai (0 ≤ i ≤ n−1) are closed. If there is an E0-

existence family {E(t)}t≥0 for (ACPn), then for u0 ∈ D0, . . . , un−1 ∈ Dn−1,

(ACPn) admits a solution given by

u(t) :=
n−1∑
i=0

[
ti

i!
ui −

i∑
j=0

∫ t

0

(t− s)i−j

(i− j)!
E(s)vi,jds

]
, t ≥ 0, (1.3.5)

where vi,j ∈ Y such that

Ajui = E0vi,j, 0 ≤ j ≤ i, 0 ≤ i ≤ n− 1. (1.3.6)

The solution satisfies

‖u(n)(t)‖, ‖u(k)(t)‖[D(Ak)] ≤ M(t)
n−1∑
i=0

(
‖ui‖+

i∑
j=0

‖Ajui‖[R(E0)]

)
,

t ≥ 0, 0 ≤ k ≤ n− 1,

(1.3.7)

for some locally bounded positive function M(·) on R+.
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(2) If there is a U0-uniqueness family {U(t)}t≥0 for (ACPn), then all solutions of

(ACPn) are unique.

Proof. (1) Let u0 ∈ D0, . . . , un−1 ∈ Dn−1, and let vi,j be as in (1.3.6). We claim

that u(·) given by (1.3.5) is a solution of (ACPn). In fact, noting (1.3.2) we have

u(n)(t) = −
n−1∑
i=0

i∑
j=0

E(n−i+j−1)(t)vi,j,

u(l)(t) =
n−1∑

i=l

ti−l

(i− l)!
ui −

n−1∑
i=0

i∑
j=0

E(l−i+j−1)(t)vi,j, 0 ≤ l ≤ n− 1.

Furthermore, from (1.3.1) and the closedness of Ai (0 ≤ i ≤ n− 1) we obtain for all

t ≥ 0, y ∈ Y ,





E(n−k−1)(t)y +
n−1∑

l=0

AlE
(l−k−1)(t)y =

tk

k!
E0y, 0 ≤ k ≤ n− 1,

E(j)(0)y = 0, 0 ≤ j ≤ n− 2.

(1.3.8)

Accordingly, we deduce that

u(j)(0) = uj, 0 ≤ j ≤ n− 1,

and that

u(n)(t) +
n−1∑

l=0

Alu
(l)(t)

=
n−1∑

l=0

n−1∑

i=l

ti−l

(i− l)!
Alui −

n−1∑
i=0

i∑
j=0

E(n−i+j−1)(t)vi,j

−
n−1∑

l=0

n−1∑
i=0

i∑
j=0

AlE
(l−i+j−1)(t)vi,j

=
n−1∑
i=0

{
i∑

l=0

ti−l

(i− l)!
Alui −

i∑
j=0

[
E(n−i+j−1)(t)vi,j +

n−1∑

l=0

AlE
(l−i+j−1)(t)vi,j

]}
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=
n−1∑
i=0

{
i∑

l=0

ti−l

(i− l)!
Alui −

i∑
j=0

ti−j

(i− j)!
E0vi,j

}

= 0

by (1.3.6). Observe that vi,j in (1.3.6) is arbitrary, that for any 0 ≤ j ≤ i, 0 ≤ i ≤
n− 1,

inf {‖vi,j‖; Ajui = E0vi,j} = ‖Ajui‖[R(E0)],

‖Ajui‖ ≤ ‖E0‖‖Ajui‖[R(E0)],

and that each of ‖E(n−1)(t)‖ and ‖AiE
(i−1)(t)‖ (0 ≤ i ≤ n−1) is locally bounded on

R+ by the Banach-Steinhaus theorem. So (1.3.7) follows from (1.3.5) immediately.

(2) For every x ∈ ∩n−1
i=0D(Ai) and t ≥ 0, we define

V0(t)x = U0x−
∫ t

0

U(s)A0xds,

Vj(t)x =

∫ t

0

(Vj−1(s)x− U(s)Ajx) ds, 1 ≤ j ≤ n− 1, if n ≥ 2.

Thus for x and t as above,

U(t)x = Vn−1(t)x (1.3.9)

by (1.3.3). Let now ũ(·) be a solution of (ACPn) with ũ(j)(0) = 0, 0 ≤ j ≤ n − 1.

Clearly, ũ(t) ∈ ∩n−1
i=0D(Ai) for t ≥ 0 and Aiũ(·) ∈ C(R+, X), 0 ≤ i ≤ n − 1. For

t ≥ 0, put

w(t) =





ũ(t) if n = 1,

∫ t

0

(t− s)n−2

(n− 2)!
ũ(s)ds if n ≥ 2.

It is easy to see that w(t) is also a solution of (ACPn) with w(j)(0) = 0, 0 ≤ j ≤ n−1,

and furthermore for all 0 ≤ j ≤ n− 1,

w(j)(t) ∈
n−1⋂
i=0

D(Ai), t ≥ 0.
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According to this and (1.3.9), we have for t ≥ s ≥ 0,

d

ds

(
n−1∑
j=0

Vj(t− s)w(j)(s)

)
=

n−1∑
j=0

Vj(t− s)w(j+1)(s) +
n−1∑
j=0

U(t− s)Ajw
(j)(s)

−





0 if n = 1

n−1∑
j=1

Vj−1(t− s)w(j)(s) if n ≥ 2

= 0.

Therefore

U0w(t) = V0(0)w(t) =
n−1∑
j=0

Vj(t)w
(j)(0) = 0, t ≥ 0,

which implies that w(t) ≡ 0 by the injectivity of U0. So ũ(t) ≡ 0. This ends the

proof.

2

The following is an example indicating that the choice of a Banach space Y dif-

ferent from X produces a larger set of initial data.

Example 1.3.5. Look at the (ACP1) in the space C0(R), where A0 is the linear

operator defined by

(A0f)(x) := xf(x) (x ∈ R)

for all

f ∈ D(A0) := {f ∈ C0(R); xf(x) ∈ C0(R)}.
It is easy to verify that this (ACP1) has an E0-existence family {E(t)}t≥0 of operators

in L(Cb(R), C0(R)), as well as a U0-uniqueness family {U(t)}t≥0 of operators in

L(C0(R)). Here for x ∈ R, t ≥ 0,





(E(t)f)(x) := e−x2
e−txf(x), f ∈ Cb(R),

E0 = E(0),

U(t) := E(t)
∣∣∣
C0(R)

, U0 = U(0). (1.3.10)
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Therefore, by virtue of Theorem 1.3.4 we know that this (ACP1) admits a unique

solution whenever the initial value is in

D0 = {f ∈ C0(R); xex2

f(x) is bounded on R}.

On the other hand, the U0-uniqueness family {U(t)}t≥0 in (1.3.10) is also a U0-

existence family, which is in L(C0(R)), for (ACP1). This then yields that (ACP1)

admits a unique solution for every initial data in U0(D(A0)). But clearly,

U0(D(A0))

= {x ∈ D(A0); A0x ∈ R(U0)}

= {f ∈ C0(R); xex2

f(x) ∈ C0(R)}

is smaller than D0.

Remark 1.3.6. Even in the case of X = Y (whereby E0D(A0) makes sense) and

E0A0 ⊂ A0E0, it is also possible that D0 is larger than E0D(A0). Actually, for this

case, it is not difficult to see that

E0D(A0) ⊂ D0 ∩R(E0).

The opposite inclusion holds true if and only if {x; A0E0x ∈ R(E0)} ⊂ D(A0).

Moreover, if A0 is a one to one mapping of D(A0) onto X, then

E0D(A0) = D0. (1.3.11)

However, the following two counterexamples indicate that the equality (1.3.11) may

fail if A0 is not injective or not surjective.

(a) Let X be an infinite-dimensional Banach space and A0 a linear operator in X

which is surjective but not injective. Let E0 ≡ 0 in X. Then

E0A0 ⊂ A0E0, E0D(A0) = {0},

D0 = {x ∈ X; A0x = 0} 6= {0}.
(b) Let X = l2 and let A0, E0 be the operators defined by

A0{um} = {ũm} for all {um} ∈ X,
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E0{um} = {um} for all {um} ∈ X,

where ũ1 = u1, u1 = 0 and

ũm = um =





0 if m is even

ui+1 if m = 2i + 1 (i = 1, 2, · · · ).
Clearly A0, E0 ∈ L(X), A0 is injective but not surjective, E0A0 = A0E0, and

D0 = {{vm} ∈ X; v1 = 0},

E0D(A0) = {{vm} ∈ X; v1 = vm = 0 for any even m}.

Next, we present a sufficient and necessary condition ensuring (ACPn) to possess

an O(eωt) E0-existence families in terms of Laplace transforms.

Theorem 1.3.7. Suppose that Ai (0 ≤ i ≤ n− 1) are closed and Pλ is injective for

λ > ω. Then the following holds.

(a) (ACPn) has an E0-existence family {E(t)}t≥0 ⊂ L(Y, X) satisfying

∥∥E(n−1)(t)
∥∥ ,

∥∥AiE
(i−1)(t)

∥∥ ≤ Meωt (0 ≤ i ≤ n− 1, t ≥ 0) (1.3.12)

if and only if R(E0) ⊂ R(Pλ) (for λ > ω) and

λn−1RλE0, λi−1AiRλE0 ∈ LTω − L(Y, X) (1 ≤ i ≤ n− 1). (1.3.13)

In this case, M(t) in (1.3.7) can be taken as Meωt.

(b) Let (1.3.13) hold. In the case of n ≥ 2 assume, in addition, that R(AiE0) ⊂
R(Pλ) (1 ≤ i ≤ n− 1, λ > ω) and

λi−1RλAiE0y =

∫ ∞

0

e−λtSi(t)ydt, y ∈ D(AiE0), λ > ω, (1.3.14)

for some strongly continuous family of operators {Si(t)}t≥0 ⊂ L(Y, X) with

‖Si(t)‖ ≤ Meωt (t ≥ 0). Then for u0 ∈ D0∩R(E0), . . . , un−1 ∈ Dn−1∩R(E0),

(ACPn) admits a solution u(t) satisfying

‖u(t)‖ ≤ Meωt

n−1∑
i=0

‖ui‖[R(E0)], t ≥ 0. (1.3.15)
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Proof. (a) The “only if” part. Taking Laplace transforms in (1.3.1), we obtain

from the closedness of Ai (0 ≤ i ≤ n− 1),
(

I +
n−1∑
i=0

λi−nAi

)∫ ∞

0

e−λtE(t)ydt = λ−nE0y, y ∈ Y, λ > ω.

Hence R(E0) ⊂ R(Pλ) for λ > ω and

RλE0y =

∫ ∞

0

e−λtE(t)ydt, y ∈ Y, λ > ω.

This in conjunction with (1.3.12) gives that for y ∈ Y , λ > ω,

λiRλE0y =

∫ ∞

0

e−λtE(i)(t)ydt, 0 ≤ i ≤ n− 1, (1.3.16)

λi−1AiRλE0y =

∫ ∞

0

e−λtAiE
(i−1)(t)ydt, 0 ≤ i ≤ n− 1.

Hence (1.3.13) is satisfied.

The “if” part. By hypothesis we have RλE0 ∈ LTω − L(Y,X). So there exists a

strongly continuous family of operators {Ẽ(t)}t≥0 ⊂ L(Y,X) with ‖Ẽ(t)‖ ≤ Meωt

(t ≥ 0) such that

RλE0y =

∫ ∞

0

e−λtẼ(t)ydt, y ∈ Y, λ > ω. (1.3.17)

In view of Theorem 1.1.9 of [84], (1.3.17) combined with the assumption λn−1RλE0 ∈
LTω − L(Y, X) indicates that

Ẽ(·)y ∈ Cn−1(R+, X) and
∥∥∥Ẽ(n−1)(t)

∥∥∥ ≤ Meωt (for all y ∈ Y, t ≥ 0).

On the other hand, we observe by (1.3.13) that

λi−1AiRλE0 ∈ LTω − L(Y, X)

for all 0 ≤ i ≤ n− 1 since

λ−1A0RλE0 = λ−1E0 − λn−1RλE0 −
n−1∑
i=1

λi−1AiRλE0.

This gives, by Theorem 1.1.10 of [84], that for any y ∈ Y, t ≥ 0, 0 ≤ i ≤ n− 1,

Ẽ(i−1)(t)y ∈ D(Ai) and
∥∥∥AiẼ

(i−1)(t)
∥∥∥ ≤ Meωt.
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Here for t ≥ 0, y ∈ Y,

Ẽ(i−1)(t)y :=





di−1

dti−1

(
Ẽ(t)y

)
if 1 ≤ i ≤ n,

∫ t

0

Ẽ(s)yds if i = 0.

Consequently, we obtain for every y ∈ Y ,
∫ ∞

0

e−λt tn−1

(n− 1)!
E0ydt

= λ−nE0y

= RλE0y +
n−1∑
i=0

λi−nAiRλE0y

=

∫ ∞

0

e−λt

(
Ẽ(t)y +

n−1∑
i=0

Ai

∫ t

0

(t− s)n−i−1

(n− i− 1)!
Ẽ(s)yds

)
dt, λ > ω.

Thus an application of the uniqueness theorem for Laplace transforms yields the

desired result.

(b) Let u0 ∈ D0 ∩ R(E0), . . . , un−1 ∈ Dn−1 ∩ R(E0). By Theorem 1.3.4 (1),

(ACPn) admits a solution u(t) given by (1.3.5). Using (1.3.16) and (1.3.6), we have

for λ > ω,

∫ ∞

0

e−λtu(t)dt =
n−1∑
i=0

(
λ−i−1ui −

i∑
j=0

λj−i−1RλE0vi,j

)

=
n−1∑
i=0

λ−i−1

(
λnRλ +

n−1∑
j=0

λjRλAj −
i∑

j=0

λjRλAj

)
ui

=
n−1∑
i=0


λn−i−1Rλui +





0 if n = 1

n−1∑
j=i+1

λj−i−1RλAjui if n ≥ 2


 .

(1.3.18)

Take wi ∈ Y such that E0wi = ui (0 ≤ i ≤ n − 1). We thus obtain from (1.3.14),

(1.3.16) and (1.3.18),
∫ ∞

0

e−λtu(t)dt =

∫ ∞

0

e−λt
(
E(n−1)(t)w0 + w1(t) + w2(t)

)
dt, λ > ω,
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where

w1(t) :=





0 if n = 1,

n−1∑
j=1

Sj(t)w0 if n ≥ 2,

w2(t) :=





0 if n = 1,

E(t)w1 if n = 2,

n−1∑
i=1

E(n−i−1)(t)wi +
n−2∑
i=1

n−1∑
j=i+1

∫ t

0

(t− s)i−1

(i− 1)!
Sj(s)wids if n ≥ 3.

It follows that

u(t) = E(n−1)(t)w0 + w1(t) + w2(t), t ≥ 0,

according to the uniqueness theorem for Laplace transforms. Now, (1.3.15) follows

by the arbitrariness of wi for each 0 ≤ i ≤ n− 1. The proof is then complete.

2

Remark 1.3.8. Let n = 1 and Y = X. Then Theorem 1.3.7 (a) reduces to the

result in [20, p. 1489] where [4, Theorem 1] was used. If n = 1, E0 is injective and

there exists µ0 ∈ ρ(A0) such that

(µ0 − A0)
−1R(E0) ⊂ R(E0),

then Theorem 1.3.7 (b) is Theorem 12 in [17].

Theorem 1.3.9. Suppose that {U(t)}t≥0 is an exponentially bounded strongly con-

tinuous family of operators in L(X). Then {U(t)}t≥0 is a U0-uniqueness family for

(ACPn) if and only if

U0x =

∫ ∞

0

e−λtU(t)Pλxdt, for x ∈ ∩n−1
i=0D(Ai), λ > ω. (1.3.19)

Proof. The “only if” part. Taking Laplace transforms in (1.3.2), we obtain for

x ∈ ∩n−1
i=0D(Ai), λ > ω,

∫ ∞

0

e−λtU(t)

(
x +

n−1∑
i=0

λi−nAix

)
dt = λ−nU0x,
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and so (1.3.19) follows.

The “if” part. Reverse the process in the “only if” part and make use of the

uniqueness theorem for Laplace transforms.

2

1.4 Inhomogeneous Cauchy problems

In this section, we focus on investigating the inhomogeneous version of ACPn).

Let T > 0. Assume that A0, . . . , An−1 are closed linear operators in X, E0 ∈
L(Y, X), and that f ∈ C([0, T ], X), g ∈ C([0, T ], Y ) such that

E0g(t) = f(t), t ∈ [0, T ].

We consider 



v(n)(t) +
n−1∑
i=0

Aiv
(i)(t) = f(t), t ∈ [0, T ],

v(k)(0) = uk, 0 ≤ k ≤ n− 1.

(IACPn)

By a solution of (IACPn), we mean a function v(·) ∈ Cn([0, T ], X) such that

v(i)(t) ∈ D(Ai) (t ∈ [0, T ], 0 ≤ i ≤ n− 1), Aiv
(i)(·) ∈ C([0, T ], X)

and (IACPn) is satisfied.

Theorem 1.4.1. Suppose that (ACPn) has an E0-existence family {E(t)}t≥0 in

L(Y, X) and a U0-uniqueness family in L(X), and D0, · · · , Dn−1 from Definition

1.3.3. If either

(i) g ∈ C1([0, T ], X), or

(ii) there are hi ∈ L1([0, T ], Y ) such that Aif(t) = E0hi(t) (0 ≤ i ≤ n − 1,

t ∈ [0, T ]),

then for every u0 ∈ D0, · · · , un−1 ∈ Dn−1, (IACPn) admits a unique solution given

by

v(t) = u(t) +

∫ t

0

E(t− s)g(s)ds, t ∈ [0, T ], (1.4.1)

where u(t) is the solution of (ACPn).
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Proof. Put

v∗(t) :=

∫ t

0

E(t− σ)g(σ)dσ, t ∈ [0, T ].

By Definition 1.3.1 (1) and (1.3.8), we have v∗ ∈ Cn−1([0, T ], X) and

v(k)
∗ (t) =

∫ t

0

E(k)(t− σ)g(σ)dσ, t ∈ [0, T ], k = 0, . . . , n− 1. (1.4.2)

Using Fubini’s theorem gives

∫ t

0

v∗(τ)dτ =

∫ t

0

[∫ τ

0

E(τ − σ)g(σ)dσ

]
dτ

=

∫ t

0

[∫ t−σ

0

E(τ)g(σ)dτ

]
dσ, for t ∈ [0, T ].

By (1.3.8),

A0

∫ t−σ

0

E(τ)g(σ)dτ = E0g(σ)− E(n−1)(t− σ)g(σ)−
n−1∑
i=1

AiE
(i−1)(t− σ)g(σ),

0 ≤ σ ≤ t, t ∈ [0, T ].

It follows that ∫ t

0

v∗(τ)dτ ∈ D(A0) for each t ∈ [0, T ],

and

A0

∫ t

0

v∗(τ)dτ =

∫ t

0

[
A0

∫ t−σ

0

E(τ)g(σ)dτ

]
dσ

=

∫ t

0

f(σ)dσ −
∫ t

0

E(n−1)(t− σ)g(σ)dσ

−
n−1∑
i=1

∫ t

0

AiE
(i−1)(t− σ)g(σ)dσ for each t ∈ [0, T ].

So

A0

∫ t

0

v∗(τ)dτ =

∫ t

0

f(σ)dσ − v(n−1)
∗ (t)−

n−1∑
i=1

Aiv
(i−1)
∗ (t), t ∈ [0, T ] (1.4.3)
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by (1.4.2) and the closedness of Ai (1 ≤ i ≤ n− 1).

If g ∈ C1([0, T ], X), then by (1.4.2),

t 7→ v(n−1)
∗ (t) =

∫ t

0

E(n−1)(σ)g(t− σ)dσ ∈ C1([0, T ], X),

t 7→ Aiv
(i−1)
∗ (t) =

∫ t

0

AiE
(i−1)(σ)g(t− σ)dσ ∈ C1([0, T ], X), 1 ≤ i ≤ n− 1.

Therefore, we see from (1.4.3) that

t 7→ A0

∫ t

0

v∗(s)ds ∈ C1([0, T ], X)

and

A0v∗(t) = f(t)− v(n)
∗ (t)−

n−1∑
i=1

Aiv
(i)
∗ (t), t ∈ [0, T ], (1.4.4)

due to A0 and Ai (1 ≤ i ≤ n− 1) being closed.

Let now hypothesis (ii) be satisfied. Set

rσ(s) := E(s)g(σ)− sn−1

(n− 1)!
f(σ)

+
n−1∑
j=0

∫ s

0

(s− τ)n−j−1

(n− j − 1)!
E(τ)hj(σ)dτ, s, σ ∈ [0, T ].

It is not difficult to verify by (1.3.8) that





r
(n−1)
σ (s) +

n−1∑
i=0

Air
(i−1)
σ (s) = 0, s, σ ∈ [0, T ],

r
(k)
σ (0) = 0, 0 ≤ k ≤ n− 1.

Then, arguing similarly as in the proof of Theorem 1.3.4 (2), we obtain

rσ(s) ≡ 0 for all s, σ ∈ [0, T ].

Therefore

E(t− σ)g(σ) =
(t− σ)n−1

(n− 1)!
f(σ) +

n−1∑
j=0

∫ t−σ

0

(t− σ − τ)n−j−1

(n− j − 1)!
E(τ)hj(σ)dτ,

0 ≤ σ ≤ t, t ∈ [0, T ].
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From this we see that for 0 ≤ σ ≤ t, t ∈ [0, T ] and 0 ≤ i ≤ n− 1,

E(i)(t− σ)g(σ) ∈ D(Ai)

and

AiE
(i)(t− σ)g(σ) =

(t− σ)n−i−1

(n− i− 1)!
E0hi(σ) +

n−1∑
j=0

AiE
(j−n+i)(t− σ)hj(σ).

Thus,

t 7→
∫ t

0

AiE
(i)(t− σ)g(σ)dσ ∈ C([0, T ], X), 0 ≤ i ≤ n− 1,

and hence

Aiv
(i−1)
∗ (·) ∈ C1([0, T ], X), 0 ≤ i ≤ n− 1.

So (1.4.4) holds too in this case.

Consequently, in both of the cases (i) and (ii), v(t) given in (1.4.1) is the unique

solution of (IACPn) by an application of Theorem 1.3.4. This completes the proof.

2

Corollary 1.4.2. Suppose that {E(t)}t≥0 is an E0-existence family for (ACP1). If

g ∈ C1([0, T ], Y ) and t ∈ [0, T ], then
∫ t

0
E(s)g(s)ds ∈ D(A0) and

A0

∫ t

0

E(s)g(s)ds = −E(t)g(t) + E0g(0) +

∫ t

0

E(s)g′(s)ds. (1.4.5)

Proof. Fix t ∈ [0, T ] and define

h(s) =





g(t− s), s ∈ [0, t],

2g(0)− g(s− t), s ∈ (t, T ].

Then h ∈ C1([0, T ], Y ). Making use of Theorem 1.4.1 with n = 1 and h in place of

g, we obtain for t ∈ [0, T ],

∫ t

0

E(t− s)h(s)ds ∈ D(A0)

and
d

dt

∫ t

0

E(t− s)h(s)ds + A0

∫ t

0

E(t− s)h(s)ds = E0h(t).
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Therefore

A0

∫ t

0

E(t− s)h(s)ds = − d

dt

∫ t

0

E(s)h(t− s)ds + E0h(t)

= −
∫ t

0

E(s)h′(t− s)ds− E(t)h(0) + E0h(t).

Accordingly

∫ t

0

E(s)g(s)ds =

∫ t

0

E(s)h(t− s)ds =

∫ t

0

E(t− s)h(s)ds ∈ D(A0)

and

A0

∫ t

0

E(s)g(s)ds = A0

∫ t

0

E(t− s)h(s)ds

=

∫ t

0

E(s)g′(s)ds− E(t)g(t) + E0g(0).

The proof is then complete.

2

Remark 1.4.3. Corollary 1.4.2 presents a formula for existence families. The for-

mula was already proved by deLaubenfels [19, Theorem 3.4 (c)] for regularized semi-

groups. His proof could not be adapted to the case of general existence families

because it is based on the semigroup property of regularized semigroups. We used

here a different approach and obtained the formula for general existence families.

1.5 Applications

Example 1.5.1. We consider the Cauchy problem for a modified Klein-Gordon

equation (cf., e.g., [64, 72]) in Lp(R) (1 ≤ p ≤ ∞):





∂2u(t, x)

∂t2
+ a

∂2u(t, x)

∂x∂t
− r

∂2u(t, x)

∂x2
+ γ(x)u(t, x) = f(t, x), (t, x) ∈ R+ ×R,

u(0, x) = φ(x), ut(0, x) = ψ(x), x ∈ R,

(1.5.1)

where a ∈ R, r > 0, γ(·) ∈ W 1,∞(R), and f ∈ C1 (R+,W 1,p(R)).
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Set

X = Lp(R),

A1 := a
d

dx
with D(A1) = W 1,p(R),

A0 = A01 + A02 with D(A0) = W 2,p(R),

where A01 := −r
d2

dx2
and A02 is the multiplication operator by γ(·).

