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Abstract: The decision-making process is characterized by some doubt or hesitation due to the 

existence of uncertainty among some objectives or criteria. In this sense, it is quite difficult for 

decision maker(s) to reach the precise/exact solutions for these objectives. In this study, a novel 

approach based on integrating the technique for order preference by similarity to ideal solution 

(TOPSIS) with the intuitionistic fuzzy set (IFS), named TOPSIS-IFS, for solving a multi-criterion 

optimization problem (MCOP) is proposed. In this context, the TOPSIS-IFS operates with two 

phases to reach the best compromise solution (BCS). First, the TOPSIS approach aims to 

characterize the conflicting natures among objectives by reducing these objectives into only two 

objectives. Second, IFS is incorporated to obtain the solution model under the concept of 

indeterminacy degree by defining two membership functions for each objective (i.e., satisfaction 
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degree, dissatisfaction degree). The IFS can provide an effective framework that reflects the reality 

contained in any decision-making process. The proposed TOPSIS-IFS approach is validated by 

carrying out an illustrative example. The obtained solution by the approach is superior to those 

existing in the literature. Also, the TOPSIS-IFS approach has been investigated through solving the 

multi-objective transportation problem (MOTP) as a practical problem. Furthermore, impacts of IFS 

parameters are analyzed based on Taguchi method to demonstrate their effects on the BCS. Finally, 

this integration depicts a new philosophy in the mathematical programming field due to its 

interesting principles. 

Keywords: multi-criterion optimization; intuitionistic fuzzy; TOPSIS; compromise solution; 

Taguchi method 

Mathematics Subject Classification: 03E72, 08A72, 54A40 

 

1. Introduction 

Nowadays, decision-making process is becoming a complicated task, and the frequent decisions 

present a headache to the decision maker (DM), when an accurate decision of a system is required. 

Moreover, some factors (data) of a system may be characterized by existence of uncertainties. Thus, 

adequate models are required to deal with these uncertainties, vagueness and impreciseness. IFS is an 

effective model that was proposed by Attanassov [1] to handle impreciseness and uncertainties in 

data. The IFS represents an extension of the fuzzy set (FS) [2] which is characterized by two 

membership functions, a membership degree, and a non-membership degree. Angelov [3] developed 

the concepts of IFS in the optimization area, where his approach is equipped by maximizing 

membership degree (satisfaction) and minimizing the non-membership degree (dissatisfaction), and 

then the crisp model is computed. 

Realistically, optimization problems are characterized not only by uncertainty aspects but also 

by the presence of a multiple criteria (objectives). In this sense, no solution can be obtained that 

optimizes all the objectives simultaneously. Different approaches to deal with the multiple criteria 

have been developed [4–6]. Among them is the TOPSIS approach that was proposed by Hwang and 

Yoon [7] to acquire the BCS. TOPSIS represents one of the most widely utilized methodologies for 

practical MCOP due to its simplicity, sound mathematical foundation, and ease of applicability [8]. 

TOPSIS has inspired scores of novel techniques and analysis based on it [9]. TOPSIS aggregates the 

alternatives based on two reference points, ideal solution and the negative-ideal solutions, which is 

more beneficial for the decision-making situations than the other methods. It is established based on 

constituting two objective functions from K number of objectives (criteria). The first step of TOPSIS 

is to minimize the distance from the positive ideal solution (PIS), while the second one is to 

maximize distance from the negative ideal solution (NIS). The final step is to obtain the solution by 

the max-min operation that was introduced by Bellman and Zadeh in which the maximization degree 

of membership function plays the major role [2]. TOPSIS has widely flourished in many areas, 

including manufacturing decision making [10,11], product selection [12], critical mission planning 

[13], economic-emission load dispatch problem [14], multi-objective non-linear program [15], and 

bilevel optimization [16]. 

Contrary to FS, IFS has been proven to be highly beneficial when dealing with vagueness and 

uncertainty. Through this approach, the optimization problem is reformulated by considering the 
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degree of rejection of the constraint and the objective value, which are non-admissible. Many 

optimization techniques based on IFS have been developed [17–19]. The IFS based on goal 

programming was proposed to solve a vector optimization problem [20]. Chakrabortty et al. 

presented a method based on IFS technique to solve the multi-objective inventory model [21], while 

Garg and Rani [22] proposed a combined technique using particle swarm optimization (PSO) and 

IFS theory. Apart from several works employed describe the IFS theory has been proposed and given 

in [23–26], where most of them have studied the single and multi-objective fuzzy linear 

programming. However, today, much real-world decision-making is characterized by different 

natures including nonlinear, multi-dimensional, many-objective, conflicting nature. Therefore, the 

fuzzy models are considered as more realistic than the deterministic ones. 

TOPSIS is one of the most widely used approaches in the decision-making process due to its 

simplicity, sound mathematical foundation, and ease of applicability. In this method, it aggregates the 

different information of the alternatives in terms of two references points. Although, several 

approaches appear in the literature to address the decision-making problems in terms of MCOP using 

TOPSIS method, they have certain limitations. For instance, the TOPSIS approaches based on the 

conventional FS has been shown to be satisfactory in comparisons with other multi-objective 

methods, but the applicability of this approach is weak due to its on reliance on the satisfaction 

membership degree. In a real-world problem, an analyst always pays an equal attention to the 

consideration of the non-satisfactory degree too during the analysis, such as in, the situations that 

involve the respecting and consensus of the experts’ opinions which have a significant effect in the 

decision-making process. On the other hand, in terms of IFSs environment, the conflicting nature 

among the objectives is resolved with the consideration of the acceptance membership (satisfaction) 

and rejection membership (dissatisfaction). In such TOPSIS approaches, the two references points, 

the goals related to the positive and negative membership grades are considered as zero. This means 

that the decision maker cannot increase/decrease their satisfaction or dissatisfaction degrees towards 

the upper or lower bounds of the reference level. To make a decision smoother and better, there is an 

always a need to consider a level of satisfaction and dissatisfaction of the decision-maker in the 

analysis so that by increasing or decreasing their levels, the degree of the attainability can be 

achieved. Therefore, this perspective has motivated us to integrate the IFS with TOPSIS approach to 

make the decision more reasonable and reliable while treating the vagueness and uncertainty of the 

MCOP. Moreover, the integration of the IFS can provide a reasonable judgment while avoiding the 

subjectivity issue as it relies on the degree of satisfaction (acceptance) and rejection of objectives. 

Motivated by these natures, this paper presents an integrated TOPSIS approach based on IFS 

aspect, denoted as TOPSIS-IFS, to solve MCOP. In this context, the TOPSIS approach aims to 

provide a compromise solution of the MCOP with conflicting natures through the underling concepts 

of intuitionistic fuzzy terminology. In this regards, two features are acquired by this algorithm. 

TOPSIS reduces the K-dimensional objectives into two-dimensional objectives with the aim to 

mitigate the multiple conflicts among many objectives, while IFS can provide realistic representation 

of objectives by defining two membership functions for each objective (i.e., satisfaction degree and 

dissatisfaction degree) with the aim to realize the practical consideration of the MCOP. An 

illustrative example is conducted to validate the proposed TOPSIS-IFS approach and the MOTP 

model has been taken for demonstration. The proposed TOPSIS-IFS approach gives a superior and 

competitive results with the existing in the literature. Finally, this integrating depicts a new 

philosophy in the mathematical programming field due to its interesting principles. 

In a nutshell, the main contributions of this article are as follows. 
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1) This result broadens the literature by developing a new approach named as TOPSIS-IFS for 

MCOP. In this approach, TOPSIS is employed to convert any set of objectives into two objectives 

only. 

2) As the reliance on membership function only may not serve for realistic issues, IFS is developed 

based on the degree of attainability and non-attainability for such situations. 

3) A closeness strategy is presented to assess the obtained solutions against the other compromise 

alternatives and counterparts. 

4) Impacts of IFS parameters on the BCS are analyzed using the Taguchi method.  

5) The effectiveness of the TOPSIS-IFS approach is affirmed through the validation on numerical 

illustrations. 

The reminder sections of this paper are structured as follows. The preliminaries of the problem 

formulation and related definitions are presented in Section 2. Section 3 introduces the proposed 

methodology with its details. The proposed methodology is investigated by an illustrative example in 

Section 4. Finally, the conclusion and the future research are outlined in Section 5. 

