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Abstract: This article contemplates the demeanor of the giant magnetostrictive actuator (GMA) when 
a positive position feedback (PPF) damper is used to enable tight control over its vibration. The 
methodology followed here mathematically searches for the approximate solution for the motion 
equations of the GMA with the PPF damper, which has been accomplished by using one of the most 
famous perturbation methods. The multiple scale perturbation technique (MSPT) of the second-order 
approximation is our strategy to obtain the analytical results. The stability of the system has also been 
investigated and observed by implementing frequency response equations to close the concurrent 
primary and internal resonance cases. By utilizing Matlab and Maple programs, all numerical 
discussions have been accomplished and explained. The resulting influence on the amplitude due to 
changes in the parameters’ values has been studied by the frequency response curves. Finally, a 
comparison between both the analytical and numerical solutions using time history and response 
curves is made. In addition to the comparison between our PPF damper’s effect on the GMA, previous 
works are presented. To get our target in this article, we have mentioned some important applications 
utilized in the GMA system just to imagine the importance of controlling the GMA vibration. 
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1. Introduction 

It has become clear how important it is to dampen the vibrations occurring in different engineering 
mechanical structures. Given the importance of this topic, many researchers have been working on 
how to control these vibrations and improve their ability to reduce the amplitude of these vibrations in 
the worst cases of resonance. Giant magnetostrictive materials (GMM) are considered very famous 
engineering structures that are a sort of utilitarian materials created since the 1970s, denoted by their 
high energy density and vast magnetostrain. A presentation of magnetostriction and the historical 
backdrop of magnetostrictive materials is portrayed. Besides, we audit the new advancements of both 
uncommon and common earth magnetostrictive materials. Contrasted and other cunning materials, 
GMM has a high Curie temperature, high attractive mechanical coupling coefficient, quick reaction, 
and vast magnetostrictive strain [1,2]. In addition, another phase of actuators employing the 
magnetostrictive impact for driving GMM as a driving force to change over electromagnetic energy 
into mechanical energy is called the giant magnetostrictive actuator (GMA). GMAs are generally used 
to perform power harvesting, control mechanical vibrations, drive electrohydraulic servovals, and rate 
microelectromechanical systems [3–8]. 

Notwithstanding, since the GMM pole has the issue of hysteresis nonlinear peculiarity, there is a 
nonlinear connection in the middle of the applied attractive field, and the resulting strain of the GMA, 
which truly obliterates the nonlinear soundness of the GMA [9–11]. Generally speaking, to direct the 
plan of the GMA structure, execution assessment, control, and applying the GMA in various 
implementations are important to complete the exploration of the GMA nonlinear stability. In conclusion, 
scientists have proposed assorted plans, including the robust control as Nealis & Smith presented [12], 
optimal control that was introduced by Oates & Smith [13], self-adaptivetive control algorithm explained 
by Wang et al. [14], and applied H-infinity robust control described by Liu et al. [15] to decrease and 
damp the impact of nonlinear elements on yield stability. Moreover, Hong et al. [16] applied two 
controllers to dominate the nonlinear mechanical behaviors in a more detailed chaotic motion, where 
principal resonance response and amplitude of the GMA system has been expressed mathematically 
as a one degree of freedom. They introduced a thorough study of the system, and in this work, a 
numerical comparison has been held between the effect of all controllers. Under the parametric 
excitations, Wei [17] investigated the nonlinear characteristics of the MEMS in addition to bifurcation 
and chaos. 

El-Sayed and Bauomy [18,19] concentrated on the exhibitions of the PPF approach for decreasing 
the motions of an upward transport. They detailed that the PPF presented can diminish the vibration of 
the approaching framework. Additionally, they presented the effect of the Nonlinear Integral Positive 
Position Feedback (NIPPF) to decrease the high vibration amplitude of the system. Omidi et al. [20] 
presented the impact of the multi-positive input approach on piezoelectric-actuated flexible 
constructions. According to the outcomes, the presentation of a multi positive feedback damper is more 
proficient in decreasing vibration than the MPPF damper. A consensus modified positive position 
feedback (CMPPF) is discovered by decentralizing and disseminating the modified positive position 
feedback (MPPF) to a network of control agents, which has been presented by Qi et al. [21] to reduce 
the large flexible structure oscillation in the spacecraft. Hamed et al. [22] investigated the nonlinear 
vibrations, stability, and resonance of a cantilever using a new nonlinear MPPF approach. 

