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Abstract. Tempo and genre are two inter-leaved aspects of music, gen-
res are often associated to rhythm patterns which are played in specific
tempo ranges. In this article, we focus on the Deep Rhythm system based
on a harmonic representation of rhythm used as an input to a convolu-
tional neural network. To consider the relationships between frequency
bands, we process complex-valued inputs through complex-convolutions.
We also study the joint estimation of tempo/genre using a multitask
learning approach. Finally, we study the addition of a second input con-
volutional branch to the system applied to a mel-spectrogram input ded-
icated to the timbre. This multi-input approach allows to improve the
performances for tempo and genre estimation.

Keywords: Tempo estimation, genre classification, deep-learning, com-
plex network, multitask, multi-input.

1 Introduction

In the Music Information Retrieval (MIR) field, tempo is usually defined as
the rate at which a listener taps while listening to a piece of music (Fraisse,
1982). The large number of works dedicated to its automatic estimation somehow
demonstrates how important this task is for the MIR community, but also that
there is still room for improving its estimation.

1.1 Related works

Rhythm as a musical concept represents all the temporal relations and informa-
tion of an audio excerpt. It’s definition is not formal, however several elements
allows to define it such as the metrical structure, the timing and the tempo. The
work on tempo estimation has for a long time focused on the development of
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hand-crafted systems, often based on the perceptual process used in human
tempo inference.

Several research in MIR are dedicated to the automatic analysis of the rhyth-
mic elements. Among them, we can cite the ones of Longuet-Higgins and Lee
(1982, 1984) on rhythmic perception and syncopation but also on the relation-
ship between beat and meter induction (Honing and De Haas, 2008). One of the
earliest system to estimate tempo proposed by Scheirer (1998) used a bank of
band-pass filters followed by resonant comb-filters and a peak-picking process.
Nearly a decade later, Klapuri et al. (2006) still used resonant comb-filters but as
input to a process to track the rhythm at several metric levels. Gainza and Coyle
(2011) developed a hybrid multi-band decomposition using auto-correlation of
onset functions across multiple frequency bands. These works highlighted the
strong relationship between tempo and beat tracking, since tempo can be esti-
mated as the period between successive beats. Overviews of these systems can
be found in (Gouyon et al., 2006; Zapata and Gómez, 2011; Peeters, 2011).

The appearance of large datasets annotated into tempo or beat/downbeat po-
sitions has favored the development of data-driven systems where the machine
learns from the annotated data using machine-learning (ML) algorithms. The
first ML algorithms used were K-Nearest-Neighbors (KNN) (Seyerlehner et al.,
2007), Gaussian Mixture Model (GMM) (Xiao et al., 2008; Peeters and Flocon-
Cholet, 2012), Support Vector Machine (SVM) (Chen et al., 2009; Gkiokas et al.,
2012; Percival and Tzanetakis, 2014), bags of classifiers (Levy, 2011), Random
Forest (Schreiber and Müller, 2017). Then deep learning (DL) became the most
used ML algorithms in MIR. One of the first DL systems proposed for beat-
tracking is the one of (Böck et al., 2015) which used resonant comb-filters ap-
plied to the output of a Reccurent Neural Network (Bi-LSTM) that predicts the
beat position inside the raw audio and then estimates the periodicity as the pre-
dicted tempo. Later, Schreiber and Müller (2018) proposed the first end-to-end
DL system (although starting from the mel-spectrogram) for tempo estimation.
The mel-spectrogramm is used as input to a convolutional architecture that sim-
ulates a resonant comb filters. Their system considers the tempo prediction task
as a classification task into tempo classes.

Starting from a rhythmic analysis in order to classify tracks into genres has
also already been studied, notably by (Chew et al., 2005) in the case of ballroom
dancing, but also by (Panteli et al., 2014) in the case of electronic dance music.
Recently, Foroughmand and Peeters (2019) proposed to combine the two types
of systems (hand-crafted and data-driven) in the so called “Deep Rhythm”
(DR) system for tempo estimation and rhythm pattern/genre classification.