2. Preliminaries 

This section is devoted to introducing the formulation of the multi-criterion optimization 

problem (MCOP) and some related definitions.   

2.1. The MCOP formulation 

As its name implies, MCOP deals with multiple conflicting criteria, and there is no single best 

outcome that optimizes all criteria at the same time. In this sense, the DM are interested in reaching 

the ‘‘most compromise or preferred’’ solution rather than the optimal one. MCOP occurs in a variety 

of real-world circumstances, such as multi-objective design of synchronous motor [27], power 

system application [28], and capacitor placement problem [29]. For instance, when a family wishes 

to purchase a car, they must take into account factors such as cost, safety, comfort, maintenance, fuel 

consumption and so forth. These requirements or criteria typically conflict with one another. Finding 

the safest, most comfortable car at the best price is a difficult task. There are other MCOP issues that 

are more challenging than buying a car. Making decisions is becoming increasingly difficult due to 

the world's rising complexity and uncertainty. In order to express the MCOP, we can utilize the 

problem definition. Without the loss of generality, the following equations formulate the MCOP 

denoted by 𝑷𝟏 as a maximization problem [30]: 

𝑃1: 
𝑀𝑎𝑥 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝐾(𝑥)) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜: 
𝑥 ∈ 𝛹 = {𝑥 ∈ 𝑅𝑛: 𝑔𝑙(𝑥) ≤ 0, 𝑙 = 1,2, . . . , 𝑁} 

 

 

(1) 

where 𝒙 = (𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏)  defines the decision variable vector with 𝒏  dimensions, 𝑭(𝒙) =
(𝒇𝟏(𝒙), 𝒇𝟐(𝒙), . . . , 𝒇𝑲(𝒙)) is the objective vector with 𝑲 objectives, and 𝒈𝒍(𝒙) is the 𝒍th constraint, 

whereas 𝑵 is the total number of constraints. 
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2.2. The distance measures for objectives space 

This section provides the definitions of distance regarding multiple objectives under some 

reference points [31]. Consider that the vector of an objective function, 𝑭(𝒙) =

(𝒇𝟏(𝒙), 𝒇𝟐(𝒙), . . . , 𝒇𝑲(𝒙)), is associated with two reference points, namely, ideal point or positive 

ideal solution (PIS), 𝑭∗ = (𝒇𝟏
∗ , 𝒇𝟐

∗ , . . . , 𝒇𝑲
∗ ) and anti-ideal point or negative ideal solution (NIS), 𝑭− =

(𝒇𝟏
−, 𝒇𝟐

−, . . . , 𝒇𝑲
−). These reference points can be computed as follows. 

𝑓𝑘
∗ = {

𝑚𝑎𝑥
𝑥∈𝛹

 𝑓𝑘(𝑥), Maximization problem

𝑚𝑖𝑛
𝑥∈𝛹

 𝑓𝑘(𝑥), Minimization problem
, 𝑘 = 1,2, . . . , 𝐾 

 

(2) 

𝑓𝑘
− = {

𝑚𝑖𝑛
𝑥∈𝛹

 𝑓𝑘(𝑥), Maximization problem

𝑚𝑎𝑥
𝑥∈𝛹

 𝑓𝑘(𝑥), Minimization problem 
, 𝑘 = 1,2, . . . , 𝐾 

 

(3) 

Also, the most prominent of closeness is the 𝑳𝑷-metric, 𝑳𝑷-metric denotes the distance, 𝒅𝒑, among 

any vectors of objective functions (𝑭(𝒙) and 𝑭∗) as follows. 

𝑑𝑝 = {∑𝑤𝑘
𝑝

𝐾

𝑘=1

[𝑓𝑘
∗ − 𝑓𝑘(𝑥)]

𝑝}

1

𝑝

, 𝑝 = 1,2, . . . , ∞ 

 

(4) 

where 𝒘𝒌 defines the relative importance (weight) of the 𝒌th objective, where this weight expresses 

the DM’s relative preference of the objective. Due to the units among the objectives not being 

unified, a scaling form is applied to obtain the dimensionless form and then the obtained value lies in 

the interval [0, 1]. The dimensionless metric form is formulated as follows: 

𝑑𝑝 = {∑𝑤𝑘
𝑝

𝐾

𝑘=1

[
𝑓𝑘
∗ − 𝑓𝑘(𝑥)

𝑓𝑘
∗ − 𝑓𝑘

− ]

𝑝

}

1

𝑝

, 𝑝 = 1,2, . . . , ∞ 

 

(5) 

In this sense, the compromise solution of MCOP is attained by converting the original model of 

Eq (1) to an auxiliary model through the underling concepts of distance metric as follows [31]. 

𝑀𝑖𝑛
𝑥∈𝛹

  𝑑𝑝 = {∑𝑤𝑘
𝑝

𝐾

𝑘=1

[
𝑓𝑘
∗ − 𝑓𝑘(𝑥)

𝑓𝑘
∗ − 𝑓𝑘

− ]

𝑝

}

1

𝑝

, 𝑝 = 1,2, . . . , ∞ 

 

(6) 

where, Eq (6) minimizes the sum of divisions of objective functions from their respective reference 

points (positive ideal solutions) through some weights. The parameter 𝒑 reflects the way of attaining 

the compromise solution, where it is responsible for balancing scenario among the group utility and 

maximal individual regret. In this regard, increasing of 𝒑 results in decreasing in the group utility 

(distance 𝒅𝑷), i.e., 𝒅𝟏 ≥ 𝒅𝟐 ≥. . . ≥ 𝒅𝒑 , and the largest deviation has a greater emphasis in forming 

the total. Where 𝒑 = 𝟏 reflects the equal importance (weights) regarding all deviations, while 𝒑 = 𝟐 

implies that the importance of deviation has an effect according to its amount, with the largest having 

the largest weight [31]. Finally, 𝒑 = ∞ implies that the largest deviation is the prominent one, where 

the 𝑳∞ − metric is defined as follows. 
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𝑑∞ = 𝑚𝑎𝑥
𝑘
{𝑤𝑘[𝑓𝑘

∗ − 𝑓𝑘(𝑥)]}    or   𝑑∞ = 𝑚𝑎𝑥
𝑘

{𝑤𝑘 [
𝑓𝑗
∗−𝑓𝑗(𝑥)

𝑓𝑘
∗−𝑓𝑘

− ]} 
 

(7) 

2.3. The conception of FS and IFS 

This section provides some concepts of FS and IFS. Assume that 𝑿 denotes a classical set of 

elements (objects). The conception of IFS can be considered as an alternate method to define a FS in 

situations where information at hand is insufficient for describing an imprecise concept by means of 

a classical FS. Thus, it is anticipated that IFS can be employed to simulate the human decision-

making task and any duties requiring human knowledge and expertise that are inherently imprecise 

or not totally reliable. In this sense, IFS theory can be employed in which the degree of membership 

of an object is measured within an interval pattern rather than the point valued as in FS. For this, 

hesitation degree among the membership functions has been respected in terms of the acceptance 

degree (membership function) and rejection degree (non-membership function) so that the sum of 

them is less than one. The FS and IFS are defined as follows. 

Definition 1 [32]. The FS, �̃�, is denoted as an ordered pair: �̃� = {(𝒙, 𝝁�̃�(𝒙))|𝒙 ∈ 𝑿} and 𝝁�̃�(𝒙): 𝑿 →

[𝟎, 𝟏] is defined as the membership function. 

Definition 2 [1]. The set of ordered triplet �̃�𝑰 = {(𝒙, 𝝁�̃�𝑰(𝒙), 𝝂�̃�𝑰(𝒙))|𝒙 ∈ 𝑿}  is defined as IFS, 

whereas 𝝁�̃�𝑰(𝒙), and 𝝂�̃�𝑰(𝒙) denote the degree of membership and the degree of non-membership, 

respectively. Each membership is a function from 𝑿 to [𝟎, 𝟏], i.e., 𝝁�̃�𝑰(𝒙), 𝝂�̃�𝑰(𝒙): 𝑿 → [𝟎, 𝟏] such 

that 𝟎 ≤ 𝝁�̃�𝑰(𝒙), 𝝂�̃�𝑰(𝒙) ≤ 𝟏 for all 𝒙 ∈ 𝑿. Also, 𝟏 − 𝝁�̃�𝑰(𝒙) − 𝝂�̃�𝑰(𝒙) denotes the hesitation degree 

or indeterminacy of 𝒙 being in �̃�𝑰 ∈ 𝑿. 

