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Abstract: This study explores the flow properties of a couple stress fluid with the consideration of 

variable viscosity and a uniform transverse magnetic field. Under the effect of irreversible heat transfer, 

a steady fluid flow has taken place between two parallel inclined plates. The fluid flows due to gravity 

and the constant pressure gradient force. The plates are fixed and isothermal. The governing equations 

have been solved analytically for velocity and temperature fields. The total rate of heat flow and 

volume flow across the channel, skin friction, and Nusselt number at both plates are calculated and 

represent the impacts of relevant parameters through tables and graphs. The findings show that velocity, 

temperature, and the total rate of heat flow across the channel are enhanced by increasing the couple 

stress parameter and the viscosity variation parameter, while increasing the values of the Hartmann 

number reduces them. 
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1. Introduction 

In recent years, the major problem encountered by many researchers has been in the sector of 

magnetohydrodynamic (MHD) flows and heat transfer because of their significant applications in MHD 

pumps, MHD generators, aerodynamic heating, the petroleum industry, plasma studies, etc. [1–3]. The 

heat transfer in non-Newtonian fluids is necessary for the dismemberment of molten plastics, 

substantial oils and greases, synthetic fibers, and foodstuffs because non-Newtonian fluids have 

multiple applications in many areas of industry, biology, and engineering [4,5]. Stokes [6,7] proposed 

a couple stress fluid as one non-Newtonian fluid. 

Falade et al. [8] and Farooq et al. [9] examined the heat transfer problem of couple stress fluid 

flow with variable viscosity between parallel plates. Srinivasacharya et al. [10] analyzed the Hall and 

Ion-slip effects with a variable heat source and MHD on couple stress fluid flow between two circular 

cylinders using the homotopy analysis method (HAM) and illustrated the impact of different appearing 

parameters on velocity and temperature fields. Numerous research studies [11–16] have expanded on 

the existing problems of couple stress fluid flow by including MHD with various effects and 

geometries. The impact of heat transfer and MHD on third-grade fluid flow between two parallel plates 

has been numerically investigated by [17–19] and examined in terms of the characteristics of velocity 

and temperature fields. Makinde et al. [20] showed how MHD and radiative heat transport work 

together to affect an optically thin fluid with a porous medium. Ahmed [21] looked into the steady 

MHD flow of an electrically conducting viscous fluid with heat and mass transfer in a porous medium 

and thermal diffusion. Umavathi et al. [22] examined the MHD Poiseuille-Couette flow of two non-

mixable fluids, one of which conducts electricity and the other of which doesn't. They also looked at 

how new factors affect the speed and temperature distributions. Ahmed et al. [23] analysed the MHD 

flow of an electrically conducting viscous fluid with heat transfer across infinite annular vertical 

cylinders subjected to a time-dependent pressure gradient and thermal radiation. Ogunmola et al. [24] 

and Shah et al. [25] investigated the nature of velocity and temperature distributions by changing 

relevant factors and taking into account third-grade fluid flow and variable viscosity. Hassan et al. [26] 

studied the influence of varying viscosity and MHD on a heat-producing porous couple stress fluid 

with a convective cooling wall. Makinde et al. [27] investigated the MHD heat and mass transport 

effects on nanofluids using Poiseuille-Couette flow with the consideration of Hall effects and varying 

viscosity. Umavathi et al. [28] presented the variation in velocity and temperature domains by changing 

the physical characteristics of a couple stress fluid sandwiched between two viscous fluid layers. Imran 

et al. [29] investigated the applications of non-integer Caputo time fractional derivatives to natural 

convection flow subject to arbitrary velocity and Newtonian heating.  Shah et. al. [30] presented the 

General solution for MHD-free convection flow over a vertical plate with ramped wall temperature 

and chemical reaction. 

The innovative characteristics and aims of this work are noted by the fact that transportation heat 

couple stress model involves MHD, viscous dissipation, temperature-dependent viscosity, and 

inclination of the channel. This mathematical model is appropriate for the advantages of biological and 
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lubrication systems. The behaviour of the fluid velocity, energy, skin friction and Nusselt number at 

the surfaces, total volume flow rate, and heat flow rate across the channel for various influential factors 

in the presence and absence of couple stress is discussed using graphs and tables.  

2. Basic equations and description of the flow model 

2.1. Basic equations 

To discard the induced magnetic field, assuming the magnetic Reynolds number is very small. 