1.2 Deep Rhythm

Deep Rhythm is a system proposed in (Foroughmand and Peeters, 2019) which
adapts a harmonic decomposition of rhythm to a deep learning formalism for
tempo estimation and rhythm pattern classification. The method belongs to the
data-driven systems in the sense that it uses machine learning to provide the
ability to automatically learn and improve with programs that learn from these
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data. It also considers both the tempo and rhythm pattern in interaction by
adequately modeling the audio content through a handcrafted feature represen-
tation. The tempo of a track can of course vary over time, but in this work a
focus is made on the estimation of global tempo and the corresponding rhythm
pattern. In (Foroughmand and Peeters, 2019), rhythm patterns referred to the
genre classes of datasets that are composed of rhythmic (dances) classes such as
Ballroom dataset.

Harmonic decomposition of rhythm. From Fourier series, it is known that any
periodic signal x(t) with period T0 (or fundamental frequency f0 = 1/T0) can
be represented as a weighted sum of sinusoidal components whose frequencies
are the harmonics of f0:

x̂f0,a(t) =

H∑
h=1

ah sin(2πhf0t+ φh) (1)

For the voiced part of speech or pitched musical instrument, this leads to
the so-called ”harmonic sinusoidal model” (McAuley and Quatieri, 1986; Serra
and Smith, 1990) that can be a starting point for audio coding or transforma-
tion. This model can also be used to estimate the pitch of a signal (Maher and
Beauchamp, 1994): estimating the f0 such that x̂f0,a(t) ' x(t). The values ah
can be estimated by sampling the magnitude of the DFT at the corresponding
frequencies ah,f0 = |X(hf0)|. The vector af0 = {a1,f0 · · · aH,f0} represents the
spectral envelope of the signal and is closely related to the timbre of the audio
signal, hence the instrument playing. For this reason, these values are often used
for instrument classification (Peeters, 2004).

For audio musical rhythm, Peeters (2006, 2010, 2011) proposes to apply such
a harmonic analysis to an Onset Energy Function (OEF). The period T0 is then
defined as the duration of a beat (i.e. the time between two successive beats). In
this harmonic analysis: a1,f0 then represents the DFT magnitude at the 4th-note
level; a2,f0 at the 8th-note level; a3,f0 at the 8th-note-triplet level . . . while: a 1

2 ,f0
represent the binary grouping of the beats a 1

3 ,f0
the ternary one

Peeters considers that the vector a is representative of the specific rhythm
and that therefore af0 represents a specific rhythm played at a specific tempo f0
(in this context, tempo is assimilated to the fundamental frequency). He proposes
the following harmonic series: h ∈ { 14 ,

1
3 ,

1
2 ,

2
3 ,

3
4 , 1, 1.25, 1.33, . . . , 8}.

An example of such harmonic decomposition of rhythm applied to a simplified
signal is described in Fig. 1 [Left].

With the above-mentioned considerations, he shows:

– in (Peeters, 2011) that given the tempo f0, the vector af0 can be used to
classify different rhythm pattern;

– in (Peeters, 2006), that given manually-fixed prototype vectors a, it is pos-
sible to estimate the tempo f0 (looking for the f such that af ' a);

– in (Peeters, 2010) that the prototype vectors a can be learned (using simple
machine learning) to achieve the best tempo estimation f0.
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The DR method is in the continuation of this last work: learning the values
a to estimate the tempo or the corresponding rhythm pattern. It aims to adapt
a to the deep learning formalism proposed by Bittner et al. (2017).

Adaptation to a deep learning formalism. In (Bittner et al., 2017), a task of fun-
damental frequency estimation in polyphonic music is achieved. To this aim, the
depth of the input to a convolutional network is used to represent the harmonic
series af and f0 denotes the fundamental frequency. Bittner et al. (2017) pro-
pose in a first step to compute the Constant-Q Transform (CQT) of a harmonic
signal.

The CQT is expanded to a third dimension which represents the harmonic
series af of each f (with h ∈ [ 12 , 1, 2, 3, 4, 5]). When f = f0, af will represent the

specific harmonic series of the musical instrument (plus an extra value at the 1
2f

position used to avoid octave errors). When f 6= f0, af will represent (almost)
random values.

The goal is to estimate the parameters of a filter such that when multiplied
with this third dimension af it will provide very different values when f = f0
or when f 6= f0. This filter will then be convolved over all log-frequencies f
and time τ to estimate the f0’s. This filter is trained using annotated data. In
the method, there are actually several of such filters; they constitute the first
layer of a CNN. In practice, in (Bittner et al., 2017), the ah,f are not obtained as
|X(hf)|; but by stacking in depth several CQT each starting at different minimal
frequencies i.e. by multiplying the lowest frequency in the range of the CQT fmin
by the h coefficient: hfmin. A visual identification of f0 is therefore possible when
this transformation is applied on a simple harmonic signal by superimposing the
CQT computed using the various values of h. The representation is denoted by
Harmonic Constant-Q Transform (HCQT) of size (f, τ, h). An example of the
HCQT applied to a harmonic signal is described in Fig. 1 [Right].