Definition 3 [33]. The 𝜶 -cut or 𝜶 -level set of a fuzzy set �̃� is defined as the crisp set 𝑨𝜶with the 

elements of the universal set 𝑿 such that the degree of membership is at least 𝜶 , i.e., 

𝐴𝛼 = {𝑥 ∈ 𝑋|𝜇�̃�(𝑥) ≥ 𝛼}, 0 ≤ 𝛼 ≤ 1 (8) 

Definition 4 [33]. The 𝜶-cut and 𝜷-cut of IFS are denoted by 𝑨𝜶
𝑰  and 𝑨𝜷

𝑰  respectively and are defined 

as follows. 

𝐴𝛼
𝐼 = {𝑥 ∈ 𝑋|𝜇�̃�𝐼(𝑥) ≥ 𝛼} , 𝑎𝑛𝑑 𝐴𝛽

𝐼 = {𝑥 ∈ 𝑋|𝜈�̃�𝐼(𝑥) ≤ 𝛽} ∀𝛼, 𝛽 ≥ 0 (9) 

3. The proposed TOPSIS-IFS for MCOP 

In this section, the proposed TOPSIS-IFS approach is applied to solve the MCOP. The first 

phase starts by formulating the distances measures of TOPSIS in which the PIS, 𝑭∗ =
(𝒇𝟏

∗ , 𝒇𝟐
∗ , . . . , 𝒇𝑲

∗ ) and NIS are employed to obtain 𝒅𝒑
𝑷𝑰𝑺and 𝒅𝒑

𝑵𝑰𝑺.  

𝑓∗ = {𝑚𝑖𝑛
𝑥∈𝛹

(or𝑚𝑎𝑥) 𝑓𝑗(𝑥)(or 𝑓𝑖(𝑥))∀𝑗(and 𝑖)} (10) 

𝑓− = {𝑚𝑎𝑥
𝑥∈𝛹

(or𝑚𝑖𝑛) 𝑓𝑗(𝑥)(or 𝑓𝑖(𝑥))∀𝑗(and 𝑖)} (11) 

where 𝑗 ∈ 𝐽 and 𝑖 ∈ 𝐼, whereas 𝐽 and 𝐼 denote the set of benefit objectives of maximization and the 

set cost objectives of minimization, respectively. In this sense, the TOPSIS method converts any set 

of objectives into two objectives only: The first objective comprises the normalized shortest distance 
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from the PIS denoted by 𝑑𝑝
𝑃𝐼𝑆(𝑥), and the second one comprises the normalized farthest from the 

NIS denoted 𝑑𝑝
𝑁𝐼𝑆(𝑥). In this context, each of distance metric aims to aggregate all objectives in 

normalized form using the weighted sum, where the first term implies the benefit objective for 

maximization, while second term implies the cost objective for minimization. Theses distances can 

be expressed as follows. 

𝒅𝒑
𝑷𝑰𝑺(𝒙) = {∑𝒘𝒋

𝒑
[
𝒇𝒋
∗ − 𝒇𝒋(𝒙)

𝒇𝒋
∗ − 𝒇𝒋

− ]

𝒑

+∑𝒘𝒊
𝒑
[
𝒇𝒊(𝒙) − 𝒇𝒊

∗

𝒇𝒊
− − 𝒇𝒊

∗ ]

𝒑

𝒊∈𝑰𝒋∈𝑱

}

𝟏/𝒑

 

 

 

(12) 

𝒅𝒑
𝑵𝑰𝑺(𝒙) = {∑𝒘𝒋

𝒑
[
𝒇𝒋(𝒙) − 𝒇𝒋

−

𝒇𝒋
∗ − 𝒇𝒋

− ]

𝒑

+∑𝒘𝒊
𝒑
[
𝒇𝒊
− − 𝒇𝒊(𝒙)

𝒇𝒊
− − 𝒇𝒊

∗ ]

𝒑

𝒊∈𝑰𝒋∈𝑱

}

𝟏/𝒑

 

 

 

(13) 

After formulating the distances in scalarization form using the weighted sum methods, TOPSIS 

was developed with the aim is to minimize the distance from the PIS, and maximize distance from 

the NIS, simultaneously. Thus, the MCOP is reformulated according to TOPSIS model denoted by 

𝑷𝟐 as the following form. 

𝑃2: 

𝑀𝑖𝑛 𝑑𝑝
𝑃𝐼𝑆(𝑥) 

𝑀𝑎𝑥 𝑑𝑝
𝑁𝐼𝑆(𝑥) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥 ∈ 𝛹  

 

 

 

(14) 

The second phase of the proposed TOPSIS-IFS approach employs the IFS conception. In this 

sense, each objective of the TOPSIS model is optimized individually to obtain its aspiration level 

which then is used to formulate the satisfaction and dissatisfaction degrees of the IFS model. This 

can be expressed mathematically as follows. 

(𝑑𝑝
𝑃𝐼𝑆)

∗
= 𝑚𝑖𝑛

𝑥∈𝛹
 𝑑𝑝
𝑃𝐼𝑆(𝑥) and the solution is 𝑥𝑃  (15) 

(𝑑𝑝
𝑁𝐼𝑆)

∗
= 𝑚𝑎𝑥

𝑥∈𝛹
 𝑑𝑝
𝑁𝐼𝑆(𝑥) and the solution is 𝑥𝑁 (16) 

(𝑑𝑝
𝑃𝐼𝑆)

−
= 𝑑𝑝

𝑃𝐼𝑆(𝑥𝑁) and (𝑑𝑝
𝑁𝐼𝑆)

−
= 𝑑𝑝

𝑁𝐼𝑆(𝑥𝑃) (17) 

These distances (𝒅𝒑
𝑷𝑰𝑺)

−
 and (𝒅𝒑

𝑵𝑰𝑺)
−

are computed as 

(𝒅𝒑
𝑷𝑰𝑺)

−
= 𝒎𝒂𝒙 

𝒙∈𝜳
𝒅𝒑
𝑷𝑰𝑺(𝒙) and (𝒅𝒑

𝑵𝑰𝑺)
−
= 𝒎𝒊𝒏 

𝒙∈𝜳
𝒅𝒑
𝑵𝑰𝑺(𝒙) 

Let (𝒅𝒑)
∗
= ((𝒅𝒑

𝑷𝑰𝑺)
∗
, (𝒅𝒑

𝑵𝑰𝑺)
∗
) and (𝒅𝒑)

−
= ((𝒅𝒑

𝑷𝑰𝑺)
−
, (𝒅𝒑

𝑵𝑰𝑺)
−
). 

After formulating the TOPSIS model, the conflicting nature among the 𝒅𝒑
𝑷𝑰𝑺(𝒙)  and 

𝒅𝒑
𝑵𝑰𝑺(𝒙) objectives is resolved with the help of the IFS technique where the acceptance membership 

(satisfaction) and rejection membership (dissatisfaction) are considered for each objective. To model 

the membership and non-membership functions for the 𝒅𝒑
𝑷𝑰𝑺(𝒙), the individual best optimal value of 

each objective function with its aspiration level should be set first. For example, Eq (15) finds the 
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solitary minimum of the  𝒅𝒑
𝑷𝑰𝑺(𝒙)  denoted by (𝒅𝒑

𝑷𝑰𝑺)
∗
, where the corresponding objective value 

𝒅𝒑
𝑵𝑰𝑺(𝒙𝑷) denoted by (𝒅𝒑

𝑷𝑰𝑺)
−
 is considered as the aspiration level. Therefore, the upper and lower 

levels of acceptability of the membership function are (𝒅𝒑
𝑷𝑰𝑺)

∗
 and (𝒅𝒑

𝑷𝑰𝑺)
−

respectively. In this sense, 

the membership function is expressed linearly between upper and lower levels of acceptability with 

assigning a specific grade for each value within those levels of acceptability. A 1 grade is adopted for 

values less than or equal to (𝒅𝒑
𝑷𝑰𝑺)