The current density is given by 

𝐽 = 𝜎(𝑞⃗ × 𝐵⃗⃗),           (1) 

The Lorentz force is defined as 

𝐽 × 𝐵⃗⃗ = −𝜎𝐵0
2𝑞⃗,           (2) 

The dimensional version of the continuity, momentum, and energy equations is as follows: 

∇⃗⃗⃗ ⋅ 𝑞⃗ = 0,           (3) 

𝜌 [
∂𝑞⃗⃗

∂𝑡
+ (𝑞⃗ ⋅ ∇⃗⃗⃗)𝑞⃗] = −∇⃗⃗⃗𝑝 + 𝜇∇2𝑞⃗ − 𝜂∇4𝑞⃗ + 𝐽 × 𝐵⃗⃗ + 𝜌𝑔⃗,      (4) 

𝜌𝐶𝑝 [
∂Θ

∂𝑡
+ (𝑞⃗ ⋅ ∇⃗⃗⃗)Θ] = 𝜅∇2Θ + 𝜑.         (5) 

where 𝑞⃗ is the vector velocity, 𝜑 is the viscous dissipation of energy, Cp is the specific heat, 𝐽 is the 

current density and B0 is the applied magnetic field. 

2.2. Description of the flow model 

It is considered the steady flow of a couple stress fluid passing through two infinitely long parallel 

plates separated by 2h, which are inclined from the surface at an angle of α. Plates are stable, and fluid 

flow is hydrodynamically and thermodynamically fully developed. The fluid is moving due to the axial 

pressure gradient and gravitational force. Θ0 and Θ1 are the temperatures at the bottom and top plates, 

respectively. A uniform magnetic field of intensity B0 is applied, which is in a perpendicular direction 

to the fluid flow. The viscosity is temperature dependent. We have chosen a cartesian coordinate 

system such that the x-axis is along the central line of the channel and the y-axis is in a direction 

perpendicular to it, as seen in Figure 1. 
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Figure 1. Flow model of the problem. 

The channel is long enough so that all the physical quantities are functions of y alone, except the 

pressure. The velocity and temperature are as follows: 

𝑞⃗ = (𝑢(𝑦), 0,0)𝑎𝑛𝑑Θ = Θ(𝑦).        (6) 

Under the above assumptions, the Eqs (4) and (5) are transformed into 

𝜂
𝑑4𝑢

𝑑𝑦4
− 𝜇

𝑑2𝑢

𝑑𝑦2
− (

𝑑𝜇

𝑑𝑦
) (

𝑑𝑢

𝑑𝑦
) +

∂𝑝

∂𝑥
− 𝜌𝑔 𝑠𝑖𝑛(𝛼) + 𝜎𝐵0

2𝑢 = 0,     (7) 

𝑑2Θ

𝑑𝑦2
+

𝜇

𝜅
(
𝑑𝑢

𝑑𝑦
)
2
+

𝜂

𝜅
(
𝑑2𝑢

𝑑𝑦2
)
2

= 0,        (8) 

The boundary conditions of the flow model are 

𝐴𝑡𝑦 = −ℎ, 𝑢(𝑦) = 0, 𝑢''(𝑦) = 0,Θ(𝑦) = Θ0,

𝐴𝑡𝑦 = ℎ, 𝑢(𝑦) = 0, 𝑢''(𝑦) = 0,Θ(𝑦) = Θ1.
}      (9) 

The temperature-dependent viscosity by Reynold’s model [16,31–33] is given by 

𝜇(Θ) = 𝜇0𝑒
−𝛽(Θ−Θ0).         (10) 

Introducing the non-dimensional parameters [4,16] are as follows: 

𝑦* =
𝑦

ℎ
, 𝑥* =

𝑥

ℎ
, 𝑢* =

𝑢

𝑈0
,Θ* =

Θ − Θ0

Θ1 − Θ0
, 𝜇* =

𝜇

𝜇0
, 𝑝* =

𝑝ℎ

𝜇0𝑈0
, 𝑚 = 𝛽(Θ1 − Θ0), 

𝐵𝑟 =
𝜇0𝑈0

2

𝜅(Θ1−Θ0)
, 𝐵2 =

𝜇0ℎ
2

𝜂
, 𝐺 = 𝐺1 + 𝐺2 𝑠𝑖𝑛(𝛼) ,𝑀

2 =
𝜎𝐵0

2ℎ
2

𝜇0
.  (11) 

where 𝐺1 = −
∂𝑝

∂𝑥
 is the pressure gradient parameter and 𝐺2 =

ℎ
2

𝑈0𝜇0
𝜌𝑔  is the gravitational force 

parameter. 

