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Abstract: The main purpose of this work is to discuss an extended KdV equation, which can
provide some physically significant integrable evolution equations to model the propagation of two-
dimensional nonlinear solitary waves in various science fields. Based on the bilinear Bäcklund
transformation, a Lax system is constructed, which guarantees the integrability of the introduced
equation. The linear superposition principle is applied to homogeneous linear differential equation
systems, which plays a key role in presenting linear superposition solutions composed of exponential
functions. Moreover, some special linear superposition solutions are also derived by extending the
involved parameters to the complex field. Finally, a set of sufficient conditions on Wronskian solutions
is given associated with the bilinear Bäcklund transformation. The Wronskian identities of the bilinear
KP hierarchy provide a direct and concise way for proving the Wronskian determinant solution. The
resulting Wronskian structure generates N-soliton solutions and a few of special Wronskian interaction
solutions, which enrich the solution structure of the introduced equation.
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1. Introduction

Studying of exact solutions plays a vital role in revealing various mathematical and physical
features of associated nonlinear evolution equations (NLEEs). There are diverse types of physically
important exact solutions, such as soliton solutions, rational solutions, positons and complexiton
solutions. Soliton solutions are a type of analytic solutions exponentially localized [1, 2]. Positon
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solutions contain only one class of transcendental functions-trigonometric functions, while
complexiton solutions contain two classes of transcendental functions-exponential functions and
trigonometric functions [3–5]. Such exact solutions have been explored owing to various specific
mathematical techniques, including the Hirota bilinear approach [6–8], the extended transformed
rational function technique [9], the symbolic computation method [10] and the Wronskian
technique [11–14]. Among the existing methods, the Wronskian technique is widely used to construct
exact solutions of bilinear differential equations, particularly rational solutions and complexiton
solutions [3–5].

The standard Korteweg-de Vries (KdV) equation and the nonlinear Schrödinger (NLS) equation
are two of the most famous integrable models in (1+1)-dimensions which possess very wide
applications in a number of fields of nonlinear science. It is known that the KdV equation is applied to
describing one-dimensional water waves of long wavelength and small amplitude on shallow-water
waves with weakly non-linear restoring forces [15]. The NLS equation is also an interesting
mathematical model that describes the motion of pulses in nonlinear optical fibers and of surface
gravity waves in fluid dynamics. To explore abundant complex nonlinear phenomena in the real
world, various (1+1)-dimensional extensions associated with the KdV and the NLS equations were
constructed [16–21], including the time-fractional coupled Schrödinger-KdV equation [17] and the
coupled nonlinear Schrödinger-KdV equation [19].

Just recently a novel integrable (2+1)-dimensional KdV equation

ut = a(6uux + uxxx − 3wy) + b(2wux − zy + uxxy + 4uuy), uy = wx, uyy = zxx, (1.1)

has been systematically proposed as a two-dimensional extension of the standard KdV equation by
Lou [22]. The Lax pair and dual Lax pair presented directly guarantee the integrability of
Eq (1.1) [22]. More significantly, the missing D’Alembert type solutions and the soliton molecules
have been obtained explicitly through the velocity resonant mechanism and the arbitrary traveling
wave solutions, respectively.

The above-mentioned research inspires us to consider a new generalization of Eq (1.1), written as

a(6χuux + uxxx + 3δvxy) + b(uxxy + 2χuxvx + 4χuuy + δvyy) + cut + dux + huy = 0, vxx = uy, (1.2)

where the constants a, b, c, χ and δ satisfy χδc(a2 + b2) , 0, but the constants d and h are arbitrary.
Equation (1.2) can provide us with some integrable equations in (2+1)-dimensions to model the motion
of two-dimensional nonlinear solitary waves in various science fields, such as plasma physics, fluid
dynamics and nonlinear optics. Special physically important cases of Eq (1.2) have been investigated
as follows:
• If we take χ = 1, δ = c = −1, d = h = 0 and vx = w, Eq (1.2) reduces to the integrable (2+1)-

dimensional KdV Eq (1.1). Equation (1.1) may be found potential applications in nonlinear science
due to the existence of diverse solution structures [22].
• If we set χ = b = 1, δ = −1, a = d = h = 0, c = −2 and make use of the potential u = Ψx, Eq (1.2)

is expressed as
Ψxxxxy + 4ΨxxyΨx + 2ΨxxxΨy + 6ΨxyΨxx − Ψyyy − 2Ψxxt = 0, (1.3)

which is the Date-Jimbo-Kashiwara-Miwa (DJKM) equation in (2+1)-dimensions [23,24]. The (2+1)-
dimensional DJKM equation is one of the significant integrable models which possesses interesting
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properties, such as the bilinear Bäcklund transformation, Lax pairs and infinitely many conservation
laws [23–25].
• Setting χ = −1, δ = α2, a = h = 0, b = c = 1, d = β2 and using the potential u = Φx in Eq (1.2)

yield the following extended Bogoyavlenskii’s generalized breaking soliton equation introduced by
Wazwaz [26]:

(Φxt − 4ΦxΦxy − 2ΦyΦxx + Φxxxy)x = −α
2Φyyy − β

2Φxxx, (1.4)

where the parameters α2 and β2 are real. Multiple soliton solutions have been derived for Eq (1.4) by
applying the simplified Hereman’s method.
•We take

b = h = 0, a = s3, c = s1, d = α1, δ =
s4

3s3
, χ =

s2

3s3
,

then Eq (1.2) becomes the extended Kadomtsev-Petviashvili (KP) equation discussed by
Akinyemi [27] as follows:

s1utx + α1uxx + s2(u2)xx + s3uxxxx + s4uyy = 0, (1.5)

where the constants s1–s4 and α1 satisfy s1s2s3s4α1 , 0. Abundant exact solutions including the
shallow ocean wave solitons, Peregrine solitons, lumps and breathers solutions have been obtained
in [27], which implicates Eq (1.5) might well be applied to explaining a variety of complex behaviors
in ocean dynamics.

