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1. Introduction and motivation

The fixed point techniques represent a very useful tool in proving the existence and uniqueness
of the solution of different type of equations as: integral equations, differential equations, fractional
differential equations. Fixed point theory, which was introduced by Banach in 1922 [1], is growing
fast, having applications in mathematical sciences, discrete dynamics, and more recently in super
fractals. In fact, fixed point theory is considered the primary tool in studying nonlinear analysis,
furthermore, fixed point theory for nonlinear operators have many applications in nonlinear equations
and many other subjects (c.f. [2–4]). In 1969, Nadler [5] studied fixed point theorems for several-
valued mappings, hence generalizing Banach’s fixed point theorem, and this opened a new direction of
research in fixed point theorems. Ghaler [6] extended the metric space and presented 2-metric space,
which prompted a large number of publications discussing various metric space extensions, including
fuzzy metric spaces, Intuitionistic fuzzy metric spaces, Branciari metric spaces, cone metric spaces,
D-metric spaces, and modular metric spaces. Mathematicians have long found studying new spaces
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and their characteristics to be fascinating subjects. In this direction, Bakhtin [7] developed the concept
of b-metric space in 1989, and later more work was done by Czerwik [8] by establishing a weaker
postulate than the traditional triangle inequality. Lately, the concept of b-metric spaces has undergone
considerable generalizations; consult for example, [9, 10]. See [11] for an overview of fixed point
theory on b-metric spaces. Shatanawi et al. thereafter obtained fixed point results on extended b-
metric spaces [12]. Then, George et al. [13] introduced the notion of rectangular b-metric space, which
was later developed into controlled rectangular b-metric space by Mlaiki et al. [14]. Along those same
lines, the notion of controlled metric type spaces was introduced in [15], which was then enhanced to
include double controlled metric type spaces [16]. Recently, many articles appeared dealing with fixed
point theorems on various controlled metric type spaces under different contraction mappings, see for
example, [17–23].

Azam et al. [24] were the first to propose complex-valued metric spaces, which are more general
than real-valued metric spaces. They came up with fixed point theorems for mappings that adhere
to generalized contraction criteria. In 1989, Rao et al. [25] initiated a new type of metric space
which is a generalized form of complex-valued metric spaces, and obtained the fixed point theorem on
such spaces. Ullah et al. [26] accomplished fixed point results on complex valued extended b-metric
space. The concept of complex valued rectangular metric space was introduced by Abbas et al. [27].
Ullah et al. have further researched fixed point results on complex-valued rectangular extended b-
metric spaces [28], while Mlaiki et al. [29] introduced complex valued triple controlled metric types
spaces and obtained fixed point theorem, and Aslam et al. [30] studied fixed point results on complex-
valued controlled metric spaces.

In this article, motivated by the work of Mlaiki et al. [14], we introduce the concept of complex-
valued controlled rectangular metric type space and establish fixed point theorems. Moreover, we
present several examples, and finally, in Section 4, we give two applications of our results.

2. Preliminaries

We begin our preliminaries by providing the notations that were first proposed by Azam et al. [24],
who first discussed complex valued metric spaces in 2011.

Let C denote the set of complex numbers, for z1, z2 ∈ C, we present a partial ordering ⪯ on C as
follows: z1 ⪯ z2 ⇐⇒ Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2). From this we can deduce that z1 ⪯ z2, if
any of the following situations exist:
(C1) Re(z1) = Re(z2) and Im(z1) = Im(z2).
(C2) Re(z1) < Re(z2) and Im(z1) = Im(z2).
(C3) Re(z1) = Re(z2) and Im(z1) < Im(z2).
(C4) Re(z1) < Re(z2) and Im(z1) < Im(z2).
Observe that if z1 ⪯ z2 =⇒ |z1| ≤ |z2|.

Definition 2.1. [24] Let Y , ϕ. If the mapping L : Y2 → C satisfies all the following conditions:

(L1) x = y⇐⇒ L(x, y) = 0;
(L2) L(x, y) = L(y, x);
(L3) L(x, y) ⪯ L(x, z) + L(z, y),
for all x, y, z ∈ Y. Then, (Y,L) is called a complex-valued metric space.