Write

P0λ := λ2 + λA1 + A01, λ ∈ R.

Then by Theorem 3.5.6 (2) and Theorem 3.5.4 in [84], we have

λP−1
0λ

(
I − d2

dx2

)− 1
2

, A1P
−1
0λ

(
I − d2

dx2

)− 1
2

∈ LTω − L(X). (1.5.2)

Take µ0 ∈ ρ(A1). Using the equalities

λP−1
0λ (µ0 − A1)

−1 = λP−1
0λ

(
I − d2

dx2

)− 1
2

[(
I − d2

dx2

) 1
2

(µ0 − A1)
−1

]
,

P−1
0λ =

[
µ0P

−1
0λ

(
I − d2

dx2

)− 1
2

− A1P
−1
0λ

(
I − d2

dx2

)− 1
2

]

·
[(

I − d2

dx2

) 1
2

(µ0 − A1)
−1

]

and noting the boundedness of the operator
(
I − d2

dx2

) 1
2
(µ0−A1)

−1, we deduce from

(1.5.2) that

P−1
0λ ∈ LTω − L(X), (1.5.3)

λP−1
0λ (λ0 − A1)

−1 ∈ LTω − L(X). (1.5.4)

From (6.4.3) it follows that

A02P
−1
0λ ∈ LTω − L(X), A02P

−1
0λ ∈ LTω − L ([D(A1)]) ,
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because A02 ∈ L(X) and A02(D(A1)) ⊂ D(A1). Accordingly, we obtain in view of

Theorem 1.1.11 of [84],
(
I + A02P

−1
0λ

)−1 − I ∈ LTω − L(X), (1.5.5)
(
I + A02P

−1
0λ

)−1 − I ∈ LTω − L([D(A1)]). (1.5.6)

Combining (1.5.3) and (1.5.5) yields that for λ large enough, Pλ := λ2 + λA1 + A0

is invertible and

Rλ := P−1
λ = P−1

0λ + P−1
0λ

[(
I + A02P

−1
0λ

)−1 − I
]
∈ LTω − L(X). (1.5.7)

This means that in view of Theorem 1.3.9, there exists an I-uniqueness family for

(ACP2).

On the other hand, we observe that for λ large enough

Rλ(µ0 − A1)
−1 = P−1

0λ (µ0 − A1)
−1 +

(
P−1

0λ (µ0 − A1)
−1

)

×(µ0 − A1)
[(

I + A02P
−1
0λ

)−1 − I
]
(µ0 − A1)

−1.

Hence,

λRλ(µ0 − A1)
−1, A1Rλ(µ0 − A1)

−1 ∈ LTω − L(X)

by (1.5.4) and (1.5.6). Moreover, (1.5.7) implies that

RλA1(µ0 − A1)
−1 ∈ LTω − L(X).

Thus we infer, by Theorem 1.3.7 (a), that (1.5.1) has a (µ0−A1)
−1-existence family.

Set g = (µ0 − A1)f . Then g ∈ C1(R+, X) by hypothesis. Applying now Theorem

1.4.1 and (1.3.15) we conclude that for every φ ∈ W 3,p(R), ψ ∈ W 3,p(R), (1.5.1) has

a unique solution u ∈ C2 (R+, Lp(R)) ∩ C1 (R+,W 1,p(R)) and

‖u‖Lp(R) ≤ Meωt

(
‖φ‖W 1,p(R) + ‖ψ‖W 1,p(R) +

∫ t

0

‖f(s, ·)‖W 1,p(R)ds

)
, t ∈ R+.

Example 1.5.2. Let 1 ≤ p ≤ ∞, ρ1 ∈ R, ρ2 > 0, c ∈ C, and let a ∈ W 3,∞(R),

f ∈ C1 (R+,W 3,p(R)). Consider the following initial value problem in Lp(R):




∂2u(t, x)

∂t2
+

(
ρ1

∂3

∂x3
− ρ2

∂2

∂x2

)
∂u(t, x)

∂t

+

(
c

∂2

∂x2
+ a(x)

)
u(t, x) = f(t, x), (t, x) ∈ R+ ×R,

u(0, x) = φ(x), ut(0, x) = ψ(x), x ∈ R.

(1.5.8)
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Set

X = Lp(R),

A1 = ρ1
∂3

∂x3
− ρ2

∂2

∂x2
with D(A1) = W 3,p(R),

A0 = A01 + A02 with D(A0) = W 2,p(R),

where A01 := c
∂2

∂x2
and A02 is the multiplication operator by a(·). It is known from

Theorem 1.5.9 of [84] that −A1 generates a once integrated semigroup.

As in Example 1.5.1, we write P0λ = λ2+λA1+A01 (λ ∈ R). Then by the equality

(1.3.10) on page 95 of [84], we see that for λ large enough P0λ is invertible and

P−1
0λ ∈ LTω − L(X), λP−1

0λ (µ0 − A1)
−1 ∈ LTω − L(X),

where µ0 ∈ ρ(A1). Thus the same reasoning as in Example 1.5.1 gives that (1.5.8)

has a (µ0−A1)
−1-existence family and for every φ ∈ W 5,p(R), ψ ∈ W 6,p(R), (1.5.8)

has a unique solution u ∈ C2 (R+, Lp(R)) ∩ C1 (R+,W 3,p(R)) which satisfies

‖u‖Lp(R) ≤ Meωt

(
‖φ‖W 3,p(R) + ‖ψ‖W 3,p(R) +

∫ t

0

‖f(s, ·)‖W 3,p(R)ds

)
, t ∈ R+.
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Chapter 2

Perturbations of existence families

for higher order abstract Cauchy

problems

2.1 Summary

In this chapter, we establish Desch-Schappacher type multiplicative and additive

perturbation theorems for existence families for arbitrary order abstract Cauchy

problems in a Banach space




u(n)(t) = Au(t) (t ≥ 0),

u(j)(0) = xj (0 ≤ j ≤ n− 1).

As a consequence, we obtain perturbation results for regularized semigroups and

regularized cosine operator functions. An example is also given to illustrate possible

applications.

2.2 Introduction

We consider the abstract Cauchy problem:




u(n)(t) = Au(t) (t ≥ 0),

u(j)(0) = xj (0 ≤ j ≤ n− 1).
(2.2.1)
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where n ∈ N , and A is a closed linear operator in a Banach space X.

Definition 2.2.1. (compare with Definition 1.3.1). The strongly continuous family

of operators {S(t)}t≥0 ⊂ L(X) is called a C-existence family for (2.2.1) if for all

x ∈ X, t ≥ 0,

S(·)x ∈ Cn−1(R+, X), A

∫ t

0

S(s)xds ∈ C(R+, X),

and

S(t)x =
tn−1

(n− 1)!
Cx + A

∫ t

0

(t− s)n−1

(n− 1)!
S(s)xds. (2.2.2)

We also say that (2.2.1) has a C-existence family {S(t)}t≥0.

It is known from [19, Chapter III] that the C-existence family reduces to C-

regularized semigroup when n = 1 and S(t)A ⊂ AS(t) (t ≥ 0). Moreover, taking

n = 2 and S(t)A ⊂ AS(t) (t ≥ 0) in Definition 2.2.1 gives the C-regularized cosine

operator function {S ′(t)}t≥0.

The Desch-Schappacher perturbations were first studied in [22] for strongly con-

tinuous semigroups in 1989. In recent years, this type of perturbations has drawn

many researchers’ attention, and the related theory has been developed (cf., e.g., En-

gel and Nagel [26, Section III.3], [10, 21, 23, 46, 66, 69, 70] and references therein).

In [23], Diekmann, Gyllenberg and Thieme showed a new view at the perturba-

tions of Desch-Schappacher type by solving Stieltjes’ renewal equations with the

basic assumption on the behaviour of semivariation of the step response function

(see also [69]). In [46], Jung investigated how certain properties, e.g., analyticity,

norm continuity, of the original semigroup are inherited by the perturbed semigroup.

In [21, Section V] by deLaubenfels and Yao, nonlinear additive perturbations of this

type for C-regularized semigroups were discussed and a local existence and unique-

ness theorem on the classical solutions of the Cauchy problem for the associated

perturbed equation was given. Moreover, in [10, 66, 70], one can see such results for

perturbations of strongly continuous cosine operator functions, solution families or

n-times integrated solution families of linear Volterra equations.

In this chapter, we will present Desch-Schappacher type multiplicative and addi-

tive perturbation theorems for the general existence family given by Definition 2.2.1,

and show the uniqueness of solutions for the corresponding perturbed problem
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(2.2.1) (Theorems 2.3.1 and 2.3.2). As a consequence, we obtain Desch-Schappacher

type perturbation theorems for regularized semigroups and regularized cosine oper-

ator functions (Corollaries 2.4.1, 2.4.2 and 2.4.4) which recover the corresponding

results in [18, 19, 22, 69, 70] (see Remarks 2.4.3 and 2.4.5]). With a new observation

on the ranges of perturbation operators, we exhibit in Theorem 2.4.6 two classes of

perturbation operators satisfying the conditions of Theorem 2.3.1 or Theorem 2.3.2.

Finally, an example (Example 2.4.7) is given to illustrate possible applications. This

example also reflects the feature of Theorem 2.4.6 (see Remark 2.4.8).

The following result on exponentially bounded existence families (shown in The-

orem 1.3.7) will be used in the sequel.

Proposition 2.2.2. Let λn − A be injective for λ > ω. Then (2.2.1) has a C-

existence family {S(t)}t≥0 on X with

∥∥S(n−1)(t)
∥∥ ≤ Meωt, t ≥ 0,

if and only if



R(C) ⊂ R(λn − A) for λ > ω,

the function λ 7→ λn−1 (λn − A)−1 C ∈ LT − L(X).

In this case, for xj ∈ D(A) with Axj ∈ R(C) (0 ≤ j ≤ n − 1), (2.2.1) admits a

solution u(·) satisfying

∥∥u(n)(t)
∥∥ , ‖u(t)‖[D(A)] ≤ Meωt

n−1∑
i=0

(‖ui‖+
∥∥C−1Aui

∥∥)
, t ≥ 0,

and

λn−1 (λn − A)−1 Cx =

∫ ∞

0

e−λtS(n−1)(t)xdt, x ∈ X, λ > ω. (2.2.3)

2.3 Perturbations of existence families for (ACPn)

We first give a Desch-Schappacher type mixed (right) multiplicative and additive

perturbation theorem.
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Theorem 2.3.1. Let A and {S(t)}t≥0 be as in Proposition 2.2.2, and let α, β ∈ C.

Suppose B ∈ L(X) and R(B) ⊂ R(C). If for every f ∈ C(R+, X) and t ≥ 0
∥∥∥∥A

∫ t

0

S(t− s)C−1Bf(s)ds

∥∥∥∥ ≤ M

∫ t

0

eω(t−s)‖f(s)‖ds, (2.3.1)

then

(i) the Cauchy problem




u(n)(t) = (A(I + αB) + βB)u(t), t ≥ 0,

u(j)(0) = xj, 0 ≤ j ≤ n− 1
(2.3.2)

has a C-existence family {U(t)}t≥0 on X and
∥∥U (n−1)(·)

∥∥ is exponentially

bounded;

(ii) all solutions of (2.3.2) are unique provided CA ⊂ AC.

Proof. Fixing f ∈ C(R+, X), by (2.3.1) and (2.2.2) we see that for 0 ≤ t2 ≤ t1 <

∞
∥∥∥∥A

∫ t1

0

S(t1 − s)C−1Bf(s)ds− A

∫ t2

0

S(t2 − s)C−1Bf(s)ds

∥∥∥∥

≤
∥∥∥∥A

∫ t1

0

S(t1 − s)C−1B [f(s)− f(s− t1 + t2)] ds

∥∥∥∥

+

∥∥∥∥A

∫ t1−t2

0

S(t1 − s)C−1Bf(s− t1 + t2)ds

∥∥∥∥

≤ Meωt1 max
0≤s≤t1

‖f(s)− f(s− t1 + t2)‖+

∥∥∥∥A

∫ t1

t2

S(s)C−1Bf(0)ds

∥∥∥∥

≤ Meωt1 max
0≤s≤t1

‖f(s)− f(s− t1 + t2)‖+ ‖[S(n−1)(t1)− S(n−1)(t2)]C
−1Bf(0)‖,

where f(−s) := f(0) for s > 0. This implies that

t 7→ A

∫ t

0

S(t− s)C−1Bf(s)ds ∈ C(R+, X), f ∈ C(R+, X).

We set

W0(t) := S(n−1)(t), t ≥ 0,
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and define Wn(t) inductively by

Wn(t)x = (β + αA)

∫ t

0

S(t− s)C−1BWn−1(s)xds, x ∈ X, t ≥ 0, n ∈ N. (2.3.3)

Clearly, {Wn(t)}t≥0 is a strongly continuous family of bounded linear operators on

X for each n ∈ N . We know by hypothesis that S(·) and W0(·) are exponentially

bounded. So using (2.3.1) we infer by induction that

‖Wn(t)‖ ≤ Mn+1
1 eω1t t

n

n!
, t ≥ 0, n ∈ N ∪ {0},

for certain constants M1 > M , ω1 > ω. Define

W (t) :=
∞∑

n=0

Wn(t), t ≥ 0.

We see by the above arguments that the series converges in the uniform operator

topology, uniformly on bounded intervals of R+ with

‖W (t)‖ ≤ M1e
(ω1+M1)t, t ≥ 0.

Hence {W (t)}t≥0 ⊂ L(X) is a strongly continuous family. Thus, by (2.3.3), we have

W (t)x = S(n−1)(t)x + (β + αA)

∫ t

0

S(t− s)C−1BW (s)xds, x ∈ X, t ≥ 0.

Taking Laplace transforms we obtain by (2.2.3) that for λ large enough and x ∈ X,
∫ ∞

0

e−λtW (t)xdt

= λn−1(λn − A)−1Cx + (β + αA)(λn − A)−1B

∫ ∞

0

e−λtW (t)xdt.

Therefore for such λ we have

(λn − A(I + αB)− βB)

∫ ∞

0

e−λtW (t)xdt = λn−1Cx, x ∈ X, (2.3.4)

by the equalities

(λn − A) [I − (β + αA)(λn − A)−1B]

= (λn − A) [I + αB − αλn(λn − A)−1B − β(λn − A)−1B]

= λn − A(I + αB)− βB.

(2.3.5)
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Finally, we show that I − (β + αA)(λn−A)−1B is invertible for large λ. In order to

do this, we observe by (2.3.1) and (2.2.3) that for each x ∈ X, t ≥ 0,
∥∥∥∥(β + αA)

∫ t

0

S(t− s)C−1Bxds

∥∥∥∥

≤ M2

∫ t

0

eω2(t−s)‖x‖ds

≤ M2

ω2

(
eω2t − 1

) ‖x‖,

and

(β + αA)(λn − A)−1Bx

= λ

∫ ∞

0

e−λt

[
(β + αA)

∫ t

0

S(t− s)C−1Bxds

]
dt, λ > ω2,

where M2 and ω2 are positive constants. So for λ > ω2 and x ∈ X,
∥∥(β + αA)(λn − A)−1Bx

∥∥

≤ M2λ

ω2

∫ ∞

0

e−λt
(
eω2t − 1

) ‖x‖dt

=
M2‖x‖

λ(λ− ω2)
.

Thus for λ > 2M2 + ω2 + 1,

∥∥(β + αA)(λn − A)−1B
∥∥ <

1

2
,

so that I− (β +αA)(λn−A)−1B is invertible. This together with (2.3.5) yields that

for λ > 2M2 + ω2 + ω + 1, λn−A(I + αB)−βB is injective since λn−A is injective

for λ > ω. In conclusion, we obtain from (2.3.4) that for λ sufficiently large,

λn−1(λn − A(I + αB)− βB)−1Cx =

∫ ∞

0

e−λtW (t)xdt, x ∈ X.

Set, for t ≥ 0 and x ∈ X,

U(t)x :=





W (t)x if n = 1,

∫ t

0

(t− s)n−2

(n− 2)!
W (s)xds if n ≥ 2.
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Then an application of Proposition 2.2.2 gives assertion (i).

In order to verify assertion (ii), we let v(·) be a solution of (2.3.2) with initial data

xj = 0 (0 ≤ j ≤ n− 1). Evidently

v(t) = (A(I + αB) + βB)

∫ t

0

(t− σ)n−1

(n− 1)!
v(σ)dσ, t ≥ 0. (2.3.6)

The assumption CA ⊂ AC implies

S(t)C = CS(t) (t ≥ 0), S(t)Ax = AS(t)x (x ∈ D(A), t ≥ 0), (2.3.7)

according to (2.2.3) and the uniqueness theorem for Laplace transforms. So (2.2.2)

yields

S(n)(t)x = S(t)Ax, x ∈ D(A), t ≥ 0. (2.3.8)

Thus, by (2.3.6) – (2.3.8) we obtain that for t ≥ s ≥ 0,

d

ds

[
n−1∑
i=0

S(i)(t− s)(I + αB)

∫ s

0

(s− σ)i

i!
v(σ)dσ

]

= S(t− s)(I + αB)v(s) +
n−1∑
i=1

S(i)(t− s)(I + αB)

∫ s

0

(s− σ)i−1

(i− 1)!
v(σ)dσ

−
n−1∑
i=0

S(i+1)(t− s)(I + αB)

∫ s

0

(s− σ)i

(i− 1)!
v(σ)dσ

= S(t− s)(I + αB)v(s)− S(n)(t− s)(I + αB)

∫ s

0

(s− σ)n−1

(n− 1)!
v(σ)dσ

= CS(t− s)

[
αC−1Bv(s) + βC−1B

∫ s

0

(s− σ)n−1

(n− 1)!
v(σ)dσ

]
.

Noting

S(n−1)(0) = I, S(i)(0) = 0 (0 ≤ i ≤ n− 2) (2.3.9)

from (2.2.2), we then infer that for t ≥ 0,

C(I + αB)

∫ t

0

(t− σ)n−1

(n− 1)!
v(σ)dσ

= C

∫ t

0

S(t− s)

[
αC−1Bv(s) + βC−1B

∫ s

0

(s− σ)n−1

(n− 1)!
v(σ)dσ

]
ds.
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Since C is injective, it follows from (2.3.6) that for t ≥ 0,

v(t) = βB

∫ t

0

(t− σ)n−1

(n− 1)!
v(σ)dσ + αA

∫ t

0

S(t− σ)C−1Bv(σ)dσ

+βA

∫ t

0

S(t− σ)C−1B

(∫ σ

0

(σ − τ)n−1

(n− 1)!
v(τ)dτ

)
dσ.

Fix T > 0. Then by (2.3.1) there exists a constant M0 > 0 such that for each

t ∈ [0, T ],

max
0≤s≤t

‖v(s)‖ ≤ M0

∫ t

0

max
0≤τ≤σ

‖v(τ)‖dσ.

So Gronwall-Bellman’s inequality shows that v(t) = 0 for t ∈ [0, T ]. Because T was

arbitrary, v(t) ≡ 0 for t ≥ 0. This ends the proof.

2

The following is a Desch-Schappacher type additive perturbation theorem which

can also be regarded as a (left) multiplicative perturbation theorem.

Theorem 2.3.2. Let A and {S(t)}t≥0 be as in Proposition 2.2.2. Suppose B is a

closed linear operator in X such that D(B) ⊃ D(A) and R(B) ⊂ R(C). If for each

f ∈ C(R+, [D(A)]) and t ≥ 0,
∥∥∥∥A

∫ t

0

S(t− s)C−1Bf(s)ds

∥∥∥∥ ≤ M

∫ t

0

eω(t−s)‖f(s)‖[D(A)]ds, (2.3.10)

then

(i) the Cauchy problem




u(n)(t) = (A + B)u(t), t ≥ 0,

u(j)(0) = xj, 0 ≤ j ≤ n− 1
(2.3.11)

has a C-existence family {V (t)}t≥0 on [D(A)] and
∥∥V (n−1)(·)

∥∥
L([D(A)])

is expo-

nentially bounded;

(ii) for any xj ∈ C(D(A)) (0 ≤ j ≤ n− 1), the function

n−1∑
j=0

V (n−1−j)(·)C−1xj

is a solution of (2.3.11).

34



(iii) all solutions of (2.3.11) are unique, provided CA ⊂ AC.

Proof. Define

Y (t) =
∞∑

n=0

Yn(t), t ≥ 0,

where




Y0(t) = S(n−1)(t), t ≥ 0,

Yn(t)x =

∫ t

0

S(t− s)C−1BYn−1(s)xds, t ≥ 0, x ∈ D(A), n ∈ N.

Arguing similarly as in the proof of Theorem 2.3.1, we deduce that {Y (t)}t≥0 is an

exponentially bounded, strongly continuous family of bounded linear operators on

[D(A)]. For λ large enough,

(λn − (A + B))

∫ ∞

0

e−λtY (t)xdt = λn−1Cx, x ∈ D(A),

and ∥∥(λn − A)−1B
∥∥
L([D(A)])

<
1

2
, (2.3.12)

so that λn − (A + B) is injective and

λn−1(λn − (A + B))−1Cx =

∫ ∞

0

e−λtY (t)xdt, x ∈ D(A). (2.3.13)

Therefore, (2.3.11) has a C-existence family {V (t)}t≥0 on [D(A)] given by

V (t)x :=





Y (t)x if n = 1,

∫ t

0

(t− s)n−2

(n− 2)!
Y (s)xds if n ≥ 2,

in view of Proposition 2.2.2. This completes the proof of part (i).

Next we have

V (t)x− tn−1

(n− 1)!
Cx = (A + B)

∫ t

0

(t− s)n−1

(n− 1)!
V (s)xds

=

∫ t

0

(t− s)n−1

(n− 1)!
(A + B)V (s)xds, x ∈ D(A), t ≥ 0,
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since {V (t)}t≥0 is a C-existence family on [D(A)]. This leads to part (ii) immediately.

To prove part (iii) we let w(·) be a solution of (2.3.11) with xj = 0 for all 0 ≤ j ≤
n− 1. By (2.3.7) and (2.3.8) we deduce

d

ds

[
n−1∑
i=0

S(i)(t− s)w(n−1−i)(s)

]
= CS(t− s)C−1Bw(s), t ≥ s ≥ 0,

so that

w(t) =

∫ t

0

S(t− s)C−1Bw(s)ds, t ≥ 0

by (2.3.9). Thus from (2.3.10) we have

∥∥e−ωtw(t)
∥∥

[D(A)]
≤ M ′

∫ t

0

∥∥e−ωtw(t)
∥∥

[D(A)]
ds, t ≥ 0,

for some constant M ′ > 0. It follows that w(t) ≡ 0 for t ≥ 0 by using Gronwall-

Bellman’s inequality. The proof is then complete.

2

2.4 Perturbations of regularized semigroups and

regularized cosine operator functions

In what follows, we give multiplicative and additive perturbation theorems with

regard to exponentially bounded regularized semigroups and regularized cosine op-

erator functions, as consequences of Theorems 2.3.1 and 2.3.2. Let A and {S(t)}t≥0

be as in Proposition 2.2.2. If n = 1 (resp. n = 2) and CA ⊂ AC, then S(·) (resp.

C(·) := S ′(·)) is an exponentially bounded C-regularized semigroup (resp. cosine

operator function) with C−1AC as its generator. In this case, A is called a sub-

generator of S(·) (resp. C(·)), or in other words, A subgenerates S(·) (resp. C(·)).
For more information on regularized semigroups and regularized cosine operator

functions, we refer to, e.g., [19, 52, 84] and references therein.

Theorem 2.4.1. Assume that A subgenerates an exponentially bounded C-

regularized semigroup {S(t)}t≥0 (resp. cosine operator function {C(t)}t≥0) on X.
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Let α, β ∈ C, and B ∈ L(X) with R(B) ⊂ R(C), and let C1 ∈ L(X) be injective

such that R(C1) ⊂ R(C) and

C1[A(I + αB) + βB] ⊂ [A(I + αB) + βB]C1.

If (2.3.1) holds (in the case of the cosine operator function, S(t)x :=
∫ t

0
C(s)xds),

then A(I+αB)+βB subgenerates an exponentially bounded C1-regularized semigroup

(resp. cosine operator function ) on X.

Proof. Apply Theorem 2.3.1. Then U(t)C−1C1 (resp. U ′(t)C−1C1) is the C1-

regularized semigroup (resp. cosine operator function) as claimed.

2

Theorem 2.4.2. Assume that A subgenerates an exponentially bounded C-

regularized semigroup {S(t)}t≥0 (resp. cosine operator function {C(t)}t≥0) on X.

Let B be a closed linear operator in X such that D(B) ⊃ D(A) and R(B) ⊂ R(C).

Let C1 ∈ L(X) be injective such that

R(C1) ⊂ R(C), C−1C1 : D(A) → D(A), C1(A + B) ⊂ (A + B)C1.

If (2.3.10) holds (in the case of the cosine operator function, S(t)x :=
∫ t

0
C(s)xds),

then A + B subgenerates an exponentially bounded C1-regularized semigroup (resp.

cosine operator function ) on X provided that ρ(A) contains a sequence of real num-

bers tending to +∞.