∗
 , and a 0 grade is adopted for values greater than or equal to 

(𝒅𝒑
𝑷𝑰𝑺)

−
. Similarly, the non-membership function of the IFS is formulated using the lower and upper 

levels of acceptability of the non-membership function ( (𝒅𝒑
𝑷𝑰𝑺)

∗
 and (𝒅𝒑

𝑷𝑰𝑺)
−
+ 𝜶𝟏 ) , where 𝜶𝟏 

defines the degree of hesitancy or neutrality for the 𝒅𝒑
𝑷𝑰𝑺(𝒙). Meanwhile, the DM is unwilling to 

accept values greater than (𝒅𝒑
𝑷𝑰𝑺)

−
without completely rejecting the values from (𝒅𝒑

𝑷𝑰𝑺)
−

 to 

(𝒅𝒑
𝑷𝑰𝑺)

−
+ 𝜶𝟏 . Similarly, the membership and non-membership functions for the 𝒅𝒑

𝑵𝑰𝑺(𝒙) can be 

modeled. Therefore, the membership function 𝝁𝟏(𝒙) ≡ 𝝁𝒅𝒑𝑷𝑰𝑺(𝒙)  and non-membership function 

𝝂𝟏(𝒙) ≡ 𝝂𝒅𝒑𝑷𝑰𝑺(𝒙) for the 𝒅𝒑
𝑷𝑰𝑺(𝒙) can be depicted as in Figure 1 and expressed by Eqs (18) and (19). 

Also, the membership function 𝝁𝟐(𝒙) ≡ 𝝁𝒅𝒑𝑵𝑰𝑺(𝒙), and non-membership function 𝝂𝟐(𝒙) ≡ 𝝂𝒅𝒑𝑵𝑰𝑺(𝒙) 

for the 𝒅𝒑
𝑵𝑰𝑺(𝒙) can be depicted as in Figure 2 and Eqs (20) and (21). 

𝝁𝟏(𝒙) =

{
 
 

 
 𝟏 𝒊𝒇 𝒅𝒑

𝑷𝑰𝑺(𝒙) ≤ (𝒅𝒑
𝑷𝑰𝑺)

∗

𝟏 −
𝒅𝒑
𝑷𝑰𝑺(𝒙)−(𝒅𝒑

𝑷𝑰𝑺)
∗

(𝒅𝒑
𝑷𝑰𝑺)

−
−(𝒅𝒑

𝑷𝑰𝑺)
∗ 𝒊𝒇 (𝒅𝒑

𝑷𝑰𝑺)
∗
≤ 𝒅𝒑

𝑷𝑰𝑺(𝒙) ≤ (𝒅𝒑
𝑷𝑰𝑺)

−

𝟎 𝒊𝒇 (𝒅𝒑
𝑷𝑰𝑺)

−
≤ 𝒅𝒑

𝑷𝑰𝑺(𝒙)

                     (18) 

𝝂𝟏(𝒙) =

{
 
 

 
 𝟎 𝒊𝒇 𝒅𝒑

𝑷𝑰𝑺(𝒙) ≤ (𝒅𝒑
𝑷𝑰𝑺)

∗

𝟏 −
((𝒅𝒑

𝑷𝑰𝑺)
−
+𝜶𝟏)−𝒅𝒑

𝑷𝑰𝑺(𝒙)

((𝒅𝒑
𝑷𝑰𝑺)

−
+𝜶𝟏)−(𝒅𝒑

𝑷𝑰𝑺)
∗ 𝒊𝒇 (𝒅𝒑

𝑷𝑰𝑺)
∗
≤ 𝒅𝒑

𝑷𝑰𝑺(𝒙) ≤ (𝒅𝒑
𝑷𝑰𝑺)

−
+ 𝜶𝟏

𝟏 𝒊𝒇 𝒅𝒑
𝑷𝑰𝑺(𝒙) ≥ (𝒅𝒑

𝑷𝑰𝑺)
−
+ 𝜶𝟏

    (19) 

𝝁𝟐(𝒙) =

{
 
 

 
 𝟏 𝒊𝒇 𝒅𝒑

𝑵𝑰𝑺(𝒙) ≥ (𝒅𝒑
𝑵𝑰𝑺)

∗

𝟏 −
(𝒅𝒑
𝑵𝑰𝑺)

∗
−𝒅𝒑

𝑵𝑰𝑺(𝒙)

(𝒅𝒑
𝑵𝑰𝑺)

∗
−(𝒅𝒑

𝑵𝑰𝑺)
− 𝒊𝒇 (𝒅𝒑

𝑵𝑰𝑺)
−
≤ 𝒅𝒑

𝑵𝑰𝑺(𝒙) ≤ (𝒅𝒑
𝑵𝑰𝑺)

∗

𝟎 𝒊𝒇 𝒅𝒑
𝑵𝑰𝑺(𝒙) < (𝒅𝒑

𝑵𝑰𝑺)
−

                     (20) 

𝝂𝟐(𝒙) =

{
 
 

 
 𝟏 𝒊𝒇 𝒅𝒑

𝑵𝑰𝑺(𝒙) ≤ (𝒅𝒑
𝑵𝑰𝑺)

−
− 𝜶𝟐

𝟏 −
𝒅𝒑
𝑵𝑰𝑺(𝒙)−((𝒅𝒑

𝑵𝑰𝑺)
−
−𝜶𝟐)

(𝒅𝒑
𝑵𝑰𝑺)

∗
−((𝒅𝒑

𝑵𝑰𝑺)
−
−𝜶𝟐)

𝒊𝒇 (𝒅𝒑
𝑵𝑰𝑺)

−
− 𝜶𝟐 ≤ 𝒅𝒑

𝑵𝑰𝑺(𝒙) ≤ (𝒅𝒑
𝑵𝑰𝑺)

∗

𝟎 𝒊𝒇 𝒅𝒑
𝑵𝑰𝑺(𝒙) ≥ (𝒅𝒑

𝑵𝑰𝑺)
∗

    (21) 

The proposed shape of the membership and non-membership functions for 𝒅𝒑
𝑷𝑰𝑺(𝒙) has been 

provided in Figure 1. Based on this shape, it is noted that in the interval [(𝒅𝒑
𝑷𝑰𝑺)

−
, (𝒅𝒑

𝑷𝑰𝑺)
−
+ 𝜶𝟏], 

the membership degree regarding the goal is zero, while the other is not, which means that the 

decision maker is not concerned to take more than 𝒅𝒑
𝑷𝑰𝑺(𝒙) but at this moment not strictly rejecting 

the values from (𝒅𝒑
𝑷𝑰𝑺)

−
to (𝒅𝒑

𝑷𝑰𝑺)
−
+ 𝜶𝟏. Also, for Figure 2 which represents the maximization of 

𝒅𝒑
𝑵𝑰𝑺(𝒙) , the satisfaction degree of the decision maker increases with an aim to approach its 

respective upper bound (𝒅𝒑
𝑵𝑰𝑺)

∗
. 
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Figure 1. Membership and non-membership functions for 𝒅𝒑
𝑷𝑰𝑺(𝒙). 

 

Figure 2. Membership and non-membership functions for 𝒅𝒑
𝑵𝑰𝑺(𝒙). 

Now, the main goal is to increase satisfaction level (𝜟) and decrease dissatisfaction level (𝜟′) of 

the decision maker, while increasing the degree of attainability and decreasing the degree of non-

attainability are the main goals of the IFS model. This can be described as follows: 

Let 𝜟 = 𝒎𝒊𝒏{𝝁𝟏(𝒙), 𝝁𝟐(𝒙)} and 𝜟′ = 𝒎𝒊𝒏{𝝂𝟏(𝒙), 𝝂𝟐(𝒙)} . Then the IFS model of problem 

𝑷𝟐 can be formulated as in problem (𝑷𝟑): 

𝑃3: 
{𝑀𝑎𝑥 𝛥,𝑀𝑖𝑛 𝛥′}  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {

𝑥 ∈ 𝛹
𝜇1(𝑥) ≥ 𝛥, 𝜇2(𝑥) ≥ 𝛥

𝜈1(𝑥) ≤ 𝛥
′, 𝜈2(𝑥) ≤ 𝛥

′

𝛥, 𝛥′ ≥ 0, 𝛥 + 𝛥′ ≤ 1

 

 

 

(22) 

 

This model can be rewritten as a deterministic single objective model as follows. 