The PPF control technique implemented by Jun [23] is an effective strategy for suppressing the 
high amplitude response of a flexible beam subjected to primary external excitation. Additionally, the 
PPF controller is applied to the structure of a flexible manipulator with a collocated piezoelectric 
sensor/actuator pair. The active vibration control of clamp beams is investigated by Shin et al. [24]. 
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They used multiple PPF controllers with a sensor/moment pair actuator to overcome the problems of 
instability. It is illustrated both numerically and experimentally that the vibration levels are brought 
down at the tuned modes of the PPF controllers. El-Ganaini et al. [25] elaborated a nonlinear dynamic 
model subjected to external primary resonance excitation. They used the PPF controller to suppress 
the vibration amplitude of the system. The PPF controller is applied to control the vibrations at all 
resonant modes using piezoelectric sensor voltage feedback. 

Amer et al. [26] applied the PPF to dampen the vibration of the MEMS. They studied the worst 
resonance case treating the vibrating system and observed the effect of parameters on the main system 
and the PPF. Yaghoub and Jamalabadi [27] studied the suppression of mechanical oscillations of the 
galloping system using the PPF controller. The results show that the PPF controller is a powerful 
method to decrease the galloping amplitude of the D-shaped prism. Bauomy and El-Sayed [28] 
considered the nonlinear dynamic vibrations of a composite plate with square and cubic nonlinear 
terms exposed to external and parametric excitations. This system is controlled using three PPF 
controllers, thus they have a new six-degree-of-freedom model. The techniques of PPF and PDF 
controllers were applied by Syed [29] on a single-link flexible manipulator featuring a piezoelectric 
actuator. Based on the studied system, the comparison between the two controllers has concluded that 
the PDF controller is overall more effective in repressing vibrations than the PPF controller. Responses 
of the closed-loop system for NIPPF, IRC, and PPF controllers are explained, and the stability analysis 
was performed by Omidi and Mahmoodi [30]. Applying NIPPF reveals that the vibration amplitude is 
sufficiently suppressed at the exact resonant frequency and the corresponding peaks in the frequency 
domain are also greatly reduced compared to the other two controllers. Therefore, the NIPPF controller 
produces the greatest efficiency in the frequency and time domains. El-Sayed and Bauomy [31] 
investigated the effect NIPPF faces when ANIPPF is applied to the shearer’s semi-direct drive cutting 
transmission system. They found out from this investigation that the ANIPPF controller equips the 
superior system control. All these results are proved analytically and numerically. A NSC simulation 
was used for reducing the vibrations of the nonlinear cantilever beam by Bauomy and El-Sayed [32]. 
They used a perturbation analysis to find out the mathematical solution; then, they compared it to the 
numerical solution. Amer et al. [33] used the positive position feedback to control the vibration of the 
nonlinear spring pendulum. They applied the multiple scale method in the mathematical solution to 
get the frequency response equation and studied the effect of parameters. Bauomy and El-Sayed [34] 
controlled the vibration of the macro-fiber composite by connecting a nonlinear proportional-derivative. 
They achieved high effectiveness in applying this damper. According to Fang, Ma, and Zhu [35], the 
coupling constitutive relation is derived from the piezoelectric semiconductor one-dimensional 
phenomenological theory. It has also beed discovered that the performance of electronic devices can 
be controlled by altering the electric potential and concentration from positive to negative in the 
nanofiber. On the basis of Reddy higher order shear deformation theory and von Kármán geometric 
nonlinearity assumption, the relationship between nonlinear free vibration behavior and nonlinear 
forced vibration behavior of viscoelastic plates was explored by Fang, Zhu, and Liu [36]. The main 
originality of the text was that the nonlinear frequency ratio calculated from the system's nonlinear 
free vibration agrees well with the resonant frequency ratio derived from the system's nonlinear forced 
vibration. Moreover, the nonlinear frequency ratio is slightly influenced by the viscous damping 
coefficient. 