Proof. From (2.3.12) we see that there exists a µ0 ∈ ρ(A) such that

‖(µ0 − A)−1B‖L([D(A))] <
1

2
,

and therefore

µ0 − (A + B) = (µ0 − A)
(
I − (µ0 − A)−1B

)

is invertible on X. Letting Y (·) be as in (2.3.13) with n = 1 (resp. n = 2), we put

Ỹ (t) := [µ0 − (A + B)] Y (t)C−1C1 [µ0 − (A + B)]−1 , t ≥ 0.
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Then {Ỹ (t)}t≥0 is a strongly continuous family of operators in L(X), and for λ large

enough,
∫ ∞

0

e−λtỸ (t)xdt

= λn−1 [µ0 − (A + B)] [λn − (A + B)]−1 C1 [µ0 − (A + B)]−1

= λn−1 [λn − (A + B)]−1 C1x, t ≥ 0, x ∈ X,

with n = 1 (resp. n = 2).

2

Remark 2.4.3. For the case when C = C1 = I, α = 1, β = 0, and A generates a

strongly continuous semigroup {S(t)}t≥0 (resp. strongly continuous cosine operator

function {C(t)}t≥0) on X, Corollaries 2.4.1 and 2.4.2 can be found in [22, 69, 70]. In

this case, {S(t)}t≥0 (resp. {C(t)}t≥0) is exponentially bounded and ρ(A) contains a

right half plane, automatically.

It is evident that (2.3.1) holds for

B ∈ L(X) with R(B) ⊂ D(AC−1), (2.4.1)

and that (2.3.10) holds for any closed linear operator B in X with D(B) ⊃ D(A)

and R(B) ⊂ D(AC−1). Specifically we have the following result.

Corollary 2.4.4. Suppose that A subgenerates an exponentially bounded C-

regularized semigroup on X, and that B1 ∈ L(X) and R(B1) ⊂ R(C). Then

(i) the Cauchy problem

(∗)




u′(t) = (A + B1)u(t), t ≥ 0,

u(0) = x

has an exponentially bounded C-existence family on X.

(ii) all solutions of (∗) are unique provided CA ⊂ AC.

(iii) A + B1 subgenerates an exponentially bounded C1-regularized semigroup on

X, whenever C1 ∈ L(X) is injective, R(C1) ⊂ R(C) and C1(A + B1) ⊂
(A + B1)C1.
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Proof. Take α = 0 and β = 1 in Theorem 2.3.1 and Theorem 2.4.1.

2

Remark 2.4.5. Conclusion (i) of Corollary 2.4.4 appeared in [18, 19]. Generally

speaking, a C-existence family for a first order Cauchy problem ensures uniqueness

of the exponentially bounded solutions, but not all solutions (see [19, Proposition

2.9]). This indicates the significance of the assertion (ii). Conclusion (iii) is due to

[78].

Let A0 be a linear operator in X satisfying

(ω,∞) ⊂ ρ(A0), sup
λ>ω

∥∥λ(λ− A0)
−1

∥∥ < ∞. (2.4.2)

We set

FA0 :=
{
x ∈ X; limλ→+∞

∥∥λA0(λ− A0)
−1x

∥∥ < ∞}
.

It is easy to verify that FA0 endowed with the norm

‖x‖FA0
:= ‖x‖+ limλ→+∞

∥∥λA0(λ− A0)
−1x

∥∥

is a Banach space. When A0 is the generator of a strongly continuous semigroup

{T (t)}t≥0, FA0 coincides with the Favard class of T (t), cf. [26, Proposition 5.12,

p. 130].

Theorem 2.4.6. Let A and {S(t)}t≥0 be as in Proposition 2.2.2, and let C0 ∈ L(X)

with CC0 = C0C and C0A ⊂ AC0. Suppose A0 is a densely defined linear operator in

X satisfying (2.4.2), such that D(A0) ⊂ D(AC0), CA0 ⊂ A0C, and (λ− A0)
−1A ⊂

A(λ− A0)
−1 for λ > ω. Then

(i) (2.3.1) is valid for B = CC0B0 if B0 ∈ L(X) and R(B0) ⊂ FA0 .

(ii) (2.3.10) is valid for B = CC0B0 if B0 is a closed linear operator in X,

D(B0) ⊃ D(A), and R(B0) ⊂ FA0 .

Proof. Using the density of D(A0) and (2.4.2), we have

lim
λ→+∞

λ(λ− A0)
−1x = x, x ∈ X. (2.4.3)
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Moreover, by hypothesis,

A0(λ− A0)
−1 (µn − A)−1 C = (µn − A)−1 CA0(λ− A0)

−1, λ, µ > ω.

In combination with (2.2.3), this shows that for λ > ω, t ≥ 0,

A0(λ− A0)
−1S(t) = S(t)A0(λ− A0)

−1, (2.4.4)

by the uniqueness theorem for Laplace transforms. Likewise,

C0S(t) = S(t)C0, t ≥ 0. (2.4.5)

Let B0 and B be as in (i). For each f ∈ C(R+, X) and t > 0, we take a sequence

{fm}m∈N ⊂ C1([0, t], X) such that

max
s∈[0,t]

‖fm(s)− f(s)‖ → 0 as m →∞. (2.4.6)

From Theorem 1.4.1, we know
∫ t

0

S(t− s)C0B0fm(s)ds ∈ D(A), m ∈ N.

Therefore, noting D(AC0) ⊃ D(A0) and using (2.4.3) – (2.4.5) we obtain
∥∥∥∥A

∫ t

0

S(t− s)C−1Bfm(s)ds

∥∥∥∥

=

∥∥∥∥AC0

∫ t

0

S(t− s)B0fm(s)ds

∥∥∥∥

≤
∥∥AC0(ω + 1− A0)

−1
∥∥

× lim
λ→+∞

∥∥∥∥
∫ t

0

S(t− s)
[
λ(ω + 1− A0)(λ− A0)

−1
]
B0fm(s)ds

∥∥∥∥

≤ M̃

∫ t

0

eω(t−s)‖B0fm(s)‖FA0
ds

≤ M̃‖B0‖L(X,FA0
)

∫ t

0

eω(t−s)‖fm(s)‖ds, m ∈ N,

where M̃ is a constant independent of m and t. This proves part (i) by (2.4.6) and

the closedness of A. The same type of argument gives part (ii).

2
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Example 2.4.7. Let X = UCb(R) the space of uniformly continuous and bounded

functions,

A = i
d2

dξ2
with D(A) = {f ∈ C2(R); f is bounded and f ′′ ∈ X},

A0 =
d2

dξ2
with D(A0) = D(A).

It is known that the operator D := d2

dξ2 with domain W 2,1(R) generates a strongly

continuous semigroup on L1(R), and A0 is the generator of its sun dual semigroup

on X. Thus FA0 coincides with the domain of the adjoint operator of D (cf. [26,

Proposition 5.19, p. 135]). Hence it is not hard to see that

FA0 = {f ∈ C1(R); f is bounded and f ′ is Lipschitz continuous}.

From [49], we see that A generates an exponentially bounded once integrated semi-

group, and so generates an exponentially bounded C-regularized semigroup (cf. [19,

Theorem 18.3]) for C := (1− A0)
−1. Moreover, define B0 by

(B0f)(ξ) = ig(ξ)

∫ b

a

f(σ)dσ, f ∈ X,

where g(ξ) ∈ FA0 , and a, b ∈ R. Then B0 ∈ L(X) and R(B0) ⊂ FA0 . Taking

α = 1, β = −i, C0 = I, B = CC0B0,

we have

A(αI + B) + βB = A− iB0.

Applying Theorem 2.3.1, Theorem 2.4.6 and Proposition 2.2.2, we conclude that for

each

φ ∈ UCb(R) ∩ C4(R) with φ(4) ∈ UCb(R)

the Cauchy problem





∂u(t, ξ)

∂t
= i

∂2u(t, ξ)

∂ξ2
+ g(ξ)

∫ b

a

u(t, σ)dσ, t ≥ 0, ξ ∈ R,

u(0, ξ) = φ(ξ), ξ ∈ R,

has a unique solution in C1(R+, UCb(R)).
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Remark 2.4.8. Given an exponentially bounded C-regularized semigroup

{S(t)}t≥0, one can define the Favard class of {S(t)}t≥0 similarly as in the case of

strongly continuous semigroups (see, e.g., [22], [26, Section III.3]) by

Fav(S(t)) :=

{
x ∈ X; sup

t>0

∥∥∥∥
1

t
(S(t)x− x)

∥∥∥∥ < ∞
}

.

Then one proves that (2.3.1) holds for B ∈ L(X) with

R(B) ⊂ C2(Fav(S(t)), (2.4.7)

and that (2.3.10) holds for a closed linear operator B in X with

D(B) ⊃ D(A) and R(B) ⊂ C2(Fav(S(t)).

When {S(t)}t≥0 is a strongly continuous semigroup, this result is essentially Theo-

rem 2.4.6.

In Example 2.4.7, the permissible space for R(B) can be large as

C(FA0) = {f ∈ C3(R); f is bounded and f ′′′ is Lipschitz continuous}.

However, if either (2.4.7) or (2.4.1) were used, the range of B would be restricted to

a set which is smaller than or equal to

R(C2) = {f ∈ C4(R); f is bounded and f (4) ∈ UCb(R)}.

It is clear that in this case C(FA0) strictly contains R(C2). This reflects the feature

of Theorem 2.4.6 on which Example 2.4.7 was based.
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Chapter 3

Wave equations with generalized
Wentzell boundary conditions

3.1 Summary

In this chapter we solve an open problem put forward by A. Favini, G. R. Gold-

stein, J. A. Goldstein and S. Romanelli [34], concerning the mixed problem for wave

equations with generalized Wentzell boundary conditions. As a consequence, we

also develop the previous wellposedness result regarding the mixed problem for heat

equations with generalized Wentzell boundary conditions.

3.2 Introduction

Of concern is the following wave equation with generalized Wentzell boundary con-

ditions on [0, 1].





∂2u

∂t2
= c2∂2u

∂x2
, 0 ≤ x ≤ 1, t ∈ R,

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x), 0 ≤ x ≤ 1,

∂2u

∂x2
(j, t) + βj

∂u

∂x
(j, t) + γju(j, t) = 0, j = 0, 1, t ∈ R,

(3.2.1)

where c > 0, and βj, γj (j = 0, 1) are scalar coefficients. For the parabolic problem of

first order in time involving (generalized) Wentzell boundary conditions, A. Favini,

G. R. Goldstein, J. A. Goldstein and S. Romanelli have recently made a systematic
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study and established a series of significant theorems (see [33–35] and references

therein). However, just as pointed out by them ([34]), the case of (generalized)

Wentzell boundary conditions for the wave equation is much trickier. So far, only

for the case of βj = γj = 0 (j = 0, 1), problem (3.2.1) has been shown to be

wellposed in C[0, 1] (see [34, Theorem 2.1]). On the other hand, one knows that the

corresponding first order problem




∂u

∂t
= c2∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0,

u(x, 0) = f(x), 0 ≤ x ≤ 1,

∂2u

∂x2
(j, t) + βj

∂u

∂x
(j, t) + γju(j, t) = 0, j = 0, 1, t ≥ 0,

(3.2.2)

is wellposed in C[0, 1] whenever

γ0, γ1 ≥ 0, β1 > 0 > β0 (3.2.3)

(see [33, Theorem 1.1]). In [34], A. Favini, G. R. Goldstein, J. A. Goldstein and S.

Romanelli put forward an attractive problem:

Is the mixed problem (3.2.1) wellposed in C[0, 1] in the case of (3.2.3)?

It is a challenging question since so little is known about wave equations with gener-

alized Wentzell boundary conditions, and the methods in [33] and [34] appear to be

no longer applicable to the new situation. The importance of the problem in theory

and application makes it worthwhile to study it.

The present chapter aims at solving this open problem. In fact, we shall prove

the wellposedness of (3.2.1) without any restrictions on the complex numbers β0,

β1, γ0 and γ1. As a byproduct, we develop the previous wellposedness result about

(3.2.2) and show that the semigroup governing (3.2.2) is analytic in the right half

plane. Our approach depends on a delicate analysis of certain operator matrices.

Such types of operator matrices have been considered before for problems of first

order in time (see, e.g., [3, 9, 35]).

We write Ci[0, 1], i = 0, 1, 2, for the space of all i-times continuously differentiable

complex valued functions on [0, 1] endowed with the norm

‖f‖Ci[0,1] =
i∑

k=0

max
x∈[0,1]

‖f (k)(x)‖,
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and C[0, 1] := C0[0, 1].

We define a linear operator A in C[0, 1] by





(Af)(x) = c2f ′′(x) 0 ≤ x ≤ 1,

D(A) := {f ∈ C2[0, 1]; f ′′(j) + βjf
′(j) + γjf(j) = 0 at j = 0, 1}.

(3.2.4)

Then (3.2.1) and (3.2.2) are realized in the space C[0, 1] as, respectively,





u′′(t) = Au(t), t ∈ R,

u(0) = f, u′(0) = g,
(ACP2)

and 



u′(t) = Au(t), t ≥ 0,

u(0) = f.
(ACP1)

For an arbitrary linear operator A in a Banach space X, we recall the following

definitions (cf., e.g., [26, 28, 31, 38, 68, 84]).

Definition 3.2.1. (ACP1) is called wellposed in X if D(A) is dense in X, (ACP1)

has a unique solution for each f ∈ D(A), and there exists a locally bounded positive

function M(t) satisfying

‖u(t)‖ ≤ M(t)‖u(0)‖, t ≥ 0,

for any solution u(t) of (ACP1).

Definition 3.2.2. (ACP2) is called wellposed in X if D(A) is dense in X, (ACP2)

has a unique solution for every f, g ∈ D(A), and there exists a locally bounded

positive function M(t) satisfying

‖u(t)‖ ≤ M(t)(‖u(0)‖+ ‖u′(0)‖), t ∈ R,

for any solution u(t) of (ACP2).
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Definition 3.2.3. A family of operators {C(t)}t∈R ⊂ L(X) is called a strongly

continuous cosine function on X if

(i) C(0) = I,

(ii) C(t + s) + C(t− s) = 2C(t)C(s) for all t, s ∈ R,

(iii) C(·)f is continuous on R for each f ∈ X.

The operator A defined by

D(A) :=

{
x ∈ X; lim

t→0+

2

t2
(C(t)− I)x exists

}
,

Ax := lim
t→0+

2

t2
(C(t)− I)x for x ∈ D(A)

is called the generator of the strongly continuous cosine function {C(t)}t∈R.

3.3 Wellposedness of (ACP2) and (ACP1)

Throughout this section, we assume that c > 0, βj, γj ∈ C (j = 0, 1), and the

operator A is as in (3.2.4).

Theorem 3.3.1. (ACP2) is wellposed in C[0, 1].

Proof. Set

A02 = c2 d2

dx2
, D(A02) = H2(0, 1) ∩H1

0 (0, 1),

A0c = c2 d2

dx2
, D(A0c) = {u ∈ C2[0, 1], u(0) = u(1) = 0}.

It is known from d’Alembert’s formula that the operator family {C02(t)}t∈R given

by

(C02(t)f)(x) =
1

2

[
f̃(x + ct) + f̃(x− ct)

]
, f ∈ L2(0, 1),
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is the strongly continuous cosine function on L2(0, 1) generated by A02. Here and

in the sequel we always define

f̃(ξ) :=





f(ξ), ξ ∈ [0, 1),

−f(−ξ), ξ ∈ [−1, 0),

f̃(ξ ± 2n) := f̃(ξ), ξ ∈ [−1, 1), n ∈ N.

Then {S02(t)}t∈R given by

(S02(t)f)(x) =
1

2c

∫ x+ct

x−ct

f̃(σ)dσ, f ∈ L2(0, 1), (3.3.1)

is the corresponding sine function, and so for λ > 0,

(
λ2 − A02

)−1
f =

∫ ∞

0

e−λtS02(t)fdt, f ∈ L2(0, 1). (3.3.2)

Clearly the restrictions

S0c(t) := S02(t)
∣∣
C[0,1]

, t ∈ R, (3.3.3)

leave C[0, 1] invariant and form a strongly continuous L(C[0, 1])-valued function

satisfying

‖S0c(t)‖L(C[0,1]) ≤ |t|, t ∈ R. (3.3.4)

Therefore we have by (3.3.2)

(
λ2 − A0c

)−1
f =

∫ ∞

0

e−λtS0c(t)fdt for λ > 0 and f ∈ C[0, 1]. (3.3.5)

Next we define linear operators Ac : C2[0, 1] ⊂ C[0, 1] → C[0, 1] and P : C[0, 1] →
C2 by

(Acf)(x) := c2f ′′(x), Pf :=

(
f(0)

f(1)

)
.

It is easy to see that

P (D(Ac)) = P (C2[0, 1]) = C2. (3.3.6)

Noting that Ac ∈ L(C2[0, 1], C[0, 1]) and P
∣∣
C2[0,1]

∈ L(C2[0, 1],C2), we deduce as in

[40, Lemma 1.2] that for any λ ∈ ρ(A0c), the restriction P
∣∣
ker(λ−Ac)

is an isomorphism

of
(
ker(λ− Ac), ‖ · ‖C2[0,1]

)
onto C2 because of (3.3.6). Write

Dλ =
(
P

∣∣
ker(λ−Ac)

)−1

, λ ∈ ρ(A0c),
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which is called the Dirichlet operator. We then have

Dλ ∈ L(C2, C2[0, 1]). (3.3.7)

Moreover, it follows as in [40, Lemma 1.3] that

Dλ = Dµ − (λ− µ) (λ− A0c)
−1 Dµ, λ, µ ∈ ρ(A0c). (3.3.8)

Let us now consider the operator matrix

A0 :=

(
Ac 0

0 0

)
, D (A0) :=

{(
f

z

)
∈ C2[0, 1]×C2; Pf = z

}

on the product space E := C[0, 1]×C2. As in [9, Lemma 2.6 and Theorem 2.7 (i)],

one has ρ(A0c) \ {0} ⊂ ρ(A0), and for λ > 0,

λ2 − A0 =

(
λ2 − A0c 0

0 λ2

)(
I −Dλ2

0 I

)
,

(λ2 − A0)
−1

=

(
(λ2 − A0c)

−1
λ−2Dλ2

0 λ−2

)

=

(
(λ2 − A0c)

−1
λ−2D0 − (λ2 − A0c)

−1
D0

0 λ−2

) (3.3.9)

by (3.3.8). So by (3.3.5)

(
λ2 − A0

)−1

(
f

z

)
=

∫ ∞

0

e−λtS0(t)

(
f

z

)
dt for λ > 0,

(
f

z

)
∈ E , (3.3.10)

where

S0(t) :=

(
S0c(t) tD0 − S0c(t)D0

0 t

)
, t ∈ R. (3.3.11)

Obviously, there is a constant b0 > 0 such that

‖S0(t)‖L(E) ≤ b0|t|, t ∈ R, (3.3.12)

by (3.3.4). Define

Gf := −c2

(
β0f

′(0) + γ0f(0)

β1f
′(1) + γ1f(1)

)
, f ∈ D(G) := C1[0, 1],
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G :=

(
0 0

G 0

)
, D(G) := C1[0, 1]×C2.

We then have by (3.3.9)

G
(
λ2 − A0

)−1
=

(
0 0

G (λ2 − A0c)
−1

λ−2GD0 −G (λ2 − A0c)
−1

D0

)
for λ > 0.

(3.3.13)

Since G ∈ L (C1[0, 1],C2) we have GA−1
0c ∈ L (C[0, 1],C2). It follows from (3.3.5)

that for f ∈ D(A0c), λ > 0,

G (λ2 − A0c)
−1

f = G

∫ ∞

0

e−λtS0c(t)fdt

=
(
GA−1

0c

) ∫ ∞

0

e−λtS0c(t)A0cfdt

=

∫ ∞

0

(
GA−1

0c

)
e−λtS0c(t)A0cfdt

=

∫ ∞

0

e−λtGS0c(t)fdt.

(3.3.14)

Using (3.3.1) and (3.3.3), we obtain

GS0c(t)f = −c

(
β0f̃(ct)

β1f̃(1 + ct)

)
, f ∈ D(A0c), t ∈ R.

Writing

H(t)f := −c

(
β0f̃(ct)

β1f̃(1 + ct)

)
, f ∈ C[0, 1], t ∈ R, (3.3.15)

we see from (3.3.14) that

G
(
λ2 − A0c

)−1
f =

∫ ∞

0

e−λtH(t)fdt, f ∈ D(A0c), λ > 0. (3.3.16)

Given f ∈ C[0, 1], there exists a sequence {fn}n∈N ⊂ D(A0c) such that

sup
n∈N

‖fn‖C[0,1] < ∞,

and

‖fn − f‖L2(0,1) → 0, fn → f a.e. in [0, 1]
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as n →∞. Hence we deduce that for λ > 0,

limn→∞ G (λ2 − A0c)
−1

fn = limn→∞ G (λ2 − A02)
−1

fn

= G (λ2 − A02)
−1

f

= G (λ2 − A0c)
−1

f,

(3.3.17)

where we observe that G ∈ L (C1[0, 1],C2) and (λ2 − A02)
−1 ∈ L (L2[0, 1], C1[0, 1]) .

The latter can be derived from the fact

(
λ2 − A02

)−1
: L2[0, 1] → H2(0, 1) ⊂ C1[0, 1]

with the aid of the closed graph theorem. On the other hand, we find from (3.3.15)

that

‖H(t)(fn − f)‖C2 ≤ const for all t ≥ 0 and n ∈ N ,

and

lim
n→∞

H(t)(fn − f) = 0 for almost all t ∈ [0, 1].

According to the dominated convergence theorem, this yields

lim
n→∞

∫ ∞

0

e−λtH(t)(fn − f)dt = 0, λ > 0.

This, together with (3.3.17), shows that (3.3.16) holds for all f ∈ C[0, 1]. Thus, in

view of (3.3.13) we obtain

G (λ2 − A0)
−1

(
f

z

)
=

∫ ∞

0

e−λt

(
0 0

H(t) tGD0 −H(t)D0

)(
f

z

)
dt

for λ > 0 and

(
f

z

)
∈ E .

(3.3.18)

Clearly

H0(t) :=

(
0 0

H(t) tGD0 −H(t)D0

)
(3.3.19)

by (3.3.15) is strongly continuous in t ∈ R \ {0,±c−1,±2c−1, . . . }, and there is a

constant b1 > 0 such that

‖H0(t)‖L(E) ≤ b1(|t|+ 1), t ∈ R.
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Thus we have

‖[H0(t)]
∗m‖L(E) ≤ bm

1 et tm−1

(m− 1)!
, t ≥ 0, m ∈ N,

where ∗m indicates the mth convolution power. This means that

H(t) :=
∞∑

m=1

[H0(t)]
∗m, t ≥ 0,

defines a strongly continuous L(E)-valued function on (0,∞) \ {c−1, 2c−1, . . . } sat-

isfying

‖H(t)‖ ≤
∞∑

m=1

bm
1 et tm−1

(m− 1)!
= b1e

(b1+1)t, t ≥ 0. (3.3.20)

We hence infer from (3.3.18) that for

(
f

z

)
∈ E , λ > b1 + 1,

[
I −G (

λ2 − A0

)−1
]−1

(
f

z

)
−

(
f

z

)
=

∞∑
m=1

[
G

(
λ2 − A0

)−1
]m

(
f

z

)

=
∞∑

m=1

∫ ∞

0

e−λt[H0(t)]
∗m

(
f

z

)
dt

=

∫ ∞

0

e−λtH(t)

(
f

z

)
dt.

In combination with (3.3.10), this yields that λ2 ∈ ρ(A0 +G) for λ > b1 + 1 and

(
λ2 − A0 −G

)−1

(
f

z

)

=
(
λ2 − A0

)−1

(
f

z

)
+

(
λ2 − A0

)−1
{[

I −G (
λ2 − A0

)−1
]−1

− I

} (
f

z

)

=

∫ ∞

0

e−λtS0(t)

(
f

z

)
dt +

∫ ∞

0

e−λt(S0 ∗H)(t)

(
f

z

)
dt

for λ > b1 + 1 and

(
f

z

)
∈ E .
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We know from (3.3.1) and (3.3.3) that

‖S0c(t)− S0c(s)‖L(C[0,1]) ≤ |t− s|, t, s ≥ 0,

which implies, by (3.3.11), the existence of a constant b2 such that

‖S0(t)− S0(s)‖L(E) ≤ b2|t− s|, t, s ≥ 0.

Therefore,
∥∥∥∥∥[(S0 ∗H)(t)− (S0 ∗H)(s)]

(
f

z

)∥∥∥∥∥
E

≤
∥∥∥∥∥
∫ s

0

[S0(t− τ)− S0(s− τ)]H(τ)

(
f

z

)
dτ

∥∥∥∥∥
E

+

∥∥∥∥∥
∫ t

s

S0(t− τ)H(τ)

(
f

z

)
dτ

∥∥∥∥∥
E

≤ b1(b0 + b2)(t− s)e(b1+2)t

∥∥∥∥∥

(
f

z

)∥∥∥∥∥
E
,

(
f

z

)
∈ E , t ≥ s ≥ 0,

by the use of (3.3.12) and (3.3.20). Defining S1(t) := S0(t) + (S0 ∗H)(t) (t ≥ 0) and

summing up the arguments above, we obtain λ2 ∈ ρ(A0 +G) for λ > b1 + 3 and

(
λ2 − A0 −G

)−1

(
f

z

)
=

∫ ∞

0

e−λtS1(t)

(
f

z

)
dt for λ > b1 + 3 and

(
f

z

)
∈ E .