The main purpose of this paper is to construct abundant exact solutions including linear
superposition solutions, soliton solutions and more importantly their interaction solutions for Eq (1.2).
Note that Eq (1.2) has a trilinear form rather than the usual bilinear form [6]. Our work will provide a
comprehensive way for building linear superposition solutions and Wronskian interaction solutions.

The following is the structure of the paper. In Section 2, on the basis of the bilinear Bäcklund
transformation, we would like to derive a Lax pair and linear superposition solutions, which can contain
some special linear superposition solutions. In Section 3, we will present a set of sufficient conditions
which guarantees the Wronskian determinant is a solution of the trilinear form associated with Eq (1.2).
And then we will construct a few special but meaningful Wronskian solutions, including N-soliton
solutions and novel interaction solutions among different types Wronskian solutions. Our concluding
remarks will be drawn in the last section.

2. Lax pair and linear superposition solutions

Under the logarithmic derivative transformation

u =
2
χ

(ln f )xx, v =
2
χ

(ln f )y, (2.1)

we transformed the extended Eq (1.2) into a trilinear form

a( f 2 fxxxxx + 2 f fxx fxxx − 5 f fx fxxxx − 6 f 2
xx fx + 8 fxxx f 2

x + 3δ f 2 fxyy − 3δ f fx fyy

−6δ f fy fxy + 6δ fx f 2
y ) + b( f 2 fxxxxy − f fxxxx fy + 2 f fxx fxxy − 4 f fx fxxxy

+4 fx fxxx fy − 2 f 2
xx fy − 4 fxx fx fxy + 4 f 2

x fxxy + δ f 2 fyyy + 2δ f 3
y − 3δ f fy fyy)
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+c( f 2 fxxt − f fxx ft − 2 f fx fxt + 2 f 2
x ft) + d( f 2 fxxx − 3 f fx fxx + 2 f 3

x )

+h( f 2 fxxy − f fxx fy − 2 f fx fxy + 2 f 2
x fy) = 0. (2.2)

It is known that Hirota bilinear derivatives with multiple variables read:

Dn1
x Dn2

t f · g = (∂x − ∂x′)n1(∂t − ∂t′)n2 f (x, t)g(x′, t′)|x′=x,t′=t, (2.3)

with n1 and n2 being arbitrary nonnegative integers [6]. By utilizing Hirota bilinear expressions, we
can rewrite the trilinear form (2.2) as

Dx

[(
3aD4

x + 9aδD2
y + 2bD3

xDy + 3cDxDt + 3dD2
x + 3hDxDy

)
f · f
]
· f 2

+Dy

[(
bD4

x + 3bδD2
y
)
f · f
]
· f 2 = 0. (2.4)

Theorem 2.1. Assume that f and f ′ are two different solutions of Eq (2.2). Then we can give the
following bilinear Bäcklund transformation of (2.2):

(δ̃Dy + D2
x) f · f ′ = 0, (2.5a)[

aD3
x + bD2

xDy − 3aδ̃DxDy − bδ̃D2
y + cDt + dDx + hDy

]
f · f ′ = 0, (2.5b)

where δ̃2 = δ.
By the same calculation introduced in [23, 24, 28], we would like to present a simple proof of

Theorem 2.1 in Appendix A.
Setting

ψ =
f
f ′
, u =

2
χ

(ln f ′)xx, (2.6)

and using the identities of double logarithmic transformations [6]

(Dx f · f ′)/ f ′2 = ψx,

(D2
x f · f ′)/ f ′2 = ψxx + χuψ,

(D3
x f · f ′)/ f ′2 = ψxxx + 3χuψx,

(DxDy f · f ′)/ f ′2 = ψxy + χ∂
−1
x uyψ,

(D2
xDy f · f ′)/ f ′2 = ψxxy + 2χ∂−1

x uyψx + χuψy,

· · · · · · ,

we can transform the bilinear Bäcklund transformation (2.5) into a Lax system of Eq (1.2) as follows:

L′1ψ = δ̃ψy + ψxx + χuψ = 0, (2.7a)

L′2ψ = cψt −
2b
δ̃
ψxxxx + 4aψxxx −

(4bχ
δ̃

u +
h
δ̃

)
ψxx + 2

(
3aχu −

2bχ
δ̃

ux + bχ∂−1
x uy +

d
2

)
ψx

−
(
3aχδ̃∂−1

x uy + bχδ̃∂−2
x u2y +

2bχ2

δ̃
u2 − 3aχux +

2bχ
δ̃

uxx − bχuy +
h
δ̃
χu
)
ψ = 0, (2.7b)

where

L′1 = δ̃∂y + ∂
2
x + χu, (2.8a)
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L′2 = c∂t −
2b
δ̃
∂4

x + 4a∂3
x −
(4bχ
δ̃

u +
h
δ̃

)
∂2

x + 2
(
3aχu −

2bχ
δ̃

ux + bχ∂−1
x uy +

d
2

)
∂x

−
(
3aχδ̃∂−1

x uy + bχδ̃∂−2
x u2y +

2bχ2

δ̃
u2 − 3aχux +

2bχ
δ̃

uxx − bχuy +
h
δ̃
χu
)
. (2.8b)

Note that Eq (1.2) can be generated from the compatibility condition [L′1, L
′
2] = 0 of the system (2.7),

which represents the integrability of Eq (1.2).
In addition, taking f ′ = 1 as the seed solution in the system (2.5), we further obtain the following

linear partial differential equations:

δ̃ fy + fxx = 0, (2.9a)

a fxxx + b fxxy − 3aδ̃ fxy − bδ̃ fyy + c ft + d fx + h fy = 0, (2.9b)

which is rewritten as
δ̃ fy + fxx = 0, (2.10a)

4a fxxx −
2b
δ̃

fxxxx + c ft + d fx −
h
δ̃

fxx = 0. (2.10b)

It is easy to see that the system (2.7) with the choice u = 0 is equivalent to the the pair of Eq (2.10).
Generally, the linear superposition principle can not be directly applied to solutions of NLEEs.
However, it is widely known that the linear superposition principle of solutions [29–32] can be
applied to homogeneous linear differential equations. Therefore, solving the system (2.10) above, we
can built a linear superposition solution formed by linear combinations of exponential functions as
follows:

f =
N∑

i=1

εieθi+θ
0
i , θi = kix −

1
δ̃

k2
i y +
(2b
δ̃c

k4
i −

4a
c

k3
i +

h
δ̃c

k2
i −

d
c

ki

)
t, (2.11)

where the ki
,s are arbitrary non-zero constants, the ε,is, θ0

i
,s are arbitrary constants and δ̃ satisfies δ̃2 = δ.

The following are two cases which are composed of the product of two special functions for the trilinear
form (2.2).

(a) The case of δ > 0:
If we choose

ki = ri + li, θ
0
i = θ

0
i1 + θ

0
i2

and
ki = ri − li, θ

0
i = θ

0
i1 − θ

0
i2, ri, li, θ

0
i1, θ

0
i2 ∈ R, 1 ≤ i ≤ N,

then the linear superposition solution (2.11) becomes

f =
N∑

i=1

εieθi1eθi2 and f =
N∑

i=1

εieθi1e−θi2 ,

with N-wave variables

θi1 = rix −
1
δ̃

(r2
i + l2

i )y +
[2b
δ̃c

(r4
i + 6r2

i l2
i + l4

i ) −
4a
c

(r3
i + 3ril2

i ) +
h
δ̃c

(r2
i + l2

i ) −
d
c

ri

]
t + θ0

i1,
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θi2 = lix −
2
δ̃

riliy +
[8b
δ̃c

(r3
i li + ril3

i ) −
4a
c

(3r2
i li + l3

i ) +
2h
δ̃c

rili −
d
c

li

]
t + θ0

i2, (2.12)

respectively. Therefore, two kinds of linear superposition formulas of Eq (2.2) composed of the product
of exponential functions and hyperbolic functions can be expressed as

f =
N∑

i=1

εieθi1 cosh(θi2), f =
N∑

i=1

εieθi1 sinh(θi2), (2.13)

where θi1 and θi2 are defined by (2.12).
By setting

ki = ri + Ili, θ
0
i = θ

0
i1 + Iθ0

i2

and
ki = ri − Ili, θ

0
i = θ

0
i1 − Iθ0

i2, ri, li, θ
0
i1, θ

0
i2 ∈ R, I =

√
−1, li , 0, 1 ≤ i ≤ N,

respectively, we have

f =
N∑

i=1

εieRe(θi)eI×Im(θi) and f =
N∑

i=1

εieRe(θi)e−I×Im(θi),

where

Re(θi) = rix −
1
δ̃

(r2
i − l2

i )y +
[2b
δ̃c

(r4
i − 6r2

i l2
i + l4

i ) −
4a
c

(r3
i − 3ril2

i ) +
h
δ̃c

(r2
i − l2

i ) −
d
c

ri

]
t + θ0

i1,

Im(θi) = lix −
2
δ̃

riliy +
[8b
δ̃c

(r3
i li − ril3

i ) −
4a
c

(3r2
i li − l3

i ) +
2h
δ̃c

rili −
d
c

li

]
t + θ0

i2. (2.14)

Thus two classes of solutions formed by the product of exponential functions and trigonometric
functions appear as:

f =
N∑

i=1

εieRe(θi) cos(Im(θi)), f =
N∑

i=1

εieRe(θi) sin(Im(θi)), (2.15)

with Re(θi) and Im(θi) being given by (2.14). Besides, applying the linear superposition principle, we
may get the following mixed-type function solutions such as complexiton solutions:

f =
N∑

i=1

[
εieθi + ϱieRe(θi) sin(Im(θi))

]
, f =

N∑
i=1

[
εieθi + ϱieRe(θi) cos(Im(θi))

]
, (2.16)

where the ε,is, ϱ,is are arbitrary constants, θi and Re(θi), Im(θi) are defined by (2.11) and (2.14),
respectively.

(b) The case of δ < 0:
Generally, the above solution (2.11) leads to complex-valued linear combinations if δ < 0. However,

we are more interested in real solutions. To this end, taking

ki = Iri + li, θ
0
i = Iθ0

i1 + θ
0
i2
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and
ki = Iri − li, θ

0
i = Iθ0

i1 − θ
0
i2, ri, li, θ

0
i1, θ

0
i2 ∈ R, I =

√
−1, li , 0, 1 ≤ i ≤ N,

in (2.11), respectively, we get the following two types of solutions of Eq (2.2):

f =
N∑

i=1

εieIκieςi and f =
N∑

i=1

εieIκie−ςi ,

with N-wave variables

κi = rix −
1
√
−δ

(r2
i − l2

i )y +
[ 2b
√
−δc

(6r2
i l2

i − r4
i − l4

i ) +
4a
c

(r3
i − 3ril2

i ) +
h
√
−δc

(r2
i − l2

i ) −
d
c

ri

]
t + θ0

i1,

ςi = lix −
2
√
−δ

riliy +
[ 8b
√
−δc

(ril3
i − r3

i li) +
4a
c

(3r2
i li − l3

i ) +
2h
√
−δc

rili −
d
c

li

]
t + θ0

i2. (2.17)