In the light of the above-mentioned aspects, the current paper focuses on examining the problem 
of the vibrations motion of GMA system via PPF control action to avoid high amplitudes. The 
amplitude is decreased in the current work from the actual value without control by 84.5%. The 
multiple scale perturbation technique (MSPT) methodology is sufficiently significant to set out toward 
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getting second-order close to the system’s arrangements. All possible resonances are removed at this 
estimation request demand. The demeanor of the framework is represented numerically either before 
or after applying the damper. The stability investigation is numerically accomplished for all the 
frequency response curves to get stable and unstable zones for each curve in the case of the 
simultaneous primary and internal resonance cases  0 0 1    , , which is the worst resonance 

case. The effects of the few boundaries and the edge work led to the mentioned resonance case by the 
propagation results organized by the Matlab 7.0 programming. 

Finally, the numerical results have explained the first-class concurrence with the mathematical 
ones. As indicated by these outcomes, we have introduced a correlation between this paper and the 
accessible contemporary papers illustrating the upsides of utilizing the PPF regulator with this 
framework. 

2. GMA system model 

The essential construction of the GMA framework, displayed in Figure 1, is for the most part 
made of an attractive circuit structure, a preload gadget, and a result gadget. 

 

Figure 1. Structural schematic of GMA. 

The nonlinear second-order ordinary differential equation that acquaints for the equation of motion for 
the GMA is deduced in Ref. [16] as: 

𝑥ሷ ൅ 2𝜇̂𝑥ሶ ൅ 𝜔଴
ଶ𝑥 ൅ 𝛽መଵ𝑥ଶ ൅ 𝛽መଶ𝑥ଷ ൌ 𝑓መ 𝑐𝑜𝑠ሺ𝜔𝑡ሻ,      (2.1) 

a mathematical expression formula of the PPF damper, shown in Figure 2 and designed especially for 
tightening control over the GMA, is presented as follows: 

𝑢ሷ ൅ 2𝜇̂ଵ𝑢ሶ ൅ 𝜔ଵ
ଶ𝑢 ൌ 𝐺෠ଶ𝑥.        (2.2) 
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Figure 2. Improved the model of the GMA framework with PPF controller. 

3. Perturbation analysis 

To expedite the perturbation methodology, the previous equations will be written in the posterior 
formulas: 

2 2 2 2 3 2 2
0 1 2 12 cos( ) ,x x x x x f t G u                   (3.1a) 

2 2 2
1 1 22 ,u u u G x               (3.1b) 

where   and 1  are the coefficient of damping for the GMA and the PPF damper, respectively, 0  

and 1  are defined as the natural frequencies for both GMA and PPF, respectively, f  and   are 

the external excitation force and the frequency of the framework, respectively, 1   and 2   are 

nonlinear parameters, 1G  and 2G  are gains, and   is a small perturbation parameter. 

To find out the 2nd order approximate solutions for Eqs (3.1a) and (3.1b) using the MSPT [37,38] 
after adding PPF damper to the GMA 

       2

0 1 2 0 0 1 2 1 0 1 2 2 0 1 2, , , , , , , , , ,x T T T x T T T x T T T x T T T         (3.2a) 

       2

0 1 2 0 0 1 2 1 0 1 2 2 0 1 2, , , , , , , , , ,u T T T u T T T u T T T u T T T         (3.2b) 

where ε is a sufficiently significant perturbation parameter ( 0 1  ), m
mT t  and the derivatives, 

, 0,1,2
m

m
m

D m
T


 


, so, the derivatives for time formulas will be realized as 

2
0 1 2,

d
D D D

dt
   

         (3.3a) 

0

2
2 2 2

0 1 1 0 22
(2 ) ( 2 ),

d
D D D D D D

dt
            (3.3b) 
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Equating the coefficients of equal power  after substituting from Eqs (3.2a) to (3.3b) into Eqs (3.1a) 
and (3.1b), will procure to: 

Order 0 : 

2 2
0 0 0( ) 0,D x           (3.4a) 

ሺ𝐷଴
ଶ ൅ 𝜔ଵ

ଶሻ𝑢଴ ൌ 0.         (3.4b) 

Order 1 : 

2 2 2
0 0 1 0 1 0 1 0( ) 2 ,D x D D x x             (3.5a) 

ሺ𝐷଴
ଶ ൅ 𝜔଴

ଶሻ𝑢ଵ ൌ െ2𝐷଴𝐷ଵ𝑢଴.         (3.5b) 

Order 2 : 