Equations (7) and (8) in the non-dimensional form (remove asterisks) 

𝑑4𝑢

𝑑𝑦4
− 𝐵2𝜇

𝑑2𝑢

𝑑𝑦2
− 𝐵2 𝑑𝜇

𝑑𝑦

𝑑𝑢

𝑑𝑦
− 𝐵2𝐺 + 𝐵2𝑀2𝑢 = 0,     (12) 

𝑑2Θ

𝑑𝑦2
+ 𝐵𝑟𝜇 (

𝑑𝑢

𝑑𝑦
)
2
+

𝐵𝑟

𝐵2 (
𝑑2𝑢

𝑑𝑦2
)
2

= 0,       (13) 

and the boundary conditions (9) reduced into 

𝐴𝑡𝑦 = −1, 𝑢(𝑦) = 0, 𝑢''(𝑦) = 0,Θ(𝑦) = 0, 

𝐴𝑡𝑦 = 1, 𝑢(𝑦) = 0, 𝑢''(𝑦) = 0,Θ(𝑦) = 1.      (14) 

The dimensionless form of Eq (10) is 
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𝜇(Θ) = 𝑒−𝑚Θ.         (15) 

Use the Taylor’s series, Eq (15) reduced into 

𝜇(Θ) = 1 −𝑚Θ,
𝑑𝜇

𝑑𝑦
= −𝑚

𝑑Θ

𝑑𝑦
.       (16) 

Substitute Eq (16) in Eqs (12) and (13), then the equations are transformed in the form:  

𝑑4𝑢

𝑑𝑦4
− 𝐵2(1 − 𝑚Θ)

𝑑2𝑢

𝑑𝑦2
+ 𝐵2𝑚

𝑑Θ

𝑑𝑦

𝑑𝑢

𝑑𝑦
− 𝐵2𝐺 + 𝐵2𝑀2𝑢 = 0,    (17) 

𝑑2Θ

𝑑𝑦2
+ 𝐵𝑟(1 −𝑚Θ) (

𝑑𝑢

𝑑𝑦
)
2
+

𝐵𝑟

𝐵2 (
𝑑2𝑢

𝑑𝑦2
)
2

= 0.      (18) 

2.3. Solution of the problem 

Using the regular perturbation technique by taking the viscosity variation parameter m as a 

perturbation parameter where 0<m<<1, to solve the above non-linear coupled equations, and the 

velocity and temperature expressions are given by: 

𝑢 = 𝑢0 +𝑚𝑢1,Θ = Θ0 +𝑚Θ1.      (19) 

Substitute Eq (19) in Eqs (14), (17) and (18) and separating each order of approximation provides: 

Zeroth order equations: 

𝑑4𝑢0

𝑑𝑦4
− 𝐵2 𝑑2𝑢0

𝑑𝑦2
− 𝐵2𝐺 + 𝐵2𝑀2𝑢0 = 0,       (20) 

𝑑2Θ0

𝑑𝑦2
+ 𝐵𝑟 (

𝑑𝑢0

𝑑𝑦
)
2
+

𝐵𝑟

𝐵2 (
𝑑2𝑢0

𝑑𝑦2
)
2

= 0,       (21) 

𝐴𝑡𝑦 = −1, 𝑢0(𝑦) = 0, 𝑢0
''(𝑦) = 0,Θ0(𝑦) = 0, 

𝐴𝑡𝑦 = 1, 𝑢0(𝑦) = 0, 𝑢0
''(𝑦) = 0,Θ0(𝑦) = 1.      (22) 

First order equations: 

𝑑4𝑢1

𝑑𝑦4
− 𝐵2 𝑑2𝑢1

𝑑𝑦2
+ 𝐵2Θ0

𝑑2𝑢0

𝑑𝑦2
+ 𝐵2 (

𝑑Θ0

𝑑𝑦
) (

𝑑𝑢0

𝑑𝑦
) + 𝐵2𝑀2𝑢1 = 0,    (23) 