Similarly, the following linear superposition formulas:

f =
N∑

i=1

εieIκi cosh(ςi), f =
N∑

i=1

εieIκi sinh(ςi), (2.18)

with κi and ςi being defined by (2.17), solve the linear partial differential system (2.10). Let N = 1 in
the solution (2.18). Through the transformation (2.1), a real solution of Eq (1.2) reads as

u =
8l2

1e2ς1

χ(1 + e2ς1)2 , vx =
−16l2

1r1e2ς1

χ
√
−δ(1 + e2ς1)2

, (2.19)

with ς1 being defined by (2.17), which is nothing but the one-soliton solution of Eq (1.2).
Let us take the extended Bogoyavlenskii’s generalized breaking soliton Eq (1.4) with α2 > 0 as an

illustrative example to describe the propagations of linear superposition solutions. By the
transformation (2.1), we have the following special N-order linear superposition solutions for Eq (1.4)
with α2 > 0:

Φ = −2(ln f )x, f =
N∑

i=1

εieki x− 1
α k2

i y+
(

2
α k4

i −β
2ki

)
t, (2.20)

Φ = −2(ln f )x,

f =
N∑

i=1

εieri x− 1
α (r2

i +l2i )y+
[

2
α (r4

i +6r2
i l2i +l4i )−β2ri

]
t × cosh

(
lix −

2
α

riliy +
[8
α

(r3
i li + ril3

i ) − β2li
]
t
)
, (2.21)

and
Φ = −2(ln f )x,

f =
N∑

i=1

[
εieki x− 1

α k2
i y+
(

2
α k4

i −β
2ki

)
t + ϱieri x− 1

α (r2
i −l2i )y+

[
2
α (r4

i −6r2
i l2i +l4i )−β2ri

]
t

× cos
(
lix −

2
α

riliy +
[8
α

(r3
i li − ril3

i ) − β2li
]
t
)]
, (2.22)

where the ε,is, ϱ,is, k,is r,is and l,is are arbitrary real constants.
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Three-dimensional plots of these linear superposition solutions are made with the aid of Maple
plot tools, to depict the characteristics of linear superposition solutions. The solution (2.20) is a linear
combination of N exponential wave solutions, also known as the N-wave solution [29]. Figure 1(a)–(c)
displays that the three-dimensional plots of the linear superposition solution (2.20) for N = 4,N = 5
and N = 6 and correspondingly presents three-wave, four-wave and five-wave, respectively.

Figure 1. Three-dimensional plots of Φ determined by the linear superposition solution
(2.20) with special parameters: (a) N=4, εi = 1, 1 ≤ i ≤ 4, k1 = −1.2, k2 = −0.5, k3 =

1.8, k4 = 3, α = 1, β = 2, t = 0; (b) N=5, εi = 1, 1 ≤ i ≤ 5, k1 = −1.2, k2 = −0.5, k3 =

1.8, k4 = 3, k5 = 0.5, α = 1, β = 2, t = 0; (c) N=6, εi = 1, 1 ≤ i ≤ 6, k1 = −1.2, k2 =

−0.5, k3 = 1.8, k4 = 3, k5 = 0.5, k6 = −2, α = 1, β = 2, t = 0.

Figure 2(a)–(c) displays the two-dimensional density plots corresponding to Figure 1(a)–(c). We
can see from Figures 1 and 2 that the solution (2.20) manifests a kink-shape traveling wave in the
(x, y)-plane and the number of stripes increases with the increase of the positive integer N at t = 0. In
addition, various phenomena of wave fusion or fission may occur when the traveling multi-kink waves
propagate along different or same directions. If the coefficients ε,is are all positive real constants, then
the f in the solutions (2.20) and (2.21) is a positive function. But the coefficients ε,is and ϱ,is are
all positive real constants can not guarantee that the function f is always positive in the complexiton
solution (2.22).

Figure 2. Two-dimensional density plots of Φ determined by the linear superposition
solution (2.20). The related parameters are the same as in Figure 1.
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Figure 3 shows three-dimensional graphics of the complexiton solutions, which possessing some
singularities. It is obvious that the evolution of linear superposition solutions inclines to be more
complicated with the increase of the positive integer N.

Figure 3. Three-dimensional plots of Φ determined by the linear superposition solution
(2.22) with special parameters: (a) N=2, ε1 = ε2 = 1, ϱ1 = ϱ2 = 1, k1 = −1, k2 = 2, r1 =

−1, l1 = 2, r2 = 3, l2 = 1, α = 1, β = 2, t = 0; (b) N=3, εi = 1, 1 ≤ i ≤ 3, ϱ1 = 1, ϱ2 = ϱ3 =

0, k1 = 1, k2 = 1.5, k3 = −2.5, r1 = −1, l1 = 2, α = 1, β = 2, t = 0; (c) N=3, εi = 1, ϱi = 1, 1 ≤
i ≤ 3, k1 = 1, k2 = 3, k3 = −0.5, r1 = −1, l1 = 2, r2 = 3, l2 = 1, r3 = 1, l3 = 1.5, α = 1, β =
2, t = 0.

3. Interaction of Wronskian solutions

Based on the pair of Eq (2.10), we now construct a set of sufficient conditions on Wronskian
solutions for the extended (2+1)-dimensional KdV Eq (1.2). We first introduce the compact Freeman
and Nimmo’s notation [12, 13]:

W = W(ϕ1, ϕ2, · · · , ϕN) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
ϕ1 ϕ(1)

1 · · · ϕ(N−1)
1

ϕ2 ϕ(1)
2 · · · ϕ(N−1)

2
...

...
...

...