 2 2 2
0 0 2 0 1 1 0 0 0 2 0 0 0 1 0 12 2 2 2 ( )D x D D x D x D D x D x x x          

െ𝛽ଶ𝑥଴
ଷ ൅ 𝑓 𝑐𝑜𝑠ሺ𝜔𝑡ሻ ൅ 𝐺ଵ𝑢଴,       (3.6a) 

ሺ𝐷଴
ଶ ൅ 𝜔ଵ

ଶሻ𝑢ଶ ൌ െ2𝐷଴𝐷ଵ𝑢ଵ െ 𝐷ଵ
ଶ𝑢଴ െ 2𝐷଴𝐷ଶ𝑢଴ െ 2𝜇ଵ𝐷଴𝑢଴ ൅ 𝐺ଶ𝑥଴.   (3.6b) 

The general solution of the Eqs (3.4a) and (3.4b) 

0 0 0 0
0 ,i T i Tx Ae Ae            (3.7a) 

1 0 1 0
0 ,i T i Tu Be Be            (3.7b) 

where, A  and B  represent complex functions in 1T . Substituting (3.7a) and (3.7b) into (3.5a) and 

(3.5b), we obtain 

  0 0 0 022 2 2
0 0 1 0 1 1 1( ) 2 .,i T i TD x i D A e A e AA cc              (3.8a) 

  1 02 2
0 1 2 1 12 .,i TD u i D Be cc            (3.8b) 

cc. locates for the complex conjugate of the preceding terms. 
Then, we can say that the Eqs (3.9a) and (3.9b) can be considered as the solution of Eqs (3.8a) 

and (3.8b) 

0 0

2
21 1

1 2 2
0 0

.,
3

i TA AA
x e cc 

 
          (3.9a) 

𝑢ଶ ൌ 0.           (3.9b) 

Substituting Eqs (3.9a) and (3.9b) into Eqs (3.6a) and (3.6b), we obtain: 

  0 0 0 0 0 0 1 0 02 32 2
0 0 2 1 2 3 4 5 .,i T i T i T i T i TD x R e R e R e R e R e cc             (3.10a) 



16870 

AIMS Mathematics  Volume 8, Issue 7, 16864–16886. 

ሺ𝐷଴
ଶ ൅ 𝜔ଵ

ଶሻ𝑢ଶ ൌ 𝐿ଵ𝑒௜ఠభ బ் ൅ 𝐿ଶ𝑒௜ఠబ బ் ൅ 𝑐𝑐..       (3.10b) 

From Eqs (3.7a), (3.7b), (3.9a), (3.9b), (3.10a), and (3.10b), we can put the secular terms as follow: 

Order 0 : 

1 0,D A            (3.11a) 

𝐷ଵ𝐵 ൌ 0.          (3.11b) 

Order 1 : 

2
1 0,D A            (3.11c) 

𝐷ଵ
ଶ𝐵 ൌ 0.          (3.11d) 

Order 2 : 

1 0 0 1 0 0

2 2
2 2

1 0 0 2 1 12
0

10
2 ( ) 2( ) 3 0,

3 2
i T i T i TA A f

D A i A i D A A A e e G Be  
   


 
        
 

(3.11e) 

ሾെ𝐷ଵ
ଶ𝐵 െ 2𝑖𝜔ଵ𝐷ଶ𝐵 െ 2𝑖𝜇ଵ𝜔ଵ𝐵ሿ𝑒௜ఠభ బ் ൅ 𝐺ଶ𝐴𝑒௜ఠబ బ் ൌ 0.   (3.11f) 

From these resonances’ cases, we have estimated the thought about the simultaneous resonances 

0 1 0;      as the worst one of other resonance cases. Additionally, in the next section, we will 

be seeking the stability of the estimated resonance methodically and numerically, respectively. 

3.1 The periodic solution 

The stability analysis of the altered plate is matured in a simultaneous resonance case, 

0 1 0;     . These cases after resonance conditions are in the following form: 

2
0 1

2
1 0 2

,

,

   

   

  


 
          (3.12) 

where 1  and 2  are named as detuning parameters. 