Abbas et al. [27] presented the notion of complex valued rectangular metric space, as follows:
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Definition 2.2. [27] Let Y , ϕ. If the mapping L : Y2 → C satisfies all the following conditions:

(L1) x = y⇐⇒ L(x, y) = 0;
(L2) L(x, y) = L(y, x);
(L3) L(x, y) ⪯ L(x, a) + L(a, b) + L(b, y),
for all x, y ∈ Y and all distinct a, b ∈ Y, each one is different from y and x. Then, (Y,L) is called a
complex-valued rectangular metric space.

Ullah et al. [26] developed the notion of complex-valued extended b-metric spaces. Later, they
initiated the notion of complex-valued rectangular extended metric spaces [28].

Definition 2.3. [28] LetY , ϕ, and let ξ : Y2 → [1,∞) be a function. Define the mapping L : Y2 → C

for all distinct x, y, a, b ∈ Y, as follows:

(L1) x = y⇐⇒ L(x, y) = 0;
(L2) L(x, y) = L(y, x);
(L3) L(x, y) ⪯ ξ(x, y)[L(x, a) + L(a, b) + L(b, y)].
Then, (Y,L) is called a complex-valued rectangular extended b-metric space.

Being inspired, by Definition 2.3 and motivated by the notion of controlled rectangular b-metric
spaces, which was initiated in [14] by Mlaiki et al., we introduce the definition of complex-valued
controlled rectangular metric type spaces.

Definition 2.4. Let X , ϕ, and let Υ : X4 → [1,∞) be a function. Consider the mapping L : X2 → C

meeting the criteria, for all distinct u, v, a, b ∈ X:

1) L(u, v) = 0⇐⇒ u = v;
2) L(u, v) = L(v, u);
3) L(u, v) ⪯ Υ(u, v, a, b)[L(u, a) + L(a, b) + L(b, v)].

Then (X,L) is called a complex-valued controlled rectangular metric type space.
Throughout the rest of this manuscript we denote complex-valued controlled rectangular metric

type space by complex-valued CRMTS .
Note that every complex-valued rectangular metric space is a complex-valued CRMTS , but the

converse is invalid, as the example below illustrates.

Example 2.1. Let X = R. Define L : X2 → C by

L(x, y) = |x − y|2 + i|x − y|2.

For all x, y ∈ X. Define Υ : X4 → [1,∞) by Υ(x, y, a, b) = max{x, y, a, b} + 2. Then, it can be easily
shown that (X,L) is a complex-valued CRMTS . But it is not complex-valued rectangular metric space,
for example consider

L(3, 1/2) > L(3, 1) + L(1, 1/3) + L(1/3, 1/2)
6.25 + 6.25i > (4 + 4i) + (4/9 + 4/9i) + (1/36 + 1/36i) = 161/36 + 161/36i.

Below are some examples of our defined complex-valued CRMTS .

Example 2.2. Let X = [0, 1]. Define L : X2 → C by
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L(x, y) = eik|x − y|.

For all x, y ∈ X, and some k ∈ R+. Define Υ : X4 → [1,∞) by Υ(x, y, a, b) = max{x, y, a, b} + 1. Then
(X,L) is a complex-valued CRMTS .

Example 2.3. Let X = {1, 2, 3, 4}. Define L : X2 → C by
L(x, y) = 0 if and only if x = y,
L(1, 2) = L(2, 1) = 3i, and L(2, 3) = L(3, 2) = L(1, 3) = L(3, 1) = 1i, also L(1, 4) = L(4, 1) = L(4, 2) =
L(2, 4) = L(3, 4) = L(4, 3) = 4i.

Define Υ : X4 → [1,∞) by Υ(x, y, a, b) = max{x, y, a, b}. Clearly properties (1) and (2) of
Definition 2.4 are easily verified. We only verify (3).