ϕN ϕ(1)
N · · · ϕ(N−1)

N

∣∣∣∣∣∣∣∣∣∣∣∣∣
= |0, 1, · · · ,N − 1| = |N̂ − 1|, (3.1)

where ϕ( j)
i =

∂ jϕi

∂x j , i, j ≥ 1. Then we present a set of sufficient conditions, which guarantees that the
Wronskian determinant is a solution of the trilinear Eq (2.2).
Theorem 3.1. Suppose that a set of functions ϕi = ϕi(x, y, t), 1 ≤ i ≤ N, meets the combined linear
conditions as follows:

ϕi,y = −
1
δ̃
ϕi,xx, (3.2a)

ϕi,t =
2b
δ̃c
ϕi,xxxx −

4a
c
ϕi,xxx +

h
δ̃c
ϕi,xx −

d
c
ϕi,x, (3.2b)

where δ̃2 = δ. Then the Wronskian determinant f = fN = |N̂ − 1| defined by (3.1) solves the trilinear
Eq (2.2).
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The proof of Theorem 3.1 will be presented by using Wronskian identities of the bilinear KP
hierarchy in Appendix B. We can check that the above sufficient conditions reduce to the ones
introduced earlier studies for the (2+1)-dimensional DJKM Eq (1.3) [33, 34].

It is known that Wronskian formulations provide us with a powerful technique to establish exact
solutions including soliton solutions, rational solutions, positons, complexitons and their interaction
solutions for NLEEs [3–5]. The interactions of mixed solutions for higher-dimensional NLEEs have
become a more and more popular research topic recently [35–41]. The determination of mixed
solutions is extremely useful to reveal specific physical characteristics modeled by these
higher-dimensional equations. With the help of the homoclinic test method and the Hirota bilinear
approach, different types of hybrid-type solutions were displayed, such as the breather-kink wave
solutions [36], the mixed lump-kink solutions [37] and the periodic-kink wave solutions [38]. In this
section, the major concern is to construct Wronskian interaction solutions among different types of
Wronskian solutions determined by the set of Wronskian sufficient condition (3.2) to the trilinear
Eq (2.2).

Let us consider the Wronskian sufficient condition (3.2). An N-soliton solution of Eq (2.2)
associated with the Wronskian determinant can be expressed as

f = fN = W(ϕ1, ϕ2, · · · , ϕN), (3.3)

where
ϕi = eξi + eξ̂i , ξi = pix −

1
δ̃

p2
i y +
(2b
δ̃c

p4
i −

4a
c

p3
i +

h
δ̃c

p2
i −

d
c

pi

)
t + constant,

ξ̂i = qix −
1
δ̃

q2
i y +
(2b
δ̃c

q4
i −

4a
c

q3
i +

h
δ̃c

q2
i −

d
c

qi

)
t + constant, (3.4)

in which p,is and q,is are free parameters. Taking the variables transformations presented in [6] and
introducing the following new parameters:

Ki = pi − qi, Li = −
1
δ̃

(p2
i − q2

i ), Wi =
2b
δ̃c

(p4
i − q4

i ) −
4a
c

(p3
i − q3

i ) +
h
δ̃c

(p2
i − q2

i ) −
d
c

(pi − qi), (3.5)

the dispersion relation of Eq (2.2) can be written as

Wi = −
a

cKi
(3δL2

i + K4
i ) −

b
cK2

i

(δL3
i + K4

i Li) −
dKi

c
−

hLi

c
. (3.6)

Moreover, through the same calculation and variables transformations presented in [34], we obtain an
equivalent representation of the N-soliton solution (3.3) as follows:

f = fN =
∑
µ=0,1

e
N∑

1≤i< j
µiµ j ln Ai j+

N∑
i=1
µiηi
, (3.7)

where

ηi = Kix + Liy +Wit + η0
i , Ai j =

−K2
i K2

j (Ki − K j)2 + δ(KiL j − K jLi)2

−K2
i K2

j (Ki + K j)2 + δ(KiL j − K jLi)2
, 1 ≤ i < j ≤ N, (3.8)
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with Wi being defined by (3.6) and η0
i ’s being arbitrary constants. Here µ = (µ1, µ2, · · · , µN), µ = 0, 1

indicates that each µi takes 0 or 1. Also worth noting is that if we choose all the Ai j = 0, the N-soliton
solution (3.7) can be reduced to the linear superposition solution (2.11).

Next we will show different types of Wronskian interaction solutions to Eq (1.2). In general, it
will lead to complex-valued Wronskian interaction solutions when δ < 0. For the convenience of the
following discussion, we will only focus on the case of δ > 0 in Eq (1.2).

Solving the following representative system

ϕy = −
1
δ̃
ϕxx, (3.9a)

ϕt =
2b
δ̃c
ϕxxxx −

4a
c
ϕxxx +

h
δ̃c
ϕxx −

d
c
ϕx, (3.9b)

with δ̃2 = δ > 0, we get several special solutions for ϕ :

ϕrational,1 = α1x −
dα1

c
t + α2, α1, α2 = constants, (3.10a)

ϕrational,2 = β1x2 + β2x −
2β1

δ̃
y +

2β1h
cδ̃

t + β3, d = 0, β1, β1, β3 = constants, (3.10b)

ϕsoliton = eξ + eξ̂, ξ = px −
1
δ̃

p2y +
(2b
δ̃c

p4 −
4a
c

p3 +
h
δ̃c

p2 −
d
c

p
)
t,

ξ̂ = qx −
1
δ̃

q2y +
(2b
δ̃c

q4 −
4a
c

q3 +
h
δ̃c

q2 −
d
c

q
)
t, p, q = constants, (3.10c)

