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Abstract: Monkeypox is an emerging zoonotic viral disease resembling that of smallpox, although
it is clinically less severe. Following the COVID-19 outbreak, monkeypox is an additional global
health concern. The present study aims to formulate a novel mathematical model to examine various
epidemiological aspects and to suggest optimized control strategies for the ongoing outbreak. The
environmental viral concentration plays an important role in disease incidence. Therefore, in this study,
we consider the impact of the environmental viral concentration on disease dynamics and control. The
model is first constructed with constant control measures.The basic mathematical properties including
equilibria, stability, and reproduction number of the monkeypox model are presented. Furthermore,
using the nonlinear least square method, we estimate the model parameters from the actual cases
reported in the USA during a recent outbreak in 2022. Normalized sensitivity analysis is performed
to develop the optimal control problem. Based on the sensitivity indices of the model parameters,
the model is reformulated by introducing six control variables. Based on theoretical and simulation
results, we conclude that considering all suggested control measures simultaneously is the effective
and optimal strategy to curtail the infection. We believe that the outcomes of this study will be helpful
in understanding the dynamics and prevention of upcoming monkeypox outbreaks.
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1. Introduction

Classified under the orthopoxvirus genus of the Poxviridae family, the monkeypox virus (MPXV)
is responsible for the onset of the viral disease monkeypox (MPX) [1]. The first human case of
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MPX was reported in 1958 and was distinguished them from smallpox at the start of 1970s. Every
continent, with the exception of Antarctica, has recorded more than 15,000 infected cases of MPX
since May 2022 [2]. The smallpox-like MPXV causes MPX, a contagious zoonotic disease [3, 4].
Transmission through animal-to-human, human-to-human, and environmental factors (inter- or intra-
human) are the three considerable and possible routes that MPXV might spread. Animals (particularly
rodents) and humans commonly come into direct contact and spread infections. Although, the infection
cases have been observed in various non-endemic countries in the world, it is typically found in
Africa. The typical symptoms of MPX include fever, chills, and a rash that develops after a few
days. Animals of many different species can contract the MPXV. The incubation period of monkeypox
in humans is commonly from 6 to 13 days, but can range from 5 to 21 days [1]. In order to identify
the specific reservoir(s) and to understand how virus flow is regulated in nature, more research is
required to understand the MPXV. Eating raw meat and other animal products that have been in
contact with infected animals may pose a risk [5]. In non-endemic countries where cases have been
discovered, additional public health measures are adopted, including thorough contact tracing and case
discovery, laboratory analysis, diagnostic procedure, and isolation with supportive therapy. When
possible, genomic sequencing has been employed to pinpoint the viral clade(s) causing this outbreak
of MPX. Despite the fact that there are currently no specific treatments for MPX infection, outbreaks
can be managed. While smallpox has been eradicated worldwide, the vaccine ST-246 and antiviral
medications like tecovirimat, Cidofovir, and Brincidofovir designed for use in smallpox patients may
help in the fight against MPX. However, these medications are not yet available commercially [6]. The
Centers for Disease Control and Prevention (CDC) recommendation was developed using the most up-
to-date data on the advantages and risks of smallpox immunization and treatments for MPX and other
orthopoxvirus infections. The absence of a proper understanding of the MPXV disease’s transmission
dynamics and associated factors creates an environment that is conducive to the disease’s incidence in
both endemic and non-endemic regions.

Epidemic models have been used by numerous researchers to investigate the prevalence of infection
outbreaks in different regions, and they have shown to be useful and reliable tools [7, 8]. Many
models have been created and investigated using a variety of approaches in order to better illustrate
the dynamics of the disease’s spread and control [9, 10]. Researchers Somma [11], Lasisi [12],
Usman, and Adamu [13], and Emeka [14] have formulated mathematical models of MPX with two
host populations. To eradicate the spread of MPX, Somma [11] studied the impact of public awareness
and quarantine strategy, whereas Lasisi [12] implemented an exposed population group for both human
and animal populations, in addition to a vaccine class for migrants. To better understand the spread
of MPXV infection Usman and Adamu [13] looked into the effectiveness of combined vaccine and
therapy measures. On the other hand, Emeka et al. [14] developed a deterministic model where they
examined how an incomplete vaccination might affect the dynamics of infection. For the purpose
of analyzing the dynamics of the MPX in the human population, the authors of [15] formulated a
deterministic mathematical model. These results imply that separating infected individuals from the
broader community lessens the spread of disease. In [16], a novel approach based on fractional calculus
and fractal theory was used to investigate human-to-animal transmission. Madubueze et al. [17] was
the first to demonstrate how the dynamics of MPX are affected by a polluted environment (i.e., surfaces
and materials that have been exposed to MPX by environmental viral shedding).

The optimal control approach is an effective tool used to find the best and optimum control strategy
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for a system to achieve a desired objective [18, 19]. In optimal control theory, a system is typically
converted to a set of differential equations describing the evolution of the system over time, and the
control strategy is represented as a function that maps the current state of the system to a control input.
The goal of optimal control theory is to find the control strategy that either minimizes or maximizes
an objective function, subject to constraints on the system and the control input [20]. There are
various approaches to solving optimal control problems, including analytical methods and numerical
optimization techniques. Some common numerical methods used to solve the optimized problem
include Pontryagin’s maximum principle, dynamic programming, and model predictive control [21].
Application of optimal control theory to set the optimal strategies for an infectious disease eradication
including MPX can be found in [22, 23].

Despite the aforementioned discussion, MPX still persists in the population. We analyze the
dynamics of MPX with the environment transmission routes in the presence of optimized preventive
strategies. Moreover, the influence of some crucial factors on disease prevalence is identified and health
officials are advised. This study is structured as follows: Construction of the epidemic model for the
MPX dynamics and the estimation procedure are presented in section 2. The basic analysis of the
proposed model is covered in section 3. Section 4, accomplishes the normalized sensitivity analysis
of the parameters of the proposed model versus R0. In section 5, the construction of the optimal
control system along with the solution and existence of the problem is presented. Simulation with
comprehensive discussion are provided in section 6. The concluding remarks with future directions
are mentioned in section 7.

2. Mathematical formulation of the MPX dynamics

This section presents the construction of the mathematical model for the transmission dynamics of
MPX using a system of nonlinear differential equations. Two populations i.e. humans and animals
(those capable to transmit the infection) are considered to formulate the model. The MPX model for
the human population consists of four compartments, S h, Ih, Qh, and Rh; the animal population is
classified in two sub-classes, the susceptible S r and the infectious class Ir. The viral contamination
due to the environment is denoted by En. The cumulative population in both human and animal cases
are shown as follows:

Nh (t) = S h (t) + Ih (t) + Qh (t) + Rh (t) ,
Nr (t) = S r (t) + Ir (t) .