L(1, 3) = 1i ⪯ Υ(1, 3, 2, 4)[L(1, 2) + L(2, 4) + L(4, 3)] = 44i.

L(1, 2) = 3i ⪯ Υ(1, 2, 3, 4)[L(1, 3) + L(3, 4) + L(4, 2)] = 36i.

L(3, 4) = 4i ⪯ Υ(3, 4, 1, 2)[L(3, 1) + L(1, 2) + L(2, 4)] = 32i.

L(1, 4) = 4i ⪯ Υ(1, 4, 2, 3)[L(1, 2) + L(2, 3) + L(3, 4)] = 32i.

Thus, (X,L) is a complex-valued CRMTS .
Before defining the convergence of the sequences, the Cauchy sequence and the open ball in the

complex-valued CRMTS . We state the following lemma.

Lemma 2.1. [24] Let (X,L) be a complex-valued CRMTS , and let {χl} be a sequence in X. Then

• The sequence {χl} converges to χ⇐⇒ |L(χl, χ)| → 0 as l→ ∞.
• The sequence {χl} is Cauchy sequence⇐⇒ |L(χl, χk)| → 0 as l, k → ∞.

Definition 2.5. Let (X,L) be a complex-valued CRMTS . Then the convergence of a sequence and the
open ball is defined as follows:

1) We say a sequence {χl} in (X,L) is convergent, if there exists ν ∈ X, such that liml→∞ |L(χl, ν)| = 0.
2) A sequence {χl} is Cauchy⇐⇒ liml,m→∞ |L(χl, χm)| = 0.
3) If every Cauchy sequence in X is convergent, then we say(X,L) is complete.
4) Let a ∈ X, then an open ball with center a and radius 0 < η ∈ C, in (X,L) is defined by

BL(a, η) = {x ∈ X : L(a, x) ≺ η}.

3. Main results

This is a presentation of our first main finding.

Theorem 3.1. Let (X,L) be a complete complex-valued CRMTS , and let T : X → X be a mapping
satisfying L(Tχ,T η̃) ⪯ kL(χ, η̃), for some k ∈ (0, 1). Suppose there exists χ0 ∈ X, so that the
sequence {χl}, defined by χl = T lχ0, satisfies the following:
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sup
m>1

lim
l→∞
Υ(χl, χl+1, χl+2, χm) ≤

1
k
. (3.1)

Then, T admits a unique fixed point in X.

Proof. Let χ0 ∈ X and consider the sequence {χl}, where for each l ≥ 1, we have χl = T lχ0. By the
theorem’s assumption, we have

L(χl, χl+1) ⪯ kL(χl−1, χl) ⪯ k2
L(χl−2, χl−1) ⪯ · · · ⪯ kl

L(χ0, χ1). (3.2)

Denote by L0 = L(χ0, χ1). Thus

|L(χl, χl+1)| ≤ kl|L(χ0, χ1)| = kl|L0|, (3.3)

by taking the limit, we obtain
|L(χl, χl+1)| → 0, as l→ ∞. (3.4)

For all l ≥ 1, we have 2 cases.
Case 1: There exists at least an integer l , m, assume χl = χm. So, in case m > l then T m−l(χl) = χl.
Select χ = χl and p = m − l. Then T pχ = χ, and that is, χ is a periodic point of the contraction T .
Thus, L(χ,Tχ) = L(T pχ,T p+1χ) ⪯ kpL(χ,Tχ). As k ∈ (0, 1), we get |L(χ,Tχ)| = 0, so χ = Tχ, hence
T admits a fixed point χ.
Case 2: Assume for all integers l , m, then T lx , T mx. Let l < m ∈ N, to illustrate that {χl} is a
L−Cauchy sequence, we took into account two sub-cases:
Sub-case 1: Suppose that m = l + 2p + 1. Due to property (3) of Definition 2.4 we have,