ϕpositon,1 = eφ̂ cosφ, ϕpositon,2 = eφ̂ sinφ, ϕcomplexiton = eξ + eφ̂ cosφ,

ξ = px −
1
δ̃

p2y +
(2b
δ̃c

p4 −
4a
c

p3 +
h
δ̃c

p2 −
d
c

p
)
t,

φ̂ = rx −
1
δ̃

(r2 − l2)y +
[2b
δ̃c

(r4 − 6r2l2 + l4) −
4a
c

(r3 − 3rl2) +
h
δ̃c

(r2 − l2) −
d
c

r
]
t,

φ = lx−
2
δ̃

rly+
[8b
δ̃c

(r3l− rl3)−
4a
c

(3r2l− l3)+
2h
δ̃c

rl−
d
c

l
]
t, p, r, l = constants. (3.10d)

A few Wronskian interaction determinants between any two of a single soliton, a rational, a positon
and a complexiton read as

f = W(ϕrational,1, ϕsoliton) = eξ̂
[
α1 − q(α1x −

dα1

c
t + α2) +

(
α1 − p(α1x −

dα1

c
t + α2)

)
eξ−ξ̂
]
,

f = W(ϕrational,2, ϕsoliton) = eξ̂
[
2β1x + β2 − q

(
β1x2 + β2x −

2β1

δ̃
y +

2β1h
cδ̃

t + β3
)

+
(
2β1x + β2 − p

(
β1x2 + β2x −

2β1

δ̃
y +

2β1h
cδ̃

t + β3
))

eξ−ξ̂
]
, d = 0,

f = W(ϕrational,1, ϕpositon,1) = eφ̂
[
(α1x −

dα1

c
t + α2)(r cosφ − l sinφ) − α1 cosφ

]
,

f = W(ϕsoliton, ϕpositon,2) = eξ̂+φ̂
[
(1 + eξ−ξ̂)(r sinφ + l cosφ) − (peξ−ξ̂ + q) sinφ

]
,
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f = W(ϕrational,1, ϕcomplexiton) = (α1x −
dα1

c
t + α2)(peξ + reφ̂ cosφ − leφ̂ sinφ) − α1(eξ + eφ̂ cosφ),

where ξ, ξ̂ and φ, φ̂ are defined by (3.10c) and (3.10d), respectively. Moreover, by the
transformation (2.1), the corresponding Wronskian interaction solutions of Eq (1.2) appear as

u =
2( f fxx − f 2

x )
χ f 2 , vx =

2( f fxy − fx fy)
χ f 2 . (3.11)

For Eq (1.4) with α2 > 0, associated with (3.11), three special Wronskian interaction solutions are

Φrs = −2∂x ln W(ϕrational,1, ϕsoliton) = −2q − 2
f̄rs,x

f̄rs
, (3.12)

f̄rs = α1 − q(α1x − β2α1t + α2) + [α1 − p(α1x − β2α1t + α2)]eξ
′−ξ̂′ ,

f̄rs,x = −qα1 +
[
− pα1 + (α1 − p(α1x − β2α1t + α2))(p − q)

]
eξ
′−ξ̂′ ,

Φrp = −2∂x ln W(ϕrational,1, ϕpositon,1) = −2r − 2
f̄rp,x

f̄rp
, (3.13)

f̄rp = (α1x − β2α1t + α2)(r cosφ′ − l sinφ′) − α1 cosφ′,

f̄rp,x = α1(r cosφ′ − l sinφ′
)
− (α1x − β2α1t + α2)(rl sinφ′ + l2 cosφ′) + α1l sinφ′,

Φsp = −2∂x ln W(ϕsoliton, ϕpositon,2) = −2(q + r) − 2
f̄sp,x

f̄sp
, (3.14)

f̄sp = (1 + eξ
′−ξ̂′)(r sinφ′ + l cosφ′) − (peξ

′−ξ̂′ + q) sinφ′,

f̄sp,x = eξ
′−ξ̂′(p − q)(r sinφ′ + l cosφ′) + (1 + eξ

′−ξ̂′)(rl cosφ′ − l2 sinφ′)

−eξ
′−ξ̂′ p(p − q) sinφ′ − (peξ

′−ξ̂′ + q)l cosφ′,

where

ξ′ − ξ̂′ = (p − q)x −
1
α

(p2 − q2)y +
2
α

(p4 − q4)t − β2(p − q)t,

φ′ = lx −
2
α

rly +
8
α

(r3l − rl3)t − β2lt, α1, α2, p, q, r, l = constants.

Figure 4 shows some singularities of these three Wronskian interaction solutions.
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Figure 4. (a) The plot of the Wronskian interaction solution (3.12) with parameters: p =
1, q = −3, α1 = 2, α2 = 0, α = 1, β = 2, t = 0; (b) The plot of the Wronskian interaction
solution (3.13) with parameters: r = 2, l = 1, α1 = 1, α2 = −2.1, α = 1, β = 2, t = 0; (c) The
plot of the Wronskian interaction solution (3.14) with parameters: p = 1, q = −3, r = 1, l =
2, α = 1, β = 2, t = 0.

4. Concluding remarks

In a word, on the basis of the bilinear Bäcklund transformation, we established a Lax system and
linear superposition solutions composed of exponential functions for the trilinear Eq (2.2).
Furthermore, by extending the involved parameters to the complex field, we obtained some special
linear superposition solutions, such as the linear superposition formula of the product of exponential
functions and trigonometric functions, the linear superposition formula of the product of exponential
functions and hyperbolic functions, and the mixed-type function solutions. Finally, a set of sufficient
conditions, which guarantees that the Wronskian determinant is a solution of Eq (2.2), was given
associated with the bilinear Bäcklund transformation. The resulting Wronskian structure generated
the N-soliton solution and a few special Wronskian interaction solutions for Eq (1.2).