Inserting Eq (3.12) into secular and slight-divisor terms, starting the first oncoming in Eq (3.11) 
toward solvability conditions, we get: 

0 12 0,i D A            (3.13a) 

0 12 0,i D B            (3.13b) 

1 2 2 2

2 2
2 21

0 2 1 0 2 12
0

10
2 2 3 ,

3 2
i T i TA A f

i D A D A i A A A e G Be   


        (3.13c) 
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2𝑖𝜔ଵ𝐷ଶ𝐵 ൌ െ𝐷ଵ
ଶ𝐵 െ 2𝑖𝜇ଵ𝜔ଵ𝐵 ൅ 𝐺ଶ𝐴𝑒௜ఙమ మ்.     (3.13d) 

To get the solution of Eq (3.13), we state as: 

1
,

2
1

,
2

i

i

A ae

B be





 

 


         (3.14) 

where, a , b ,  , and   are steady-state amplitude and phases of motion, respectively. Embedding 

Eq (3.14) into Eq (3.13), following which we equate real and imaginary elements then: 

2 1
1 2

0 0

sin sin ,
2 2

f G
a a b   

 
  
    

 
      (3.15a) 

2 3 3
2 1 2 1

1 23
0 0 0 0

5 3
cos cos ,

12 8 2 2

a a f G
a b

    
   

  
     

 
   (3.15b) 

2
1 2

1

sin ,
2

G
b b a 


             (3.15c) 

2
2

1

cos ,
2

G
b a 


              (3.15d) 

where 1 1 2 2 2 2,T i T           . 

3.2 Frequency response equations (FREs) 

Steady-state solution of the GMA system using PPF controllers linked to the fixed point of 
(3.15a)–(3.15d) be gained at 0, 0a b   , and 0n   , then the FREs of the practical case 

 0, 0a b   are given by: 

2 1
1 2

0 0

0 sin sin ,
2 2

f G
a b   

 
 

    
 

      (3.16a) 

2 2
31 0 2 1

1 1 23
0 0 0

10 9
cos cos ,

24 2 2

f G
a a b

    
  

   
       

   
    (3.16b) 

2
1 2

1

0 sin ,
2

G
b a 


            (3.16c) 

𝑏ሺ𝜎ଵ െ 𝜎ଶሻ ൌ െ ீమ
ଶఠభ

𝑎 𝑐𝑜𝑠 𝛾ଶ.        (3.16d) 
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Quadrangle and adding together for (3.16a)–(3.16d), then: 

2 22 2 2 2 2
31 1 1 1 0 2 1 1 1 2

1 3 2
2 0 0 2 0 0

10 9 ( )
,

24 4

G b G b f
a a a

G a G a

        
   

    
       

   
  (3.17a) 

𝜇ଵ
ଶ𝑏ଶ ൅ 𝑏ଶሺ𝜎ଵ െ 𝜎ଶሻଶ ൌ

ீమ
మ

ସఠమ
మ 𝑎

ଶ.       (3.17b) 

4. Stability at the fixed point 

For incorporating the stability analysis of the steady-state solution, we begin: 

 

0 1

0 1

0 1

,

,

1,2 ,m m m

a a a

b b b

m  

  


 
   

        (4.1) 

where 0a , 0b , and 0m  are the solutions of (3.15a)–(3.15d) and 1a , 1b , and 1m  are perturbations 

which are assumed small compared with 0a  , 0b  , and 0m  . Substituting from Eq (4.1) into Eqs 

(3.15a)–(3.15d) and keeping only the linear terms of 1a , 1b , and 1m , we get the following equations: 

  1 1
1 1 10 11 20 1 0 20 21

0 0 0

cos sin cos ,
2 2 2

f G G
a a b b     

  
      
         

     
   (4.2a) 

 
0

0

2 2
1 21 1 1

1 1 10 11 20 1 0 20 213
0 0 0 0 0 0 0

10 9
sin cos + sin ,

8 2 2 2

f G G
a b b

a a a a

       
   


        

          
        

 (4.2b) 

   2 2
1 20 1 11 1 1 0 20 21

1 1

sin 0 cos ,
2 2

G G
b a b a    

 
    
         
   

    (4.2c) 

2 2
1 1 0 2 2 2 1 1

2 0 20 1 10 11 20 13
0 0 0 0 0 0 0 0 0

10 9
cos sin cos

8 2 2 2

G f G
a a b

a b a b a

         
   

        
          
     

 