2.1. Mathematical model for human sub-population

The susceptible human population recruits through the rate λh and through the progression of the
isolated population to susceptible at rate τ1. This class is decreased by the force of infection λh =
β1Ir
Nr
+

β2Ih
Nh
+

ζEn
k+En

, where β1, β2, and ζ are the human to human, animals to humans, and environmental
transmission rates, respectively. Moreover, the human natural mortality rate is denoted as µh.

The class of infected humans is increased due to the progression of susceptible individuals at the
rate λh after getting the infection. The class of infected individuals is also reduced by the rates, µh

(the natural death rate), ϕ (the progression of Ih to Qh), δ (the MPX-induced mortality rate), and γ the
infected humans recovery rate.
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Progression of infected individuals Ih to isolated individuals at the rate ϕ form the class Qh, where
τ1 represents the transfer of the isolated/quarantined individuals to susceptible people and τ2 is the
recovery rate.

The infected and quarantine individuals join the recovered class after recovery from infection. This
class is also decreased by the same natural death rate. Thus, the sub-model for the only human
population is organized in the following system:

dS h
dt = Λh − (β1Ir

Nr
+

β2Ih
Nh
+

ζEn
k+En

)S h + τ1Qh − µhS h,

dIh
dt = (β1Ir

Nr
+

β2Ih
Nh
+

ζEn
k+En

)S h − (ϕ + γ + µh + δ)Ih,

dQh
dt = ϕIh − (τ1 + τ2 + µh)Qh,

dRh
dt = γIh + τ2Qh − µhRh.

(2.1)

2.2. Mathematical model for animals sub-population

The class of susceptible animals is recruited with a recruitment rate Λr. This class is decreased by
λr due to the interaction of susceptible animals with infected ones. This is further reduced at the rate
µr due to natural death. The infected animals are increased by joining the susceptible animals at the
infection force λr and decreased by the natural mortality rates µr. Thus, the sub-model describing the
dynamics of only animals is described as follows:

dS r
dt = Λr −

β3Ir
Nr

S r − µrS r,

dIr
dt =

β3Ir
Nr

S r − µrIr.

(2.2)

2.3. Environment concentration of MPXV

When the infected individuals (humans or animals) shed infection to the environment, it affects
the infection force term λh. Therefore, the environmental viral concentration has an important role in
disease transmission. Regarding the choice of the incidence function, there are a number of choices
present in the literature [24, 25]. In this study, we consider the saturated incidence rate for the
concentration of the MPX disease within the environment. The following is one way that MPXV
might spread indirectly and how long it can live in the environment.

ζEn

k + En
.

The concentration of the MPXV in the environment increases when infected individuals and rodents
release the pathogen at rates of ρ1 and ρ2, respectively, and decreases due to decay with rate νn. Thus,
the equation below describes the dynamics of the environmental viral concentration.

dEn
dt = ρ1Ih + ρ2Ir − νnEn. (2.3)
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Combining Eqs (2.1) to (2.3), we have the following dynamical system:
dS h
dt = Λh − λhS h + τ1Qh − µhS h,

dIh
dt = λhS h − l1Ih,

dQh
dt = ϕIh − l2Qh,

dRh
dt = γIh + τ2Qh − µhRh,

dS r
dt = Λr − λrS r − µrS r,

dIr
dt = λrS r − µrIr,

dEn
dt = ρ1Ih + ρ2Ir − νnEn,

(2.4)

where

λh =
β1Ir

Nr
+
β2Ih

Nh
+

ζEn

k + En
, λr =

β3Ir

Nr
, l1 = (ϕ + γ + µh + δ), and l2 = (τ1 + τ2 + µh),

subject to nonnegative initial conditions (ICs)

S h (0) = S̄ h0 ≥ 0, Ih(0) = Īh0 ≥ 0, Qh (0) = Q̄h0 ≥ 0, Rh (0) = R̄h0 ≥ 0,

S r(0) = S̄ h0 ≥ 0, Ir(0) = Īr0 ≥ 0, En (0) = Ēn0 ≥ 0. (2.5)

The transition among different population groups can be easily understood from Figure 1.
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Figure 1. Flow diagram of model (2.4).
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2.4. Data fitting and parameter estimation

This section briefly addresses the parameter estimation procedure for the MPX model (2.4) using a
nonlinear standard least square approach based on residual minimization. Furthermore, some of the
demographic parameters (i.e., Λh, µh) are estimated from the literature [26]. The values of parameters
Λr, µr and K are taken from [17]. For the rest of the model parameters, the actual reported cases in the
recent outbreak in the USA during 2022 are taken into the account to provide a reasonable fitting by
the model simulation. The best fit provided by the proposed epidemic model to the real data is depicted
in Figure 2. The respective parameters with biological descriptions and numerical values are tabulated
in Table 1.

Table 1. Fitted and estimated values of parameters.

Parameter description Value in days Reference
Λh Birth rate of humans 11731.91 [26]
Λr Birth rate of animals 0.2 [17]
µh Humans mortality rate 1

79×365 [26]
µr Animals mortality rate 0.04 [24]
νn Decay rate of monkeypox virus in environment 0.003 [24]
γ Ih recovery rate 0.1490 Fitted
β1 Animals to human transmission rate 2.0000 × 10−5 Fitted
β2 Human to human transmission rate 0.2084 Fitted
ζ Environmental transmission rate 3.0791 × 10−7 Fitted
β3 Rodents to rodents transmission rate 0.0694 Fitted
K Environmental viral concentration 500 [17]
ρ1 Shedding rate due Ih in the environment 0.04 Fitted
ρ2 Shedding rate due Ir in the environment 0.02 Fitted
δ Monkeypox induced death rate 0.1478 Fitted
τ1 Progression rate of quarantined individuals to S h 0.4977 Fitted
τ2 Recovery rate of Qh class 3.5430 × 10−4 Fitted
ϕ Progression rate of Ih to Qh 0.1623 Fitted
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Figure 2. The blue solid curve show the simulated curve of infected population while the
circles red curve illustrate the reported infected cases.
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3. Basic analysis of the model

3.1. Positivity and invariant region

Theorem 3.1. The solution G(t) = (S h(t), Ih(t),Qh(t),Rh(t), S r(t), Ir(t), En(t)) with non-negative initial
condition of the model (2.4) will be positive for t ≥ 0, also limt→∞S upNh ≤

Λh
µh

, limt→∞S upNr =
Λr
µr

and

En (t) ≤ 1
νn

(
ρ1Λr
µr
+

ρ2Λh
µh

)
.