(3.3.21)

In addition, S1(·) is an L(E)-valued function, strongly continuous on [0,∞), satisfy-

ing

‖S1(t)− S1(s)‖L(E) ≤ b(t− s)e(b1+2)t, t ≥ s ≥ 0, (3.3.22)

for a constant b > 0. We now denote by A the part of A0 +G in the closure

E1 := D(A0 +G) = D(A0).

It is not hard to see that

E1 =

{(
f

z

)
∈ C[0, 1]×C2; Pf = z

}
,

and that, by (3.3.21), ((b1 + 3)2,∞) ∈ ρ(A) and all operators

S(t) := S1(t)
∣∣
E1 , t ≥ 0,
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leave E1 invariant. Hence, it follows from (3.3.21) and (3.3.22) that S(t) is strongly

continuously differentiable in t ≥ 0, and C(t) := S′(t) satisfies

‖C(t)‖L(E1) ≤ be(b1+2)t, t ≥ 0, (3.3.23)

λ
(
λ2 − A)−1

(
f

z

)
=

∫ ∞

0

e−λtC(t)

(
f

z

)
dt,

(
f

z

)
∈ E1, λ > b1 + 3. (3.3.24)

Here for the strong differentiability of S(t) we used first the equality

S(t)

(
f

z

)
= t

(
f

z

)
+

∫ t

0

(t− s)S(s)(A0 +G)

(
f

z

)
ds, t ≥ 0,

(
f

z

)
∈ D(A0),

derived from (3.3.21) by the uniqueness theorem of Laplace transforms, to ensure

the differentiability of S(t)

(
f

z

)
for

(
f

z

)
∈ D(A0), and then relied on a density

argument according to the estimate

∥∥∥∥∥S
′(t)

(
f

z

)∥∥∥∥∥
E1

≤ be(b1+2)t

∥∥∥∥∥

(
f

z

)∥∥∥∥∥
E1

, t ≥ 0,

(
f

z

)
∈ D(A0)

deduced from (3.3.22). Finally, we look at the operator A defined in (3.2.4) and

observe that f ∈ D(A) if and only if

f ∈ C2[0, 1], and PAcf = Gf

if and only if

f ∈ C2[0, 1], and (A0 +G)

(
f

Pf

)
∈ E1

if and only if

(
f

Pf

)
∈ D(A). Therefore, f ∈ D(A) and (λ2 − A)f = g if and only

if

(
f

Pf

)
∈ D(A), and

(λ2 − A)

(
f

Pf

)
=

(
(λ2 − Ac)f

−Gf + λ2Pf

)
=

(
g

Pg

)
.
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Accordingly it follows from (3.3.24) that λ2 ∈ ρ(A) for λ > b1 + 3 and

λ(λ2 − A)−1g = π1

(
λ(λ2 − A)−1

(
g

Pg

))

= π1

(∫ ∞

0

e−λtC(t)

(
g

Pg

)
dt

)

=

∫ ∞

0

e−λtC(t)gdt, for λ > b1 + 3 and g ∈ C[0, 1],

(3.3.25)

where π1 is the projection from C[0, 1]×C2 onto C[0, 1] and

C(t)g := π1

(
C(t)

(
g

Pg

))
, t ≥ 0, g ∈ C[0, 1].

Clearly C(·) is a strongly continuous L(C[0, 1])-valued function satisfying

‖C(t)‖C[0,1] ≤ 2be(b1+2)t, t ≥ 0,

by (3.3.23). This and (3.3.25) enable us to conclude that {C(t)}t∈R with C(t) :=

C(−t) for t < 0 is a strongly continuous cosine function on C[0, 1] generated by A

(cf. [84, Lemma 4.2, p. 181]). So the wellposedness of (ACP2) follows immediately

in view of [28, Theorem 5.9] (see also, e.g., [31, Chapter II] and [38, Theorem 8.2,

p. 118]). The proof is then complete.

2

Corollary 3.3.2. The operator A in (3.2.4) is the generator of a strongly continuous

cosine function on C[0, 1].

Proof. This has been established in the final part of the proof of Theorem 3.3.1.

2

Corollary 3.3.3. The operator A in (3.2.4) is the generator of a strongly continuous

analytic semigroup on C[0, 1] of angle π
2
.

Proof. Using Corollary 3.3.2 and Romanov’s formula ([73]; see also, e.g., [38,

Theorem 8.7, p. 120]), we obtain the result.
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Corollary 3.3.4. (ACP1) is wellposed in C[0, 1] for the above operator A .

Proof. It follows from a direct application of a classical theorem due to Hille [11]

and Phillips [12] (see also, e.g., [26, Corollary 6.9, p. 151]), [31, Chapter I]) and [38,

Theorem 1.2, p. 83])) since by Corollary 3.3.3 A generates a strongly continuous

semigroup on C[0, 1].

2

Remark 3.3.5. By a perturbation argument and a similarity transformation as

in [26, Chapter VI, Section 4b], we could see that the conclusions of Corollaries

3.3.3 and 3.3.4 are also true for A being a general nondegenerate second order

differential operator with generalized Wentzell boundary conditions. This fact is also

an immediate consequence of the main result in [56] where the authors treat directly

nonautonomous heat equations with generalized Wentzell boundary conditions.
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Chapter 4

The mixed problem for time

dependent heat equations with

generalized Wentzell boundary

conditions

4.1 Summary

In this chapter, we study the nonautonomous heat equation in C[0, 1] with gener-

alized Wentzell boundary conditions. It is shown, under appropriate assumptions,

that there exists a unique evolution family for this problem and that the family sat-

isfies various regularity properties. This enables us to obtain, for the corresponding

inhomogeneous problem, classical and strict solutions having optimal regularity.

4.2 Introduction

For second order differential operators

A(x, t) = a(x, t)
d2

dx2
+ q(x, t)

d

dx
+ r(x, t), x ∈ [0, 1], t ∈ [0, T ],
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where a(x, t) > 0 (x ∈ [0, 1], t ∈ [0, T ]), we consider the following time dependent

heat equation with a generalized Wentzell boundary condition.




∂u

∂t
= A(x, t)u, 0 ≤ x ≤ 1, 0 ≤ s < t ≤ T,

u(x, s) = f(x), 0 ≤ x ≤ 1,

A(j, t)u(j, t) + βj(t)
∂u

∂x
(j, t) + γj(t)u(j, t) = 0, j = 0, 1, 0 ≤ s < t ≤ T.

(4.2.1)

To the equation we associate the nonautonomous abstract Cauchy problem





u′(t) = A(t)u(t), 0 ≤ s < t ≤ T,

u(s) = f,
(NACP )

in the Banach space C[0, 1], where the operators A(t) are defined by





(A(t)f)(x) = A(x, t)f(x), 0 ≤ x ≤ 1,

D(A(t)) := {f ∈ C2[0, 1]; A(j, t)f(j) + βj(t)f
′(j) + γj(t)f(j) = 0 at j = 0, 1}.

(4.2.2)

Moreover, we assume for the coefficients that

a, q, r ∈ Cα([0, T ]; C[0, 1]), βj, γj ∈ Cα([0, T ];C)

for some α ∈ (0, 1), j = 0, 1,
(4.2.3)

where Cα([0, T ]; X) (for a Banach space X) is the Banach space of Hölder continuous

functions on q : [0, T ] → X with exponent α and norm given by

sup
0≤t≤T

‖q(t)‖X + sup
0≤s<t≤T

(t− s)−α‖q(t)− q(s)‖X .

With these assumptions we will show the wellposedness of (NACP ) and (4.2.1).

The first result about the wellposedness of problem (4.2.1) with Robin boundary

conditions (i.e. with A in the third line of (4.2.1) replaced by zero) was established

in 1956 by T. Kato using C0-semigroups ([47]). Later, T. Kato and H. Tanabe [48]

sharpened this result using analytic semigroups. Recently, the wellposedness for the

autonomous version of (4.2.1) and (NACP ) has been studied by A. Favini, G. R.

Goldstein, J. A. Goldstein and S. Romanelli ([33] and [35]), and most recently, the
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analyticity of the corresponding semigroup was also shown (see [25], [80], [86]). Using

the known facts about the autonomous problem, one is faced in the nonautonomous

case with difficulties caused by the variable domains D(A(t)). So we will use suitable

operator matrices on a product space to avoid this problem. Such matrices appeared

before in abstract form as operator matrices with non-diagonal domain in [63] or as

one-sided coupled operator matrices in [24]. Such operator matrices were also used

in [3], [9], [35] and [86].

We now define, for t ∈ [0, T ], linear operators Ac(t) : C2[0, 1] ⊂ C[0, 1] → C[0, 1]

by

(Ac(t)f)(x) := A(x, t)f(x),

and linear operators Q(t) : C1[0, 1] ⊂ C[0, 1] → C2 by

Q(t)f := −
(

β0(t)f
′(0) + γ0(t)f(0)

β1(t)f
′(1) + γ1(t)f(1)

)
.

The restriction of Ac(t) to the subspace {f ∈ C2[0, 1]; f(0) = f(1) = 0} is

A0c(t) := Ac(t)
∣∣
C0[0,1]∩C2[0,1]

, t ∈ [0, T ].

4.3 Preliminary results

Lemma 4.3.1. Fix t ∈ [0, T ]. For each θ ∈ (π
2
, π), there exist constants Mθ, ωθ > 0

such that

Σ(θ, ωθ) := {z ∈ C; z 6= ωθ, |arg(z − ωθ)| < θ} ⊂ ρ(A0c(t))

and ∥∥(λ− A0c(t))
−1

∥∥
L(C[0,1])

≤ Mθ|λ|−1, (4.3.1)

∥∥(λ− A0c(t))
−1

∥∥
L(C[0,1],C2[0,1])

≤ Mθ (4.3.2)

for λ ∈ Σ(θ, ωθ).
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Proof. The estimate (4.3.1) comes from [26, Chapter VI, Section 4b and the

corresponding notes]. Pick µ ∈ ρ(A0c(t)). It is clear that (µ − A0c(t))
−1 ∈

L(C[0, 1], C2[0, 1]). Hence, for λ ∈ Σ(θ, ωθ), we obtain

∥∥(λ− A0c(t))
−1

∥∥
L(C[0,1],C2[0,1])

≤
∥∥(µ− A0c(t))

−1
∥∥
L(C[0,1],C2[0,1])

∥∥(µ− A0c(t)) (λ− A0c(t))
−1

∥∥
L(C[0,1])

≤ const
∥∥µ (λ− A0c(t))

−1 − λ (λ− A0c(t))
−1 + I

∥∥
L(C[0,1])

≤ const, by (4.3.1).

2

We now consider the product space E := C[0, 1]×C2 and operators thereon

A(t) :=

(
Ac(t) 0

Q(t) 0

)
, D (A(t)) :=

{(
f

y

)
∈ C2[0, 1]×C2; Pf = y

}
,

where Pf :=

(
f(0)

f(1)

)
for f ∈ C[0, 1]. For these operators we have an estimate

analogous to (4.3.1).

Lemma 4.3.2. Let t ∈ [0, T ]. For each θ ∈ (π
2
, π), there exist constants M ′

θ, ω′θ > 0

such that Σ(θ, ω′θ) ⊂ ρ(A0c(t)) and

∥∥(λ− A(t))−1
∥∥
L(E)

≤ M ′
θ|λ|−1 (4.3.3)

for λ ∈ Σ(θ, ω′θ).

Proof. Fix t ∈ [0, T ], θ ∈ (π
2
, π), and µ ∈ ρ(A0c(t)). In order to use perturbation

arguments we write A(t) := A0(t) +Q(t) with

A0(t) :=

(
Ac(t) 0

0 0

)
with D (A0(t)) := D (A(t)) .

Since P (D(Ac(t))) = P (C2[0, 1]) = C2, Ac(t) ∈ L(C2[0, 1], C[0, 1]), and P
∣∣
C2[0,1]

∈
L(C2[0, 1],C2), we can define, similarly to [40, Lemmas 1.2 and 1.3] (see also [9,
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Lemma 2.2]), the Dirichlet operators with respect to Ac(t) by

Dλ(t) :=
(
P

∣∣
ker(λ−Ac(t))

)−1

, λ ∈ ρ(A0c(t)),

such that

Dλ(t) ∈ L(C2, C2[0, 1]) and Dλ(t) = Dµ(t)− (λ− µ) (λ− A0c(t))
−1 Dµ(t) (4.3.4)

for λ, µ ∈ ρ(A0c(t)). Thus we have

λ− A0(t) =

(
λ− A0c(t) 0

0 λ

)(
I −Dλ(t)

0 I

)

for λ ∈ ρ(A0c(t)) and t ∈ [0, T ]. Therefore, ρ(A0c(t)) \ {0} ⊂ ρ(A0(t)) and

(λ− A0(t))
−1 =

(
(λ− A0c(t))

−1 λ−1Dλ(t)

0 λ−1

)
, (4.3.5)

Q(t) (λ− A0(t))
−1 =

(
0 0

Q(t) (λ− A0c(t))
−1 λ−1Q(t)Dλ(t)

)
(4.3.6)

for λ ∈ ρ(A0c(t)) \ {0}.
From (4.3.1), (4.3.4) and (4.3.5), we see that

∥∥(λ− A0(t))
−1

∥∥
L(E)

≤ const |λ|−1, λ ∈ Σ(θ, ωθ). (4.3.7)

We now estimate
∥∥Q(t) (λ− A0(t))

−1
∥∥
L(E)

. To this purpose we use the fact (cf., e.g.,

[26, (2.2), p. 170]) that for each ε > 0 there exists bε such that

‖f ′‖C[0,1] ≤ ε‖f ′′‖C[0,1] + bε‖f‖C[0,1], f ∈ C2[0, 1].

Since Q(t) ∈ L(C1[0, 1],C2), we then deduce by (4.3.1) and (4.3.2) that

∥∥Q(t)
(
λ− A0c(t))

−1f
)∥∥

C2

≤ ‖Q(t)‖L(C1[0,1],C2)

{
ε
∥∥(λ− A0c(t))

−1 f
∥∥

C2[0,1]
+ bε

∥∥(λ− A0c(t))
−1 f

∥∥
C[0,1]

}

≤ ‖Q(t)‖L(C1[0,1],C2)

(
ε + bε|λ|−1

)
Mθ‖f‖C[0,1]

for all λ ∈ Σ(θ, ωθ), f ∈ C[0, 1].
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Choose ε small enough such that ε‖Q(t)‖L(C1[0,1],C2)Mθ ≤ 1
4

and then choose

ω′θ > ωθ such that

‖Q(t)‖L(C1[0,1],C2)bεMθ|λ|−1 ≤ 1

4
for λ ∈ C with |λ| > ω′θ.

Hence ∥∥Q(t) (λ− A0c(t))
−1

∥∥
L(C[0,1],C2)

≤ 1

2
, λ ∈ Σ(θ, ω′θ), (4.3.8)

and, by (4.3.1), (4.3.2) and (4.3.4),

∥∥λ−1Q(t)Dλ(t)
∥∥
L(C2)

≤ 1

2
, λ ∈ Σ(θ, ω′θ).

This combined with (4.3.6) and (4.3.8) yields that

∥∥Q(t) (λ− A0(t))
−1

∥∥
L(E)

≤ 1

2
, λ ∈ Σ(θ, ω′θ).

So the operator λ− A(t) =
[
I −Q(t) (λ− A0(t))

−1] (λ− A0(t)) is invertible with

(λ− A(t))−1 = (λ− A0(t))
−1 [

I −Q(t) (λ− A0(t))
−1]−1

, λ ∈ Σ(θ, ω′θ).

Thus we obtain (4.3.3) by recalling (4.3.7).

2

We now investigate the continuity of the map t 7→ A(t). If we define

D :=

{(
f

y

)
∈ C2[0, 1]×C2; Pf = y

}

endowed with the norm ∥∥∥∥∥

(
f

y

)∥∥∥∥∥
D

:= ‖f‖C2[0,1],

we obtain the following.

Lemma 4.3.3. Under our assumptions, the map t 7→ A(t) belongs to

Cα([0, T ];L(D, E)).
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Proof. For

(
f

y

)
∈ D and t, s ∈ [0, T ], we estimate by (4.2.3) that

∥∥∥∥∥(A(t)− A(s))

(
f

y

)∥∥∥∥∥
E

=

∥∥∥∥∥

(
(Ac(t)− Ac(s))f

(Q(t)−Q(s))f

)∥∥∥∥∥
E

= ‖(Ac(t)− Ac(s))f‖C[0,1] + ‖(Q(t)−Q(s))f‖C2

≤ ‖a(·, t)− a(·, s)‖C[0,1]‖f ′′‖C[0,1] + ‖q(·, t)− q(·, s)‖C[0,1]‖f ′‖C[0,1]

+‖r(·, t)− r(·, s)‖C[0,1]‖f‖C[0,1]

+
∑
j=0,1

(|βj(t)− βj(s)||f ′(j)|+ |γj(t)− γj(s)||f(j)|)

≤ const |t− s|α‖f‖C2[0,1]

≤ const |t− s|α
∥∥∥∥∥

(
f

y

)∥∥∥∥∥
D

.

2

Lemma 4.3.4. For each t ∈ [0, T ], the Banach spaces D and [D(A(t)] are isomor-

phic, and the constants Mθ, ωθ > 0 in Lemma 4.3.2 can be chosen to be independent

of t ∈ [0, T ].

Proof. An isomorphism is easy to find. The independence of the constants is

implied by Lemma 4.3.3 (cf. [14, Appendix]).

2

The following result covers the corresponding ones in [25, 80, 86] with a different

approach.
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Proposition 4.3.5. If A(t) is as in (4.2.2), then it generates a strongly continuous

analytic semigroup of angle π
2

satisfying
∥∥ezA(t)

∥∥ ≤ Mϕeωϕ|z|, z ∈ Σ(ϕ, 0), t ∈ [0, T ],

where Mϕ, ωϕ > 0 are constants dependent on ϕ ∈ (0, π
2
) but independent of t ∈

[0, T ].

Proof. By Lemma 4.3.2, we infer (cf. [75]) that each A(t) generates an analytic

semigroup {esA(t)}s≥0 on E , and the restrictions of esA(t) to E1 := D(A(t)) leave E1

invariant and become a strongly continuous analytic semigroup on E1, generated by

the part A1(t) of A(t) in E1. As a consequence, D(A1(t)) is dense in E1. Clearly

E1 =

{(
f

y

)
∈ C[0, 1]×C2; Pf = y

}
.

It is not hard to see that

f ∈ D(A(t)) if and only if

(
f

Pf

)
∈ D(A1(t)) (4.3.9)

and that

(λ− A(t))−1f = π1

(
(λ− A1(t))

−1

(
f

Pf

))
for λ ∈ ρ(A1(t)) and f ∈ C[0, 1],

(4.3.10)

where π1 is the canonical projection from C[0, 1] × C2 onto C[0, 1]. From (4.3.9)

we know that D(A(t)) is dense in C[0, 1] since D(A1(t)) is dense in E1. Combining

(4.3.9) and Lemma 4.3.4 yields that for each θ ∈ (π
2
, π) there exist constants Mθ,

ωθ > 0 (independent of t ∈ [0, T ]) such that

∥∥(λ− A(t))−1f
∥∥

C[0,1]
≤

∥∥∥∥∥(λ− A1(t))
−1

(
f

Pf

)∥∥∥∥∥
E1

≤ Mθ|λ|−1
(
‖f‖C[0,1] + ‖Pf‖C2

)

≤ 3Mθ|λ|−1 ‖f‖C[0,1] , λ ∈ Σ(θ, ωθ), f ∈ C[0, 1].

This estimate implies the assertion.

2
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4.4 Existence of evolution family for (NACP ) and

regularity for (NACP ) and (INACP )

We now return to (NACP ) as well as to its inhomogeneous version





u′(t) = A(t)u(t) + F (t), 0 ≤ s < t ≤ T,

u(s) = f,
(INACP )

where F (·) is a given function from [0, T ] to C[0, 1].

Before stating the main result we briefly recall the basic concepts for nonau-

tonomous abstract Cauchy problems (compare [61, Definition 6.0.1] or [26, Chapter

VI, Definition 9.2]). We do so for arbitrary linear operators A(t) (t ∈ [0, T ]) in a

Banach space X.

Definition 4.4.1. A family of linear operators {U(t, s)}0≤s≤t≤T ⊂ L(X) is called

an evolution family for (NACP ) if

(I) U(s, s) = I for 0 ≤ s ≤ T ,

(II) U(t, s)U(s, r) = U(t, r) for 0 ≤ r ≤ s ≤ t ≤ T ,

(III) (t, s) → U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T ,

(IV) t 7→ U(t, s) is strongly continuously differentiable in (s, T ] and

∂

∂t
U(t, s) = A(t)U(t, s), 0 ≤ s < t ≤ T.

Definition 4.4.2. (i) Let F (·) ∈ C((s, T ]; X). A function u(·) is called a classical

solution of (INACP ) if u(·) ∈ C1((s, T ]; X) ∩ C([s, T ]; X) and (INACP ) is

satisfied.

(ii) Let F (·) ∈ C([s, T ]; X). A function u(·) is called a strict solution of (INACP )

if u(·) ∈ C1([s, T ]; X) and (INACP ) is satisfied.
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We now prove our main results.

Theorem 4.4.3. Let A(t) be as in (4.2.2). Then there exists a unique evolution

family {U(t, s)}0≤s≤t≤T ⊂ L(C[0, 1]) for (NACP ) with the following properties.

(i) ‖A(t)U(t, s)‖L(C[0,1]) ≤ const (t− s)−1 and

‖A(t)U(t, s)‖L(C2[0,1],C[0,1]) ≤ const

for 0 ≤ s < t ≤ T.

(ii) U(·, s)f ∈ C([s, T ]; C[0, 1]) ∩ C1+α([s + ε, T ]; C[0, 1]) ∩ Cα([s + ε, T ]; C2[0, 1])

for f ∈ C[0, 1], s ∈ [0, T ), ε ∈ (0, T − s).

(iii) U(·, s)f ∈ C1([s, T ]; C[0, 1]) for f ∈ D(A(s)), s ∈ [0, T ).

(iv) U(t, ·)f ∈ C([0, t]; C[0, 1]) for f ∈ C[0, 1], t ∈ (0, T ].

(v) U(t, ·)f ∈ C1([0, t]; C[0, 1]) ∩ C([0, t]; C2[0, 1]) for f ∈ D(A(t)), t ∈ (0, T ].

Proof. By Lemmas 4.3.2 and 4.3.3 there exists, in view of [1, 2] or [61, Sections

6.1 and 6.2], a family of linear operators {U(t, s)}0≤s≤t≤T ⊂ L(E) with the following

properties.

(a) For

(
f

Pf

)
∈ E1, the E-valued function U(·) := U(·, s)

(
f

Pf

)
is the unique

classical solution of the problem





U ′(t) = A(t)U(t), s < t ≤ T,

U(s) =

(
f

Pf

)
(4.4.1)

and belongs to C([s, T ]; E) ∩ C1+α([s + ε, T ]; E) ∩ Cα([s + ε, T ];D) for each

ε ∈ (0, T − s).

(b) For

(
f

Pf

)
∈ D(A1(s)), U(·, s)

(
f

Pf

)
belongs to C1([s, T ]; E).

65



(c) For 0 ≤ s < t ≤ T ,

‖U(t, s)‖L(E) ≤ const, (4.4.2)

‖A(t)U(t, s)‖L(E) ≤ const (t− s)−1, ‖U(t, s)‖L(D,E) ≤ const.

(d) For t ∈ (0, T ],

U(t, ·)
(

f

Pf

)
∈ C([0, t]; E),

(
f

Pf

)
∈ E1,

U(t, ·)
(

f

Pf

)
∈ C1([0, t]; E) ∩ C([0, t];D),

(
f

Pf

)
∈ D(A1(t)).

We now take the first coordinate of U(t, s)

(
f

Pf

)
and define

U(t, s)f := π1

(
U(t, s)

(
f

Pf

))
for 0 ≤ s ≤ t ≤ T and f ∈ C[0, 1].

Observe that u(·) is a classical solution of (NACP ) if and only if U(·) =

(
u(·)

Pu(·)

)

is a classical solution of (4.4.1), and

f ∈ C[0, 1] if and only if

(
f

Pf

)
∈ E1,

f ∈ C2[0, 1] if and only if

(
f

Pf

)
∈ D,

f ∈ D(A(t)) if and only if

(
f

Pf

)
∈ D(A1(t)).