൅ ቂ ீమ
ଶఠభ௕బ

𝑎଴ 𝑠𝑖𝑛 𝛾ଶ଴ െ
ீమ

ଶఠబ௔బ
𝑏଴ 𝑠𝑖𝑛 𝛾ଶ଴ቃ 𝛾ଶଵ.         (4.2d) 

We can express these equations as the following matrix: 

11 12 13 141 1

21 22 23 241 1

31 32 33 341 1

41 42 43 442 1

R R R Ra a

R R R R

R R R Rb b

R R R R

 

 







    
    
    
    
    

    

        (4.3) 

where the system’s Jacobian matrix coefficients are given in (4.2). The eigenvalue equations below 
can be written as: 
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0















R R R R

R R R R

R R R R

R R R R

.      (4.4) 

Expanding the determinant at (4.4), yields 

4 3 2
1 2 3 4 0                    (4.5) 

where   is the eigenvalue of the matrix, 1 2 3, ,    and 4  are coefficients of (4.5). If the real part 

of the eigenvalue is negative according to the Routh-Hurwitz criterion, the periodic solution is stable; 
otherwise, it is unstable. 

5. Results and discussion 

5.1 Numerical Solutions with time history 

Figures 3 and 4 displayed the numerical recreation outright for a time-history of the considered 
GMA framework without and with PPF controllers by preparing the Runge-Kutta fourth arranged 
calculation inside the worst resonance case at the following selected values:

1 0 0 1 2 1( ; 2; 0.07; 0.05; 1; 0.8; 3;           f G  1 2 20.005; 2; 0).   G  

From Figure 3, the steady-state amplitudes for the GMA framework ( )x  without any controllers 

have higher values within the considered synchronous reverberation case. After including the PPF 
controller, the steady state amplitude decreased to exceptionally little esteem in Figure 4; this clarifies 
that the effectiveness of the control aE ( aE =amplitude of the system before control/ amplitude of the 

system after control) is about 6.241. Poincare map for the GMA system before and after the PPF 
controller can be drawn as shown in Figure 5. 

 

Figure 3. Time history diagram and phase trajectory of the uncontrolled GMA system. 
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Figure 4. GMA system x  with PPF controllers u  at ( 0 1 0;     ). (a) Waveform 

for x . (b) Phase plane for x . (c) Waveform for u . (d) Phase plane for u . 

 

Figure 5. Comparison between the main GMA system and the system with PPF control 
using Poincare map. (a) Comparison between the system before and after control. (b) GMA 
system with PPF control. 
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To verify the validity of the obtained results in Figure 4, a comparison is made between the 
modulation amplitude of the system x  , the controller u   from the frequency response curve 
(presented by line) from one side, and the amplitude of the system with the controller from the Runge–

Kutta 4th order numerical method (addressed by the closed circles) at the case 0, 0a b    , and 

0n   with 0, 0a b   from the other side. Then, we get a good effect in Figures 6 and 7. 
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Figure 6. Comparison between perturbation analysis and numerical simulation of the 
mGMA system within PPF-controllers. 

Figure 7. Comparison between amplitudes from the frequency response curves (line) and 
Runge-Kutta method (closed circle) (a) the first part of the GMA system (a) (b) is the 
associated control (b). 
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5.3 Outcomes and discussion 

Graphics (2D and 3D) included here are based on measurements resulting from the harmonic 
balance method. 2D episodes consist of heavy-colored branches (i.e., stable solutions) or light-colored 
branches (i.e., unstable solutions) due to Floquet’s theoretical analysis. 3D episodes contain spaces 
that provide a typical 2D episode feature. To the learner's knowledge, the upper area is depicted in a 
dark red color, while the bottom is shown in a dark blue color. 

In this segment, we have examined the nonlinear Eqs (3.16) and (3.17), which discuss the 

frequency response equations at 0, 0a b   , and 0n  , with 0, 0a b  . In all figures, the green 

light line is compared to the unsteady locale; something else characterizes the steady locale at clear 
values of coefficients. Figure 8 demonstrates FRCs for the GMA system with amplitude a and the 
corresponding PPF control amplitude b  against detuning parameter 1 . 