Proof. Let the initial conation of the MPX problem is G(0), which is non-negative. In order to prove
our required result, we consider the first the equation of system (2.4) and proceed as follows:

dS h

dt
= Λh − (λh + µh)S h + τ1Qh ≥ Λh − (λh + µh)S h,

which can further be written as

d
dt

(
S h(t) exp(µht +

t∫
0

λh(ξ)dξ)
)
≥ Λh

(
exp(µht +

t∫
0

Λh(ξ)dξ)
)
.

By integrating, we have

S h (τ) ≥ S h (0)
exp

− µhτ +
τ∫

0
λh (ξ) dξ

 + exp
− µhτ +

τ∫
0
λh (ξ) dξ


×

τ∫
0
λh

exp (µhψ) +
ψ∫

0
λh (ξ) dξ

 dψ > 0.

Similarly, for other equations of the MPX model (2.4), we obtain the desired interpretation. To prove
the subsequent part of theorem, consider the human and animal populations separately involved in the
system (2.4), we have

dNh
dt = Λh − δIh − µhNh,

dNh
dt ≤ Λh − µhNh.

By simple manipulation, we have

Nh(t) ≤ Nh (0) e−µht + e−µht
t∫

0
Λhe−µhξdξ

≤ Nh (0) × e−µht + Λh
µh

(
1 − e−µht) ,

lim
t→∞

S upNh (t) ≤ Λh
µh
.

In a similar way, we can prove that lim
t→∞

S upNr (t) = Λr
µr

. Since Ih ≤ Nh and Ir ≤ Nr, we have from last
equation of model (2.4) that

dEn
dt = ρ1Ih + ρ2Ir − νnEn,

dEn
dt + νnEn ≤

(
ρ1Λh
µh
+

ρ2Λr
µr

)
,
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which implies that

En ≤
1
νn

(
ρ1Λh

µh
+
ρ2Λr

µr

)
.

Hence, the biological feasible region is given by

Θ =



(S h, Ih,Qh,Rh, En) ∈ R5
+ : 0 ≤ Nh (t) ≤ Λh

µh
,

(S r, Ir) ∈ R2
+ : 0 ≤ Nr (t) ≤ Λr

µr
,

En ≤
1
νn

(
ρ1Λh
µh
+

ρ2Λr
µr

)
.

□

Proposition 3.2. For non-negative ICs, the region defined above in Θ is bounded as well as positively
invariant in R5

+ × R
2
+.

Proof. We know form Theorem 3.1,

dNh
dt ≤ Λh − µhNh,

and
dNr
dt ≤ Λr − µrNr.

(3.1)

After some simplification, we have

Nh ≤ e−µhtNh (0) + Λh
µh

(
1 − e−µht) ,

and
Nr ≤ e−µrtNr (0) + Λr

µr

(
1 − e−µrt) .

(3.2)

Particularly, we have Nh ≤
Λh
µh

and Nr ≤
Λr
µr

. Additionally, from the last equation of system (2.4) we
have,

En ≤
1
νn

(
ρ1Λh

µh
+
ρ2Λr

µr

)
. (3.3)

Hence, the set shown by Θ is positively invariant. Furthermore, all solution trajectories will attract in
R5
+ × R

2
+. □

3.2. Existence of equilibrium points and R0

This section presents the evaluation and existence of the model equilibria. The basic reproductive
number R0, one of the essential and threshold parameters in epidemiology, is also evaluated in this
part. Model (2.4) possess two equilibrium points: the monkeypox free equilibrium (MPXFE), and the
monkeypox endemic equilibrium (MPXEE). The MPXFE point is given by

M0 =
(
S 0

h, I
0
h ,Q

0
h,R

0
h, S

0
r , I

0
r , E

0
n

)
=

(
Λh

µh
, 0, 0, 0,

Λr

µr
, 0, 0

)
. (3.4)
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The R0 is computed via the well-known next-generation technique [27]. The resulting expression of
the R0 is as follows

R0 = max
{
R0

r ,R
0
h

}
= max

{
R0

r ,R
0
h1
+ R0

h2

}
= max

{
β3

µr
,
β2

l1
+
ζΛhρ1

νnkµhl1

}
, (3.5)

where

R0
r =

β3

µr
, R0

h1
=
β2

l1
R0

h1
=
ζΛhρ1

νnkµhl1
.

3.2.1. MPX endemic equilibrium point

By simultaneously solving the human, rodent, and environmental classes of the system (2.4) at
steady state denoted byMee =

(
S hee , Ihee ,Qhee ,Rhee , S ree , Iree , Enee

)
, where

S hee =
l1l2Λh

l1l2(λhee+µh)−ϕλheeτ1
,

Ihee =
λhee
l1

S hee ,

Qhee =
ϕ

l2
Ihee ,

Rhee =
γIhee+τ2Qhee

µh
,

S ree =
Λr
β3
,

Iree =
λree
µr

S ree ,

Enee =
ρ1Ihee+ρ2Iree

νn
.

(3.6)

Consider force of the infection term as follows

λhee =
β1Iree

Nree

+
β2Ihee

Nhee

+
ζEnee

k + Enee

. (3.7)

We obtain the following polynomial by using in (3.6) in (3.7)

b0
(
λhee

)3
+ b1(λhee)

2 + b2λhee + b3 = 0, (3.8)
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where

b3 = −
S ree(R0

r−1)l21l22
β3

(
kβ1β2νn +

(
S ree

(
R0

r − 1
)
β3 + ζΛr

)
ρ2

)
,

b2 = −
(
R0

r − 1
)

S reel1l2



(
Λhkνn + ρ2

(
(Λh (β1 + 1) + 1)

(
R0

r − 1
)

S ree

))
(l1l2 − ϕτ1)+

ϕ
(
kΛhβ1νn +

(
R0

r − 1
)

S ree (Λhρ2 (ζ + β1 + 1))
)

(µh + τ2)+
Λhkνnl2β1 (γ + µh) + Λhkνnl1l2µhR0

r

(
R0

h − 1
)
+ S reel2ζΛhρ2

(γ + µh) + Λhρ2l1l2µh

(
R0

r − 1
)