𝑑2Θ1

𝑑𝑦2
+ 2𝐵𝑟 (

𝑑𝑢0

𝑑𝑦
) (

𝑑𝑢1

𝑑𝑦
) − 𝐵𝑟Θ0 (

𝑑𝑢0

𝑑𝑦
)
2
+

2𝐵𝑟

𝐵2 (
𝑑2𝑢0

𝑑𝑦2
) (

𝑑2𝑢1

𝑑𝑦2
) = 0,   (24) 

𝐴𝑡𝑦 = −1, 𝑢1(𝑦) = 0, 𝑢1
''(𝑦) = 0,Θ1(𝑦) = 0, 

𝐴𝑡𝑦 = 1, 𝑢1(𝑦) = 0, 𝑢1
''(𝑦) = 0,Θ1(𝑦) = 0.      (25) 

Solve the zeroth and first order equations with their corresponding boundary conditions. 

The solution for velocity and temperature distributions are obtained as: 

𝑢(𝑦) = Ω0 + Ω1 𝑐𝑜𝑠ℎ[𝑃𝑦] − Ω2 𝑐𝑜𝑠ℎ[𝑅𝑦] + 𝑚{Ω3 𝑐𝑜𝑠ℎ[𝑃𝑦] + Ω4 𝑠𝑖𝑛ℎ[𝑃𝑦] 

+Ω5 𝑐𝑜𝑠ℎ[𝑅𝑦] + Ω6 𝑠𝑖𝑛ℎ[𝑅𝑦] + Ω7 𝑐𝑜𝑠ℎ[3𝑃𝑦] + Ω8 𝑐𝑜𝑠ℎ[3𝑅𝑦] 

+Ω9 𝑐𝑜𝑠ℎ[(𝑃 + 2𝑅)𝑦] + Ω10 𝑐𝑜𝑠ℎ[(𝑃 − 2𝑅)𝑦] + Ω11 𝑐𝑜𝑠ℎ[(2𝑃 + 𝑅)𝑦] 

+Ω12 𝑐𝑜𝑠ℎ[(2𝑃 − 𝑅)𝑦] + 𝑦(Ω13 𝑠𝑖𝑛ℎ[𝑃𝑦] + Ω14 𝑐𝑜𝑠ℎ[𝑃𝑦] 

+Ω15 𝑠𝑖𝑛ℎ[𝑅𝑦] + Ω16 𝑐𝑜𝑠ℎ[𝑅𝑦]) + 𝑦2(Ω17 𝑠𝑖𝑛ℎ[𝑃𝑦] + Ω18 𝑐𝑜𝑠ℎ[𝑃𝑦] 

+Ω19 𝑠𝑖𝑛ℎ[𝑅𝑦] + Ω20 𝑐𝑜𝑠ℎ[𝑅𝑦]) + 𝑦3(Ω21 𝑠𝑖𝑛ℎ[𝑃𝑦] + Ω22 𝑠𝑖𝑛ℎ[𝑅𝑦])},   (26) 

Θ(𝑦) = 𝛾0 + 𝛾1𝑦 + 𝛾2𝑦
2 + 𝛾3 𝑐𝑜𝑠ℎ[2𝑃𝑦] + 𝛾4 𝑐𝑜𝑠ℎ[2𝑅𝑦] + 𝛾5 𝑐𝑜𝑠ℎ[(𝑃 + 𝑅)𝑦] 
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+𝛾6 𝑐𝑜𝑠ℎ[(𝑃 − 𝑅)𝑦] + 𝑚{𝛾7 + 𝛾8 𝑠𝑖𝑛ℎ[2𝑃𝑦] + 𝛾9 𝑐𝑜𝑠ℎ[2𝑃𝑦] + 𝛾10 𝑐𝑜𝑠ℎ[4𝑃𝑦] 

+𝛾11 𝑠𝑖𝑛ℎ[2𝑅𝑦] + 𝛾12 𝑐𝑜𝑠ℎ[2𝑅𝑦] + 𝛾13 𝑐𝑜𝑠ℎ[4𝑅𝑦] + 𝛾14 𝑐𝑜𝑠ℎ[(𝑃 + 𝑅)𝑦] 

+𝛾15 𝑐𝑜𝑠ℎ[(𝑃 − 𝑅)𝑦] + 𝛾16 𝑠𝑖𝑛ℎ[(𝑃 + 𝑅)𝑦] + 𝛾17 𝑠𝑖𝑛ℎ[(𝑃 − 𝑅)𝑦] 