𝑃4: 
𝑀𝑎𝑥(𝛥 − 𝛥′) 

 

 

(23) 
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𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

{
 
 
 

 
 
 

𝑥 ∈ 𝛹

(𝑑𝑝
𝑃𝐼𝑆)

−
− 𝑑𝑝

𝑃𝐼𝑆(𝑥) ≥ 𝛥((𝑑𝑝
𝑃𝐼𝑆)

−
− (𝑑𝑝

𝑃𝐼𝑆)
∗
)

𝑑𝑝
𝑃𝐼𝑆(𝑥) − (𝑑𝑝

𝑃𝐼𝑆)
∗
≤ 𝛥′ (((𝑑𝑝

𝑃𝐼𝑆)
−
+ 𝛼1) − (𝑑𝑝

𝑃𝐼𝑆)
∗
)

𝑑𝑝
𝑁𝐼𝑆(𝑥) − (𝑑𝑝

𝑁𝐼𝑆)
−
≥ 𝛥((𝑑𝑝

𝑁𝐼𝑆)
∗
− (𝑑𝑝

𝑁𝐼𝑆)
−
)

(𝑑𝑝
𝑁𝐼𝑆)

∗
− 𝑑𝑝

𝑁𝐼𝑆(𝑥) ≤ 𝛥′ ((𝑑𝑝
𝑁𝐼𝑆)

∗
− ((𝑑𝑝

𝑁𝐼𝑆)
−
− 𝛼2))

𝛥, 𝛥′ ≥ 0, 𝛥 + 𝛥′ ≤ 1

 

Thus, the overall solution procedures of the proposed TOPSIS-IFS methodology can be stated 

as follows. 

Step 1: Formulate the MCOP. 

Step 2: Obtain the individual minimum and maximum for each objective of the candidate problem. 

Step 3: Construct the equivalent model based on the distance’s functions of TOPSIS, 𝒅𝒑
𝑷𝑰𝑺(𝒙) and 

𝒅𝒑
𝑵𝑰𝑺(𝒙). 

Step 4: Get the maximum and minimum corresponding to objectives 𝒅𝒑
𝑷𝑰𝑺(𝒙) and 𝒅𝒑

𝑵𝑰𝑺(𝒙) under the 

given constraints. 

Step 5: Obtain the PIS payoff table of problem 𝑷𝟐 to obtain(𝒅𝒑)
∗
= ((𝒅𝒑

𝑷𝑰𝑺)
∗
, (𝒅𝒑

𝑵𝑰𝑺)
∗
) and also 

form the NIS payoff table to obtain (𝒅𝒑)
−
= ((𝒅𝒑

𝑷𝑰𝑺)
−
, (𝒅𝒑

𝑵𝑰𝑺)
−
). 

Step 6: Identify the membership and non-membership functions for each objective function of the 

TOPSIS phase. 

Step 7: Ask the DM to select 𝒑, {𝒑 = 𝟏, 𝟐, . . . , ∞}. 

Step 8: Formulate the IFS model as in (23). 

Step 9: Solve the IFS model to get the BCS. 

Step 10: Get the satisfaction level (𝜟) and dissatisfaction level (𝜟′). 

Step 11: If the obtained solution is satisfactory for the DM, stop. Else go to Step 1 through changing 

the hesitancy degrees (𝜶𝟏and 𝜶𝟐). 

Step 12: Repeat the steps until the DM is convinced of the found solutions. 

4. Numerical illustration 

This section provides the validation of the proposed TOPSIS-IFS approach through a numerical 

example taken from the literature [34]. This example was solved based on classical FS approach 

using the satisfaction degree only, while the proposed TOPSIS-IFS approach has considered the IFS 

based on the two membership functions for each objective (i.e., satisfaction degree, dissatisfaction 

degree). The obtained results affirmed that the proposed model is superior to the classical one. Also, 

a multi-objective transportation problem (MOTP) has been conducted [35]. The obtained solution is 

compared with the result obtained from the literature. 

𝑀𝑎𝑥 𝑓1(𝑥) = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 

𝑀𝑎𝑥 𝑓2(𝑥) = (𝑥1 − 1)
2 + 𝑥2

2 + (𝑥3 − 2)
2 

𝑀𝑎𝑥 𝑓3(𝑥) = 2𝑥1 + 𝑥2
2 + 𝑥3 

Subject to 
𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝛹 = {𝑥1 − 3𝑥2 + 4𝑥3 ≤ 6, 

2𝑥1
2 + 2𝑥2 + 𝑥3 ≤ 10, 

0 ≤ 𝑥1 ≤ 3,0 ≤ 𝑥2 ≤ 4,0 ≤ 𝑥3 ≤ 2} 

 

 

(24) 
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The first step is to get the minimum and maximum for each objective function individually as 

recorded in Table 1. 

Table 1. PIS payoff matrix of (24). 

 𝑓1 𝑓2 𝑓3 𝑥1 𝑥2 𝑥3 

𝑀𝑎𝑥𝑓1 11.1111 16.1111 11.1111 0 3.3333 0 

𝑀𝑎𝑥𝑓2 11.1111 16.1111 11.1111 0 3.3333 0 

𝑀𝑖𝑛𝑓3 1.6687E-7 5 0.2600E-6 0.4657E-7 0.4085E-3 0 

Table 2. NIS payoff matrix of (24). 

 𝑓1 𝑓2 𝑓3 𝑥1 𝑥2 𝑥3 

𝑀𝑖𝑛𝑓1 0.1034E-6 4.9989 5.5164E-4 0.1826E-3 0.1880E-3 0.1864E-3 

𝑀𝑖𝑛𝑓2 3.2677 0.3461 3.4270 0.8846 0.3461 1.538 

𝑀𝑎𝑥𝑓3 10.9337 15.4791 11.3372 0.2273 3.2988 0 

From Tables 1 and 2, the PIS and NIS solutions can be obtained respectively as, 𝒇∗ =

(𝟏𝟏. 𝟏𝟏𝟏𝟏, 𝟏𝟔. 𝟏𝟏𝟏𝟏, 𝟎. 𝟐𝟔𝟎𝟎𝑬 − 𝟔)  and 𝒇− = (𝟎. 𝟏𝟎𝟑𝟒𝑬 − 𝟔, 𝟎. 𝟑𝟒𝟔𝟏, 𝟏𝟏. 𝟑𝟑𝟕𝟐) . Then, the 

second step of the solution procedures is to employ the distance formulations of TOPSIS approach as 

follows. 

𝑭𝟏 = 𝒅𝒑
𝑷𝑰𝑺 =

(

 
 
 
 
 

+

𝒘𝟏
𝟐 (

11.1111− (𝒙𝟏
𝟐 + 𝒙𝟐

𝟐 + 𝒙𝟑
𝟐)

11.1111-0.1034E-6
)

𝟐

+

𝒘𝟐
𝟐 (

16.1111− ((𝒙𝟏 − 𝟏)
𝟐 + 𝒙𝟐

𝟐 + (𝒙𝟑 − 𝟐)
𝟐)

16.1111-0.3461
)

𝟐

+𝒘𝟑
𝟐 (
(𝟐𝒙𝟏 + 𝒙𝟐

𝟐 + 𝒙𝟑) − 𝟎. 𝟐𝟔𝟎𝟎E-6

11.3372-𝟎. 𝟐𝟔𝟎𝟎E-6
)

𝟐

)

 
 
 
 
 

𝟏

𝟐

 

𝑭𝟐 = 𝒅𝒑
𝑵𝑰𝑺 =

(

 
 
 
 
 

𝒘𝟏
𝟐 (
(𝒙𝟏

𝟐 + 𝒙𝟐
𝟐 + 𝒙𝟑

𝟐) − 0.1034E-6

11.1111-0.1034E-6
)

𝟐

+𝒘𝟐
𝟐 (
((𝒙𝟏 − 𝟏)

𝟐 + 𝒙𝟐
𝟐 + (𝒙𝟑 − 𝟐)

𝟐)-0.3461

16.1111-0.3461
)