S ree

(
R0

h1
− 1

) (
1 + S ree

)
+ l2β1Λh

((γ + µh) ρ2 + Λhρ1) +
(
R0

r − 1
)

S reel2ρ2Λh (ζ (γ + µh))


,

b1 = −


(l1l2 − ϕτ1)

((
R0

h1
− 1

)
f1 + (γ + µh) f2 + ϕ (µh + τ2) f3

)
+

(
R0

r S ree

(
R0

h1
− 1

)
l1l2

2Λhρ1

)
l2 (γ + µh) S ree

 kl1l2Λhνn

(
R0

h2
− 1

)
+

(
R0

r − 1
)

l2Λh

((
β1ρ1 + ζ + l1ρ2

(
R0

r − 1
))

S h f e

)
−l1

(
R0

r − 1
) (

S reeρ2 + kl2Λhνn
) 

+ϕ (µh + τ2) l2

(
kl1ΛhνnR

0
r

(
R0

h2
− 1

)
− l1Λhρ2R0

r S ree

(
R0

r − 1
))


,

b0 =
(Λhρ1l2+(kνn+S ree (R0

r−1)ρ2)(l1l2−ϕτ1))(l2(γ+µh)+ϕ(µh+τ2))
β3µh

.

Furthermore, the expression in b′i s are as follows

f1 = l2S ree

(
K

((
R0

r − 1
)
+ l1

)
νnΛh +

(
R0

r − 1
)

l1

((
R0

r − 1
)

S ree + S h f eΛh

)
ρ2

)
,

f2 =
(
R0

r − 1
)

l2S h f eS ree

(
Kνnβ1 + ζρ2 +

(
R0

r − 1
)

S ree (ζΛh + β1ρ2)
)
,

f3 =
(
R0

r − 1
)

S h f eS ree

(
Kνnβ1 + S ree

((
R0

r − 1
)
β1 + R

0
rζρ2

))
.

Since, (l1l2 − ϕτ1) > 0 here it should be noted that b0(<, >)0, iff (R0
h,R

0
r ) <, > 1. Moreover, we

summarize the the results as follows.

Theorem 3.3. [28] Every polynomial equation with an odd degree has at least one real root with a
sign opposite to the sign of its last term.
When R0

r > 1 then b0 > 0, and we have two cases:
Case I. When R0 > 1, then using Theorem 4, Eq (3.8) possesses at least one positive root.
Again two cases arise:
Case II. When R0 > 1, and if b1 < 0, b2 < 0 then using Descartes rule of signs, (3.8) has exactly one
root with positive sign.
Case III. When R0 > 1, and if b1 > 0, b2 > 0 then using Descartes rule of signs, (3.8) has at least one
root with positive sign.
Case IV. When R0 ≤ 1, then using Descartes rule of signs Eq (3.8) has no positive root.

3.2.2. Local stability at MPXFE point

Theorem 3.4. The MPX model (2.4) is locally asymptotically stable at MPXFE iff R0 < 1.
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Proof. For the required proof, the necessary condition is that the Jacobian matrix evaluated atM0 has
eigenvalues with negative signs. The subsequent Jacobian matrix J(M0) is obtained as

J
(
M0

)
=



−µh −β2 τ1 0 −
µrΛhβ1
µhΛr

0 −
Λhζ

Kµh

0 −l1 + β2 0 0 0 µrΛhβ1
µhΛr

Λhζ

Kµh

0 ϕ −l2 0 0 0 0
0 γ τ2 −µh 0 0 0
0 0 0 0 −µr −β3 0
0 0 0 0 0 −µr + β3 0
0 ρ1 0 0 0 ρ2 −νn


.

The eigenvalues of J(M0) are −µr,−l2,−µh,−µh, and − (−β3 + µr) and the solution of second degree
polynomial can be obtained from c0λ

2+c1λ+c2 = 0. Here, the coefficients ci(i = 0, 1, 2) given in terms
of R0 as

c0 = 1,
c1 = νn + l1

(
1 − R0

h1

)
,

c2 = νnl1

(
1 − R0

h

)
.

(3.9)

Since c1, c2 > 0 if R0
h < 1, then by Routh-Hurwitz criteria for polynomial of degree two, the

system (2.4) is stable locally asymptotically if R0
h < 1. □

3.2.3. Global stability at MPXFE point

Theorem 3.5. If R0 < 1 then the MPXFE of the proposed model (2.4) is globally asymptotically stable
(GAS).

Proof. According to the Castillo Chavez theorem [29], the basic epidemic model can be written as

X
′

i f = F
(
Xi f ,Zip

)
,

Z
′

ip = G
(
Xi f ,Zip

)
,

(3.10)

with G(Xi f , 0) = 0,Xi f = (S h,Rh, S r)t and Zip = (Ih,Qh, Ir, En)t . According to the first condition of the
theorem, non-infected compartments of MPX epidemic model (2.4) can be shown as

X
′

i f = F
(
Xi f , 0

)
,

with

F
(
Xi f , 0

)
=


Λh − µhS h

−µhRh

Λr − µrS r

 .
(3.11)

The respective jacobian matrix of F(Xi f , 0) is evaluated as

J
(
F

(
Xi f , 0

))
=


−µh 0 0

0 −µh 0
0 0 −µr

 . (3.12)

AIMS Mathematics Volume 8, Issue 7, 16926–16960.



16937

The problem in the system (3.11) will be GAS if J
(
F

(
Xi f , 0

))
has negative eigenvalues. Since the

eigenvalues of the given matrix (3.12) are clearly negative. Therefore, the system (3.11) is GAS.
By the second condition of the theorem, the infected compartments of the system (2.4) can be

written as

Z
′

ip = AZip − Ḡ
(
Xi f ,Zip

)
, (3.13)

where,

A =


−l1 + β2 0 β1Λhµr

Λrµh

ζΛh
kµh

ϕ −l2 0 0
0 0 β3 − µr 0
ρ1 0 ρ2 −νn

 , and

Ḡ
(
Xi f ,Zip

)
=


β1Ir

(
S 0

h
Nr0
−

S h
Nr

)
+ β2Ih

(
S 0

h

N0
h
−

S h
Nh

)
+ ζEn

(
S 0

h
k −

S h
k+En

)
0

β3Ir

(
1 − S r

Nr

)
0

 .