+𝛾18 𝑐𝑜𝑠ℎ[(𝑃 + 3𝑅)𝑦] + 𝛾19 𝑐𝑜𝑠ℎ[(𝑃 − 3𝑅)𝑦] + 𝛾20 𝑐𝑜𝑠ℎ[2(𝑃 + 𝑅)𝑦] 

+𝛾21 𝑐𝑜𝑠ℎ[2(𝑃 − 𝑅)𝑦] + 𝛾22 𝑐𝑜𝑠ℎ[(3𝑃 + 𝑅)𝑦] + 𝛾23 𝑐𝑜𝑠ℎ[(3𝑃 − 𝑅)𝑦] 

+𝑦(𝛾24 + 𝛾25 𝑠𝑖𝑛ℎ[2𝑃𝑦] + 𝛾26 𝑐𝑜𝑠ℎ[2𝑃𝑦] + 𝛾27 𝑐𝑜𝑠ℎ[(𝑃 + 𝑅)𝑦] + 𝛾28 𝑐𝑜𝑠ℎ[(𝑃 − 𝑅)𝑦] 

+𝛾29 𝑠𝑖𝑛ℎ[(𝑃 + 𝑅)𝑦] + 𝛾30 𝑠𝑖𝑛ℎ[(𝑃 − 𝑅)𝑦] + 𝛾31 𝑐𝑜𝑠ℎ[2𝑅𝑦] + 𝛾32 𝑠𝑖𝑛ℎ[2𝑅𝑦]) 

+𝑦2(𝛾33 + 𝛾34 𝑠𝑖𝑛ℎ[2𝑃𝑦] + 𝛾35 𝑐𝑜𝑠ℎ[2𝑃𝑦] + 𝛾36 𝑐𝑜𝑠ℎ[(𝑃 + 𝑅)𝑦] + 𝛾37 𝑐𝑜𝑠ℎ[(𝑃 − 𝑅)𝑦] 

+𝛾38 𝑠𝑖𝑛ℎ[(𝑃 + 𝑅)𝑦] + 𝛾39 𝑠𝑖𝑛ℎ[(𝑃 − 𝑅)𝑦] + 𝛾40 𝑠𝑖𝑛ℎ[2𝑅𝑦] + 𝛾41 𝑐𝑜𝑠ℎ[2𝑅𝑦]) + 𝑦3(𝛾42 

+𝛾43 𝑠𝑖𝑛ℎ[2𝑃𝑦] + 𝛾44 𝑠𝑖𝑛ℎ[2𝑅𝑦] + 𝛾45 𝑠𝑖𝑛ℎ[(𝑃 + 𝑅)𝑦] + 𝛾46 𝑠𝑖𝑛ℎ[(𝑃 − 𝑅)𝑦]) + 𝛾47𝑦
4}. (27) 

where Ωi and γj, i=1,2……22 and j=1,2……47 are constants. 

2.4. Volume flow rate, total heat flow rate, coefficient of Skin friction and Nusselt number 

The volume flow rate across the channel 

𝑄 = ∫ 𝑢(𝑦)𝑑𝑦
1

−1
,           (28) 

By Eq (26), 

𝑄 = 2{Ω0 +
1

𝑃4
(𝑃3Ω1 +𝑚(𝑃3Ω3 − 𝑃2Ω13 + 𝑃(2 + 𝑃2)Ω18 − (6 + 3𝑃2)Ω17)) 𝑠𝑖𝑛ℎ[𝑃] 

+
1

𝑅4 (−𝑅
3Ω2 +𝑚(𝑅3Ω5 − 𝑅2Ω15 + 𝑅(2 + 𝑅2)Ω20 − (6 + 3𝑅2)Ω22)) 𝑠𝑖𝑛ℎ[𝑅] 

+
𝑚

𝑃3
(𝑃2Ω13 − 2𝑃Ω18 + (6 + 𝑃2)Ω21) 𝑐𝑜𝑠ℎ[𝑃] +

𝑚

𝑅3
(𝑅2Ω15 − 2𝑅Ω20+(6 + 𝑅2)Ω22) 

𝑐𝑜𝑠ℎ[𝑅] +
𝑚Ω7

3𝑃
𝑠𝑖𝑛ℎ[3𝑃] +

𝑚Ω8

3𝑅
𝑠𝑖𝑛ℎ[3𝑅] +

𝑚Ω9

(𝑃 + 2𝑅)
𝑠𝑖𝑛ℎ[𝑃 + 2𝑅] 