Accordingly, we obtain assertions (i) - (v), as well as (I) and (IV) in Definition 4.4.1,

by the corresponding properties of U(t, s) listed above. Furthermore, we know that

for each f ∈ C[0, 1], (NACP ) has a unique classical solution since the classical

solution of (4.4.1) is unique.
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Next, we show properties (II) and (I) in Definition 4.4.1. To this end, we let

f1 ∈ C[0, 1] and 0 ≤ r ≤ s ≤ t ≤ T . By (ii),

U(·, r)f1, U(·, s)U(s, r)f1 ∈ C([s, T ]; C[0, 1]).

This combined with (IV) in Definition 4.4.1 yields that t 7→ U(t, r)f1 and t 7→
U(t, s)U(s, r)f1 are classical solutions of (NACP ) with the same initial datum

U(s, r)f1 at t = s. Therefore (II) in Definition 4.4.1 is satisfied. The assertion

(III) in Definition 4.4.1 follows from (II), (ii), (iv) and the uniform boundedness of

‖U(t, s)‖L(C[0,1]) for 0 ≤ s < t ≤ T (derived from (4.4.2)).

Finally, the uniqueness of the classical solution of (NACP ) implies the uniqueness

of the evolution family for (NACP ).

2

The inhomogeneous problem can be solved as follows.

Theorem 4.4.4. Let β ∈ (0, α] and F ∈ Cβ([s, T ]; C[0, 1]).

1) If f ∈ C[0, 1], then (INACP ) has a unique classical solution u(·) ∈ C1+β([s+

ε, T ]; C[0, 1]) ∩ Cβ([s + ε, T ]; C2[0, 1]) for every ε ∈ (0, T − s) and is given by

u(t) = U(t, s)f +

∫ t

s

U(t, σ)F (σ)dσ, s ≤ t ≤ T.

2) If f ∈ D(A(s)), the above u(·) is a strict solution of (INACP ).

Proof. Observe that u(·) is a classical (resp. strict) solution of (INACP ) if and

only if U(·)
(

u(·)
Pu(·)

)
is a classical (resp. strict) solution of the following inhomoge-

neous nonautonomous abstract Cauchy problem





U ′(t) = A(t)U(t) +

(
F (t)

PF (t)

)
, s < t ≤ T,

U(s) =

(
f

Pf

)
.

(4.4.3)

Therefore, we obtain the desired conclusions from the corresponding results for

(4.4.3) available because of Lemmas 4.3.2 and 4.3.3 (see the papers [1, 2] or the
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book [61, Corollary 6.1.6 (i) and (iii) and Corollary 6.2.4] stemming from the classical

Sobolevskii-Tanabe work [76, 77] for abstract nonautonomous parabolic equations).

2

Remark 4.4.5. In the same way, we can derive other properties of the evolution

family {U(t, s)}0≤s≤t≤T (of the solutions of (INACP ), resp.) from the corresponding

ones of {U(t, s)}0≤s≤t≤T (of (4.4.3), resp.).
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Chapter 5

Second order abstract parabolic
equations with dynamic boundary
conditions

5.1 Summary

In this chapter, we exhibit a unified treatment of the mixed initial boundary value

problem for second order (in time) parabolic linear differential equations in Banach

spaces whose boundary conditions are of a dynamical nature. Results regarding

existence, uniqueness, continuous dependence (on initial data) and regularity of

classical and strict solutions are established. Moreover, two examples are given as

samples for possible applications.

5.2 Introduction

Of concern is the inhomogeneneous complete second order differential equation

u′′(t) + Au(t) + Bu′(t) = f(t), t > 0, (5.2.1)

in a Banach spaces E, where A and B are linear operators in E, and f an E-valued

function. The Cauchy problem for (5.2.1) has been extensively studied since the

end of 1950s (see H. O. Fattorini [30, 31] and T. J. Xiao and J. Liang [84, 87] for

surveys).
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In this chapter, we consider a mixed initial boundary value problem for (5.2.1),

in which besides the usual initial condition

u(0) = u0, u′(0) = u1, (5.2.2)

there is also a boundary condition given by

x′′(t) + A1x(t) + B1x
′(t) = G0u(t) + G1u

′(t) + g(t), t > 0. (5.2.3)

Here x(·) stands for the boundary value of the state function u(·), these two functions

being connected by a linear boundary operator P (from D(A) to another Banach

space X)

x(t) := Pu(t), t > 0. (5.2.4)

Moreover, A1 and B1 are linear operators in X, g an X-valued function, and Gi

(i = 0, 1) are linear operators (feedback operators) from D(Gi) ⊂ E to X. The

boundary condition (5.2.3) is of a dynamic nature, for which we initially have

x(0) = x0, x′(0) = x1. (5.2.5)

The study of evolution equations with dynamic boundary conditions from the

mathematical point of view dates back to 1961, when J. L. Lions [59, p. 117, 118]

treated such equations and gave weak solutions by means of the variational method.

Since then, this issue has been investigated to a large extent (see, e.g., [8, 9, 27, 32,

33, 35, 37, 43, 53, 59, 74] and references therein). While most of the previous research

concerns the case of first order in time, there has been few regarding the second

order (in time) case. In the present chapter, we shall consider the second order

problem (5.2.1) - (5.2.5) and deal with it in a direct way, without reduction. This

approach will yield strong solutions with desirable regularity, as well as build up

theorems of a general nature.

To begin with, define operators on E := E ×X by

A :=

(
A 0

−G0 A1

)
, D (A) :=

{(
u

x

)
∈ (D(A) ∩ D(G0))×D(A1); x = Pu

}
,

B :=

(
B 0

−G1 B1

)
, D (B) := (D(B) ∩ D(G1))×D(B1).
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By setting

y(t) :=

(
u(t)

x(t)

)
, h(t) :=

(
f(t)

g(t)

)
, y0 :=

(
u0

x0

)
, y1 :=

(
u1

x1

)
,

problem (5.2.1) - (5.2.5) is converted into an abstract Cauchy problem in E of the

following form. 



y′′(t) + Ay(t) + By′(t) = h(t), t > 0,

y(0) = y0, y′(0) = y1.

How can one deal with this problem involving two operator matrices? We shall

present some ideas about it. This chapter is confined to equations of parabolic type,

and those of general case will be considered in the next chapter.

In order to carry out our strategy, we still need to introduce another boundary

operator P1 as a linear operator from D(B) to the quotient space X/X0 (X0 is a

closed linear subspace of X to be kept fixed in the following). The P1 can be chosen

flexibly in applications (see Examples 5.5.1 and 5.5.3) such that the relation

x′(t) ∈ P1u
′(t), t > 0, (5.2.6)

is implied by (5.2.1), (5.2.3) and (5.2.4). The simplest P1 is in the case of X0 = X.

For the two operators A and B in the state space E, we define

A0 := A
∣∣∣
ker P

, B0 := B
∣∣∣
ker P1

. (5.2.7)

Then A0 and B0 have zero boundary values in some sense. A condition of parabolic

type will be given on the operator pair (A0, B0) (also on (A1, B1)), holding quite

often in concrete situations. Moreover, for equations (5.2.1) and (5.2.3), we regard

A, B, A1, and B1 as principal operators to which G0 and G1 are subordinated. For

a wider applicability, we shall include four more perturbing (linear) operators into

our consideration:

Ã : D(Ã) ⊂ E → E, B̃ : D(B̃) ⊂ E → E,

Ã1 : D(Ã1) ⊂ X → X, B̃1 : D(B̃1) ⊂ X → X.

Thus, we shall actually study




y′′(t) +
(
A + Ã

)
y(t) +

(
B + B̃

)
y′(t) = h(t), t > 0,

y(0) = y0, y′(0) = y1

(5.2.8)
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in space E, with the main operator matrices A, B and the perturbing operators Ã,

B̃ defined as follows:

A :=

(
A 0

0 A1

)
, D (A) :=

{(
u

x

)
∈ D(A)×D(A1); x = Pu

}
,

B :=

(
B 0

0 B1

)
, D (B) :=

{(
u

x

)
∈ D(B)×D(B1); x ∈ P1u

}
.

Ã :=

(
Ã 0

−G0 Ã1

)
, B̃ :=

(
B̃ 0

−G1 B̃1

)
.

In Section 2, we shall show under suitable conditions that the operator pair
(
A+Ã,

B+B̃
)

possesses certain parabolicity (Theorem 5.3.3), and then construct an opera-

tor function S̃(·) (a fundamental solution operator of (5.2.8)) having a holomorphic

extension to a sector Σθ (θ ∈ (0, π
2
]) and satisfying various nice properties (The-

orem 5.3.4). Making use of this, we will formulate and prove, in Section 3, our

main theorem (Theorem 5.4.3) with regard to the existence and uniqueness of clas-

sical and strict solutions for (5.2.8), to continuous dependence (on initial data) and

regularity of the solutions. Finally, in Section 4 we shall discuss two applications

of our theorems to platelike equations and damped beam equations with dynamic

boundary conditions.

Notation: Write

Σθ := {λ ∈ C; λ 6= 0, | arg λ| < θ}, θ ∈ (0, π],

Ri(λ) := (λ2 + Ai + λBi)
−1, i = 0, 1, λ ∈ C, (5.2.9)

R̃(λ) := (λ2 +
(
A + Ã

)
+ λ

(
B + B̃)

)−1

, λ ∈ C,

if the inverse operators exist, and

ρ(A0, B0) := {λ ∈ C; R0(λ) exists and belongs to L(E)}.

By [D(A)]P we denote the space D(A) equipped with the norm

‖u‖A,P := ‖u‖+ ‖Au‖+ ‖Pu‖,
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[D(B)]P1 the space D(B) with the norm

‖u‖B,P1 := ‖u‖+ ‖Bu‖+ ‖P1u‖X/X0 ,

[D(A) ∩ D(B)] the space D(A) ∩ D(B) with the norm

‖u‖A,B := ‖u‖+ ‖Au‖+ ‖Bu‖,

and [D(A) ∩ D(B)]P the space D(A) ∩ D(B) with the norm

‖u‖A,B,P := ‖u‖+ ‖Au‖+ ‖Bu‖+ ‖Pu‖.

5.3 Parabolicity

We first give some basic properties of the operators A, B and P .

Lemma 5.3.1. Suppose that the following (H1) is satisfied.

(H1) [D(A)]P and [D(B)]P1are complete, P (D(A) ∩ D(B)) = X, and Pu ∈ P1u for

any u ∈ D(A) ∩ D(B).

Then

(1) The space [D(A) ∩ D(B)]P is complete.

(2) If λ ∈ ρ(A0, B0), λ 6= 0, then P
∣∣∣
ker(λ2+A+λB)

is a bijection of ker(λ2 + A + λB)

onto X, and

Dλ :=

(
P

∣∣∣
ker(λ2+A+λB)

)−1

is bounded from X to (ker(λ2 + A + λB), ‖ · ‖A,B,P ).

(3) For every λ, µ ∈ ρ(A0, B0) with λ, µ 6= 0,

Dλ := Dµ + (µ− λ)R0(λ)(µ + λ + B)Dµ. (5.3.1)
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Proof. (1) Suppose that {un}n∈N is a Cauchy sequence in [D(A)∩D(B)]P . Then

it is easy to see that {un}n∈N is a Cauchy sequence in [D(A)]P . So there exists

u ∈ D(A) such that

un → u, Aun → Au, Pun → Pu as n →∞. (5.3.2)

Moreover, {un}n∈N is also a Cauchy sequence in [D(B)]P1 because of

‖P1un‖X/X0 ≤ ‖Pun‖

by (H1). Therefore there is v ∈ D(B) such that

lim
n→∞

un = v, lim
n→∞

Bun = Bv. (5.3.3)

Combining (5.3.2) and (5.3.3) shows that u = v, and so

u ∈ D(B), lim
n→∞

Bun = Bu.

This verifies the completeness of [D(A) ∩ D(B)]P .

(2) Assume that u, v ∈ ker(λ2 + A + λB) with Pu = Pv. Then

(λ2 + A + λB)(u− v) = 0 and P (u− v) = 0

which implies P1(u− v) = 0. Therefore

u− v ∈ D(A0) ∩ D(B0)

by the definitions of A0 and B0. Thus we have

(λ2 + A0 + λB0)(u− v) = 0.

This yields that u − v = 0 since λ ∈ ρ(A0, B0). Hence P
∣∣∣
ker(λ2+A+λB)

is injective.

Next take x ∈ X. Then there is u ∈ D(A) ∩ D(B) such that Pu = x, by (H1). Put

v1 := R0(λ)(λ2 + A + λB)u, v2 := u− v1.

We see easily that v1 ∈ D(A0) and (λ2 + A + λB)v2 = 0. So

Pv1 = 0, Pv2 = Pu− Pv1 = x,
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and v2 ∈ ker(λ2 + A + λB). This indicates that P
∣∣∣
ker(λ2+A+λB)

is surjective. Finally,

we observe that (ker(λ2 + A + λB), ‖u‖A,B,P ) is a Banach space in view of (1), and

P
∣∣∣
ker(λ2+A+λB)

is a bounded linear operator from (ker(λ2 + A + λB), ‖ · ‖A,B,P ) onto

X. So the open mapping theorem gives the boundedness of Dλ.

(3) Write

Q := [I + (µ− λ)R0(λ)(µ + λ + B)]Dµ.

Then for each x ∈ X,

(λ2 + A + λB)Qx = [(λ2 + A + λB) + µ2 − λ2 + (µ− λ)B]Dµx

= (µ2 + A + µB)Dµx = 0

since Dµx ∈ ker(µ2 + A + µB). Thus we see that the range of Q is contained

in ker(λ2 + A + λB). Moreover, we have PQ = PDµ = I, noting PR0(λ) = 0.

Therefore, we deduce Q = Dλ as claimed. The proof is then complete.

2

The following are the hypotheses of parabolic type on A0,B0 (see (5.2.7)) and on

A1, B1.

(H2) The operators A0 and B0 are closed, and for each ϕ ∈ (0, θ) (θ ∈ (0, π
2
]), there

exist Mϕ, ωϕ > 0 such that

‖λR0(λ)‖,
∥∥λ−1A0R0(λ)

∥∥ ≤ Mϕ|λ|−1, λ ∈ ωϕ + Σπ
2
+ϕ.

(H3) The operators A1 and B1 are closed, and for each ϕ ∈ (0, θ) (θ ∈ (0, π
2
]), there

exist Mϕ, ωϕ > 0 such that

‖λR1(λ)‖,
∥∥λ−1A1R1(λ)

∥∥ ≤ Mϕ|λ|−1, λ ∈ ωϕ + Σπ
2
+ϕ.

Remark 5.3.2. In concrete problems, it happens quite often that A1 and B1 are

bounded operators on X. In this situation, (H3) holds automatically.

Prior to Theorem 5.3.3 below concerning (among others) parabolicity of
(
A+ Ã,

B + B̃
)
, we recall the following notion (cf., e.g., [26, p. 169]):
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A linear operator B in a Banach space Y is called A-bounded, for a linear operator

A in Y , if D(A) ⊂ D(B) and there exist constants a, b > 0 such that

‖By‖ ≤ a‖Ay‖+ b‖y‖ (5.3.4)

for all y ∈ D(A). The A-bound of B is

inf{a > 0; there is b > 0 such that (5.3.4) holds}.

Theorem 5.3.3. Let θ ∈ (0, π
2
]. Suppose that (H1) – (H3) hold. Let

Ã ∈ L ([D(A)]P , E) , B̃ ∈ L ([D(B)]P1 , E) , (5.3.5)

G0 ∈ L ([D(A)]P , X) , G1 ∈ L ([D(B)]P1 , X) , (5.3.6)

Ã1 ∈ L ([D(A1)], X) , B̃1 ∈ L ([D(B1)]X) , (5.3.7)

be such that Ã, G0 are A0-bounded with A0-bound zero, B̃, G1 are B0-bounded with

B0-bound zero, Ã1 is A1-bounded with A1-bound zero, and B̃1 is B1-bounded with

B1-bound zero. Then

(1) A and B are closed, and

Ã ∈ L([D(A)],E), B̃ ∈ L([D(B)],E). (5.3.8)

(2) There exist M ′
ϕ > Mϕ, ω′ϕ > ωϕ such that

‖λR̃(λ)‖,
∥∥∥λ−1AR̃(λ)

∥∥∥ ,
∥∥∥BR̃(λ)

∥∥∥ ≤ M ′
ϕ|λ|−1, λ ∈ ω′ϕ + Σπ

2
+ϕ. (5.3.9)

Proof. We take

(
un

xn

)

n∈N

⊂ D(B) and let

lim
n→∞

(
un

xn

)
=

(
u

x

)
and lim

n→∞
B

(
un

xn

)
=

(
v

y

)
.

Then 



lim
n→∞

xn = x

lim
n→∞

B1xn = y
,





lim
n→∞

un = u

lim
n→∞

Bun = v
,
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and {P1un}n∈N is a Cauchy sequence in X/X0 since

xn ∈ P1un and ‖P1(un − um)‖ ≤ ‖xn − xm‖, m, n ∈ N.

This combined with the closedness of B1 and the completeness of [D(B)]P1 implies

that

x ∈ D(B1), u ∈ D(B), B1x = y, Bu = v, lim
n→∞

P1un = P1u.

We observe that

dist(xn, P1u) = ‖P1un − P1u‖X/X1

because of xn ∈ P1un. It follows that

dist(x, P1u) = lim
n→∞

dist(xn, P1u) = 0,

and therefore x ∈ P1u. Thus we know that B is closed. A similar and simpler

argument shows the closedness of A.

Next, we observe that

∥∥∥∥∥

(
u

x

)∥∥∥∥∥
[D(A)]

= ‖u‖+ ‖x‖+ ‖Au‖+ ‖A1x‖ for

(
u

x

)
∈ D(A),

∥∥∥∥∥

(
u

x

)∥∥∥∥∥
[D(B)]

= ‖u‖+ ‖x‖+ ‖Bu‖+ ‖B1x‖ for

(
u

x

)
∈ D(B),

and that (
u

x

)
∈ D(A) (resp.

(
u

x

)
∈ D(B))

implies

x = Pu (resp. x ∈ P1u).

From this and (5.3.5) – (5.3.7), we see easily that (5.3.8) is true.

Now, fix ϕ ∈ (0, θ) and let λ ∈ ωϕ + Σπ
2
+ϕ. If

(
u

x

)
∈ D(A) ∩ D(B), then by

Lemma 5.3.1 (2),

(λ2 + A + λB)Dλx = 0,

u−Dλx ∈ (ker P ) ∩ D(A) ∩ D(B) = D(A0) ∩ D(B0).
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So we obtain

(λ2 + A + λB)

(
u

x

)
=

(
λ2 + A + λB 0

0 λ2 + A1 + λB1)

)(
u

x

)

=

(
λ2 + A + λB 0

0 λ2 + A1 + λB1

)(
u−Dλx

x

)

=

(
λ2 + A0 + λB0 0

0 λ2 + A1 + λB1

)(
u−Dλx

x

)

=

(
λ2 + A0 + λB0 0

0 λ2 + A1 + λB1

)(
I −Dλ

0 I

)(
u

x

)
.

We then have

λ2 + A + λB =

(
λ2 + A0 + λB0 0

0 λ2 + A1 + λB1

)(
I −Dλ

0 I

)
,

noting that
(

I −Dλ

0 I

)(
u

x

)
∈ (D(A0) ∩ D(B0))× (D(A1) ∩ D(B1))

implies

(
u

x

)
∈ D(A) ∩ D(B). It follows that λ2 + A + λB is invertible and

R(λ) := (λ2 + A + λB)
−1

=

(
I Dλ

0 I

)(
R0(λ) 0

0 R1(λ)

)

=

(
R0(λ) DλR1(λ)

0 R1(λ)

)
,

(5.3.10)

AR(λ) =

(
A0R0(λ) ADλR1(λ)

0 A1R1(λ)

)
. (5.3.11)

Take µ ∈ ωϕ + Σπ
2
+ϕ. Then

ADµ, BDµ ∈ L(X,E), (5.3.12)
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by Lemma 5.3.1 (2). Using (5.3.12) and (H2), we obtain from (5.3.1)

sup
{‖Dλ‖+

∥∥λ−2ADλ

∥∥ ; λ ∈ ωϕ + Σπ
2
+ϕ

}
< ∞.

This combined with (H2) and (H3) yields that

‖λR(λ)‖, ∥∥λ−1AR(λ)
∥∥ ≤ M ′|λ|−1, λ ∈ ωϕ + Σπ

2
+ϕ, (5.3.13)

for some constant M ′ > Mϕ. From (5.3.10) we have

ÃR(λ) =

(
ÃR0(λ) ÃDλR1(λ)

−G0R0(λ) −G0DλR1(λ) + Ã1R1(λ)

)
, (5.3.14)

B̃R(λ) =

(
B̃R0(λ) B̃DλR1(λ)

−G1R0(λ) −G1DλR1(λ) + B̃1R1(λ)

)
. (5.3.15)

Since Ã (resp. B̃) has A0-bound (resp. B0-bound) zero, there exists a(δ) > 0, for

each δ > 0, such that for λ ∈ ωϕ + Σπ
2
+ϕ,

∥∥∥ÃR0(λ)
∥∥∥ ≤ δ‖A0R0(λ)‖+ a(δ)‖R0(λ)‖

≤ δ sup
{‖A0R0(λ)‖; λ ∈ ωϕ + Σπ

2
+ϕ

}

+a(δ) sup
{‖λ2R0(λ)‖; λ ∈ ωϕ + Σπ

2
+ϕ

} |λ|−2,

∥∥∥λB̃R0(λ)
∥∥∥ ≤ δ‖λB0R0(λ)‖+ a(δ)‖λR0(λ)‖

≤ δ sup
{‖λB0R0(λ)‖; λ ∈ ωϕ + Σπ

2
+ϕ

}

+a(δ) sup
{‖λ2R0(λ)‖; λ ∈ ωϕ + Σπ

2
+ϕ

} |λ|−1.

Recalling (H2), which implies

‖B0R0(λ)‖ ≤ (1 + 2Mϕ)|λ|−1, λ ∈ ωϕ + Σπ
2
+ϕ,

we see that the above suprema are all finite. Hence, for each ε > 0, there exists

β(ε) > 0 such that for λ ∈ ωϕ + Σπ
2
+ϕ,

∥∥∥ÃR0(λ)
∥∥∥ ,

∥∥∥λB̃R0(λ)
∥∥∥ ≤ ε + β(ε)|λ|−1.

The same is true of each of ‖G0R0(λ)‖, ‖λG1R0(λ)‖,
∥∥∥Ã1R1(λ)

∥∥∥,
∥∥∥λB̃1R1(λ)

∥∥∥.
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Note that

ÃDµ, B̃Dµ ∈ L(X,E), (5.3.16)

by (5.3.5) and Lemma 5.3.1 (2). We deduce from (5.3.1), (5.3.12) and (5.3.16) that

for λ ∈ ωϕ + Σπ
2
+ϕ,

∥∥∥ÃDλR1(λ)
∥∥∥ ≤

∥∥∥ÃDµ

∥∥∥ ‖R1(λ)‖+
∥∥∥ÃR0(λ)

∥∥∥ ‖Dµ‖ ‖(µ2 − λ2)R1(λ)‖

+
∥∥∥ÃR0(λ)

∥∥∥ ‖BDµ‖‖(µ− λ)R1(λ)‖,
∥∥∥λB̃DλR1(λ)

∥∥∥ ≤
∥∥∥B̃Dµ

∥∥∥ ‖λR1(λ)‖+
∥∥∥λB̃R0(λ)

∥∥∥ ‖Dµ‖ ‖(µ2 − λ2)R1(λ)‖

+
∥∥∥λB̃R0(λ)

∥∥∥ ‖BDµ‖‖(µ− λ)R1(λ)‖.
Then, by (H3) there is a constant C0 > 0 such that for λ ∈ ωϕ + Σπ

2
+ϕ,

∥∥∥ÃDλR1(λ)
∥∥∥ ≤ C0

(
|λ|−2 +

∥∥∥ÃR0(λ)
∥∥∥
)

,

∥∥∥λB̃DλR1(λ)
∥∥∥ ≤ C0

(
|λ|−1 +

∥∥∥λB̃R0(λ)
∥∥∥
)

.

Similarly, we have

‖G0DλR1(λ)‖ ≤ C1

(|λ|−2 + ‖G0R0(λ)‖) , λ ∈ ωϕ + Σπ
2
+ϕ,

‖λG1DλR1(λ)‖ ≤ C1

(|λ|−1 + ‖λG1R0(λ)‖) λ ∈ ωϕ + Σπ
2
+ϕ,

for some constant C1 > 0.

The above arguments imply the existence of a constant ω′ϕ > ωϕ such that

∥∥∥ÃR(λ)
∥∥∥ +

∥∥∥λB̃R(λ)
∥∥∥ ≤ 1

2
, λ ∈ ω′ϕ + Σπ

2
+ϕ,

by the use of (5.3.14) and (5.3.15). Accordingly, we see that for λ ∈ ω′ϕ + Σπ
2
+ϕ,

λ2 +
(
A + Ã

)
+ λ

(
B + B̃

)
=

[
I + ÃR(λ) + λB̃R(λ)

]
(λ2 + A + λB)

is invertible, and

R̃(λ) = R(λ)
[
I + ÃR(λ) + λB̃R(λ)

]−1

.
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This, together with (5.3.13), yields that for λ ∈ ω′ϕ + Σπ
2
+ϕ,

∥∥∥λR̃(λ)
∥∥∥ ,

∥∥∥λ−1ÃR̃(λ)
∥∥∥ ≤ 2M ′|λ|−1,

∥∥∥B̃R̃(λ)
∥∥∥ ≤

∥∥∥λ−1 − λR̃(λ)− λ−1ÃR̃(λ)
∥∥∥ ≤ (1 + 2M ′)|λ|−1.