Clearly, Ḡ(Xi f ,Zip) ≥ 0, since S 0
h

N0
r
≥

S h
Nr
,

S 0
h

N0
h
≥

S h
Nh
, and S 0

h
k −

S h
k+En
=

S 0
hEn+(S 0

h−S h)k
k(k+En) ≥ 0. Therefore, the

Eq (3.13) becomes

Z
′

ip ≤ AZip,

where the eigenvalues are −l2, µr

(
R0

r − 1
)
, and the solution of the polynomial equation

c0λ
2 + c1λ + c2 = 0, (3.14)

where, ci, i = 0, 1, 2 are given below

c2 = l1νn

(
1 − R0

h

)
,

c1 = l1

(
1 − R0

h1

)
,

c0 = 1.
(3.15)

Clearly, (3.14) has negative eigenvalues and therefore, the matrix A satisfies the second condition of
the comparison theorem. Thus, the MPXFE point is GAS if R0

h < 1 otherwise unstable. □

4. Sensitivity analysis

Sensitivity analysis is a strong tool that helps in identifying the significantly influential factor on the
reproductive number. Moreover, this analysis is useful to set a suitable optimal control intervention
for disease minimization. Due to possible errors in data collection and the assumed parameters, the
sensitivity analysis determines the robustness of the model prediction to the variation of parameters
values. In this regard, various approaches have been applied in the literature. In this study, we utilized
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the parametric approach of the normalized forward sensitivity indices introduced in [30]. A positive
(or negative) index value indicates that the corresponding parameter directly (inversely) affects R0.
The formulae for the normalized forward sensitivity index for the model key parameters is defined as
follows:

Definition 4.1. The aforementioned technique to measure the relative change in R0 with respect to the
relative change in the model parameter say x is given by [30]:

Yx =
x
|R0|
×
∂R0

∂x
. (4.1)

Further, using the formula stated in (4.1), we evaluate the respective indices of various model
parameters. These indices are given in Table 2. The parameters having considerable impact on R0

r and
R0

h are β3, µr, β2, ζ,Λh, ρ1, µh, νn,K, γ, δ, and ϕ. The respective expressions evaluated by the formula
mentioned above are given below. Because of their sensitivity indices, these factors identify potential
preventive strategies. The following expressions are obtained for different parameters using the formula
defined in (4.1)

Yβ3 = 1, Yµr = −1,

Yβ2 =
Rh1
Rh
,

Yζ = Yρ1 =
Rh2
Rh
,

YK = Yνn = −
Rh2
Rh
,

Yµh = −
µh

(
Rh
l1
+
Rh2
µh

)
Rh

,

Yγ =
−γ

l1
, Yδ = −δl1 ,

Yϕ = −
ϕ

l1
,

where, Yβ3 ,Yµr ,Yβ2 ,Yζ ,Yρ1 ,YK ,Yνn ,Yµh ,Yγ,Yδ, and Yϕ denote the normalizer of sensitivity index with
respect to β3, µr, β2, ζ, ρ1,K, νn, µh, γ, δ, and ϕ, respectively. The corresponding numerical normalized
sensitivity indices using the estimated parameters are given in Table 2, while the bar plot is depicted in
Figure 3. It is observed that some of the parameters have positive signs and some have negative signs
with indices. The parameters with positive indices directly relate to the basic reproduction number,
which means that the reduction in these parameters reducesthe disease incidence. On the other hand,
the parameters with negative indices have an inverse relation with reproduction numbers, revealing that
enchasing these parameters will reduce the disease rate. Based on the sensitivity indices mentioned
in the table below, the feasible and effective optimal control interventions are the use of personal
protection (capable of reducing β1, β2, β3, ζ), proper contact tracing and isolation policy (enhancing
ϕ), reducing the shedding rate of infection in the environment (reducing ρ1, ρ2), and fumigating
commercial areas (increasing the virus decay in the environment i.e., νn).
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Table 2. Sensitivity analysis.

Symbols Sensitivity index
of R0

h

Sensitivity index
of R0

r

β3 +1.0000
µr −1.0000
β2 +0.0698
µh −0.9302
ρ1 +0.9302
γ −0.3245
νn −0.9302
δ −0.3219
ζ +0.9302
ϕ −0.4534
Λh +0.9302
k −0.9302

β3 µr β2 µh ρ1 γ νn δ ζ φ Λh k
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3. Bar graph of sensitivity indices of MPX model.

5. Optimal control analysis

This part presents the formulation of a control problem to suggest the optimized control intervention
to reduce the disease incidence within a community. Moreover, this section includes the existence
criteria and solution of the proposed control system. Based on normalized sensitivity indices, we
construct an optimum control system by incorporating six time-dependent controls in the MPX
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model (2.4). The time-dependent control measures are represented by u1, u2, u3, u4, u5, and u6 with
the details and biological meaning as follows:

• u1: use of personal protections minimizing infection transmission to susceptible humans from
infected humans and animals

• u2: use personal protections minimizing infection transmission to susceptible humans from
environmental routes (i.e., cleaning of contaminated surfaces/environment with home-based
detergents, etc.)

• u3: isolation via contact tracing

• u4: use of protections measures minimizing infection transmission between susceptible and
infected animals

• u5: 5th control measure used for reducing the shedding rate of infection in the environment

• u6: 6th fumigating commercial areas to increase the MPXV decay rate in the environment

With the use of the aforementioned controls, this part seeks to build an optimal control problem to
explain how the variable control problem contributes to the eradication of the disease. The developed
control problem is given in (5.1).

dS h
dt = Λh −

(
β1Ir
Nr
+

β2Ih
Nh

)
S h(1 − u1(t)) − ζEnS h

K+En
(1 − u1(t) − u2(t)) + τ1Qh − µhS h,

dIh
dt =

(
β1Ir
Nr
+

β2Ih
Nh

)
S h(1 − u1(t)) + ζEnS h

K+En
(1 − u1(t) − u2(t)) − (u3 + γ + µh + δ) Ih,

dQh
dt = u3Ih − (τ1 + τ2 + µh) Qh,

dRh
dt = γIh + τ2Qh − µRh,

dS r
dt = Λr −

β3IrS r
Nr

(1 − u4) − µrS r,

dIr
dt =

β3IrS r
Nr

(1 − u4) − µrIr,

dEn
dt = (1 − u5)ρ1IH + (1 − u5)ρ2Ir − (u6 + νn)En,

(5.1)

subject to initial conditions as in (2.5). The objective functional corresponding to the above control
system is described as