+
𝑚Ω10

(𝑃−2𝑅)
𝑠𝑖𝑛ℎ[𝑃 − 2𝑅] +

𝑚Ω11

(2𝑃+𝑅)
𝑠𝑖𝑛ℎ[2𝑃 + 𝑅] +

𝑚Ω12

(2𝑃−𝑅)
𝑠𝑖𝑛ℎ[2𝑃 − 𝑅]}.  (29) 

Total heat flow rate across the channel is given by 

𝐸 = ∫ 𝑢(𝑦)Θ(𝑦)𝑑𝑦
1

−1           (30) 

At the lower plate, the skin friction coefficient Cf and Nusselt number Nu are given by 

𝐶𝑓 = 𝜇
𝑑𝑢

𝑑𝑦
|
𝑦=−1

, 𝑁𝑢 =
∂Θ

∂𝑦
|
𝑦=−1

,        (31) 

At the upper plate, Cf and Nu are given by 

𝐶𝑓 = −𝜇
𝑑𝑢

𝑑𝑦
|
𝑦=1

, 𝑁𝑢 = −
∂Θ

∂𝑦
|
𝑦=1

.       (32) 

The negative sign is present because the top plate is positioned in the opposite direction of the fluid 

flow. 

3. Results and discussion 

This section includes the variation of velocity and temperature profiles and a discussion of 
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different values of the pressure gradient parameter G1, viscosity variation parameter m, the Brinkman 

number Br, the Hartmann number M, the angle of inclination 𝛼, and the couple stress parameter B. We 

also discussed the variation of volume flux, skin friction coefficient Cf, and the Nusselt number Nu on 

both plates through surface graphs. 

Figure 2 shows that with the increase of m, the fluid viscosity decreases, and the viscous heating 

enhances, due to which the velocity increases. 

Figure 3 depicts that the higher the pressure gradient, the faster the stream flows, and hence 

velocity increases. 

 

Figure 2. Velocity profile influenced by viscosity variation parameter. 

 

Figure 3. Velocity profile affected by pressure gradient parameter. 

According to Figure 4, a rise in B slows the motion of the fluid particles, providing them with 

enough force to pull off the frictional hindrance inboard the fluid and increase velocity in this manner. 

 

Figure 4. Velocity profile influenced by couple stress parameter. 
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Figure 5 shows that on increasing the values of Br, viscous dissipation dominates, due to which 

the velocity increases because the Brinkman number is the proportion of viscous heating to molecular 

conduction. 

Figure 6 portrays that by raising the values of M, the Lorentz force gets stronger, which creates a 

resistive force in the fluid flow and causes the speed to slow down. 

Figure 7 illustrates that as the angle of the inclined channel gets bigger, so does the velocity 

because fluid moves faster in a vertical channel than in a horizontal channel due to gravity. 

 

Figure 5. Velocity profile affected by Brinkman number. 

 

Figure 6. Velocity profile affected by the Hartmann number. 

 

Figure 7. Velocity profile influenced by the angle of inclined channel. 

According to Figures 8 and 9, raising the values of m and G1 increases the viscous dissipation due 

to velocity and gradient, which enhances the fluid temperature. 

Figure 10 shows that when B increases, so does the temperature in the flow channel due to the 



16781  

AIMS Mathematics  Volume 8, Issue 7, 16773–16789. 

viscous heating of the fluid particles. 

Figure 11 displays that if Br increases, then heat production through viscous dissipation enhances, 

resulting in a temperature increase. 

 

Figure 8. Temperature profile affected by viscosity variation parameter. 

 

Figure 9. Temperature profile affected by pressure gradient parameter. 

 

Figure 10. Temperature profile affected by couple stress parameter. 
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Figure 11. Temperature profile affected by Brinkman number. 

Figure 12 exhibits the variation in M. An increase in Hartmann’s number strengthens the Lorentz 

force, which acts against the fluid flow and so lowers the fluid temperature. 

Figure 13 represents that as raising the value of α, causing the channel to become vertical, due to 

which the frictional force in fluid flow increases and so does the temperature. 

Figure 14 shows that when the Brinkman number and viscosity parameter rise, so does heat 

production from viscous dissipation. This makes the volume flow rate across the channel go up. 