L(χl, χl+2p+1) ⪯ Υ(χl, χl+1, χl+2, χl+2p+1)[L(χl, χl+1) + L(χl+1, χl+2) + L(χl+2, χl+2p+1)].
⪯ Υ(χl, χl+1, χl+2, χl+2p+1)L(χl, χl+1) + Υ(χl, χl+1, χl+2, χl+2p+1)L(χl+1, χl+2)
+ Υ(χl, χl+1, χl+2, χl+2p+1)Υ(χl+2, χl+3, χl+4, χl+2p+1)[L(χl+2, χl+3)
+ L(χl+3, χl+4) + L(χl+4, χl+2p+1)].
⪯ Υ(χl, χl+1, χl+2, χl+2p+1)L(χl, χl+1) + Υ(χl, χl+1, χl+2, χl+2p+1)L(χl+1, χl+2)
+ Υ(χl, χl+1, χl+2, χl+2p+1)Υ(χl+2, χl+3, χl+4, χl+2p+1)L(χl+2, χl+3)
+ Υ(χl, χl+1, χl+2, χl+2p+1)Υ(χl+2, χl+3, χl+4, χl+2p+1)L(χl+3, χl+4)
+ Υ(χl, χl+1, χl+2, χl+2p+1)Υ(χl+2, χl+3, χl+4, χl+2p+1)L(χl+4, χl+2p+1)
· · ·

⪯ Υ(χl, χl+1, χl+2, χl+2p+1)L(χl, χl+1) + Υ(χl, χl+1, χl+2, χl+2p+1)L(χl+1, χl+2)
+ Υ(χl, χl+1, χl+2, χl+2p+1)Υ(χl+2, χl+3, χl+4, χl+2p+1)L(χl+2, χl+3)
+ Υ(χl, χl+1, χl+2, χl+2p+1)Υ(χl+2, χl+3, χl+4, χl+2p+1)L(χl+3, χl+4)
+ · · · + Υ(χl, χl+1, χl+2, χl+2p+1)Υ(χl+2, χl+3, χl+4, χl+2p+1)
· · ·Υ(χl+2p−2, χl+2p−1, χl+2p, χl+2p+1)L(χl+2p, χl+2p+1).

Rearranging the terms and then taking the absolute value and using Eq (3.3), we obtain

|L(χl, χl+2p+1)| ≤ Υ(χl, χl+1, χl+2, χl+2p+1)[(kl + kl+1)|L0|].
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+ Υ(χl, χl+1, χl+2, χl+2p+1)Υ(χl+2, χl+3, χl+4, χl+2p+1)[(kl+2 + kl+3)|L0|].
+ · · · + Υ(χl, χl+1, χl+2, χl+2p+1)Υ(χl+2, χl+3, χl+4, χl+2p+1) × · · ·
× · · ·Υ(χl+2p−2, χl+2p−1, χl+2p, χl+2p+1)[(kl+2p−2 + kl+2p−1)|L0|].

=

p−1∑
r=0

r∏
i=0

Υ(χl+2i, χl+2i+1, χl+2i+2, χl+2p+1)[kl+2r + kl+2r+1]|L0|.

=

p−1∑
r=0

r∏
i=0

Υ(χl+2i, χl+2i+1, χl+2i+2, χl+2p+1)[1 + k]kl+2r|L0|.

As k < 1, the following is implied by the above inequalities:

|L(χl, χl+2p+1)| <
p−1∑
r=0

r∏
i=0

Υ(χl+2i, χl+2i+1, χl+2i+2, χl+2p+1)2kl+2r|L0|.

By Eqs (3.1) and (3.4), and then taking the limits as both l and p tends to infinity, we deduce,

|L(χl, χl+2p+1)| <
∞∑

r=0

r∏
i=0

Υ(χl+2i, χl+2i+1, χl+2i+2, χl+2p+1)2kl+2r|L0|.

≤

∞∑
r=0

1
kr+1 2kl+2r|L0|.

≤

∞∑
r=0

2kl+r−1|L0|.