J (u1, u2, u3, u4, u5, u6) =

T∫
0

 (A1Ih +A2Qh +A3Ir +A4En) + 1
2(

B1u2
1 + B2u2

2 + B3u2
3 + B4u2

4 + B5u2
5 + B6u2

6

)  dt. (5.2)

While A1 ,A2 ,A3 ,A4 are the associated balancing constants, B1 ,B2 ,B3 ,B4 ,B5, B6 represents the
associated cost factors, and T represents the final step size. Our main objective is to seek optimal
controls u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5, and u∗6, so that

J
(
u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5, u
∗
6
)
= min

Ξ
{J (u1, u2, u3, u4, u5, u6)} ,
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with the control set corresponds to above is given by

Ξ = {(u1, u2, u3, u4, u5, u6) : [0,T ]→ [0, 1] (u1, u2, u3, u4, u5, u6) is a Lebesgue measurable} . (5.3)

5.1. Existence of the problem

Here, we demonstrate the existence of the optimized control MPX problem (5.1). To obtain the
desired outcome, we employ the methodology established in [31, 32]. The problem in (5.1) comprised
bounded equations, and if the subsequent conditions are met, the outcomes provided in [31,32] can be
utilized to address the existence of the control problem under consideration:

(1) The control set Ξ and model state variables are not empty as defined earlier.
(2) The control variables represented by Ξ form a closed and convex set.
(3) One can notice that every equation situated on the right-hand side of the control system (5.1)

represents a continuous function that has an upper bound equivalent to the total of the bounded
control and state variables. Additionally, these equations can be written as a linear function of u,
with coefficients that rely on the time and state variables.

(4) There exist some constants ζ1 > 0, ζ2 > 0, and q > 1, so that the integrand involved in the
objective functional J given by (5.2) is convex and fulfills the inequality stated below:

F (y, u, t) ≥ ζ1(|u1|
2 + |u2|

2 + |u3|
2 + |u4|

2 + |u5|
2 + |u6|

2)
p
2 − ζ2.

The approach established in [31,32] easily satisfies the aforementioned conditions 1 to 4. The first two
conditions are evident as as the state variables and controls are both nonempty and bounded, resulting
in solutions that are also convex and bounded. Additionally, it can be seen that the third condition is
fulfilled due to the fact that the system is bilinear in control variables. Furthermore, the bilinearity of the
system in control variables satisfies Condition 3. Finally, to assess Condition 4, one can conveniently
write:

A1Ih +A2Qh +A3Ir +A4En + 1/2
(
B1u2

1 + B2u2
2 + B3u2

3 + B4u2
4 + B5u2

5 + B6u2
6

)
≥ ζ1(|u1|

2 + |u2|
2 + |u3|

2 + |u4|
2 + |u5|

2 + |u6|
2)

p
2 − ζ2.

Thus, we state the following theorem for the optimal control problem existence.

Theorem 5.1. The optimal control set shown by u∗ =
(
u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5, u
∗
6

)
exists if the objective

functional J over the control set Ξ corresponding to (5.1) fulfills the conditions (1–4) stated above.
Furthermore, we have

J
(
u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5, u
∗
6
)
= min

Ξ
{J (u1, u2, u3, u4, u5, u6)} .

5.1.1. Solution of control problem

This section analyzes the solution to the optimal control problem for the MPX model dynamics
considered in (5.1). The well-known Pontryagin′s maximum principle [33] is used for this purpose.
The required optimal solution is represented by

(
u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5, u
∗
6

)
. Furthermore, for the necessary
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optimal conditions utilized in the finding the solution, we need Lagrangian and Hamiltonian, which
are stated as follows

L = (A1Ih +A2Qh +A3Ir +A4En) +
1
2

(
B1u2

1 + B2u2
2 + B3u2

3 + B4u2
4 + B5u2

5 + B6u2
6

)
, (5.4)

and

H =A1Ih +A2Qh +A3Ir +A4En +
1
2

(B1k2
1 + B2k2

2 + B3k2
3 + B4k2

4 + B5k2
5 + B6k2

6)

+ h1

{
Λh −

(
β1Ir

Nr
+
β2Ih

Nh

)
S h(1 − u1(t)) −

ζEnS h

K + En
(1 − u1(t) − u2(t)) + τ1Qh − µhS h

}
+ h2

{ (
β1Ir

Nr
+
β2Ih

Nh

)
S h(1 − u1(t)) +

ζEnS h

K + En
(1 − u1(t) − u2(t)) − (u3 + γ + µh + δ) Ih

}
+ h3{u3Ih − (τ1 + τ2 + µh) Qh} + h4

{
γIh + τ2Qh − µhRh

}
+ h5

{
Λr −

β3IrS r

Nr
(1 − u4) − µhS r

}
+ h6

{
β3IrS r

Nr
(1 − u4) − µhIr

}
+ h7

{
(1 − h5)ρ1Ih + (1 − h5)ρ2Ir − (u6 + νn)En

}
,

(5.5)

where, hi, i = 1, 2, ..., 7 demonstrates the adjoint variables.


dz
dt =

∂
∂hi
H

(
t, u∗j, hi

)
,

∂
∂kH

(
t, u∗j, hi

)
= 0,

dhi(t)
dt = −

∂
∂zhi

(
t, u∗j, hi

)
.

(5.6)

The criteria stated in (5.6) with the theorem given below have been used to attain the solution of the
optimum problem.

Theorem 5.2. If the controls
(
u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5, u
∗
6

)
and the solution

(
S ∗h, I

∗
h,Q

∗
h,R

∗
h, S

∗
r , I
∗
r , E

∗
n

)
of the

corresponding control problem (5.1) minimizes the objective function in the problem, then there exist
an adjoint variables (co-state variables) hi, i = 1, 2, ..., 7 further the corresponding transversality
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conditions hi (T ) = 0, i = 1, 2, 3.....7, such that

h
′

1 (t) = (h2 − h1) β2S ∗hI∗h
(N∗h)

2 + (h1 − h2)
((

β1I∗r
N∗r
+

β2I∗h
N∗h

)
(1 − u1) + ζE∗n(1−u1−u2)

k+E∗n

)
+ h1µh,

h
′

2 (t) = −A1 − γh4 − h3u3 + (h2 − h1) (1 − u1) β2S ∗hI∗h
(N∗h)

2 + (h1 − h2) (1 − u1) β2S ∗h
N∗h
+ h2

+h2 (γ + δ + µh + u3) − h7 (1 − u5) ρ1,

h
′

3 (t) = −A2 + (h2 − h1) (1 − u1) β2S ∗hI∗h
(N∗h)