Figure 15(a) portrays the coefficient of skin friction Cf at the lower plate. It shows that when both 

Br and 𝑚 grow at the same time, and when one of the parameters rises while the other remains 

unchanged, then the Cf increases. Figure 15(b) illustrates Cf at the upper plate. It shows that Cf grows 

with the increase of Br, whereas Cf initially increases for 0≤m≤0.3 and starts to decrease gradually for 

further increases in m. 

 

Figure 12. Temperature profile affected by Hartmann number. 

 

Figure 13. Temperature profile affected by angle of inclined channel. 
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Figure 14. Surface graph for Volume flux. 

 

Figure 15. Variation for the coefficient of skin friction at the (a) lower plate and (b) upper plate. 

Figure 16(a) and Figure 16(b) depict that when both 𝐵𝑟 and 𝑚 increase in parallel time and if one 

of the parameters grows while the other stays constant, then the heat transfer irreversibility due to 

convection is more dominant and the temperature gradient rises, and hence the Nusselt number Nu at 

both the plates increases. 

 

Figure 16. Variation for Nusselt number at the (a) lower plate and (b) upper plate. 
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Table 1. Results for total heat flow rate by considering 𝐺1 = 0.5, 𝐵𝑟 = 1 and 𝛼 =
𝜋

6
. 

M B M E 

0 1 1 0.0908 

0.4 1 1 0.1145 

0.8 1 1 0.1393 

0.5 0.5 1 0.0356 

0.5 1 1 0.1206 

0.5 1.5 1 0.1929 

0.5 1 1 0.1206 

0.5 1 2 0.0713 

0.5 1 3 0.0491 

Table 1 represents the findings for the total rate of heat flow by varying the viscosity parameter, 

couple stress parameter, and the Hartmann number. The total heat flow rate increases as m and B 

increase, but higher Hartmann numbers lower the heat flow rate. 

4. Validation 

4.1. M=α=0 

The current investigation in the absence of a magnetic field with the horizontal channel (α=0) and 

the transformation 𝑦' =
𝑦+ℎ

2
 validates the previously investigated work by Falade et al. [8]. 

The results are identical, which are represented in Figures 17 and 18 and Table 2 for the velocity 

profile by varying the Brinkman number, viscosity parameter, and couple stress parameter. 

 

Figure 17. Comparison for velocity profile by varying viscosity variation parameter. 
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Figure 18. Comparison for velocity profile by varying couple stress parameter. 

Table 2. Comparison of u(y) by considering G1=1, m=0.5 and B=10. 

Br Falade et al. [8] Present study (M=α=0) 

1 0.1417 0.1417 

50 0.1508 0.1508 

100 0.1601 0.1601 

4.2. M=B=α=0 

The current study in the absence of a magnetic field and couple stress with the horizontal 

channel (α=0) and the transformation 𝑦' =
𝑦+ℎ

2
 validates the previously investigated work by O D 

Makinde [32]. 

For the velocity profile with variable viscosity parameter and Brinkman number, the findings 

shown in Figures 19 and 20 are equal. 

 

Figure 19. Comparison for velocity profile by varying viscosity variation parameter. 
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Figure 20. Comparison for velocity profile by varying Brinkman number. 

5. Conclusions 

The impact of MHD and temperature-dependent viscosity on couple stress fluid flow has been 

studied between two heated inclined parallel plates. The effects of relevant parameters on the fields of 

velocity, temperature, volume flow rate, total heat flow rate, coefficient of skin friction, and Nusselt 

number are concluded as follows: 

● Velocity and temperature enhance with an increase in the pressure gradient, viscosity variation, 

couple stress parameters, Brinkman number, and angle of the inclined channel, whereas both reduce 

as the Hartmann number grows. 

● The rate of volume flow across the channel increases as the viscosity variation parameter and 

Brinkman number increase. 

● As the viscosity variation and couple stress parameters rise, the total rate of heat flow across the 

channel enhances, but it declines as the Hartmann number goes up. 

● At the lower plate, skin friction increases as the viscosity variation parameter and Brinkman 

number increase. At the upper plate, it grows as the Brinkman number increases, whereas with the 

variation of the viscosity parameter, it initially increases and then gradually declines. 

● The Nusselt number at both plates increases as the viscosity variation parameter and Brinkman 

number increase. 
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