The proof is now complete.

2

By virtue of Theorem 5.3.3, we can obtain a fundamental solution operator of

(5.2.8) as below.

Theorem 5.3.4. Assume that the conditions of Theorem 5.3.3 hold. Define

S̃(0) = 0, S̃(t) =
1

2πi

∫

Γ

eλtR̃(λ)dλ (t > 0), (5.3.17)

where Γ is any piecewise smooth curve in ω′ϕ + Σπ
2
+ϕ (ϕ ∈ (0, θ)) going from ω′ϕ +

∞e−iδ to ω′ϕ +∞eiδ (for some δ ∈ (
π
2
, π

2
+ ϕ

)
), and leaving ω′ϕ to its left. Then the

following holds.

(1) The operator function S̃(·) can be extended analytically to Σθ such that

S̃(z)y ∈ D(A) ∩ D(B) for y ∈ Y, z ∈ Σθ,

and AS̃(·), BS̃(·) are analytic in Σθ.

(2) For any ϕ ∈ (0, θ), S̃(·) is strongly continuous in Σϕ.

(3) For each y ∈ D(A) ∩ D(B),

lim
t→0+

S̃′(t)y = y, lim
t→0+

BS̃(t)y = 0, lim
t→0+

A

∫ t

0

S̃(s)yds = 0. (5.3.18)

(4) For each ϕ ∈ (0, θ), there exists M̆ϕ > 0 such that

∥∥∥S̃′(z)
∥∥∥ ,

∥∥∥BS̃(z)
∥∥∥ ,

∥∥∥∥A

∫ z

0

S̃(τ)dτ

∥∥∥∥ ≤ M̆ϕeω′ϕRez, for z ∈ Σϕ. (5.3.19)
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(5) For any k ∈ {0, 1, 2, 3, 4}, there exist M, ω > 0 such that
∥∥∥S̃(k)(t)

∥∥∥ ,
∥∥∥BS̃(k−1)(t)

∥∥∥ ,
∥∥∥AS̃(k−2)(t)

∥∥∥ ≤ Mt−(k−1)eωt, t > 0, (5.3.20)

where

S̃(−i)(t) :=

∫ t

0

(t− s)i−1S̃(s)ds, i = 1, 2.

(6) For every z ∈ Σθ,

S̃′′(z) +
(
B + B̃

)
S̃′(z) +

(
A + Ã

)
S̃(z) = 0, (5.3.21)

S̃′′(z)y+S̃′(z)
(
B + B̃

)
y+S̃(z)

(
A + Ã

)
y = 0, y ∈ D(A)∩D(B). (5.3.22)

Proof. By means of Theorem 5.3.3, the arguments similar to those in the proof of

the implication (ii) =⇒ (i) of [84, Theorem 1.1, Section 4.1] justify assertions (1) -

(4) and (6). In order to show assertion (5), we choose Γ = ωϕ + Γ1 with

Γ1 :=
{

ρe±i π+ϕ
2 ; ρ ≥ 1

}
∪ {

eiθ; |θ| ≤ δ
}

.

From (5.3.17) we have

S̃(k)(t) =
1

2πi

∫

Γ

λkeλtR̃(λ)dλ

=
t−1eωϕt

2πi

∫

tΓ1

(
t−1µ + ωϕ

)k
eµR̃(t−1µ + ωϕ)dµ

=
t−1eωϕt

2πi

∫

Γ1

(
t−1µ + ωϕ

)k
eµR̃(t−1µ + ωϕ)dµ,

BS̃(k−1)(t) =
1

2πi

∫

Γ

λk−1eλtBR̃(λ)dλ

=
t−1eωϕt

2πi

∫

Γ1

(
t−1µ + ωϕ

)k−1
eµBR̃(t−1µ + ωϕ)dµ,

AS̃(k−2)(t) =
1

2πi

∫

Γ

λk−2eλtAR̃(λ)dλ

=
t−1eωϕt

2πi

∫

Γ1

(
t−1µ + ωϕ

)k−2
eµAR̃(t−1µ + ωϕ)dµ.
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Therefore, using Theorem 5.3.3 yields that for t > 0,

∥∥∥S̃(k)(t)
∥∥∥ ,

∥∥∥BS̃(k−1)(t)
∥∥∥ ,

∥∥∥AS̃(k−2)(t)
∥∥∥

≤ 1

2π
t−(k−1)eωϕt

∫

Γ

∣∣µ + t2
∣∣k−2

eReµ|dµ|

≤ const t−(k−1)
(
1 + t2

)
eωϕt.

The proof is then complete.

5.4 The main theorem for problem (5.2.8)

Definition 5.4.1. Assume that A, B are closed, and Ã, B̃ satisfy (5.3.8). Let

h ∈ C([0, T ];E).

(i) A function y(·) is called a classical solution of (5.2.8) if y(·) ∈ C2((0, T ];E) ∩
C1([0, T ];E),

y(·) ∈ C((0, T ]; [D(A)]),

∫ ·

0

y(σ)dσ ∈ C([0, T ]; [D(A)]),

y′(·) ∈ C((0, T ]; [D(B)]), y(·)− y(0) ∈ C([0, T ]; [D(B)]),

and (5.2.8) is satisfied.

(ii) A function y(·) is called a strict solution of (5.2.8) if y(·) ∈ C2([0, T ];E) ∩
C([0, T ]; [D(A)]), y′(·) ∈ C([0, T ]; [D(B)]), and (5.2.8) is satisfied.

Remark 5.4.2. It can be seen from (5.3.8) that

(1) if y(·) is a classical solution of (5.2.8), then

B̃y′(·), Ãy(·) ∈ C((0, T ];E),

B̃(y(·)− y(0)), Ã

∫ ·

0

y(σ)dσ ∈ C([0, T ];E);
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(2) if y(·) is a strict solution of (5.2.8), then

B̃y′(·), Ãy(·) ∈ C([0, T ];E).

We here introduce a subset Υ of E, which is closely related to the Brézis-Fraenkel

condition in [7] (see also [36, Appendix], [65]). Put

Υ :=

{
y ∈ D(B); lim

t→0+
Ψ(t, y) = 0

}
, (5.4.1)

where

Ψ(t, y) := inf
v∈D(A)∩D(B)

(
t‖v‖[D(A)∩D(B)] + ‖y − v‖[D(B)] + t−1‖y − v‖) ,

t ∈ (0, T ], y ∈ D(B).
(5.4.2)

It is not difficult to see that

D(A) ∩ D(B) ⊂ Υ ⊂ D(A) ∩ D(B).

We are now in a position to present our main theorem.

Theorem 5.4.3. Let the hypotheses of Theorem 5.3.3 hold, h ∈ Cα([0, T ];E) (α ∈
(0, 1)), y0 ∈ D(A) ∪Υ, and y1 ∈ D(A) ∩ D(B). Then

(1) problem (5.2.8) has a unique classical solution y(·), given by

y(t) = C̃(t)y0 + S̃(t)y1 +

∫ t

0

S̃(t− s)h(s)ds, t ∈ [0, T ], (5.4.3)

where for t ∈ [0, T ],

C̃(t)y0 :=





y0 −
∫ t

0

S̃(s)(A + Ã)y0ds if y0 ∈ D(A),

(
S̃′(t) + S̃(t)(B + B̃)

)
y0 if y0 ∈ Υ.

(5.4.4)

(2) the function y(·) satisfies the following regularity property and estimates:

y′′(·), By′(·),Ay(·) ∈ Cα([ε, T ];E), ε ∈ (0, T ); (5.4.5)
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‖y(t)‖ ≤ const
(
‖h‖C([0,T ];E) + ‖y0‖[D(B)] + ‖y1‖

)

if y0 ∈ Υ, t ∈ [0, T ];

(5.4.6)

‖y′(t)‖ ≤ const
(
‖h‖C([0,T ];E) + ‖y0‖[D(A)] + ‖y1‖

)

if y0 ∈ D(A), t ∈ [0, T ];

(5.4.7)

‖y′′(t)‖+ ‖y′(t)‖[D(B)] + ‖y(t)‖[D(A)]

≤ const
(
‖h‖Cα([0,T ];E) + ‖y0‖[D(A)] + ‖y1‖[D(A)∩D(B)]

)

if y0 ∈ D(A), y1 ∈ D(A) ∩ D(B), t ∈ (0, T ].

(5.4.8)

(3) the function y(t) is a strict solution of (5.2.8) provided y0 ∈ D(A), y1 ∈ Υ,

and

(A + Ã)y0 + (B + B̃)y1 − h(0) ∈ D(A) ∩ D(B). (5.4.9)

Proof. We will use freely the closedness of A, B and the fact (5.3.8) concerning

Ã and B̃. Put

y∗(t) :=

∫ t

0

S̃(t− s)h(s)ds, t ∈ [0, T ].

We then have (noting S̃(0) = 0)

y∗(t) =

∫ t

0

S̃(σ)h(t)dσ +

∫ t

0

S̃(t− σ)(h(σ)− h(t))dσ, t ∈ [0, T ], (5.4.10)

y′∗(t) = S̃(t)h(t) +

∫ t

0

S̃′(t− σ)(h(σ)− h(t))dσ, t ∈ [0, T ], (5.4.11)

y′′∗(t) = S̃′(t)h(t) +

∫ t

0

S̃′′(t− σ)(h(σ)− h(t))dσ, t ∈ (0, T ], (5.4.12)

in view of the estimates

‖h(σ)− h(t)‖ ≤ const (t− σ)α, 0 ≤ σ ≤ t ≤ T, (5.4.13)

and (5.3.20). Thus, we infer by (5.4.13), (5.3.20), (5.3.21) and Theorem 5.3.4 (1)

and (2) that

y′′∗(·), By′∗(·), Ay∗(σ) ∈ C((0, T ];E), (5.4.14)
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y′∗(·), By∗(·), A

∫ ·

0

y∗(σ)dσ ∈ C([0, T ];E), (5.4.15)

y′′∗(t) +
(
B + B̃

)
y′∗(t) +

(
A + Ã

)
y∗(t) = h(t), t ∈ (0, T ]. (5.4.16)

Clearly

y∗(0) = 0, y′∗(0) = 0, (5.4.17)

by (5.4.10), (5.4.11) and (5.3.17). Next, we fix ε ∈ (0, T ). Using (5.4.12), (5.4.13)

and (5.3.20) yields that for ε ≤ s < t ≤ T ,

‖y′′∗(t)− y′′∗(s)‖

≤
∥∥∥S̃′(t)

∥∥∥ ‖h(t)− h(s)‖+

∥∥∥∥
∫ t

s

S̃′′(σ)dσ

∥∥∥∥ ‖h(s)‖

+

∫ s

0

∥∥∥S̃′′(t− σ)− S̃′′(s− σ)
∥∥∥ ‖h(σ)− h(s)‖dσ

+

∥∥∥∥
∫ s

0

S̃′′(t− σ)dσ

∥∥∥∥ ‖h(s)− h(t)‖

+

∫ t

s

∥∥∥S̃′′(t− σ)
∥∥∥ ‖h(σ)− h(t)‖dσ

≤ const

[
(t− s)α +

∫ t

s

σ−1dσ +

∫ s

0

∣∣∣∣
∫ t−σ

s−σ

τ−2dτ

∣∣∣∣ (s− σ)αdσ

+
∥∥∥S̃(t− s)− S̃(t)

∥∥∥ (t− s)α +

∫ t

s

(t− σ)α−1dσ

]

≤ const

[
(t− s)α + ε−1(t− s) + (t− s)

∫ s

0

(t− σ)−1(s− σ)α−1dσ

]

≤ const (t− s)α.

In a similar way, we obtain from (5.4.10) and (5.4.11)

‖By′∗(t)−By′∗(s)‖ , ‖Ay∗(t)−Ay∗(s)‖ ≤ const (t− s)α, ε ≤ s < t ≤ T.

Therefore

y′′∗(·), By′∗(·),Ay∗(·) ∈ Cα([ε, T ];E), ε ∈ (0, T ). (5.4.18)

We now take care of C̃(·)y0 and S̃(·)y1. By (5.4.4) and the related properties of S̃(·)
(see Theorem 5.3.4), we get

C̃(0)y0 = y0, S̃(0)y1 = 0, C̃′(0)y0 = 0, S̃′(0)y1 = y1, (5.4.19)
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C̃′′(·)y0, BC̃′(·)y0, AC̃(·)y0 ∈ C((0, T ];E), (5.4.20)

S̃′′(·)y1, BS̃′(·)y1, AS̃(·)y1 ∈ C((0, T ];E), (5.4.21)

and
C̃′′(t)y0 + S̃′′(t)y1 +

(
B + B̃

)(
C̃′(t)y0 + S̃′(t)y1

)

+
(
A + Ã

)(
C̃(t)y0 + S̃(t)y1

)

= 0, t ∈ (0, T ].

(5.4.22)

Moreover, using (5.3.20), we see easily that for ε ≤ s < t ≤ T ,

∥∥∥C̃ ′′(t)y0 − C̃ ′′(s)y0

∥∥∥
∥∥∥BC̃ ′(t)y0 −BC̃ ′(s)y0

∥∥∥
∥∥∥AC̃(t)y0 −AC̃(s)y0

∥∥∥





≤ const (t− s), (5.4.23)

∥∥∥S̃′′(t)y1 − S̃′′(s)y1

∥∥∥
∥∥∥BS̃′(t)y1 −BS̃′(s)y1

∥∥∥
∥∥∥AS̃(t)y1 −AS̃(s)y1

∥∥∥





≤ const (t− s). (5.4.24)

In the following, we will show that

C̃ ′(t)y0, B
(
C̃(t)y0 − y0

)
, A

∫ t

0

C̃(σ)y0dσ −→ 0 (5.4.25)

as t → 0+. When y0 ∈ D(A), (5.4.25) follows immediately from (5.4.4) and Theo-

rem 5.3.4 (2) and (4). Let now y0 ∈ Υ. Making use of (5.3.20), (5.3.22) and noting

S̃(0) = 0, S̃′(0)v = v for v ∈ D(A) ∩ (D(B), we obtain

∥∥∥C̃ ′(t)y0

∥∥∥

= inf
v∈D(A)∩D(B)

∥∥∥C̃ ′(t)(y0 − v)− S̃(t)
(
A + Ã

)
v
∥∥∥

≤ const inf
v∈D(A)∩D(B)

(
t−1‖y0 − v‖+

∥∥∥
(
B + B̃

)
(y0 − v)

∥∥∥ + t
∥∥∥
(
A + Ã

)
v
∥∥∥
)

≤ const Ψ(t, y0), t ∈ (0, T ] (by (5.4.2)),
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‖B
(
C̃(t)y0 − y0

)
‖

= inf
v∈D(A)∩D(B)

∥∥∥∥BC̃(t)(y0 − v)−B

∫ t

0

S̃(σ)(A + Ã)vdσ + B(v − y0)

∥∥∥∥

≤ const Ψ(t, y0), t ∈ (0, T ],

and
∥∥∥∥A

∫ t

0

C̃(σ)y0dσ

∥∥∥∥

= inf
v∈D(A)∩D(B)

∥∥∥∥∥A

(
S̃(t) +

∫ t

0

S̃(σ)
(
B + B̃

)
dσ

)
(y0 − v)

−A

∫ t

0

(t− σ)S̃(σ)
(
A + Ã

)
vdσ + tAv

∥∥∥∥∥

≤ const Ψ(t, y0), t ∈ (0, T ].

This leads to (5.4.25) in view of the definition of Υ (see (5.4.1)). Combining (5.3.18),

(5.4.14) – (5.4.17), (5.4.19) – (5.4.22), and (5.4.25) together, we deduce that the

function y(·) defined by (5.4.3) is a classical solution of problem (5.2.8).

In order to show the uniqueness, let v(·) be another classical solution of (5.2.8).

Then

v′(t)− y′(t) +
(
B + B̃

)
(v(t)− y(t)) +

(
A + Ã

) ∫ t

0

(v(s)− y(s))ds = 0, t ∈ [0, T ].

So a calculation involving integration by parts shows that for t ∈ [0, T ], λ large

enough,

(
λ +

(
B + B̃

)
+ λ−1

(
A + Ã

)) ∫ t

0

eλ(t−s)(v(s)− y(s))ds

= −v(t) + y(t) + λ−1
(
A + Ã

) ∫ t

0

(v(σ)− y(σ))dσ.

Hence for t ∈ [0, T ],

lim
λ→∞

e−λ

∫ t

0

eλ(t−s)(v(s)− y(s))ds = 0
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since limλ→∞ λ2e−λR̃(λ)w = 0 (w ∈ E). This yields that v(t) = y(t) for all t ∈ [0, T ],

in view of [67, Lemma 1.1, p. 100]. Therefore, assertion (1) is valid. The regularity

property (5.4.5) comes from (5.4.18), (5.4.23) and (5.4.24). Based on the expression

(5.4.3) of y(t), we derive the estimates (5.4.6) – (5.4.8) by (5.3.19) and (5.3.21).

Finally, assume y0 ∈ D(A) and y1 ∈ Υ satisfying (5.4.9). To prove that y(·) (in

this case) is a strict solution, we observe by (5.4.3), (5.3.22) and (5.4.12) that

y′′(t) = −S̃′(t)
((

A + Ã
)

y0 +
(
B + B̃

)
y1 − h(0)

)

+S̃′′(t)y1 + S̃′(t)
(
B + B̃

)
y1 + S̃′(t)(h(t)− h(0))

+

∫ t

0

S̃′′(t− σ)(h(σ)− h(t))dσ, t ∈ (0, T ].

The same reasoning as for (5.4.25) (in the case of y0 ∈ Υ) gives that

lim
t→0+

(
S̃′′(t)y1 + S̃′(t)

(
B + B̃

)
y1

)
= 0.

Therefore

lim
t→0+

y′′(t) = −
(
A + Ã

)
y0 −

(
B + B̃

)
y1 + h(0), (5.4.26)

by (5.3.18) – (5.3.20) and (5.4.13). Analogously, we obtain

lim
t→0+

By′(t) = By1, lim
t→0+

Ay(t) = Ay0. (5.4.27)

Thus, (5.4.26) and (5.4.27) together with assertion (1) justify assertion (3). This

finishes the proof.

2

5.5 Examples

In this section, we present two examples, which do not aim at generality but indicate

how our theorems can be applied to concrete problems.

Example 5.5.1. Let Ω be a bounded domain in Rn with smooth boundary ∂Ω,

and let ρ > 0. We consider the mixed boundary control problem for a structurally
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damped platelike equation (cf., e.g., [54, 55]):





∂2
t u + ∆2u− ρ∆∂tu = 0 in [0, T ]× Ω,

∂2
t

(
u
∣∣
∂Ω

)
= w in [0, T ]× ∂Ω,

∆u
∣∣
∂Ω

= 0 in [0, T ]× ∂Ω,

u(0, ·) = ϕ0, ∂tu(0, ·) = ϕ1 in Ω,

(5.5.1)

where w is the control force.

The objective is to show that problem (5.5.1) (with a suitable w) is wellposed in

Lp(Ω) (1 < p < ∞).

We consider the case where w is built up by a feedback control law:

w = 〈∆u, a〉b + g

with

a ∈ Lq(Ω)

(
1

q
+

1

p
= 1

)
, b ∈ W 2,p(∂Ω),

g ∈ Cα
(
[0, T ]; W 2,p(∂Ω)

)
(α ∈ (0, 1)).

When a = 0, (5.5.1) becomes an open loop problem.

In order to apply our theorems, we take

E = Lp(Ω), X = W 2− 1
p
,p(∂Ω),

B = −ρ∆ with D(B) = W 2,p(Ω),

A = ∆2 with D(A) = {ϕ ∈ D(B2); ∆ϕ
∣∣
∂Ω

= 0},

G0ϕ = 〈∆ϕ, a〉b for ϕ ∈ D(G0) := D(A),

Pϕ = ϕ
∣∣∣
∂Ω

for ϕ ∈ D(P ) := D(A), P1 = P,

A1 = 0, B1 = 0, Ã = 0, Ã1 = 0, B̃ = 0, B̃1 = 0, G1 = 0.

We claim that (H1) is satisfied. In fact, a trace theorem [79, Section 5.5.2, p. 390,

391] says that

P : ϕ 7−→ (
∆ϕ, ϕ

∣∣
∂Ω

)

90



is an isomorphic mapping from W 2,p(Ω) onto Lp(Ω) × W 2− 1
p
,p(∂Ω). Hence, given

x ∈ W 2− 1
p
,p(∂Ω), there exist ϕ ∈ W 2,p(Ω) such that

∆ϕ = 0, ϕ
∣∣
∂Ω

= x.

It follows immediately that

ϕ ∈ D(A) and Pϕ = x.

So P (D(A)∩D(B)) = X. Next we show the completeness of [D(A)]P . To this end,

we take a Cauchy sequence {ψn}n∈N in [D(A)]P . Then, there exist r, r0 ∈ Lp(Ω)

and v ∈ W 2− 1
p
,p(∂Ω) such that

lim
n→∞

‖ψn − r‖Lp(Ω) = 0, (5.5.2)

lim
n→∞

∥∥∆2ψn − r0

∥∥
Lp(Ω)

= 0, (5.5.3)

lim
n→∞

∥∥ψn

∣∣
∂Ω
− v

∥∥
W

2− 1
p ,p

(∂Ω)
= 0, (5.5.4)

∆ψn

∣∣
∂Ω

= 0. (5.5.5)

According to (5.5.3) and (5.5.5), the isomorphism P implies the existence of r1,

r2 ∈ W 2,p(Ω) such that

lim
n→∞

‖∆ψn − r1‖Lp(Ω) = 0, (5.5.6)

∆r1 = r0, r1

∣∣
∂Ω

= 0. (5.5.7)

Using (5.5.2), (5.5.4) and (5.5.6) yields that

r ∈ W 2,p(Ω), ∆r = r1, r
∣∣
∂Ω

= v.

From this, (5.5.7) and (5.5.2) – (5.5.5), we deduce that

r ∈ D(A) and lim
n→∞

‖ψn − r‖A,P = 0.

Therefore [D(A)]P is complete. The completeness of [D(B)]P1 can be verified in the

same way. Moreover, using the P again we find that

‖ · ‖A,P ∼ ‖ · ‖W 2,p(Ω) + ‖∆ · ‖W 2,p(Ω), ‖ · ‖B,P1 ∼ ‖ · ‖W 2,p(Ω). (5.5.8)

Clearly B0 := B
∣∣
kerP1

= −ρ∆D and A0 := A
∣∣
kerP

= ∆2
D (∆D is the Dirichlet

Laplacian). By [36, Theorem 3.4], (H2) holds. The first equivalent relation in (5.5.8)
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tells us that G0 ∈ L([D(A)]P , X). Obviously, G0 is relatively ∆2
D-bounded with ∆2

D-

bound zero. Thus the hypotheses of Theorem 5.3.3 are fulfilled. So Theorem 5.3.3

is applicable to this situation, in which D(A) ∩ D(B) = E,

y(t) =

(
u(t)

x(t)

)
, u(t) = u(t, ·), x(t) := u(t, ·)

∣∣
∂Ω

, t ∈ [0, T ].

Noting (5.5.8), we then obtain the following conclusion:

For every ϕ0, ϕ1 ∈ W 2,p(Ω) with ∆ϕ0, ∆ϕ1 ∈ W 2,p(Ω) and ∆ϕ0

∣∣
∂Ω

= ∆ϕ1

∣∣
∂Ω

=

0, problem (5.5.1) has a unique solution

u ∈ C2 ([0, T ]; Lp(Ω)) ∩ C1
(
[0, T ]; W 2,p(Ω)

)
; (5.5.9)

moreover,

∆u ∈ C([0, T ]; W 2,p(Ω)),

∂2
t u ∈ Cα ([ε, T ]; Lp(Ω)) , ∂tu, ∆u ∈ Cα([ε, T ]; W 2,p(Ω)), ε ∈ (0, T ),

and for t ∈ [0, T ],

∥∥∂2
t u(t, ·)∥∥

Lp(Ω)
+ ‖∂tu(t, ·)‖W 2,p(Ω) + ‖∆u(t, ·)‖W 2,p(Ω)

≤ const

(
‖g‖Cα([0,T ];W 2,p(∂Ω)) +

1∑
j=0

‖ϕj‖W 2,p(Ω) + ‖∆ϕj‖W 2,p(Ω)

)
.

Here, for obtaining the uniqueness we used the fact that if u is a solution of prob-

lem (5.5.1) satisfying (5.5.9), then (∂tu(t, ·))
∣∣
∂Ω

= ∂t

(
u(t, ·)

∣∣
∂Ω

)
, by virtue of the

isomorphism P , and therefore

x′(t) = P1u
′(t) (t ∈ [0, T ]), x(0) = ϕ0

∣∣
∂Ω

, x′(0) = ϕ1

∣∣
∂Ω

.