2 + (h3 − h1) τ1 + (h3 − h4) τ2 + µhh3,

h
′

4 (t) = (h2 − h1) (1 − u1) β2S ∗hI∗h
(N∗h)

2 + µhh4,

h
′

5 (t) = (h2 − h1) (1 − u1) β1S ∗hI∗r
(N∗r )2 + (h5 − h6) (1 − u4) β1I∗r (N∗r−S ∗r)

(N∗r )2 + µrh5,

h
′

6 (t) = −A3 + (h2 − h1) (1 − u1) β1S ∗hI∗r
(N∗r )2 + (h1 − h2) (1 − u4) β1S ∗h

N∗r
+ (h6 − h5) (1 − u4)

×
β1I∗r S ∗r
(N∗r )2 + (h5 − h6) (1 − u4) β1S ∗r

N∗r
− h7 (1 − u5) ρ2 + µrh6,

h
′

7 (t) = −A4 + h7 (u6 + νn) + (h2 − h1) ζE∗nS ∗h(1−u1−u2)

(k+E∗n)2 + (h1 − h2) ζS ∗h(1−u1−u2)
(k+E∗n) .

(5.7)

Moreover, we obtain the optimum controls
(
u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5, u
∗
6

)
which minimizes the problem over the

region Ξ as follows

u∗1 = min (max (0, ū1) , 1) , u∗2 = min (max (0, ū2) , 1) , u∗3 = min (max (0, ū3) , 1) ,

u∗4 = min (max (0, ū4) , 1) , u∗5 = min (max (0, ū5) , 1) , u∗6 = min (max (0, ū6) , 1) ,

where,

ū1 =
(h2−h1)S ∗h
B1

((
β1I∗r
N∗r
+

β2I∗h
N∗h

)
+

ζE∗n
k+E∗n

)
, ū2 =

(h2−h1)S ∗h
B2

(
ζE∗n

k+E∗n

)
, ū3 =

(h2−h3)I∗h
B3

,

ū4 =
(h6−h5)β3S ∗r I∗r
B4N∗r

, ū5 =
h7(ρ1I∗h+I∗r ρ2)

B5
, and ū6 =

h7E∗n
B6
.

(5.8)

Proof. By utilizing the conditioned mentioned in (5.6), and the transversilty conditions,the results
given in (5.7) are obtained for (5.5) by setting S h = S ∗h, Ih = I∗h,Qh = Q∗h, S r = S ∗r , Ir = I∗r and En = E∗n.

Furthermore, using the condition ∂
∂k H

(
t,

⌣

k j, hi

)
= 0 for j = 1, 2, ...6 and i = 1, 2, ...7 given in (5.6),the

optimal control in (5.7) are obtained. □

6. Simulation and discussion of the control MPX problem

Here, we focus to demonstrate the numerical simulation of the MPX model with and without
optimized control interventions to analyze the impact of control variables introduced in the previous
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section. The numerical solution of the control problem (5.1) and the corresponding adjoint control
system is carried out by employing the backward fourth-order Runge-Kutta. The initial conditions for
the state variables in section 2 and the values of the model parameters are given in Table 1. Most of
the parameters are esteemed from reported cases during the 2022 outbreak and some are taken from
literature.

Four different optimized predictive control strategies are developed to illustrate their impact on the
infection incidence in a community. The following combination of control variables constructs four
control strategies, namely A, B, C, and D:

• Strategy A: consist of a combination of all control measures.
• Strategy B: combination of u3, u5 and u6 control variables only. In this case, we ignore the use of

personal protection controls.
• Strategy C: using all control variables except the isolation control u3.
• Strategy D: using all control variables except u5 and u6.

The detailed simulation along with a discussion of the above four interventions are given in the
following subparts.

6.1. Strategy A: using all the control variables

In this case, the MPX control problem (5.1) is simulated by activating all control variables
u1, u2, u3, u4, u5, u6. This means that all interventions mentioned in the previous section are applied
simultaneously. The simulation corresponding to the present strategy for human and animal
populations are illustrated in Figure 4(a–d) and Figure 5(a,b) respectively. The profiles of all optimal
control variables are shown in Figure 5(c). Figure 4(a) demonstrates the dynamics of susceptible
human individuals under the application of all control interventions. The population in this class
increases with the application of the optimal controls. Figure 4(b) shows the dynamics of solution
trajectories of the infected MPX human population. It can be observed that without optimal controls,
the population of infected humans raised quickly. However, with application of the suggested optimal
controls, the infected population vanishes. Figure 4(c) describes the impact of using all control
variables on the population of the isolated class. As the controls act quickly from the onset of the
application, the isolated population increased significantly. On the other hand, without controls, the
isolated population decreased and reached zero. This shows the efficacy of effective contact tracing
and isolation the infected population. Figure 4(d) describes the dynamics of the recovered human
population with and without optimal control variables. The recovered population decreases with
the application of control measures. By applying effective preventive controls, fewer people will
acquire infection, and as a result, fewer individuals recover from the infection. The dynamics of
susceptible and infected animals are analyzed in Figures 5(a,b), respectively. In Figure 5(a), we
observed that the population of susceptible animals was almost the same with and without optimal
controls. Howsoever, the number of infected animals significantly decreases under the application
of all control interventions and reaches zero after 70 days. Figure 5(c) shows the concentration of
the MPXV in the environment. The application of optimal controls effectively decreased the viral
concentration level in the environment compared to the case without optimal controls. Figure 6(a–f)
illustrates the control profiles of all control variables, showing their level of application over considered
time intervals.
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Figure 4. Simulation of the MPX control model (5.1) with considering all control variables
i.e., u1 , 0, u2 , 0, u3 , 0, u4 , 0, u5 , 0, and u6 , 0. The dashed blue curves show
the simulation with controls and the solid red curves shows the simulation without optimal
controls. (a) Susceptible human. (b) Infected human. (c) Isolated human. (d) Recovered
human.
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Figure 5. Simulation of the MPX control model (5.1) with considering all control variables
i.e., u1 , 0, u2 , 0, u3 , 0, u4 , 0, u5 , 0, and u6 , 0. The dashed blue curves
show the simulation with controls and the solid red curves shows the simulation without
optimal controls. (a) Susceptible animals. (b) Infected animals. (c) Environmental viral
concentration.
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Figure 6. The corresponding control profile for strategy A. (a) u1, (b) u2, (c) u3, (d) u4, (e)
u5, (f) u6.
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6.2. Strategy B: using u3, u5 and u6 control variables only