𝟐

+𝒘𝟑
𝟐 (

11.3372-(𝟐𝒙𝟏 + 𝒙𝟐
𝟐 + 𝒙𝟑)

11.3372-𝟎. 𝟐𝟔𝟎𝟎E-6
)

𝟐

)

 
 
 
 
 

𝟏

𝟐

 

Subject to 
𝒙 = (𝒙𝟏, 𝒙𝟐, 𝒙𝟑) ∈ 𝜳 = {𝒙𝟏 − 𝟑𝒙𝟐 + 𝟒𝒙𝟑 ≤ 𝟔, 𝟐𝒙𝟏

𝟐 + 𝟐𝒙𝟐 + 𝒙𝟑 ≤ 𝟏𝟎, 

𝟎 ≤ 𝒙𝟏 ≤ 𝟑, 𝟎 ≤ 𝒙𝟐 ≤ 𝟒, 𝟎 ≤ 𝒙𝟑 ≤ 𝟐} 

 

 

 

 

 

 

 

 

 

(25) 

For problem (25), assume that 𝒘𝟏 = 𝒘𝟐 = 𝒘𝟑 =
𝟏

𝟑
, where the model (25) of the 𝒅𝒑

𝑷𝑰𝑺 and 𝒅𝒑
𝑵𝑰𝑺 

is solved, and the solution is given in Table 3. 
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Table 3. The payoff matrix of (25). 

 𝐹1 𝐹1 𝑥1 𝑥2 𝑥3 

𝑀𝑖𝑛 𝐹1 0.4415 0.5939 0 2.6017 0 

𝑀𝑎𝑥 𝐹2 0.5657 0.8166 0 3.3333 0 

Based on Table 3, the PIS and NIS solutions of problem (25) can be computed respectively as, 

𝑭∗ = (𝟎. 𝟒𝟒𝟏𝟓, 𝟎. 𝟖𝟏𝟔𝟔) and 𝑭− = (𝟎. 𝟓𝟔𝟓𝟕, 𝟎. 𝟓𝟗𝟑𝟗). Therefore, the membership functions (i.e., 

𝝁𝟏and 𝝁𝟐) and non- membership functions (i.e., 𝝂𝟏 and 𝝂𝟐) are formulated as mentioned in Eqs (18)-

(21). Afterwards, the IFS model can be formed as in (23). Through solving model (23), the BCS 

can be obtained with satisfaction level 𝜟 = 0.6154 and dissatisfaction level 𝜟′ = 0.2614, 𝒙𝟏 =
𝟎, 𝒙𝟐 = 2.6667, 𝒙𝟑 = 𝟐. 

4.1. Validation on MOTP model 

This subsection emphasis the validation of the proposed TOPSIS-IFS approach for MOTP 

associated with some descriptions. Consider a MOTP with four sources 𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒 , and five 

destinations 𝒃𝟏, 𝒃𝟐, 𝒃𝟑, 𝒃𝟒, 𝒃𝟓 . Suppose the goods are to be delivered from the 𝒊𝒕𝒉  (𝒊 = 𝟏, 𝟐, 𝟑, 𝟒) 

source to the 𝒋𝒕𝒉 (𝒋 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓) destination. The costs of transportation along with supply and 

demand are given in Table 4. Therefore, without loss of generality, the MOTP defined as 

transportation cost, the transportation time and loss during the transportation can be expressed as a 

multi-objective optimization problem as follows [35]. 

Table 4. Descriptions of MOTP. 

Supply Demand Penalty 

𝑎1 = 5, 

𝑎2 = 4, 

𝑎3 = 2, 

𝑎4 = 9. 

𝑏1 = 4, 

𝑏2 = 4, 

𝑏3 = 6, 

𝑏4 = 2, 

𝑏5 = 4. 

𝐶1 = [

9 12 9 6 9
7 3 7 7 5
6 5 9 11 3
6 8 11 2 2

] , 𝐶2 = [

2 9 8 1 4
1 9 9 5 2
8 1 8 4 5
2 8 6 9 8

], 

𝐶3 = [

2 4 6 3 6
4 8 4 9 2
5 3 5 3 6
6 9 6 3 1

] 

𝑴𝒊𝒏 𝒇𝟏 =∑∑𝑪𝒊𝒋
𝟏𝒙𝒊𝒋

𝟓

𝒋=𝟏

𝟒

𝒊=𝟏

 

𝑴𝒊𝒏 𝒇𝟐 =∑∑𝑪𝒊𝒋
𝟐𝒙𝒊𝒋

𝟓

𝒋=𝟏

𝟒

𝒊=𝟏

 

𝑴𝒊𝒏 𝒇𝟑 =∑∑𝑪𝒊𝒋
𝟑𝒙𝒊𝒋

𝟓

𝒋=𝟏

𝟒

𝒊=𝟏

 

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 

∑𝒙𝒊𝒋 ≤ 𝒂𝒊, 𝒊 = 𝟏, 𝟐, . . . , 𝟒

𝟓

𝒋=𝟏
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∑𝒙𝒊𝒋 ≤ 𝒃𝒋, 𝒋 = 𝟏, 𝟐, . . . , 𝟓

𝟒

𝒊=𝟏

 

𝒙𝒊𝒋 ≥ 𝟎 and integer ∀ 𝒊, 𝒋. 

 

 

(26) 

where 𝑪𝒊𝒋
𝒌  defines the 𝒌𝒕𝒉penalty criterion 𝒌 (𝒌 = 𝟏, 𝟐, 𝟑), that can be transportation cost, delivery 

time etc. related to transporting the item from the 𝒊𝒕𝒉 source to the 𝒋𝒕𝒉 destination, 𝒙𝒊𝒋 defines the 

quantity of an item that needs to be transported from the 𝒊𝒕𝒉 source to the 𝒋𝒕𝒉 destination, 𝒃𝒋 and 

𝒂𝒊 refer to available demand and supply at 𝒋𝒕𝒉 destination and 𝒊𝒕𝒉 source respectively. It is assumed 

that 𝑪𝒊𝒋
𝒌 ≥ 𝟎, 𝒂𝒊 ≥ 𝟎, 𝒃𝒋 ≥ 𝟎 ∀ 𝒌, 𝒊, 𝒋 and ∑ 𝒂𝒊

𝟒
𝒊=𝟏 = ∑ 𝒃𝒋

𝟓
𝒋=𝟏 . 

The optimization process starts by finding the individual solution of each objective function is 

determined, where the bounds for each objective are given as follows: 𝟏𝟎𝟐 ≤ 𝒇𝟏 ≤ 𝟏𝟓𝟕, 𝟕𝟐 ≤ 𝒇𝟐 ≤
𝟏𝟓𝟕 and 𝟔𝟒 ≤ 𝒇𝟑 ≤ 𝟏𝟑𝟔. Afterwards the distance formulations based on the TOPSIS approach are 

formulated as in Eq (14), and then the reference points of the PIS and NIS are obtained as, 𝑭∗ =
(𝟎. 𝟑𝟑𝟐𝟏, 𝟎. 𝟕𝟏𝟒𝟔) and 𝑭− = (𝟎. 𝟒𝟏𝟒𝟎, 𝟎. 𝟔𝟕𝟖𝟗). Therefore, the membership functions (i.e., 𝝁𝟏 and 

𝝁𝟐  ) and non-membership functions (i.e., 𝝂𝟏  and 𝝂𝟐) are formulated as mentioned in Eqs (18) –(21). 

Afterwards, the IFS model can be formed as in (23). By solving model (23), the BCS can be obtained 

through obtaining the satisfaction level 𝜟 = 0.9277 and dissatisfaction level 𝜟′ = 0.7096E-1,𝒙𝟏𝟏 =
𝟑, 𝒙𝟏𝟐 = 𝟎, 𝒙𝟏𝟑 = 𝟎, 𝒙𝟏𝟒 = 𝟐, 𝒙𝟏𝟓 = 𝟎,𝒙𝟐𝟏 = 𝟎, 𝒙𝟐𝟐 = 𝟐, 𝒙𝟐𝟑 = 𝟐, 𝒙𝟐𝟒 = 𝟎, 𝒙𝟐𝟓 = 𝟎,𝒙𝟑𝟏 = 𝟎, 𝒙𝟑𝟐 =
𝟐, 𝒙𝟑𝟑 = 𝟎, 𝒙𝟑𝟒 = 𝟎, 𝒙𝟑𝟓 = 𝟎,𝒙𝟒𝟏 = 𝟏, 𝒙𝟒𝟐 = 𝟎, 𝒙𝟒𝟑 = 𝟒, 𝒙𝟒𝟒 = 𝟎, 𝒙𝟒𝟓 = 𝟒. 