Remark 5.5.2. To our knowledge, the result in Example 5.5.1(involving the second

order dynamic on the boundary) is new even for the case of p = 2 and a = 0.

Example 5.5.3. Let ρ > 0, α ∈ (0, 1), f ∈ Cα([0, T ]; C[0, 1]),

gj, hj ∈ Cα([0, T ];C), j = 0, 1.
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For each i, j = 0, 1, let Aij(∂ξ) (resp. Bij(∂ξ)) be a linear differential operator in

[0, 1] with complex coefficients of the order not exceeding 3 (resp. of order one). We

consider a damped Euler-Bernoulli beam equation (cf., e.g., [6, 11, 45]) with dynamic

boundary conditions:





∂2
t u + ∂4

ξu− ρ∂2
ξ∂tu = f in (0, T ]× [0, 1],

∂2
t u(t, j) +A0j(∂ξ)u(t, j) + B0j(∂ξ)∂tu(t, j) = gj in (0, T ]× {0, 1},

∂2
t ∂

2
ξu(t, j) +A1j(∂ξ)u(t, j) + B1j(∂ξ)∂tu(t, j) = hj in (0, T ]× {0, 1},

u(0, ·) = ϕ0, ∂tu(0, ·) = ϕ1 in [0, 1],

∂t∂
2
ξu(0, j) = ψj, j = 0, 1.

(5.5.10)

Take

E = C[0, 1], X = C4,

A =
d4

dξ4
with D(A) = C4[0, 1],

B = −ρ
d2

dξ2
with D(B) = C2[0, 1],

G0ϕ = −




A00(∂ξ)ϕ(0)

A01(∂ξ)ϕ(1)

A10(∂ξ)ϕ(0)

A11(∂ξ)ϕ(1)




for ϕ ∈ D(G0) := D(A),

G1ϕ = −




B00(∂ξ)ϕ(0)

B01(∂ξ)ϕ(1)

B10(∂ξ)ϕ(0)

B11(∂ξ)ϕ(1)




for ϕ ∈ D(G1) := D(B),
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Pϕ =




ϕ(0)

ϕ(1)

ϕ′′(0)

ϕ′′(1)




for ϕ ∈ D(P ) := D(A),

P1ϕ =








ϕ(0)

ϕ(1)

z3

z4




; z3, z4 ∈ C





for ϕ ∈ D(P1) := D(B),

A1 = 0, B1 = 0, Ã = 0, Ã1 = 0, B̃ = 0, B̃1 = 0.

Then we have

A0 =
d4

dξ4
with D(A0) = {ϕ ∈ C4[0, 1]; ϕ(0) = ϕ(1) = ϕ′′(0) = ϕ′′(1) = 0},

B0 = −ρ
d2

dξ2
with D(B0) = {ϕ ∈ C2[0, 1]; ϕ(0) = ϕ(1) = 0},

[D(A)]P ' C4[0, 1], [D(B)]P1 ' C2[0, 1].

Obviously (H1) and (H3) are satisfied. So is (H2) by [36, p. 1017, line 4]. Further-

more, we know that G0 (resp. G1) is A0-bounded (resp. B0-bounded) with A0-bound

(resp. B0-bound) zero (cf. [26, p. 170]). Thus the hypotheses of Theorem 5.3.3 are

all satisfied. Therefore Theorem 5.4.3 is applicable. In this case,

y(t) =

(
u(t)

x(t)

)
, u(t) = u(t, ·), x(t) :=




u(t, 0)

u(t, 1)

∂2
ξu(t, 0)

∂2
ξu(t, 1)




, t ∈ (0, T ],

D(A) ∩ D(B) =

{(
ϕ

x

)
∈ C[0, 1]×C4; x ∈ P1ϕ

}
, (5.5.11)

Υ ⊃
{(

ϕ

x

)
∈ C2[0, 1]×C4; Pϕ = x

}
. (5.5.12)
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It is not hard to verify (5.5.11). For (5.5.12), we exploit the fact (shown in the proof

of [36, Theorem 5.1]) that

lim
t→0+

inf
{
t‖ψ‖C4[0,1] + ‖ϕ− ψ‖C2[0,1] + t−1‖ϕ− ψ‖C[0,1]; ψ ∈ D(A0)

}
= 0

(5.5.13)

for every

ϕ ∈ Ω :=
{
ψ ∈ C2[0, 1]; ψ(0) = ψ(1) = ψ′′(0) = ψ′′(1) = 0

}
.

Given ϕ ∈ C2[0, 1], we put

ϕ∗(ξ) = ϕ(0) + (ϕ(1)− ϕ(0))ξ +
1

2
ϕ′′(0)ξ2 +

1

6
(ϕ′′(1)− ϕ′′(0))ξ3, ξ ∈ [0, 1].

Then ϕ− ϕ∗ ∈ Ω. This in combination with (5.5.13) yields that

lim
t→0+

Ψ

(
t,

(
ϕ

Pϕ

))
= 0

and so

(
ϕ

Pϕ

)
∈ Υ. We now use Theorem 5.4.3 to conclude:

(i) For every ϕ0 ∈ C2[0, 1], ϕ1 ∈ C1[0, 1], ψj ∈ C (j = 0, 1), problem (5.5.10) has

a unique solution

u ∈
2⋂

i=0

Ci
(
(0, T ]; C4−2i[0, 1]

) ⋂ (
1⋂

k=0

Ck([0, T ]; C2−2k[0, 1]

)
; (5.5.14)

(ii) ∂i
tu ∈ Cα ([ε, T ]; C4−2i[0, 1]) (ε ∈ (0, T ), i = 0, 1, 2) and

‖u(t, ·)‖C[0,1] ≤ const

[
‖f‖C([0,T ];C[0,1]) +

1∑
j=0

(
‖gj‖C([0,T ];C)

+‖hj‖C([0,T ];C) + |ψj|
)

+ ‖ϕ0‖C2[0,1] + ‖ϕ1‖C[0,1]

]
, t ∈ [0, T ].

(iii) If ϕ0 ∈ C4[0, 1], ϕ1 ∈ C2[0, 1], ψj = ϕ′′1(j) (j = 0, 1), and

ϕ
(4)
0 (j) +A0j(∂ξ)ϕ0(j)− ρϕ′′1(j) + B0j(∂ξ)ϕ1(j) = f(0, j)− gj, j = 0, 1,

then the solution

u ∈
2⋂

i=0

Ci
(
[0, T ]; C4−2i[0, 1]

)
.
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Here, for obtaining the uniqueness, the following fact was taken into account: if

u is a solution of problem (5.5.10) satisfying (5.5.14), then

x(t) = Pu(t), x′(t) = Pu′(t), t ∈ (0, T ],

x(0) =




ϕ0(0)

ϕ0(1)

ϕ′′0(0)

ϕ′′0(1)




, x′(0) =




ϕ1(0)

ϕ1(1)

ψ0

ψ1




.

Remark 5.5.4. In the case of zero boundary value, i.e., when Aij, Bij, gi, hj, ϕi(j),

and ψj (i, j = 0, 1) are all zero, Conclusion (i) and a weaker form of conclusion (iii)

are due to [36, Theorem 5.1].
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Chapter 6

Complete second order abstract
differential equations with
dynamic boundary conditions

6.1 Summary

In this chapter, we continue to deal with the mixed initial boundary value problem

(5.2.1) - (5.2.6) for complete second order (in time) linear differential equations in

Banach spaces, in which time-derivatives occur in the boundary conditions. General

wellposedness theorems are obtained (for the first time) which are used to solve

the corresponding inhomogeneous problems. Examples of applications to initial

boundary value problems for partial differential equations are also presented.

6.2 Preliminaries

In this section, we recall the definition of strong wellposedness for a general second

order abstract Cauchy problem, introduce the notion of strong quasi-wellposedness

and give the corresponding characterization theorems.

Let X and Y be two Banach spaces, and A and B closed linear operators in X.

We shall use the following notations.

R(λ) := (λ2 + A + λB)−1 (if the inverse exists),

Y ↪→ X: Y continuously embedded in X,

ρ(A,B) := {λ ∈ C; R(λ) exists and is in L(X)},
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ρ0(A,B) := {λ ∈ ρ(A,B); R(λ)A is closable},
C(R+;Ls(X,Y)) : the space of all strongly continuous L(X,Y)-valued functions

on R+,

Ceb(R
+;Ls(X,Y)) := {K ∈ C(R+;Ls(X,Y)); there are constants M , ω ≥ 0

such that ‖K(t)‖L(X,Y) ≤ Meωt (t ≥ 0)}.

Definition 6.2.1. The Cauchy problem




x′′(t) + Ax(t) + Bx′(t) = 0, t ≥ 0,

x(0) = x0, x′(0) = x1,
(ACP2;A,B)

is wellposed if

(i) there exist dense subspace X0, X1 of X such that for any x0 ∈ X0, x1 ∈ X1,

(ACP2;A,B) has a solution;

(ii) there exists a locally bounded function M(·) : R+ → R+ such that

‖x(t)‖ ≤ M(t)(‖x0‖+ ‖x1‖), t ≥ 0, (6.2.1)

for any solution x(t) of (ACP2;A,B).

For t ≥ 0, x0 ∈ X0, x1 ∈ X1, set

C(t)x0 := x0(t), S(t)x1 := x1(t),

where x0(·) (resp. x1(·)) is the solution of (ACP2;A,B) with x0(0) = x0, x′0(0) = 0

(resp. x1(0) = 0, x′1(0) = x1). By (6.2.1), C(t) and S(t) (for each t ≥ 0) can be

extended to all of X as bounded linear operators, since X0 and X1 are dense in X.

We call C(·), S(·) the propagators (or solution operators) of (ACP2;A,B).

Definition 6.2.2. (ACP2;A,B) is called to be strongly wellposed if it is wellposed,

and

S(·)x ∈ C1(R+;X) ∩ C(R+; [D(B)]) for every x ∈ X. (6.2.2)

Proposition 6.2.3. ([31, Chapter VIII]) Suppose that (ACP2;A,B) is strongly

wellposed. Then
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(i) D(A) ∩ D(B) is dense in X, and D(A) ⊂ X0, D(A) ∩ D(B) ⊂ X1;

(ii) there exists constants M , ω > 0 such that

‖C(t)‖, ‖S′(t)‖ , ‖BS(t)‖ ≤ Meωt, t ≥ 0; (6.2.3)

(iii) (ω,∞) ⊂ ρ0(A,B) and for λ > ω,

∫ ∞

0

e−λtS(t)xdt = R(λ)x, x ∈ X; (6.2.4)

(iv)

C(t)x := x−
∫ t

0

S(s)Axds, x ∈ D(A). (6.2.5)

As an immediate consequence of Proposition 6.2.3 and [82, Theorem 1] (see also

[84, Theorem 2.3, p. 57]), we have

Proposition 6.2.4. (ACP2;A,B) is strongly wellposed if and only if D(A)∩D(B)

is dense in X, (ω,∞) ⊂ ρ0(A,B) for some ω > 0, and

λ 7→ λR(λ), λ 7→ λ−1AR(λ), λ 7→ λ−1R(λ)A ∈ LT − L(X).

Definition 6.2.5. Let D(A) ∩ D(B) be dense in X. (ACP2;A,B) is called to be

strongly quasi-wellposed if it has a solution for x0 ∈ D(A), x1 ∈ D(A) ∩ D(B), and

there exist two operator functions (propagators)

C(·) ∈ C(R+;Ls([D(A)])), S(·) ∈ C(R+;Ls(X)), (6.2.6)

satisfying (6.2.2) and (6.2.3) (with ‖C(t)‖L([D(A)])) instead of ‖C(t)‖), such that

every solution can be expressed as

x(t) = C(t)x0 + S(t)x1, t ≥ 0. (6.2.7)

Remark 6.2.6. Clearly, (ACP2;A,B) is strongly quasi-wellposed if it is strongly

wellposed.
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Proposition 6.2.7. (ACP2;A,B) is strongly quasi-wellposed if and only if D(A)∩
D(B) is dense in X, (ω,∞) ⊂ ρ(A,B) for some ω > 0, and

λ 7→ λR(λ), λ 7→ λ−1AR(λ) ∈ LT − L(X).

In this case, (6.2.4) and (6.2.5) hold.

Proof. The “only if” part.

It is not difficult to obtain

S′(t)x + BS(t)x + A

∫ t

0

S(s)xds = x, t ≥ 0, x ∈ X, (6.2.8)

S′(t)x + S(t)Bx +

∫ t

0

S(s)Axds = x, t ≥ 0, x ∈ D(A) ∩ D(B). (6.2.9)

Taking Laplace transforms, integrating by parts and using the closedness of A and

B yields that for λ > ω,

(
λ + B + λ−1A

) ∫ ∞

0

e−λtS(t)xdt = λ−1x, x ∈ X,

∫ ∞

0

e−λtS(t)
(
λ + B + λ−1A

)
xdt = λ−1x, x ∈ D(A) ∩ D(B).

So (6.2.4) follows. We see from (6.2.3) and (6.2.4) that

λ 7→ λR(λ), λ 7→ BR(λ) ∈ LT − L(X).

Therefore

λ 7→ λ−1AR(λ) = λ−1 − λR(λ)−BR(λ) ∈ LT − L(X).

The “if” part.

By hypothesis, there exists Ji(·) ∈ Ceb(R
+;Ls(X)) (i = 1, 2) such that for λ large

enough,

λR(λ)x =

∫ ∞

0

e−λtJ1(t)xdt, x ∈ X,

BR(λ)x =

∫ ∞

0

e−λtJ2(t)xdt, x ∈ X.
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Define, for t ≥ 0,

S(t)x :=

∫ t

0

J1(s)xds, x ∈ X,

C(t)x := x−
∫ t

0

S(s)Axds, x ∈ D(A).

Then we see that

BS(t) = J2(t), t ≥ 0,

A

∫ t

0

S(s)xds = x− J1(t)x− J2(t)x, t ≥ 0,

by the uniqueness theorem for Laplace transforms. Therefore (6.2.2), (6.2.3) and

(6.2.6) are true. The same reasoning as in [84, p. 63] gives that

x(·) := C(·)x0 + S(·)x1

is a solution of (ACP2;A,B) for every x0 ∈ D(A), x1 ∈ D(A) ∩ D(B).

Finally, let w(·) be a solution of (ACP2;A,B). Then obviously, w(0) ∈ D(A).

Putting

w∗(t) = w(t)−C(t)w(0), t ≥ 0,

we see that

w′′
∗(t) + Bw′

∗(t) + Aw∗(t) = 0, t ≥ 0,

w∗(0) = 0, w′
∗(0) = w′(0).

So

w′
∗(t) + Bw∗(t) + A

∫ t

0

w∗(s)ds = w′(0), t ≥ 0.

This combined with (6.2.8) implies that

v(·) := w∗(·)− S(·)w′(0)

satisfies

v′(t) + Bv(t) + A

∫ t

0

v(s)ds = 0, t ≥ 0,

v(0) = v′(0) = 0.
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Then arguing similarly as in the proof of [84, Lemma 3.1, p. 67], we obtain v(t) ≡ 0

on [0,∞). Hence

w(t) = C(t)w(0) + S(t)w′(0), t ≥ 0.

The proof is complete.

2

We close this section by stating some assumptions on the operators A0, B0, A1

and B1 which will be used selectively in our theorems.

(H4) The operators A0 and B0 are closed, with dense D(A0) ∩ D(B0), such that

(ω,∞) ⊂ ρ0(A0, B0) for some ω > 0, and

λ 7→ λR0(λ), λ 7→ λ−1A0R0(λ), λ 7→ λ−1R0(λ)A0 ∈ LT − L(E),

where R0(λ) and R1(λ) in (H5) below are as in (5.2.9).

(H′
4) The operators A0 and B0 are closed, with dense D(A0) ∩ D(B0), such that

(ω,∞) ⊂ ρ(A0, B0) for some ω > 0, and

λ 7→ λR0(λ), λ 7→ λ−1A0R0(λ) ∈ LT − L(E).

(H5) The operators A1 and B1 are closed, with dense D(A1) ∩ D(B1), such that

(ω,∞) ⊂ ρ0(A1, B1) for some ω > 0, and

λ 7→ λR1(λ), λ 7→ λ−1A1R1(λ), λ 7→ λ−1R1(λ)A1 ∈ LT − L(X).

The two propagators of (ACP2; Ai, Bi) will be denoted by Ci(·) and Si(·) (i = 0, 1).

6.3 Strong wellposedness and quasi-

wellposedness

In this section, A, B, y(t), y0, y1, Y are as in Section 5.2, except that D(B) is replaced

by

D (B) :=

{(
u

x

)
∈ (D(B) ∩ D(G1))×D(B1); x ∈ P1u

}
.
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We look at the abstract Cauchy problem in Y:





y′′(t) + Ay(t) + By′(t) = 0, t ≥ 0,

y(0) = y0, y′(0) = y1.
(ACP2;A,B)

Theorem 6.3.1. Suppose that (H1), (H4) and (H5) hold, G0 = G1 = 0, and ρ(A0) 6=
∅. Take µ ∈ ρ(A0, B0)/{0} fixed. Then (ACP2;A,B) is strongly wellposed if and

only if 



K1(·), K3(·) ∈ Ceb(R
+;Ls(X, [D(B0)])),

K2(·), K4(·) ∈ Ceb(R
+;Ls(X, [D(A0)])),

(6.3.1)

where for each x ∈ X and t ≥ 0,




K1(t)x :=

∫ t

0

S ′0(t− s)DµS
′
1(s)xds,

K2(t)x :=

∫ t

0

S0(t− s)DµS
′
1(s)xds,

K3(t)x :=

∫ t

0

S ′0(t− s)DµC1(s)xds,

K4(t)x :=

∫ t

0

S0(t− s)DµC1(s)xds.

(6.3.2)

Proof. We first show the denseness of D(A) ∩ D(B). It is clear that

D(A)∩D(B) :=

{(
u

x

)
∈ (D(A) ∩ D(B))× (D(A1) ∩ D(B1)); x = Pu

}
. (6.3.3)

Let

(
u

x

)
∈ E × X. Because D(A1) ∩ D(B1) is dense in X by (H5), there exists a

sequence {xn}n∈N ⊂ D(A1) ∩ D(B1) such that limn→∞ xn = x. (H1) ensures the

existence of a sequence {un}n∈N ⊂ D(A) ∩ D(B) such that Pun = xn, n ∈ N .

Noting D(A0) ∩ D(B0) is dense in E by (H4), we infer that there exists a sequence

{vn}n∈N ⊂ D(A0) ∩ D(B0) such that limn→∞(un − vn) = u. Accordingly

lim
n→∞

(
un − vn

xn

)
=

(
u

x

)
.
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But for each n ∈ N ,

un − vn ∈ D(A) ∩ D(B), xn ∈ D(A1) ∩ D(B1),

and

P (un − vn) = Pun = xn,

i.e.,

(
un − vn

xn

)
∈ D(A) ∩ D(B). Therefore D(A) ∩ D(B) is dense in E.

Moreover, A is closed by the closedness of A1 and the completeness of [D(A)]P ;

so is B by the closedness of B1 and the completeness of [D(B)]P1 .

Let λ ∈ ρ(A0, B0) ∩ ρ(A1, B1), and λ 6= 0. We obtain

λ2 + A+ λB =

(
λ2 + A + λB 0

0 λ2 + A1 + λB1

)

=

(
λ2 + A0 + λB0 0

0 λ2 + A1 + λB1

)(
I −Dλ

0 I

)
,

after observing by Lemma 5.3.1 (2) that (λ2 + A + λB)Dλ = 0, and that

u−Dλx ∈ D(A0) ∩ D(B0) ⇐⇒ u ∈ D(A) ∩ D(B) and Pu = x.

From this, we see that λ ∈ ρ(A,B) and

(λ2 + A+ λB)−1 =

(
R0(λ) DλR1(λ)

0 R1(λ)

)
, (6.3.4)

noting (
I −Dλ

0 I

)−1

=

(
I Dλ

0 I

)
.

Now take γ ∈ ρ(A0). Since [D(A)]P is complete, it follows from [40, Lemma 1.2]

that the restriction P
∣∣∣
ker(γ−A)

: ker(γ − A) → X is invertible and its inverse

D :=

(
P

∣∣∣
ker(γ−A)

)−1

∈ L(X,E).

So

γ − A =

(
γ − A0 0

0 γ − A1

)(
I −D

0 I

)
.
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Thus, (6.3.4) gives that

A(λ2 + A+ λB)−1 =

(
A0R0(λ) ADλR1(λ)

0 A1R1(λ)

)
, (6.3.5)

(λ2 + A+ λB)−1(γ − A)

=

(
R0(λ)(γ − A0) DλR1(λ)(γ − A1)

0 R1(λ)(γ − A1)

)(
I −D

0 I

)
.

(6.3.6)

Observe by (5.3.1) that

DλR1(λ)

= DµR1(λ) + (µ− λ)R0(λ)(BDµ)R1(λ) + (µ2 − λ2)R0(λ)DµR1(λ).
(6.3.7)

But ADµ, BDµ ∈ L(X,E), and

λ3R0(λ)DµR1(λ) = Dµ(λR1(λ))− λB0R0(λ)Dµ(λR1(λ))

−A0R0(λ)Dµ(λR1(λ)),

λR0(λ)DµR1(λ)(γ − A1)

= (γR0(λ))Dµ(λR1(λ))−Dµ

(
λ−1R1(λ)A1

)

+λB0R0(λ)Dµ

(
λ−1R1(λ)A1

)
+ A0R0(λ)Dµ

(
λ−1R1(λ)A1

)
.

We deduce that




λ 7→ λDλR1(λ), λ 7→ λ−1ADλR1(λ) ∈ LT − L(X,E),

λ 7→ λ−1DλR1(λ)(γ − A1) ∈ LT − L(E)

if and only if




λ 7→ λB0R0(λ)Dµ(λR1(λ)), λ 7→ A0R0(λ)Dµ(λR1(λ)) ∈ LT − L(X, E),

λ 7→ λB0R0(λ)Dµ

(
λ−1R1(λ)A1

)
∈ LT − L(X, E),

λ 7→ A0R0(λ)Dµ

(
λ−1R1(λ)A1

)
∈ LT − L(X,E).

(6.3.8)
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This, together with (6.3.4) - (6.3.6) , (H4), (H5) and Proposition 6.2.4, implies that

(ACP2;A,B) is strongly wellposed in E if and only if (6.3.8) is valid. On the other

hand, for x ∈ X,




λR0(λ)Dµ(λR1(λ))x =

∫ ∞

0

e−λtK1(t)xdt,

R0(λ)Dµ(λR1(λ))x =

∫ ∞

0

e−λtK2(t)xdt,

λR0(λ)Dµλ
−1(I −R1(λ)A1)x =

∫ ∞

0

e−λtK3(t)xdt,

R0(λ)Dµλ
−1(I −R1(λ)A1)x =

∫ ∞

0

e−λtK4(t)xdt,

(6.3.9)

because of (6.2.4) and (6.2.5). Therefore (6.3.8) is valid if and only if (6.3.1) holds.

This completes the proof.

2

Theorem 6.3.2. Let the hypotheses (including (6.3.1)) of Theorem 6.3.1 hold. Then

the propagators of (ACP2;A,B) have the following expressions.

C(t)

(
u

x

)
=


C0(t)u−

∫ t

0

J(s)A1xds

C1(t)x


 , t ≥ 0, u ∈ E, x ∈ D(A1), (6.3.10)

S(t)

(
u

x

)
=

(
S0(t)u− J(t)x

S1(t)x

)
, t ≥ 0, u ∈ E, x ∈ X, (6.3.11)

where for t ≥ 0, x ∈ X,

J(t)x := DµS1(t)x + µ

∫ t

0

S0(t− s)(B + µ)DµS1(s)xds

−
∫ t

0

S ′0(t− s)BDµS1(s)xds−
∫ t

0

S ′0(t− s)DµS
′
1(s)xds.

Proof. For each x ∈ X,
∫ ∞

0

e−λtJ(t)xdt := DµR1(λ)x + µR0(λ)(B + µ)DµR1(λ)x

−λR0(λ)(B + λ)DµR1(λ)x

= DλR1(λ),
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by (6.3.7) . So for

(
u

x

)
∈ E, and λ large enough,

∫ ∞

0

e−λt

(
S0(t) J(t)

0 S1(t)

)(
u

x

)
dt = (λ2 + A+ λB)−1

(
u

x

)
.

This gives (6.3.11) because of (6.2.4). From (6.2.5), we deduce that (6.3.10) is

satisfied in the case of

(
u

x

)
∈ D(A). Let now u ∈ E and x ∈ D(A1). The same

reasoning as in the first paragraph of the proof of Theorem 6.3.1 shows the existence

of a sequence (
un

x

)

n∈N

∈ D(A)

such that un → u. This justifies (6.3.10) and completes the proof.

2

Corollary 6.3.3. Suppose that (H1) and (H4) hold, ρ(A0) 6= ∅, and A1, B1 ∈ L(X).

Then (ACP2;A,B) is strongly wellposed.