This strategy analyzes the combined impact of control measures u3, u5, and u6 and sets the rest as
zero (i.e., u1 = u2 = u4 = 0). This means that the use of personal protection measures for both human
and animal populations is not consideredin this case. Simulation of strategy B with control profiles are
shown in Figures 7–9. This strategy is less useful for disease eradication although the infected human
population decreases with the application of optimal controls as can be seen in Figure 7(b). The
population in the isolated class raises quickly with control compared to without control application, as
seen in Figure 7(c). Further, this strategy has no impact on the dynamics of the animal population, as
seen in Figure 8(a,b). The concentration of the MPX virus in the environmentsignificantly reduces as
the controls act quickly from the onset of the application, as seen in Figure 8(c). Figure 9(a–f) shows
the control profiles corresponding to strategy B. Overall, it is clear that without personal protection
measures, the infection can not be curtailedeffectively.
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Figure 7. Simulation of the MPX control model (5.1) using u3, u5, and u6 control variables
only. (a) Susceptible human. (b) Infected human. (c) Isolated human. (d) Recovered human.
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Figure 8. Simulation of the MPX control model (5.1) using u3, u5, and u6 control variables
only. (a) Susceptible animals. (b) Infected animals. (c) Environmental viral concentration.
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Figure 9. The corresponding control profile for strategy B. (a) u1, (b) u2, (c) u3, (d) u4, (e)
u5, (f) u6.
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6.3. Strategy C: using all control variables except the isolation control u3.

Strategy C describes the impact of all control variables, except for the isolation control u3 on
the disease dynamics. The simulation of human and animal populations in this case is depicted in
Figure 10(a–d) and Figure 11(a,b), respectively. The concentration of the virus in the environment is
depicted in Figure 11(c). The control profiles of all control variables in strategy C are analyzed in
Figure 12(a–f). Since no isolation policy is utilized, the population in isolated classes decreases in
both with and without cases. However, it is observed that the individuals in the infected human class
declined quickly with the application of optimal controls as compared to the without control case.
Although, the reduction in infected human individuals is comparatively slower than strategy A, though
it can be used for disease eradication.
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Figure 10. Simulation of the MPX control model (5.1) with considering all control variables
except u3 i.e., u1 , 0, u2 , 0, u4 , 0, u5 , 0, u6 , 0 and u3 = 0. (a) Susceptible human. (b)
Infected human. (c) Isolated human. (d) Recovered human.

AIMS Mathematics Volume 8, Issue 7, 16926–16960.



16952

Time (days)
0 10 20 30 40 50 60 70

S
r(t

)

×104

1

2

3

4

5

6

7

8

9

10

u
1
 = u

2
 = u

3
 =u

4
=u

5
=u

6
=0

u
1
= u

2
 =u

4
=u

5
=u

6
 0

(a)

Time (days)
0 10 20 30 40 50 60 70

I r(t
)

1000

1500

2000

2500

3000

u
1
 = u

2
 = u

3
 =u

4
=u

5
=u

6
=0

u
1
 = u

2
  =u

4
=u

5
=u

6
0

(b)

Time (days)
0 10 20 30 40 50 60 70

E
n
(t

)

×104

1

2

3

4

5

6

u
1
 = u

2
 = u

3
 =u

4
=u

5
=u

6
=0

u
1
= u

2
 =u

4
=u

5
=u

6
 0

(c)

Figure 11. Simulation of the MPX control model (5.1) with considering all control variables
except u3 i.e., u1 , 0, u2 , 0, u4 , 0, u5 , 0, u6 , 0 and u3 = 0. (a) Susceptible human. (b)
Infected human. (c) Environmental viral concentration.
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Figure 12. The corresponding control profile for strategy C. (a) u1, (b) u2, (c) u3, (d) u4, (e)
u5, (f) u6.
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6.4. Strategy D: using all control variables except u5 and u6.

This strategy presents the impact of personal protection measures and isolation control. The role of
this case in infection control is graphically illustrated in Figures 13 and 14. The plots describing control
profiles of each optimal control variable in this strategy are depicted in Figure 15. It is observed, that
the environmentalviral concentration reduces at a slower rate as compared to previous strategies, as
seen in Figure 13(c). Still, it can be used to curtail the infection in a community. Overall, from the
simulation of all strategies, we conclude that the best and optimal control intervention that can be used
effectively to eradicate the infection is strategy A (i.e., considering all control measures at the same
time).
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Figure 13. Simulation of the MPX control model (5.1) with considering all control variables
except u5 and u6. (a) Susceptible human. (b) Infected human. (c) Isolated human. (d)
Recovered human.
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Figure 14. Simulation of the MPX control model (5.1) with considering all control variables
except u5 and u6. (a) Susceptible human. (b) Infected human. (c) Environmental viral
concentration.
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Figure 15. The corresponding control profile for strategy D. (a) u1 (b) u2 (c) u3 (d) u4, (e) u5

(f) u6.
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7. Conclusions

Besides the less severity of the MPX infection, it is alarming that a current outbreak is reported in
many non-endemic countries. The early eradication of the infection is necessary before it emerges as
a new health issue around the globe. In this study, we developed a mathematical model addressing the
dynamics of monkeypox under some optimized predictive control interventions. The model parameters
are estimated from the reported infected cases during the 2022 outbreak in the USA in order to
make the study more useful. The model is first formulated with constant control measures using
a nonlinear differential system. The viral concentration in the environment and the environmental
transmission are taken into consideration in the model formulation. The model is reformulated by
incorporating personal protection measures, isolation control, and fumigating commercial areas. The
control interventions are respectively repressed by six time-dependent control variables namely: u1(t),
u2(t), u3(t), u4(t), u5(t), and u6(t). The following outcomes of the present study are observed

• The model exhibits a disease-free and endemic equilibria.
• The model is found to be stable locally and globally at the disease-free equilibrium when, R0 < 1.
• The basic reproduction number is evaluated based on estimated values of model parameters.
• Normalized sensitivity analysis indicates that personal protection measures, isolation control, and

fumigating commercial areas are effective to control interventions.
• The usage of time-dependent controls can reduce the total number of infected individuals in the

human and animal populations.
• The most effective control intervention involves all control variable simultaneously.

Fractional order modeling are more reliable than the integer epidemic models. Therefore, the present
study could be further extended using fractional case modeling with singular and nonsingular kernels.
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