4.2. Performance evaluation 

This subsection is adopted to validate the performance in the presence of the set of outcomes. 

Meanwhile, as TOPSIS-IFS approach acquires relative weights for scalarization of the objective 

functions, a variety of outcomes can be obtained not only by assigning different weights but also 

with employing different hesitancy degrees of the IFS model (𝛼1 and 𝛼2). In this respect, to make the 

decision more reliable, the closeness strategy [35] is introduced as a powerful assistance tool to 

sample the BCS which is close to ideal or optimal solution. Moreover, this strategy can be employed 

for the comparisons among different outcomes. The formulation of closeness strategy is stated as 

follows. 

𝜙1(𝑤, 𝐾) = 1 −∑𝑤𝑖

𝐾

𝑖=1

𝑑𝑖 

 

(27) 

𝜙2(𝑤, 𝐾) = [∑𝑤𝑖
2(1 −

𝐾

𝑖=1

𝑑𝑖)
2]

1

2

 

 

(28) 

𝜙∞(𝑤, 𝐾) = 𝑚𝑎𝑥𝑖{𝑤𝑖(1 − 𝑑𝑖)} (29) 

where 𝒅𝒊 takes the following form for minimization problem,  
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𝑑𝑖 =

{
 
 

 
 𝐹𝑖

∗

𝐶𝑆𝑖
minimization problem

𝐶𝑆𝑖
𝐹𝑖
∗ maximization problem

 

 

 

(30) 

where 𝑭𝒊
∗ and 𝑪𝑺𝒊 are the ideal value and the compromise value of 𝑭𝒊, respectively. The comparison 

results of the closeness strategy among the proposed TOPSIS-IFS approach and the classical FS 

approach are given in Table 5. Based on the obtained results, it is noted that the proposed TOPSIS-

IFS approach is more preferred than the classical FS for MCOP and MOTP test instances. In this 

context, for the MCOP test instance, the proposed TOPSIS-IFS approach is compared with the FS 

approach [23]. As shown from Table 5, the obtained values of  𝒇𝟏 and 𝒇𝟐 by the proposed approach 

are closer to the ideal solution than the FS approach [34] with closeness values of 0.4988, 0.6446, 

and 0.3333 for 𝝓𝟏, 𝝓𝟐, and 𝝓𝟑, respectively. For the MOTP test instance, the proposed TOPSIS-IFS 

approach is compared with FS approach [35]. As shown from Table 5, the obtained values of 𝒇𝟏, 𝒇𝟐 

and 𝒇𝟑 by the proposed approach are closer to the ideal solution than the FS approach [24] with 

closeness values of 0.22081, 0.2297, and 0.1025 for 𝝓𝟏, 𝝓𝟐, and 𝝓𝟑, respectively. 

Table 5. Closeness values for fuzzy approach and the proposed approach. 

 MCOP test instance  MOTP test instance 

 Ideal solution FS approach 

[34] 

The proposed 

approach 

 Ideal 

solution 

FS approach 

[35] 

The 

proposed 

approach 

𝑓1 11.1111 1.3740 11.1111  102 133 127 

𝑓2 16.1111 1.6850 8.1111  72 112 104 

𝑓3 0.2600E-6 1.1722 9.1111  64 86 76 

𝑑1 - 0.12366 1  - 0.7669 0.8031 

𝑑2 - 0.104586 0.503448  - 0.6429 0.6923 

𝑑3 - 2.22E-07 2.85E-08  - 0.7442 0.8421 

𝜙1 - 0.9239 0.4988  - 0.2820 0.22081 

𝜙2 - 0.9255 0.6446  - 0.2871 0.2297 

𝜙∞ - 0.3333 0.3333  - 0.1190 0.1025 

4.3. Parametric study 

This subsection provides a parametric study for the parameters of IFS model with the aim to 

demonstrate their effects on the satisfaction and dissatisfaction levels. The hesitancy degrees of 

satisfaction and dissatisfaction opinions play a vital role in the decision-making process, and their 

subjective values affect the outcome of the MCOP. Therefore, quantifying the hesitancy degrees 

using the experimental design technique is convenient and reliable for the optimization process. In 

this regard, the Taguchi approach [36,37] is employed, as it represents one of the frequently 

employed experimental design methodologies [38,39] which allow optimization with minimal 

number of experiments along with robust design solutions. Moreover, the Taguchi experimental 

design improves quality and reduces the cost. The prominent advantage of the Taguchi approach 

over the others is the simultaneous optimization of numerous parameters, which allows for the 

extraction of more quantitative information from fewer experimental trials.  

https://www.researchgate.net/publication/220558132_An_interactive_algorithm_for_large_scale_multiple_objective_programming_problems_with_fuzzy_parameters_through_TOPSIS_approach?_sg=ghnUA46EssPtMAEG8UW-NogTU3sU5BN9HrSdnqo5VUAFVkuvuazrB70eTL1uyQII9XgN8OwXZAyUhyoqZD0yStcWZfGBYA6x5LWAMsdn.9zogfNAtCEJ_rvXF-E-D9HB0F7OkmEXpmZBoW6ZdG4cmVkQ-EXgbkK5kSwRiMZC3oF4aZft99nVU4L96q0YheQ
https://www.researchgate.net/publication/220558132_An_interactive_algorithm_for_large_scale_multiple_objective_programming_problems_with_fuzzy_parameters_through_TOPSIS_approach?_sg=ghnUA46EssPtMAEG8UW-NogTU3sU5BN9HrSdnqo5VUAFVkuvuazrB70eTL1uyQII9XgN8OwXZAyUhyoqZD0yStcWZfGBYA6x5LWAMsdn.9zogfNAtCEJ_rvXF-E-D9HB0F7OkmEXpmZBoW6ZdG4cmVkQ-EXgbkK5kSwRiMZC3oF4aZft99nVU4L96q0YheQ
https://www.researchgate.net/publication/220558132_An_interactive_algorithm_for_large_scale_multiple_objective_programming_problems_with_fuzzy_parameters_through_TOPSIS_approach?_sg=ghnUA46EssPtMAEG8UW-NogTU3sU5BN9HrSdnqo5VUAFVkuvuazrB70eTL1uyQII9XgN8OwXZAyUhyoqZD0yStcWZfGBYA6x5LWAMsdn.9zogfNAtCEJ_rvXF-E-D9HB0F7OkmEXpmZBoW6ZdG4cmVkQ-EXgbkK5kSwRiMZC3oF4aZft99nVU4L96q0YheQ
https://www.researchgate.net/publication/220558132_An_interactive_algorithm_for_large_scale_multiple_objective_programming_problems_with_fuzzy_parameters_through_TOPSIS_approach?_sg=ghnUA46EssPtMAEG8UW-NogTU3sU5BN9HrSdnqo5VUAFVkuvuazrB70eTL1uyQII9XgN8OwXZAyUhyoqZD0yStcWZfGBYA6x5LWAMsdn.9zogfNAtCEJ_rvXF-E-D9HB0F7OkmEXpmZBoW6ZdG4cmVkQ-EXgbkK5kSwRiMZC3oF4aZft99nVU4L96q0YheQ
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Due to its advantages, the Taguchi approach is adapted to study the impacts of IFS model’ 

parameters with the aim to determine their effects on compromise solutions [40]. The model contains 

the hesitancy degrees (𝛼1 and 𝛼2). In this sense, the Taguchi approach is started with setting the 

levels for the IFS model parameters, where each model parameter is considered with four levels as in 

Table 6. Then, the effective set of combinations induced by the Taguchi-based a special design of 

orthogonal arrays is listed in Table 7. For each combination of the parameters 𝛼1 and 𝛼2, the values 

of satisfaction and dissatisfaction levels are obtained along with the obtained decision variables. In 

this context, Taguchi classifies the values of satisfaction and dissatisfaction into three categories: the 