Figure 8 reveals the amplitude with little esteem occurrence, which in turn endorses the 
proficiency of the PPF control to decrease the measured reverberation vibration. Figure 9 shows that 
the small values of the natural frequency 0  of the GMA system are small unstable regions, but for 

the bigger value the unstable region appears, and the bandwidth of the curve decreased. Moving from 
Figure 9a to Figure 9b and from Figure 9c to Figure 9d, it is apparent that the GMA amplitude a  as 
a work of both a  and b  detuning parameter 1  within the shape of a 3D surface in arrange shows 

a wide viewpoint of the bends plotted in Figure 9a and 9c. Figure 10 announces the perception of the 
GMA framework, wherein changing the values of the damping coefficient   , at 0.07    and

0.02   the amplitudes coincide with each other, but after raising the esteem of   with little sum, 

the amplitude diminishes. This happened with the framework a  and the controller b  and shows up 
in Figure 10(a,c) with 2D plots. Figure 10(b–d) pronounced the same result with 3D charts, as 
displayed in ruddy color with tall adequacy and in a blue color with little amplitude. Figure 11(a,c) 
and Figure 12(a,c) reveal the impact of the non-dimensional second-order stiffness term coefficient 

1  of the GMA framework, and the third-arrange solidness term coefficient 
2  of the GMA spring 

on the frequency response curve, declaring no alteration of the amplitude of the framework and the 
controller while changing the values of the coefficients. Figure 11(b,d) and Figure 12(b,d) pronounce 
that the amplitudes of the GMA system have the same esteem at distinctive values of stiffness 
coefficients, as affirmed by a 3D plot. In Figure 13(a,c), the GMA vibration amplitude a  and the 
controller b  respond to the detuning parameter 1  at multiple excitation forces f . The curves grow 

with a high value of forces, making a more unstable region with high amplitude; however, for the 
diminished values of the external forces, the amplitude of the GMA system decreases gradually, and 
the effect appears to be due to the spring’s hardening phenomenon. Moving from Figure 13(a,c) to 
Figure 13(b,d), it is noticeable that  the GMA amplitude a   acts as a function of 1   and is 

portrayed in the shape of a 3D surface, displaying the wide aspect of the curves plotted in Figure 13(b,d). 
Figure 14(a,b) illustrated the effect of the damping coefficient 1   for GMA against the 

amplitude of the system a . For the least esteem of 1 , the amplitude of the GMA system is not high; 

however, at the moment of expanding 1  values, the circulation of the figure turns up and appears in 

3D portion of Figure 14(b). On the other side, Figure 14(c,d) clarify that for small 1 , the amplitude 

of the GMA controllers b   is exceptionally low with the little stable region and delivers a high 
amplitude with the expanding value of 1 , saving a large stable region in both 2D and 3D figures. For 

the gains’ impact of the GMA system and the controller 1G  and 2G , respectively, we find that in 
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Figure 15(a,b) and Figure 16(a,b) the smaller gains value and the high amplitudes are given, whether 
for the system or the controller with discrete points of the stable region in 2D. Figure 15(b,d) and 
Figure 16(b,d) are 3D figures of 1G  and 2G  of the GMA model, respectively. We think that these 

plots give fascinating behavior for the parameters that shows how the amplitude decreases and 
increases in an applicable way. As shown in Figure 17(a,c), when 2   changes from 0 to 3, the 

resonance curve of the GMA is exposed to a right bending case (hardening phenomenon). A left 
bending case (softening phenomenon) 2  is in the range from -3 to 0 is seen in Figure 17(b,d), where 

the 3D figure approved and clarified the action of the detuning parameters. 

 

Figure 8. The frequency response curve of the system ( 1 . amplitude) (a) the first part of 

the system (a) (b) is the associated control (b).

 

Figure 9. The frequency response curve of the system ( 1 . amplitude) at different values 

of 0  (a, b) the 2D and 3D viewing with the first part of the system (a) (c, d) the 2D and 

3D viewing with the associated control (b). 
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Figure 10. The frequency response curve of the system ( 1 . amplitude) at different values 

of   (a, b) the 2D and 3D viewing with the first part of the system (a), (c, d) the 2D and 

3D viewing with the associated control (b). 

 

Figure 11. The frequency response curve of the system ( 1 . amplitude) at different values 

of 1  (a, b) the 2D and 3D viewing with the first part of the system (a), (c, d) the 2D and 

3D viewing with the associated control (b). 
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Figure 12. The frequency response curve of the system ( 1 . amplitude) at different values 

of 2  (a, b) the 2D and 3D viewing with the first part of the system (a), (c, d) the 2D and 

3D viewing with the associated control (b). 