This series
∑∞

r=0 2kl+r−1|L0| converges, by utilizing the ratio test, we have |L(χl, χl+2p+1)| → 0, as l, p
tends to∞.
Sub-case 2: m = l + 2p

L(χl, χl+2) ⪯ kL(χl−1, χl+1) ⪯ k2
L(χl−2, χl) ⪯ · · · ⪯ kl

L(χ0, χ1), (3.5)

by taking absolute value |L(χl, χl+2| ≤ kl|L0|, and then taking the limit, we obtain

|L(χl, χl+2)| → 0, as l→ ∞. (3.6)

Repeating similar process to Sub-case 1, we deduce

L(χl, χl+2p) ⪯ Υ(χl, χl+1, χl+2, χl+2p)[L(χl, χl+1) + L(χl+1, χl+2) + L(χl+2, χl+2p)].
⪯ Υ(χl, χl+1, χl+2, χl+2p)L(χl, χl+1) + Υ(χl, χl+1, χl+2, χl+2p)L(χl+1, χl+2)
+ Υ(χl, χl+1, χl+2, χl+2p)Υ(χl+2, χl+3, χl+4, χl+2p)[L(χl+2, χl+3)
+ L(χl+3, χl+4) + L(χl+4, χl+2p)].

After several steps, it becomes

L(χl, χl+2p) ⪯ Υ(χl, χl+1, χl+2, χl+2p))L(χl, χl+1) + Υ(χl, χl+1, χl+2, χl+2p)L(χl+1, χl+2)
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+ Υ(χl, χl+1, χl+2, χl+2p)Υ(χl+2, χl+3, χl+4, χl+2p)L(χl+2, χl+3)
+ Υ(χl, χl+1, χl+2, χl+2p)Υ(χl+2, χl+3, χl+4, χl+2p)L(χl+3, χl+4)
+ · · ·

+ Υ(χl, χl+1, χl+2, χl+2p)Υ(χl+2, χl+3, χl+4, χl+2p) × · · ·
× · · ·Υ(χl+2p−3, χl+2p−2, χl+2p−1, χl+2p)L(χl+2p, χl+2p+1)

+

2p−2∏
i=0

Υ(χl+2i, χl+2i+1, χl+2i+1, χl+2p)L(χl+2p−2, χl+2p).

By Eq (3.5) and taking the absolute value we get

|L(χl, χl+2p)| ≤
p−1∑
r=0

r∏
i=0

Υ(χl+2i, χl+2i+1, χl+2i+2, χl+2p+1)[kl+2r + kl+2r+1]|L0|

+

2p−2∏
i=0

Υ(χl+2i, χl+2i+1, χl+2i+1, χl+2p)kl+2p−2|L0|.

≤

p−1∑
r=0

r∏
i=0

Υ(χl+2i, χl+2i+1, χl+2i+2, χl+2p+1)[1 + k]kl+2r|L0|

+

2p−2∏
i=0

Υ(χl+2i, χl+2i+1, χl+2i+1, χl+2p)kl+2p−2|L0|.

Since, supm>1 liml→∞Υ(χl, χl+1, χl+2, χm) ≤ 1
k , we deduce,

|L(χl, χl+2p)| ≤
p−1∑
r=0

1
kl+1 [1 + k]kl+2r|L0| + k−2p+1kl+2p−2|L0|.

=

p−1∑
r=0

[1 + k]kl+r−1|L0| + kl−1|L0|.

We have |L(χl, χl+2p)| ≤ [
∑p−1

r=0 [1 + k]kl+r−1 + kl−1]|L0|. Since k < 1, so limm→∞ km = 0, and using the
ratio test on the series, it tends to zero for any value of p, we deduce that

|L(χl, χl+2p)| → 0, l, p→ ∞.

Hence, L(χl, χl+2p) converges as l, p tends to∞.
Therefore, it is demonstrated by Sub-cases 1 and 2 that the sequence {χl} is a Cauchy sequence.