“larger is better”, the “smaller is better”, and “the nominal is best” types. As satisfaction level the 

“larger is better” type is selected, while for dissatisfaction the “smaller is better” is chosen. These 

categories aim to attain the optimal combination of the model parameters that acquire the smallest 

variance in performance. Accordingly, the statistical analysis based on the signal-to-noise ratio (S/N 

ratio) provides an effective way to find significant model parameters with their associated levels 

through evaluating the minimum variance. For more details on the Taguchi selection and use of 

orthogonal arrays, readers are referred to Ref. [41]. By this selection, Taguchi approach can provide 

the S/N ratio that reflects the values of the parameters on the satisfaction and dissatisfaction levels as 

in Figure 3. In this regard, the analysis based on Taguchi experiment using larger is better type for 

the satisfaction level is performed, where the obtained values of hesitancy degrees (𝛼1and 𝛼2) are 

illustrated in Figure 3(a). Based on the depicted analysis, the values of 𝛼1 = 0.35 and 𝛼2 = 0.002 

have significant effects on the satisfaction level. Moreover, the analysis based on Taguchi 

experiment using smaller is better type for the dissatisfaction level is carried out, where the obtained 

values of hesitancy degrees are presented in Figure 3(b). Figure 3(b) demonstrates that the values of 

𝛼1 = 0.35 and 𝛼2 = 0.1 influence the performance on the dissatisfaction level. 

Table 6. Parameters with their levels. 

Parameter  Levels 

  Level 1 Level 2 Level 3 Level 4 

𝛼1  0.002 0.01 0.1 0.35 

𝛼2  0.002 0.01 0.1 0.35 

Table 7. Parameters with their levels. 

Parameter  Satisfaction 

level 

 Dissatisfaction 

level 

 Obtained solution 

𝛼1 𝛼2  𝛥  𝛥′  𝑥1 𝑥2 𝑥3 

0.002 0.002  0.8051  0  0 3.1171 0 

0.002 0.01  0.6154  0  0 2.6667 2 

0.002 0.1  0.6154  0  0 2.6667 2 

0.002 0.35  0.6154  0.2541  0 2.6667 2 

0.01 0.002  0.8051  0  0 3.1171 0 

0.01 0.01  0.6154  0  0 2.6667 2 

0.01 0.1  0.6154  0  0 2.6667 2 

0.01 0.35  0.6154  0.2541  0 2.6667 2 

0.1 0.002  0.8051  0  0 3.1171 0 

Continued on next page 
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Parameter  Satisfaction 

level 

 Dissatisfaction 

level 

 Obtained solution 

𝛼1 𝛼2  𝛥  𝛥′  𝑥1 𝑥2 𝑥3 

0.1 0.01  0.6154  0  0 2.6667 2 

0.1 0.1  0.6154  0  0 2.6667 2 

0.1 0.35  0.6154  0.2541  0 2.6667 2 

0.35 0.002  0.7587  0.2412  0 3.0597 0 

0.35 0.01  0.7587  0.2412  0 3.0597 0 

0.35 0.1  0.5984  0.4015  0 2.6409 2 

0.35 0.35  0.5984  0.4015  0 2.6409 2 

 

Figure 3. The SN ratio plot for the parameters values (a) 𝛥 (b) 𝛥′in Example 1. 

4.4. Characteristic comparison 

Aside from the above comparison, we also compare the critical characteristic of the proposed 

approach with the various approaches present in the literature. The characteristics comparison table is 
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shown in Table 8. In this table, the symbol ✓ indicates that the method satisfies the particular feature, 

but the, symbol × means that the corresponding process fails to satisfy. For instance, the present 

approach is suitable to describe a wider range of the information in terms of IFS features, while some 

approaches [12,13,19,34,35] have less range of information. Thus, their approaches have some 

limitations in access. On the other hand, in the proposed approach, we consider the attribute 

characteristic of the decision maker towards the assessment of the final best alternative, while the 

existing approaches [12,13,34,35] do not consider it during the evaluation. Hence, such existing 

approaches does not provide the more compromise solution as per the need of the expert. Aside from 

these features, the proposed approach has defined the membership and non-membership grades of 

the PIS and NIS, which helps to satisfy the region of the grades more closely, while existing 

approaches fails to satisfy this feature. This means that, in the existing approaches, the decision 

maker cannot increase/decrease their satisfaction or dissatisfaction degrees towards the upper or 

lower bounds of the reference level. To make a decision smoother and better, there is an always a 

need to consider a level of satisfaction and dissatisfaction of the decision-maker into the analysis so 

that by increasing or decreasing their levels, the degree of the attainability can be achieved. Finally, 

the ideal points in most of the existing approaches are considered as an ideal and independent of the 

aspiration level; however, we have considered it properly in the proposed approach.  

Table 8. Characteristic comparison of the proposed approach. 

 Express a 

wider 

range of 

informati

on? 

Consider 

multiple 

experts? 

Consider the 

attitude 

character of 

the decision-

maker? 

Consider the 

satisfaction 

levels of the 

decision-

maker? 

Compute 

the ideal 

values 

using 

aspiration 

level? 

Define the 

membership 

functions for 

PIS and NIS? 

Consider 

the multi- 

Criterion 

problems? 

Singh et al. 

[35] 

× × × × × × × 

Abo-Sinna 

and Amer 

[34] 

× ✓ × × ✓ ✓ ✓ 

Razmi et al. 

[19] 

✓ ✓ ✓ ✓ × × ✓ 

Tavana and 

Hatamu-

Marbini 

[13] 

× × × × × × ✓ 

Akgul et al. 

[12] 

× × ✓ × × × ✓ 

Proposed 

approach 

✓ ✓ ✓ ✓ ✓ ✓ ✓ 

5. Conclusions 

In this paper, an attempt has been made to provide a new concept in the optimization filed 

through integrating the TOPSIS approach with the IFS model, named TOPSIS-IFS. However, FS 

approaches were employed for solving optimization tasks; they do not always judge the real-world 

decision situations as they rely only the on satisfaction-based membership function. In such 

circumstances, IFS overcomes this dilemma by introducing membership and non-membership 
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functions which play a vital role in modeling the practical situations. The proposed TOPSIS-IFS 

approach acquires two features, namely, TOPSIS phase that aims to reduce the K-dimensional 

objectives into two-dimensional objectives, and IFS phase that aims to provide realistic 

representation of objectives by defining two membership functions for each objective function (i.e., 

satisfaction degree, dissatisfaction degree). TOPSIS-IFS is validated using an illustrative example, 

and it is realized on the MOTP to affirm its practicability. The obtained solution by the TOPSIS-IFS 

affirmed its superiority to those existing in the literature. Finally, this integrating depicts a new 

philosophy in the mathematical programming field due to its interesting principles and its neutrality 

aspect. Also, this approach can assist the operators and designer to obtain more reasonable and 

reliable decisions by altering the hesitancy degrees (𝜶𝟏 and 𝜶𝟐) of membership and non-membership 

functions. 

The stated approach has a wide ability to capture the information related to the decision-making 

problem, but it is simultaneously true that the considered IFS environment encounters some 

problems during the rating. For instance, when an expert submits their evaluation for which the sum 

of their membership degress exceed 1, then such an approach is not applicable. Although the 

proposed TOPSIS-IFS method provides a broader model to address the decision-making process 

which is accompanied by the uncertainty aspect through considering the satisfaction and 

dissatisfaction degrees of the information, the utilization of the proposed approach on high-

dimensional problems still deserves further exploration. To resolve this problem, we intend to create 

more adaptable mathematical frameworks in the future, which should allow us to record a noticeable 

greater range of evaluation. Additionally, we can generalize our approach, and it will allow us to 

expand the application of the approach to deal with practical cases such as the Economic-emission 

load dispatch problem, and multi-objective wind farm layout optimization. Also, some other 

modification will be suggested, and exploring the decision-making process under the rough set 

theory environment is a worthwhile direction. Finally, we can extend the approach to the different 

types of optimization problems such as fractional programming and multi-level programming 

problems and the diverse application by using some extended efficient optimization algorithms such 

as support vector machine [42], many-objective optimization [43,44], scheduling problems [45]. 
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