In a sense, the presented results in this paper extend existing studies, because many soliton
equations can be used as special cases of Eq (1.2). The bilinear Bäcklund transformation (2.5) and
Lax system (2.7) indicate the integrability of Eq (1.2). By employing Wronskian identities of the
bilinear KP hierarchy and properties of Hirota operators, we provide a direct and simple verification
of the Wronskian determinant solution, which avoids a lengthy and complex proof process. Our
studies also demonstrate the diversity and richness of solution structures of the introduced equation.

We remark that Eq (1.2) possesses a kind of traveling wave solutions in the form:

u =
2
χ

(ln g(τ))xx, v =
2
χ

(ln g(τ))y, τ = x −
a
b

y −
(2δa3

cb2 +
d
c
−

ah
bc

)
t + τ0,

where the coefficients a and b are two nonzero constants, g is an arbitrary function and τ0 is an arbitrary
constant.

Therefore Eq (1.2) has a large number of solution formulas including soliton molecules [22, 42].
Furthermore, in our future work, lump solutions [10, 34, 43–45] and nonsingular complexiton

AIMS Mathematics Volume 8, Issue 7, 16906–16925.



16919

solutions [10] are expected to be studied for Eq (1.2) with δ < 0. These wonderful solutions will be
useful for analyzing nonlinear phenomena in realistic applications.
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35. X. Lü, S. J. Chen, Interaction solutions to nonlinear partial differential equations via Hirota bilinear
forms: one-lump-multi-stripe and one-lump-multi-soliton types, Nonlinear Dyn., 103 (2021), 947–
977. https://doi.org/10.1007/s11071-020-06068-6

36. Z. Z. Kang, T. C. Xia, Construction of abundant solutions of the (2+1)-dimensional time-
dependent Date-Jimbo-Kashiwara-Miwa equation, Appl. Math. Lett., 103 (2020), 106163.
https://doi.org/10.1016/j.aml.2019.106163

37. W. X. Ma, Interaction solutions to the Hirota-Satsuma-Ito equation in (2+1)-dimensions, Front.
Math. China, 14 (2019), 619–629. https://doi.org/10.1007/s11464-019-0771-y

38. P. F. Han, T. Bao, Novel hybrid-type solutions for the (3+1)-dimensional generalized
Bogoyavlensky-Konopelchenko equation with time-dependent coefficients, Nonlinear Dyn., 107
(2022), 1163–1177. https://doi.org/10.1007/s11071-021-07019-5
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Appendix

Appendix A

We provide a simple proof of Theorem 2.1.
Proof. Let us start from a key function

P = f ′4
{
Dx
[(

3aD4
x + 9aδD2

y + 2bD3
xDy + 3cDxDt

)
f · f
]
· f 2

+Dy
[(

bD4
x + 3bδD2

y
)
f · f
]
· f 2
}
− f 4
{
Dx
[(

3aD4
x + 9aδD2

y

+2bD3
xDy + 3cDxDt

)
f ′ · f ′

]
· f ′2 + Dy

[(
bD4

x + 3bδD2
y
)
f ′ · f ′

]
· f ′2
}
. (A.1)

By applying (2.5a) and Theorem 2.1 obtained in [28], we have

P = 6Dx

{
Dx
[
(aD3

x + bD2
xDy − 3aδ̃DxDy − bδ̃D2

y + cDt) f · f ′] · f f ′
}
· f 2 f ′2. (A.2)
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Let us introduce another key function

Q = f ′4
{
Dx
[
(3dD2

x + 3hDxDy) f · f
]
· f 2
}
− f 4
{
Dx
[
(3dD2

x + 3hDxDy) f ′ · f ′
]
· f ′2
}
. (A.3)

By employing the folllowing exchange identities for Hirota’s bilinear operators [6]:

(DxF ·G)H2 −G2(DxT · H) = Dx(FH −GT ) ·GH, (A.4a)

(DyDxF · F)G2 − F2(DyDxG ·G) = 2Dx(DyF ·G) · FG = 2Dy(DxF ·G) · FG, (A.4b)

a direct computation shows

Q = Dx

{
f ′2(3dD2

x + 3hDxDy) f · f − f 2(3dD2
x + 3hDxDy) f ′ · f ′

}
· f 2 f ′2

= 6Dx

{
Dx[(dDx + hDy) f · f ′] · f f ′

}
· f 2 f ′2. (A.5)

It further follows that

P + Q = f ′4
{
Dx
[(

3aD4
x + 9aδD2

y + 2bD3
xDy + 3cDxDt + 3dD2

x + 3hDxDy
)
f · f
]
· f 2

+Dy
[(

bD4
x + 3bδD2

y
)
f · f
]
· f 2
}
− f 4
{
Dx
[(

3aD4
x + 9aδD2

y + 2bD3
xDy

+3cDxDt + 3dD2
x + 3hDxDy

)
f ′ · f ′

]
· f ′2 + Dy

[(
bD4

x + 3bδD2
y
)
f ′ · f ′

]
· f ′2
}

= 6Dx

{
Dx
[
(aD3

x + bD2
xDy − 3aδ̃DxDy − bδ̃D2

y + cDt + dDx + hDy) f · f ′] · f f ′
}
· f 2 f ′2. (A.6)

Thus, the system of bilinear Eq (2.5) guarantees P + Q = 0, which indicates that the system (2.5)
yields a Bäcklund transformation for Eq (2.2).

Appendix B

It is widely known that the first two equations of the KP hierarchy [46] may be expressed in Hirota
bilinear form as

(D4
1 − 4D1D3 + 3D2

2) f · f = 0, (B.1a)

[(D3
1 + 2D3)D2 − 3D1D4] f · f = 0, (B.1b)

where f denotes a function related to variables x j, j = 1, 2, 3, . . . , and D j ≡ Dx j . To prove Theorem 3.1,
we first give two helpful lemmas in terms of Hirota differential operators.
Lemma B.1. Suppose that a group of functions ϕi = ϕi(x1, x2, x3, . . .), (1 ≤ i ≤ N), satisfies that

∂x jϕi =
∂ jϕi

∂x j , j = 1, 2, 3, · · · . (B.2)

Then the Wronskian determinant f = fN = |N̂ − 1| defined by (3.1) solves the bilinear Eqs (B.1a) and
(B.1b).