Given that (X,L) is a complete complex-valued CRMTS , we deduce that {χl} converges to ν ∈ X.
Now, to show ν is fixed by T . Without loss of generality, we assume that for all l, we have χl <

{ν,Tν}. Hence

L(ν,Tν) ⪯ Υ(ν, χl, χl+1,Tν)[L(ν, χl) + L(χl, χl+1) + L(χl+1,Tν)].
⪯ Υ(ν, χl, χl+1,Tν)[L(ν, χl) + L(χl, χl+1) + L(Tχl,Tν)].
⪯ Υ(ν, χl, χl+1,Tν)[L(ν, χl) + L(χl, χl+1) + kL(χl, ν)].
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Thus,
|L(ν,Tν)| ≤ Υ(ν, χl, χl+1,Tν))[|L(ν, χl)| + |L(χl, χl+1)| + k|L(χl, ν)|].

By taking the limit as l tends to ∞, and using the fact that the sequence {χl} converges to ν, we
obtain |L(ν,Tν)| = 0, i.e., L(ν,Tν) = 0, which implies that Tν = ν, thus ν is a fixed point of T.
Last step: Suppose that T has two fixed points, say ν and µ, such that ν , µ. The contractive property
of T allows us to state:

L(ν, µ) = L(Tν,Tµ) ⪯ kL(ν, µ),

which gives
|L(ν, µ)| = |L(Tν,Tµ)| ≤ k|L(ν, µ)| < |L(ν, µ)|,

resulting in a contradiction. Hence, T has a unique fixed point. □

Example 3.1. Let X = [0, 1] and L : X × X→ C be defined as

L(u, v) = |u − v|e
i
7 .

Next, we define Υ : X4 → [1,∞) by

Υ(u, v, a, b) = max(u, v, a, b) + 1.5.

We only show the extended quadrilateral inequality,

L(u, v) = |u − v|e
i
7 ≤ (|u − a| + |a − b| + |b − v|)e

i
7 ≤ Υ(u, v, a, b)[L(u, a) + L(a, b) + L(b, v)].

Thus, (X,L) is a complete complex-valued CRMTS .
Let T : X→ X be the contraction mapping defined as T (x) = x

7 and take k = 1
3 ∈ (0, 1), then we get

L(T x,Ty) = |T x − Ty|e
i
7 =

1
7
|x − y|e

i
7 .

≤
1
3
|x − y|e

i
7 = k|x − y|e

i
7 = kL(x, y).

Let x1 = 1, then we form the sequence, x2 = T (1) = 1
7 , hence xn = T n−1(1) = ( 1

7n−1 ). Then clearly

supm lim
n→∞
Υ(xn, xn+1, xn+2, xm) ≤ 3.

As a result, Theorem 3.1 requirements are all met. Thus, T has a unique fixed point x = 0.
Our next major finding.

Theorem 3.2. Let (X,L) be a complete complex-valued CRMTS , and let the mapping T : X −→ X
satisfies the following; for all χ, η̃ ∈ X you can find 0 < k < 1

2 such that

L(Tχ,T η̃) ⪯ k[L(χ,Tχ) + L(η̃,T η̃)]. (3.7)
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Moreover,

sup
m>1

lim
l→∞
Υ(χl, χl+1, χl+2, χm) ≤

1
k
, (3.8)

and for all u, v ∈ X, this holds:

lim
l→∞
Υ(u, v, χl, χl+1) ≤ 1. (3.9)

Then T admits a fixed point in X which is unique.

Proof. The sequence {χl} is defined as follows,

χ1 = Tχ0, χ2 = Tχ1 = T 2χ0, · · · , χl = T lχ0, · · · , for some χ0 ∈ X.

For all l ≥ 1 by Eq (3.7), we have,

L(χl, χl+1) = L(Tχl−1,Tχl) ⪯ k[L(χl−1, χl) + L(χl, χl+1)].
⇒ (1 − k)L(χl, χl+1) ⪯ kL(χl−1, χl).

⇒ L(χl, χl+1) ⪯
k

1 − k
L(χl−1, χl).

Since 0 < k < 1
2 , one can easily deduce that 0 < k

1−k < 1. Therefore, let α = k
1−k .

Hence,

L(χl, χl+1) ⪯ αL(χl−1, χl).
≤ α2
L(χl−2, χl−1).