 

Figure 13. The frequency response curve of the system ( 1 . amplitude) at different values 

of f  (a, b) the 2D and 3D viewing with the first part of the system (a), (c, d) the 2D and 
3D viewing with the associated control (b). 
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Figure 14. The frequency response curve of the system ( 1 . amplitude) at different values 

of 1  (a, b) the 2D and 3D viewing with the first part of the system (a), (c, d) the 2D and 

3D viewing with the associated control (b). 

 

Figure 15. The frequency response curve of the system ( 1 . amplitude) at different values 

of 1G  (a, b) the 2D and 3D viewing with the first part of the system (a), (c, d) the 2D and 

3D viewing with the associated control (b). 
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Figure 16. The frequency response curve of the system ( 1 . amplitude) at different values 

of 2G  (a, b) the 2D and 3D viewing with the first part of the system (a), (c, d) the 2D and 

3D viewing with the associated control (b). 

 

 

Figure 17. The frequency response curve of the system ( 1 . amplitude) at different values 

of 2  (a, b) the 2D and 3D viewing with the first part of the system (a), (c, d) the 2D and 

3D viewing with the associated control (b). 
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6. Comparison with available published work 

The creator in Ref. [16] has presented how the GMA system behaved with time-delayed 
displacement and a velocity feedback controller with particularly principal resonance response, where 
the stability is considered, and the multi-scale method is utilized. 

In this review, we have modified the system by adding a PPF controller system that made sense 
by two degrees of freedom with a primary resonance case, thus prevailing with regards in lessening the 
vibrations in the same system appropriately. The discussed frequency response curves in the deliberate 
case with new related controls for the system has illustrated the regions of the stability and vibration 
bandwidth at different values of the system and control factors. This examination is clearer by drawing 
the connection between the time and the amplitude of the system, endorsing that the new control has 
improved the amplitude and made the system more stable than the previous work (Figure 18). 

 

Figure 18. comparison between the previous work and this study. 

7. Conclusions 

This work has managed to utilize a controlled GMA model with addressed conditions using the 
multi-scale strategy. The effect of the PPF controller has been tried for stability examination, which in 
turn has been satisfied to regard the stable and unstable regions of such a model’s behavior in the wake 
of applying the control unit. Then, 2D and 3D graphical plots have also been incorporated to consider 
the conditions coming about because of the multi-scale strategy. Additionally, a mathematical 
reproduction has been performed involving the fourth request Runge-Kutta strategy to affirm the 
largely controlled conduct of the model concentration. The entire work can be summed up in the 
following focuses: 

1) In the case of the small value of the natural frequency 0  of the GMA system, there is a small 

unstable region, but for a bigger value the unstable region appears and the bandwidth of the 
curve decreases. 

2) After raising the esteem of   with little sum, the amplitude diminishes. This happens with 

the framework a  and the controller b . 
3) The impact of the non-dimensional second-order stiffness term coefficient of the GMA 

framework 
1   and third-arrange solidness term coefficient 

2   of the GMA spring on the 

frequency response curve reveal that there are no alterations to the amplitude of the framework 
or the controller when changing the values of the coefficients. 
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4) For the high value of forces f , more unstable regions with high amplitude appear, but for the 

little values of the external forces f , the amplitude of the GMA system decreases gradually, 

and the effect appears due to the spring’s hardening phenomenon. 
5) The results show that for the least esteem of 1 , the amplitude of GMA system is not high but, 

when expanding 1  values, the circulation of the figure turns up. 

6) For the smaller gains values of 1G  and 2G , the high amplitudes are given, whether for the 

system or the controller, with discrete points of the stable region. 
7) When 2  changes from 0 to 3, the resonance curve of the GMA is exposed to a right bending 

case (hardening phenomenon). A left bending case (softening phenomenon) for 2  is in the 

range from -3 to 0. 

To sum up, in this article we have laid out the PPF control of the nonlinear GMA framework. The 
stability of the essential resonance and the amplitude of the framework could be productively 
constrained by tuning the PPF boundaries. A few examinations have been made to affirm the legitimacy 
of the outcomes. The eventual outcomes have been contrasted with the past work and showed how the 
effectiveness of the framework got to the next level. The 3D plot has also been laid out to improve the 
work and show its exactness. 
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