Lemma B.1 has been proved in [6,47]. This lemma demonstrates that the bilinear forms (B.1a) and
(B.1b) become the Plücker relations for determinants if the function f is written as the Wronskian
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determinant [48]. That is, (B.1a) and (B.1b) can be transformed into the following Wronskian
identities:

(D4
1 − 4D1D3 + 3D2

2)|N̂ − 1| · |N̂ − 1| = 24(|N̂ − 1||N̂ − 3,N,N + 1|

−|N̂ − 2,N||N̂ − 3,N − 1,N + 1| + |N̂ − 2,N + 1||N̂ − 3,N − 1,N |) ≡ 0, (B.3a)

and
[(D3

1 + 2D3)D2 − 3D1D4]|N̂ − 1| · |N̂ − 1| = 12(|N̂ − 1||N̂ − 3,N,N + 2|

−|N̂ − 2,N ||N̂ − 3,N − 1,N + 2| + |N̂ − 2,N + 2||N̂ − 3,N − 1,N|)

−12(|N̂ − 1||N̂ − 4,N − 2,N,N + 1| − |N̂ − 2,N ||N̂ − 4,N − 2,N − 1,N + 1|

+|N̂ − 2,N + 1||N̂ − 4,N − 2,N − 1,N|) ≡ 0, (B.3b)

respectively. The first identity (B.3a) is nothing but a Plücker relation, and the second identity (B.3b)
is a combination of two Plücker relations.
Lemma B.2. Let Wronskian entries ϕi = ϕi(x, y, t), 1 ≤ i ≤ N, in the Wronskian determinant (3.1)
satisfy (B.2) and

∂yϕi = (a1∂x + a2∂
2
x + · · · + am∂

m
x )ϕi ≡ (a1∂x1 + a2∂x2 + · · · + am∂xm)ϕi, (B.4a)

∂tϕi = (b1∂x + b2∂
2
x + · · · + bn∂

n
x)ϕi ≡ (b1∂x1 + b2∂x2 + · · · + bn∂xn)ϕi, (B.4b)

where m, n are nonnegative integers, and a1, a2, . . . , am, b1, b2, . . . , bn are arbitrary constants. Then

f = fN = |N̂ − 1|

defined by (3.1) yields

Dn1
y Dn2

t f · f = (a1D1 + a2D2 + · · · + amDm)n1(b1D1 + b2D2 + · · · + bnDn)n2 f · f , (B.5)

with n1, n2 are nonnegative integers and D j ≡ Dx j . The associated Hirota’s bilinear operators Dx j , j =
1, 2, 3, . . . , are defined by the expression (2.3).

Lemma B.2 has been proved in [49]. Next, we present the proof of Theorem 3.1.
Proof. Introducing an auxiliary variable z, we may rewrite Eq (2.4) as

Dx

[(
3aD4

x + 9aδD2
y + 2bD3

xDy + 3cDxDt + 3dD2
x + 3hDxDy − DyDz

)
f · f
]
· f 2

+Dy

[(
bD4

x + 3bδD2
y + DxDz

)
f · f
]
· f 2 = 0. (B.6)

Let the Wronskian entries ϕi, 1 ≤ i ≤ N, meets

ϕi,z = −4bϕi,xxx.

Applying the conditions (3.2) and Lemma B.2, we have

D4
x f · f = D4

1 f · f , D2
y f · f =

1
δ

D2
2 f · f , D3

xDy f · f = −
1
δ̃

D3
1D2 f · f ,

DxDt f · f = D1

(2b
δ̃c

D4 −
4a
c

D3 +
h
δ̃c

D2 −
d
c

D1

)
f · f ,
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DyDz f · f =
4b
δ̃

D2D3 f · f , DxDy f · f = −
1
δ̃

D1D2 f · f ,

DxDz f · f = −4bD1D3 f · f , · · · .

Substituting the above derivatives into (B.6) and employing Lemma B.2, a direct calculation yields(
3aD4

x + 9aδD2
y + 2bD3

xDy + 3cDxDt + 3dD2
x + 3hDxDy − DyDz

)
f · f

=
(
3aD4

1 + 9aD2
2 −

2b
δ̃

D3
1D2 +

6b
δ̃

D1D4 − 12aD1D3 +
3h
δ̃

D1D2 − 3dD2
1

+3dD2
1 −

3h
δ̃

D1D2 −
4b
δ̃

D2D3
)
f · f

= 3a(D4
1 + 3D2

2 − 4D1D3) f · f −
2b
δ̃

(D3
1D2 + 2D2D3 − 3D1D4) f · f

= 0, (B.7)

and
(bD4

x + 3bδD2
y + DxDz

)
f · f = b(D4

1 + 3D2
2 − 4D1D3) f · f = 0, (B.8)

where the Wronskian identities (B.3a) and (B.3b) have been applied. Furthermore, we have

Dx

[(
3aD4

x + 9aδD2
y + 2bD3

xDy + 3cDxDt + 3dD2
x + 3hDxDy

)
|N̂ − 1| · |N̂ − 1|

]
· |N̂ − 1|2

+Dy

[(
bD4

x+3bδD2
y
)
|N̂ − 1| · |N̂ − 1|

]
· |N̂ − 1|2 = 0.

Thus, the Wronskian determinant f = fN = |N̂ − 1| solves Eq (2.2).
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