⪯ · · ·

⪯ αl
L(χ0, χ1).

Denote by L0 = L(χ0, χ1), therefore,

|L(χl, χl+1)| ≤ αl|L(χ0, χ1)| = αl|L0|.

Hence,
|L(χl, χl+1)| → 0asl→ ∞. (3.10)

Also, for all l ≥ 1 we have

L(χl, χl+2) ⪯ k[L(χl−1, χl) + L(χl+1, χl+2)],

which becomes

|L(χl, χl+2)| ≤ k[|L(χl−1, χl)| + |L(χl+1, χl+2)|].

By using Eq (3.10), we deduce that

|L(χl, χl+2)| → 0 as l→ ∞.
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Following similar methods as of Case 1 and Case 2 of Theorem 3.1, we show that the sequence {χl}

is a Cauchy sequence. Since (X,L) is a complete complex-valued CRMTS , we conclude that {χl}

converges to some ν ∈ X.
Next, we prove that T fixes ν. Hence, without loss of generality we may suppose that for all l, we

have χl < {ν,Tν}. Hence

L(ν,Tν) ⪯ Υ(ν, χl, χl+1,Tν)[L(ν, χl) + L(χl, χl+1) + L(χl+1,Tν)].
⪯ Υ(ν, χl, χl+1,Tν)[L(ν, χl) + L(χl, χl+1) + L(Tχl,Tν)].
⪯ Υ(ν, χl, χl+1,Tν)[L(ν, χl) + L(χl, χl+1) + kL(χl,Tχl) + kL(ν,Tν)].
⪯ Υ(ν, χl, χl+1,Tν)[L(ν, χl) + L(χl, χl+1) + kL(χl, χl+1) + kL(ν,Tν)].

Thus,

|L(ν,Tν)| ≤ |L(ν, χl)| + (k + 1)|L(χl, χl+1)| + k|L(ν,Tν)|.

The sequence {χl} converges to ν, as l tends to∞, hence we obtain

|L(ν,Tν)| ≤ k|L(ν,Tν)| < |L(ν,Tν)|,

from this we deduce that |L(ν,Tν)| = 0, that is L(ν,Tν) = 0, which implies that Tν = ν and T fixes
point ν.

By assuming two fixed points ν and µ of T such that ν , µ, we demonstrate the fixed point’s
uniqueness as follows:

L(ν, µ) = L(Tν,Tµ) ⪯ k[L(ν,Tν) + L(µ,Tµ)] = k[L(ν, ν) + L(µ, µ)] = 0.

Thus, by taking the absolute value we get |L(ν, µ)| = 0, that is L(ν, µ) = 0 which implies ν = µ. Thus,
T has a unique fixed point as desired. □

4. Applications

In the sequel we will present two applications of our results.
Let X = Cn where C is the set of complex numbers and n a positive integer. Consider the complete

complex-valued CRMTS (X,L) defined by

L(x, y) = max
1≤i≤n
|xi − yi|.

where the function Υ : X4 → [1,∞), is given by Υ(x, y, z, t) = 2, for all x, y, z, t ∈ X.

Theorem 4.1. Consider the following system:


s11x1 + s12x2 + s13x3 + s1nxn = r1,

s21x1 + s22x2 + s23x3 + s2nxn = r2,
...

sn1x1 + sn2x2 + sn3x3 + snnxn = rn,
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if
∑n

j=1 |si j + sii| <
1
3 , for all i = 1, · · · , n, then the above linear system has a unique solution.

Proof. Consider the map T : X→ X given by T x = (B + In)x − r, where In is an n × n identity matrix,
and

B =


s11 s12 · · · s1n

s21 s22 · · · s2n
...

...
. . .

...

sn1 sn2 · · · snn


with x = (x1, x2, · · · , xn), r = (r1, r2, · · · , rn) ∈ Cn.

L(T x,Ty) = max
1≤i≤n
|

n∑
j=1

(si j + sii)(xi − yi)|.

⪯ max
1≤i≤n

n∑
j=1

|si j + sii||xi − yi|.