Proof. Since A1, B1 ∈ L(X), (ACP2; A1, B1) is automatically strongly well-

posed, and so (from Proposition 6.2.3 (i)) both S1(·)x and C1(·)x are solutions

of (ACP2; A1, B1) for any x ∈ X. This implies that

S ′′1 (·), C ′
1(·) ∈ Ceb(R

+;L(X)). (6.3.12)

According to this and from (6.3.1), we get, integrating by parts, for t ≥ 0 and x ∈ X,

K1(t)x = S0(t)Dµx +

∫ t

0

S0(t− s)DµS
′′
1 (s)xds,

K2(t)x =

∫ t

0

S0(τ)Dµxdτ +

∫ t

0

(∫ t−s

0

S0(τ)dτ

)
DµS

′′
1 (s)xds,

K3(t)x = S0(t)Dµx +

∫ t

0

S0(t− s)DµC
′
1(s)xds,

K4(t)x =

∫ t

0

S0(τ)Dµxdτ +

∫ t

0

(∫ t−s

0

S0(τ)dτ

)
DµC

′
1(s)xds.
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On the other hand

B0S0(·), A0

∫ ·

0

S0(σ)dσ ∈ Ceb(R
+;Ls(E)).

This indicates that (6.3.1) is satisfied. Therefore (ACP2;A,B) is strongly wellposed,

in view of Theorem 6.3.1. The proof is then complete.

2

In the sequel, E1 is a Banach space such that

[D(A)]P ↪→ E1 ↪→ E, (6.3.13)

λ 7→ R0(λ) ∈ LT − L(E, E1). (6.3.14)

In the case of [D(A)]P ↪→ [D(B)]P1 and under the hypothesis (H′
4), we can take

E1 = [D(B)]P1 , for which (6.3.13) and (6.3.14) are valid.

Theorem 6.3.4. Suppose that (H1) and (H′
4) hold. Let

G0 ∈ L(E1, X), (6.3.15)

and let

G1 ∈ L(E, X), A1, B1 ∈ L(X). (6.3.16)

Then (ACP2;A,B) is strongly quasi-wellposed, and its second propagator S(·) satis-

fies

S(·) ∈ Ceb(R
+;Ls(E, E1 ×X)). (6.3.17)

Proof. Using (6.2.4) and (6.3.12) , we obtain

λ2R1(λ)x− x =

∫ ∞

0

e−λtS ′′1 (t)xdt, x ∈ X, (6.3.18)

for λ sufficiently large. This yields that

λ 7→ λDλR1(λ), λ 7→ λ−1ADλR1(λ) ∈ LT − L(X,E), (6.3.19)

λ 7→ DλR1(λ) ∈ LT − L(X, E1), (6.3.20)
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by Lemma 5.3.1 (2), (H′
4), (6.3.7), (6.3.13) and (6.3.14) . Write

A0 :=

(
A 0

0 A1

)
, D (A0) :=

{(
u

x

)
∈ D(A)×X; x = Pu

}
,

B0 :=

(
B 0

0 B1

)
, D (B0) :=

{(
u

x

)
∈ D(B)×X; x ∈ P1u

}
.

Making use of (6.3.4) and (6.3.5) (with A0, B0 in place of A, B there), we infer by

(H′
4) and (6.3.18) - (6.3.20) that

λ 7→ λ(λ2 + A0 + λB0)
−1, λ 7→ λ−1A0(λ

2 + A0 + λB0)
−1 ∈ LT − L(E), (6.3.21)

λ 7→ (λ2 + A0 + λB0)
−1 ∈ LT − L(E, E1 ×X). (6.3.22)

Noting that
(

0 0

G0 0

)
(λ2 + A0 + λB0)

−1 =

(
0 0

G0R0(λ) G0DλR1(λ)

)

for λ ∈ ρ(A0, B0) ∩ ρ(A1, B1) (cf. (6.3.4) ), we obtain

λ 7→
(

0 0

G0 0

)
(λ2 + A0 + λB0)

−1 ∈ LT − L(E) (6.3.23)

by (6.3.14), (6.3.15), and (6.3.20). Also it is clear from (6.3.21) that

λ 7→ λ

(
0 0

G1 0

)
(λ2 + A0 + λB0)

−1 ∈ LT − L(E) (6.3.24)

since (
0 0

G1 0

)
∈ L(E).

According to (6.3.21) - (6.3.24) , we deduce in view of [84, Theorem 1.10] that for

λ large enough,

R(λ) := (λ2 + A+ λB)−1

= (λ2 + A0 + λB0)
−1

[
I −

(
0 0

G0 0

)
(λ2 + A0 + λB0)

−1

−λ

(
0 0

G1 0

)
(λ2 + A0 + λB0)

−1

]−1
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exists, and

λ 7→ λR(λ), λ 7→ λ−1AR(λ) ∈ LT − L(E), (6.3.25)

λ 7→ R(λ) ∈ LT − L(E, E1 ×X). (6.3.26)

Moreover, A and B are closed and densely defined operators in E by (H1), (6.3.13),

(6.3.15), (6.3.16) and the fact that D(A0) and D(B0) are dense (from the proof of

Theorem 6.3.1). This and (6.3.25) together justify the strong quasi-wellposedness

of (ACP2;A,B), in view of Proposition 6.2.7.

Finally, a combination of (6.2.4) and (6.3.26) leads to (6.3.17) . The proof is

complete.

2

Theorem 6.3.5. Suppose that (H1) and (H′
4) hold. Let G0 ∈ L(E1, X), G1 ∈

L(E, X), B ∈ L(E), and A1, B1 ∈ L(X). Then (ACP2;A,B) is strongly wellposed,

and its second propagator S(·) satisfies (6.3.17).

Proof. It is easy to see by hypothesis that

B ∈ L(E). (6.3.27)

From the proof of Theorem 6.3.4, we know that (ACP2;A,B) is strongly quasi-

wellposed, and that (6.3.17) and (6.3.25) are satisfied. From (6.3.25) and the

identities

R(λ)A = I − λ2R(λ)− λR(λ)B,

we see that

λ 7→ λ−1R(λ)A ∈ LT − L(E),

since B is bounded. Consequently, (ACP2;A,B) is strongly wellposed by Proposi-

tion 6.2.4.

2

Remark 6.3.6. When B ∈ L(E), (H′
4) holds if and only if

λ 7→ λ(λ2 + A0)
−1 ∈ LT − L(E)

if and only if

−A0 generates a strongly continuous cosine operator function on E

(cf., e.g., [81] or [84, Section 1.4 and Theorem 5.1, p. 75]).
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Corollary 6.3.7. Suppose that [D(A)]P is complete, P (D(A)) = X, and −A0 gen-

erates a strongly continuous cosine operator function on E. Let G0 ∈ L(E1, X)

(with (λ2 + A0)
−1 instead of R0(λ) in (6.3.14)), and A1 ∈ L(X). Define Ẽ := D(A)

endowed with the norm ∥∥∥∥∥

(
u

x

)∥∥∥∥∥eE = ‖u‖[D(A)]P .

Denote by Ã the part of A in Ẽ. Then

(1) (ACP2;A, 0) is strongly wellposed in E, or equivalently, −A generates a

strongly continuous cosine operator function on E;

(2) (ACP2; Ã, 0) is strongly wellposed in Ẽ, or equivalently, −Ã generates a

strongly continuous cosine operator function on Ẽ.

Proof. Clearly, the conditions of Theorem 6.3.5 are satisfied (see Remark 6.3.6).

Thus (ACP2;A, 0) is strongly wellposed in E. This indicates that

λ 7→ λ(λ2 + A)−1 ∈ LT − L(E).

Therefore,

λ 7→ λ(λ2 + Ã)−1 ∈ LT − L([D(A)]).

But ‖ · ‖[D(A)] is equivalent to ‖ · ‖eE. So

λ 7→ λ(λ2 + Ã)−1 ∈ LT − L(Ẽ). (6.3.28)

Thus we infer that −Ã generates a strongly continuous cosine operator function on

Ẽ. This finishes the proof.

2

Corollary 6.3.8. Let the conditions of Corollary 6.3.7 be satisfied. Define an op-

erator Ã on [D(A)]P by

Ãu := Au, D(Ã) := {u ∈ D(A2); PAu + Gu− A1Pu = 0}.
Then −Ã generates a strongly continuous cosine operator function on [D(A)]P .

Proof. It can be seen from (6.3.28) that

λ 7→ λ(λ2 + Ã)−1 ∈ LT − L([D(A)]P ).

This justifies the claim.

2
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6.4 Solutions to inhomogeneous problems

In this section, we are concerned with the following inhomogeneous problem:





y′′(t) + Ay(t) + By′(t) = h(t), t ∈ [0, T ],

y(0) = y0, y′(0) = y1.
(6.4.1)

Definition 6.4.1. Let h ∈ C([0, T ];E).

(ii) A function y(·) is called a solution of (ACP2;A,B) if y(·) ∈ C2([0, T ];E) ∩
C([0, T ]; [D(A)]), y′(·) ∈ C([0, T ]; [D(B)]), and (ACP2;A,B) is satisfied.

Theorem 6.4.2. Let the hypotheses of either Theorem 6.3.1 or Corollary 6.3.3 or

Theorem 6.3.5 hold. Let h ∈ C1([0, T ];E), y0 ∈ D(A), and y1 ∈ D(A)∩D(B). Then

(1) problem (6.4.1) has a unique solution y(·), given by

y(t) = C(t)y0 + S(t)y1 +

∫ t

0

S(t− s)h(s)ds, t ∈ [0, T ], (6.4.2)

where C(·) and S(·) are the two propagators of (ACP2;A,B);

(2) the y(·) satisfies

y′(·) ∈ C([0, T ]; E1 ×X), (6.4.3)

‖y(t)‖ ≤ M
(‖h‖C([0,T ];E) + ‖y0‖+ ‖y1‖

)
, t ∈ [0, T ], (6.4.4)

‖y′′(t)‖+ ‖y(t)‖[D(A)] + ‖y′(t)‖[D(B)] + ‖y′(t)‖E1×X

≤ M
(
‖h‖C1([0,T ];E) + ‖y0‖[D(A)] + ‖y1‖[D(A)] + ‖y1‖[D(B)]

)
, t ∈ [0, T ],

(6.4.5)

for some constant M > 0.

Proof. By hypothesis, (ACP2;A,B) is strongly wellposed. Set

w(t) :=

∫ t

0

S(t− s)h(s)ds, t ∈ [0, T ]. (6.4.6)
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Then, according to Definition 6.2.2, we infer that w(0) = w′(0) = 0,

w(t) =

∫ t

0

S(σ)h(0)dσ +

∫ t

0

(∫ s

0

S(σ)dσ

)
h′(t− s)ds, t ∈ [0, T ], (6.4.7)

w′(t) = S(t)h(0) +

∫ t

0

S(s)h′(t− s)ds, t ∈ [0, T ], (6.4.8)

and

w′′(t) = S′(t)h(0) +

∫ t

0

S′(s)h′(t− s)ds, t ∈ [0, T ]; (6.4.9)

therefore

w′′(t) + Aw(t) + Bw′(t) = h(0) +

∫ t

0

h′(t− s)ds = h(t), t ∈ [0, T ],

by (6.2.9). This means that (6.4.2) gives the unique solution y(·) of problem (6.4.1)

by Proposition 6.2.3 (i).

Combining (6.2.5), (6.4.8) and (6.3.17) together, we obtain (6.4.3). The estimate

(6.4.4) follows from (6.4.2) immediately. Using (6.2.5), (6.2.9), (6.3.17), and

(6.4.7) - (6.4.9) verifies estimate (6.4.5). This completes the proof.

2

Theorem 6.4.3. Let the hypotheses of Theorem 6.3.4 hold. Let h ∈ C1([0, T ];E),

y0 ∈ D(A), and y1 ∈ D(A) ∩ D(B). Then the conclusions of Theorem 6.4.2 hold,

except (6.4.4).

Proof. Similar to the proof of Theorem 6.4.2.

2

Corollary 6.4.4. Let the conditions of Corollary 6.3.7 be satisfied. Let h ∈
C1([0, T ]; Ẽ), and y0, y1 ∈ D(A2). Then

(1) the conclusions of Theorem 6.4.2 hold;

(2) the solution y(·) is in C2([0, T ]; Ẽ).
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Proof. Assertion (1) is obvious.

By hypothesis, y0, y1 ∈ D(Ã). It follows that

C(·)y0 + S(·)y1 ∈ C2(R+; Ẽ),

since (ACP2; Ã, 0) is strongly wellposed in Ẽ by Corollary 6.3.7. Moreover

S′(·)
∣∣∣eE ∈ C(R+;Ls(Ẽ)).

Hence, we get assertion (2) by (6.4.2) and (6.4.9).

2

6.5 Examples

Example 6.5.1. Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let

A (ξ, ∂ξ) be a second order strongly elliptic operator with smooth coefficients.

We consider the second order hyperbolic equation with a boundary condition of

Wentzell type:





∂2
t u = A (ξ, ∂ξ) u, in [0, T ]× Ω,

A (ξ, ∂ξ) u
∣∣∣
∂Ω

= Fu, in [0, T ]× ∂Ω,

u(0, ·) = ϕ0, ∂tu(0, ·) = ϕ1, in Ω,

(6.5.1)

where F ∈ L(L2(Ω), L2(∂Ω)). Obviously, problem (6.5.1) is equivalent to the

following one with a dynamical boundary condition:





∂2
t u = A (ξ, ∂ξ) u, in [0, T ]× Ω,

∂2
t u

∣∣∣
∂Ω

= Fu, in [0, T ]× ∂Ω,

u(0, ·) = ϕ0, ∂tu(0, ·) = ϕ1, in Ω.

(6.5.2)
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We let

E = E1 = L2(Ω), X = L2(∂Ω),

Aϕ = −A (ξ, ∂ξ) ϕ for ϕ ∈ D(A) := {ϕ ∈ H
1
2 (Ω); A (ξ, ∂ξ) ϕ ∈ L2(Ω)},

Pϕ = ϕ
∣∣∣
∂Ω

for ϕ ∈ D(P ) := D(A),

G = F, A1 = 0.

Take λ0 ≥ 0 such that if

(λ0 − A (ξ, ∂ξ)) ϕ = 0

for a ϕ ∈ H2(Ω) ∩ H1
0 (Ω), then ϕ = 0. From [60, Theorem 7.4, p. 188], we know

that the mapping

P : ϕ 7−→
(
(λ0 − A (ξ, ∂ξ)) ϕ, ϕ

∣∣∣
∂Ω

)

is an algebraic and topological isomorphism of D
1
2
A(Ω) onto Ξ−

3
2 (Ω)×L2(∂Ω), where

D
1
2
A(Ω) and Ξ−

3
2 (Ω) are defined in [60] satisfying

D
1
2
A(Ω) ↪→ H

1
2 (Ω), L2(Ω) ↪→ Ξ−

3
2 (Ω),

and

D
1
2
A(Ω) =

{
ϕ ∈ H

1
2 (Ω); ∆ϕ ∈ Ξ−

3
2 (Ω)

}
.

Hence, for each w ∈ L2(∂Ω) there exists ϕ ∈ H
1
2 (Ω) such that

(λ0 − A (ξ, ∂ξ)) ϕ = 0, ϕ
∣∣∣
∂Ω

= w.

This implies that

P (D(A))) = X.

Moreover [D(A)]P is complete. In fact, if {ϕn}n∈N is a Cauchy sequence in [D(A)]P ,

then there exist ψi ∈ L2(Ω) (i = 0, 1) and w0 ∈ L2(∂Ω) such that

lim
n→∞

‖ϕn − ψ0‖L2(Ω) = 0,

lim
n→∞

‖A (ξ, ∂ξ) ϕn − ψ1‖L2(Ω) = 0,

lim
n→∞

∥∥∥ϕn

∣∣∣
∂Ω
− w0

∥∥∥
L2(∂Ω)

= 0.
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The mapping P tells us that

ψ0 ∈ H
1
2 (Ω), (λ0 − A (ξ, ∂ξ)) ϕ = λ0ψ0 − ψ1, ϕ0

∣∣∣
∂Ω

= w0.

So ψ0 ∈ D(A) and

lim
n→∞

‖ϕn − ψ0‖A,P = 0.

Next, put

AD = −A
∣∣∣
H2(Ω)∩H1

0 (Ω)
.

It is clear that λ0 ∈ ρ(AD). Let ϕ ∈ D(A) with ϕ
∣∣∣
∂Ω

= 0. Then

Pϕ = P (
(λ0 − AD)−1((λ0 + A)ϕ)

)
= ((λ0 + A)ϕ, 0).

Since P is injective, it follows that

ϕ = (λ0 − AD)−1((λ0 + A)ϕ) ∈ D(AD).

Therefore, we obtain

A0

(
:= A

∣∣∣
ker P

)
= −AD.

It is known that AD is the generator of a strongly continuous cosine operator function

on L2(Ω). Thus the conditions of Corollary 6.3.7 are satisfied. Consequently, the

operator

A :=

(
A (ξ, ∂ξ) 0

F 0

)
, with D (A) :=

{(
ϕ

w

)
∈ D(A)× L2(∂Ω); ϕ

∣∣∣
∂Ω

= w

}

generates a strongly continuous cosine operator function on L2(Ω)×L2(∂Ω). Write

H := D(A) equipped with the norm

‖ϕ‖H := ‖ϕ‖L2(Ω) + ‖A(ξ, ∂ξ)ϕ‖L2(Ω) +
∥∥∥ϕ

∣∣∣
∂Ω

∥∥∥
L2(∂Ω)

,

and

Aϕ := A (ξ, ∂ξ) ϕ for ϕ ∈ D(A) :=
{

ϕ ∈ D(A2); A (ξ, ∂ξ) ϕ
∣∣∣
∂Ω

= Fϕ
}

.

Then, we claim by Corollary 6.3.8 that A generates a strongly continuous cosine

operator function on H.
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Example 6.5.2. Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let

ρ ≥ 0, k, m ∈ N with m > k,

f ∈ C1([0, T ]; L2(Ω)), gi ∈ C3([0, T ]; H2(∂Ω)) (i = 1, . . . ,m− 1),

v ∈ L2(∂Ω), and w ∈ H2(∂Ω).

We consider





∂2
t u + (−1)m∆mu + (−1)kρ∆k∂tu = f, in [0, T ]× Ω,

∂2
t u =

〈
∂u

∂ν
, v

〉

L2(∂Ω)

w, in [0, T ]× ∂Ω,

∆iu = gi (i = 1, . . . , m− 1), in [0, T ]× ∂Ω,

u(0, ·) = ϕ0, ∂tu(0, ·) = ϕ1, in Ω,

(6.5.3)

Where
∂

∂ν
is the outward normal derivative on ∂Ω.

Take

E = L2(Ω), E1 = H2(Ω), X = (H
3
2 (∂Ω))m,

A = (−1)m∆m
Ω , B = (−1)kρ∆k

Ω

(where ∆Ω is the Laplacian on Ω, with D(∆Ω) := H2(Ω)),

Pϕ =




ϕ
∣∣∣
∂Ω

∆ϕ
∣∣∣
∂Ω

···
∆m−1ϕ

∣∣∣
∂Ω




for ϕ ∈ D(P ) := D(A),
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P1ϕ =








ϕ
∣∣∣
∂Ω

···
∆k−1ϕ

∣∣∣
∂Ω

wk

···
wm−1




; wi ∈ H
3
2 (∂Ω), i = k, · · · ,m− 1





for ϕ ∈ D(P1) := D(B),

G0ϕ =




〈
∂ϕ

∂ν
, v

〉

L2(∂Ω)

w

0

···
0




for ϕ ∈ D(G0) := E1,

A1 = 0, B1 = 0, G1 = 0.

First, we show that

P (D(A) ∩ D(B)) = X. (6.5.4)

To this end, we recall (see, e.g., [79, p. 390-391]) that the mapping

M : ϕ 7−→
(
∆ϕ, ϕ

∣∣∣
∂Ω

)

is an algebraic and topological isomorphism of H2(Ω) onto L2(Ω)×H
3
2 (∂Ω). There-

fore, given w0, · · · , wm−1 ∈ H
3
2 (∂Ω), there exist ψ1, · · · , ψm−1, ϕ ∈ H2(Ω) such

that





∆ψ1 = 0,

ψ1

∣∣∣
∂Ω

= wm−1,





∆ψ2 = 0,

ψ2

∣∣∣
∂Ω

= wm−2,
· · · ,





∆ϕ = ψm−1,

ϕ
∣∣∣
∂Ω

= w0.
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It is readily seen that

ϕ ∈ D(A) and Pϕ =




w0

···
wm−1




.

So we obtain (6.5.4) , noting D(A) = D(A)∩D(B). Let now {ϕn}n∈N be a Cauchy

sequence in [D(B)]P1 . By the definition of [D(B)]P1 (cf. Section 1 of last chapter),

there exist r, r0 ∈ L2(Ω), v0, · · · , vk−1 ∈ H
3
2 (∂Ω) such that

lim
n→∞

‖ϕn − r‖L2(Ω) = 0,

lim
n→∞

∥∥∆kϕn − r0

∥∥
L2(Ω)

= 0,

lim
n→∞

∥∥∥∆iϕn

∣∣∣
∂Ω
− vi

∥∥∥
H

3
2 (∂Ω)

= 0, i = 0, 1, . . . , k − 1.

Accordingly, the isomorphism M implies the existence of r1, · · · , rk−1 ∈ H2(Ω) such

that

lim
n→∞

∥∥∆k−1ϕn − r1

∥∥
L2(Ω)

= 0, ∆r1 = r0, r1

∣∣∣
∂Ω

= vk−1,

· · · ,

lim
n→∞

‖∆ϕn − rk−1‖L2(Ω) = 0, ∆rk−1 = rk−2, rk−1

∣∣∣
∂Ω

= v1,

r ∈ H2(Ω), ∆r = rk−1, r
∣∣∣
∂Ω

= v0.

Hence

r ∈ D(B) and lim
n→∞

‖ϕn − r‖B,P1 = 0.

Thus we have proved the completeness of [D(B)]P1 . The completeness of [D(A)]P

can be shown in a similar way.

Making use of the mapping M again, we deduce that

‖ · ‖A,P is equivalent to
m−1∑
i=0

‖∆i · ‖H2(Ω),
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and

‖ · ‖B,P1 is equivalent to
k−1∑
i=0

‖∆i · ‖H2(Ω).

This implies that

[D(A)]P ↪→ E1.

Next, denote by ∆D the Dirichlet Laplacian, i.e., ∆D = ∆Ω

∣∣∣
H2(Ω)∩H1

0 (Ω)
. It is clear

that

A0 = (−1)m∆m
D , B0 = (−1)kρ∆k

D.

So (H′
4) and (6.3.14) hold (cf., e.g., [84, p. 232]). Thus, the conditions of Theo-

rem 6.3.4 are satisfied, and therefore Theorem 6.4.3 is applicable to this situation.

Letting

y(t) =

(
u(t)

x(t)

)
, u(t) = u(t, ·), x(t) =




u(t, ·)
∣∣∣
∂Ω

···
∆m−1u(t, ·)

∣∣∣
∂Ω




, t ∈ [0, T ],

we obtain:

For every ϕ0, ϕ1 ∈ D (∆m
Ω ) with (∆jϕ0)

∣∣∣
∂Ω

= gj(0, ·) and (∆jϕ1)
∣∣∣
∂Ω

= ∂tgj(0, ·)
(j = 1, · · · ,m− 1), problem (6.5.3) has a unique solution

u ∈ C2
(
[0, T ]; L2(Ω)

) ∩ C1([0, T ]; H2(Ω)) (6.5.5)

with

∆iu ∈ C1([0, T ]; H2(Ω)), i = 1, . . . , k − 1, (6.5.6)

∆iu ∈ C([0, T ]; H2(Ω)), i = k, . . . ,m− 1;

moreover, u satisfies

∥∥∂2
t u(t, ·)

∥∥
L2(Ω)

+

∥∥∥∥∥
k−1∑
i=0

∆i∂tu(t, ·)
∥∥∥∥∥

H2(Ω)

+

∥∥∥∥∥
m−1∑

i=k

∆iu(t, ·)
∥∥∥∥∥

H2(Ω)

≤ const

[
‖f‖C1([0,T ];L2(Ω)) +

m−1∑
i=1

(
‖∂2

t gi‖C1([0,T ];H2(∂Ω))

+
1∑

j=0

(‖ϕj‖H2(Ω) + ‖∆iϕj‖H2(Ω)

)
)]

, t ∈ [0, T ].
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Here, for getting the uniqueness, we used the fact that if u is a solution of problem

(6.5.3) satisfying (6.5.5) and (6.5.6), then x′(t) ∈ P1u
′(t) (t ∈ [0, T ]),

x(0) =




ϕ0

∣∣∣
∂Ω

∆ϕ0

∣∣∣
∂Ω

···
∆m−1ϕ0

∣∣∣
∂Ω




, x′(0) =




ϕ1

∣∣∣
∂Ω

∆ϕ1

∣∣∣
∂Ω

···
∆m−1ϕ1

∣∣∣
∂Ω




.
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in Tübingen: R. Nagel, G. Huisken, U. Schlotterbeck, H. Ruder

130