⪯ max
1≤i≤n
|xi − yi|

n∑
j=1

|si j + sii|.

⪯ max
1≤i≤n
|xi − yi|max

1≤i≤n

n∑
j=1

|si j + sii|.

= max
1≤i≤n

n∑
j=1

|si j + sii|L(x, y).

⪯
1
3
L(x, y).

All the assumptions of Theorem 3.1 are satisfied. Thus, T fixes a unique point and in view of this,
the aforementioned linear system has a unique solution. □

Our next application guarantees a unique solution for an equation of the form f (x) = 0. We start
first by stating our next theorem.

Theorem 4.2. For any n ∈ N, the equation

(x + 1)n + 1 = (n22n + 1)x(x + 1)n + n22nx, (4.1)

has a unique solution in the interval [0, 1].

Proof. Define the mapping T : [0, 1]→ [0, 1] by

T x =
(x + 1)n + 1

(n22n + 1)(x + 1)n + n22n , for some n ∈ N. (4.2)

Note that x is a fixed point of T if and only if x is a solution of the Eq (4.1). Hence, we will show T
has a unique fixed point in [0, 1], by utilizing Theorem 3.1.
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Define L : [0, 1] × [0, 1]→ C by
L(x, y) = eiτ|x − y|, (4.3)

for some τ > 0. Let the function Υ : [0, 1]4 → [1,∞), be given by

Υ(x, y, a, b) =
n∑

i=1

(x + 1)n−i(y + 1)i−1. (4.4)

Then, ([0, 1],L) is a complete complex-valued CRMTS .
Observe that

L(T x,Ty) ≤ kL(x, y), for x, y ∈ [0, 1], and k =
n2n−1

2n22n + 1
∈ (0, 1).

Indeed, by Eq (4.2) we have

L(T x,Ty) = L(
(x + 1)n + 1

(n22n + 1)(x + 1)n + n22n ,
(y + 1)n + 1

(n22n + 1)(y + 1)n + n22n ).

= eiτ|
(x + 1)n + 1

(n22n + 1)(x + 1)n + n22n −
(y + 1)n + 1

(n22n + 1)(y + 1)n + n22n |.

⪯
eiτ

(2n22n + 1)2 |(x + 1)n − (y + 1)n|.

=
eiτ

(2n22n + 1)2

n∑
i=1

(x + 1)n−i(y + 1)i−1 |x − y|.

⪯
n2n−1

(2n22n + 1)2 eiτ |x − y|, by (4.3).

=
n2n−1

(2n22n + 1)2 L(x, y) = kL(x, y).

Next, if we pick any x ∈ [0, 1], then T x ∈ [0, 1], hence starting with any x0 ∈ [0, 1], we can form the
sequence {xl}, by xl = T lx0 ∈ [0, 1], for all l ∈ N. By utilizing Eq (4.4), one can show easily this holds

sup
m>1

lim
l→∞
Υ(xl, xl+1, xl+2, xm) ≤ n2n−1 ≤

1
k
. (4.5)

Thus, all the assumptions of Theorem 3.1 are satisfied. So, T has a unique fixed point in [0, 1]. Hence,
Eq (4.1) has a unique solution in the interval [0, 1]. □

Example 4.1. The equation

(x + 1)2(17x − 1) + 16x − 1 = 0, (4.6)

has a unique solution in the interval [0, 1].

Proof. Note that the equation (x + 1)2(17x − 1) + 16x − 1 = 0 is equivalent to

(x + 1)2 + 1 = 17x(x + 1)2 + 16x.

Therefore the result follows from Theorem 4.2 by taking n = 2. □
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5. Conclusions

In this article, we have introduced the notion of complex-valued controlled rectangular metric type
spaces. We have proved the existence and uniqueness of a fixed point for self-mapping in such a space.
Moreover, we presented several examples and two applications of our results, which includes solving
systems of linear equations and finding a unique solution for an equation of the form f (x) = 0. In
closing, we would like to bring to the reader’s attention that one can introduce complex-valued metric
type spaces endowed with a graph.
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