Harmonic Constant-Q Modulation. The goal of DR is to adapt the harmonic
representation of the rhythm proposed in (Peeters, 2006, 2010, 2011) to the
deep learning formalism proposed in (Bittner et al., 2017) in order to learn the
weighting of the harmonic series relative to rhythm at each position ah. The first
step is to represent those harmonic series as a rhythmic representation named
Harmonic Constant-Q Modulation (HCQM). For this, the HCQT proposed by
Bittner et al. (2017) is not applied to the audio signal, but to a set of OEF which
represent the rhythm content in several acoustic frequency bands. Each of those
OEF is a low-pass signal whose temporal evolution is related to the tempo and
the rhythm pattern, in this specific band.

As the Modulation Spectrum (MS) (Atlas and Shamma, 2003), which is
a time/modulation-frequency representation, the HCQM represents the energy
evolution (low-pass signal) within each acoustic frequency band b of a first
time/acoustic-frequency (τ/f). However, while the MS uses two interleaved
STFT for this, a CQT is used for the second time/frequency representation
in order to obtain a better spectral resolution. Finally, as proposed by Bittner
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Fig. 1. [Left] Example of a harmonic representation of rhythm components of an
onset energy signal. Each beat is divided into 8th-notes. The DFT of the OEF is
represented at the bottom where vertical dashed lines represent ah,f0 with h = 1, 2, 3, 4
and the vertical dotted lines represent ah,f0 with h = 1

4
, 1
2
, 3
4
. Here, the signal have a

tempo of 60BPM (1Hz) in red and a tactus of 120BPM (2Hz) in blue. Fig. inspired
by Peeters (2011). [Right] Computation of the CQT of a harmonic signal according
to the harmonic series h. The fundamental frequency is bordered by the black dotted
rectangle. Fig. taken Bittner’s PhD Thesis.

et al. (2017) and the HCQT representation, an extra dimension h is considered
to represent the content at the harmonics of each modulation frequency φ.

The HCQM is finally a 4-dimensional representation of size (τ ′, Φ, b, h) where
τ ′ denotes the times of the CQT frames, φ the modulation frequencies (which
correspond to the tempo frequencies), b the acoustic frequency bands and h the
harmonic series. On Fig. 2, a visual identification of the possible tempo of a
track on the HCQM representation is described.

DR Convolutional Neural Network (CNN). The architecture of the DR network
is both inspired by the one from (Bittner et al., 2017) (since we perform con-
volutions over an input spectral representation and use its depth) and the one
from (Schreiber and Müller, 2018) (since we perform a classification task). How-
ever, it differs in the definition of the input and output. In (Bittner et al., 2017),
the input is the 3D-tensor Xhcqt(f, τ, h) and the convolution is done over f and
τ (with filters of depth H). In DR, the input could be the 4D-tensors of size
(φ, τ ′, b, h) and the convolution could be done over φ, τ ′ and b (with filters of
depth H). However, to simplify the computation (in term of memory and com-
putation time3), the input is reduced to to a sequence over τ ′ of 3D-tensors of
size (φ, b, h). These inputs are denoted as τ ′-HCQM. The convolution is then
done over φ and b with filters of depth H.

The goal is to learn filters W narrow in φ and large in b which represent
the specific shape of the harmonic content of a rhythm pattern. Convolution are
pursued over b because the same rhythm pattern can be played with instrument
transposed in acoustic frequencies (lower or higher tuning). The first layer is
followed by two convolutional layers of 64 filters of shape (4, 6), one layer of 32

3 The memory of the GPU servers is limited and 4D-convolutions are too costly.
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Fig. 2. HCQM example for a given temporal frame τ ′ of an audio excerpt. φ denotes the
modulation frequency (associated with a candidate tempo), b the acoustic frequency
band and h the harmonic coefficient. The tempo is visually identifiable at 120BPM by
superimposing its rhythmic harmonic components through h.

filters of shape (4, 6) and finally one layer of 8 filters of shape (120, 6) (this allows
to track down the relationships between the modulation frequencies φ). As in
(Schreiber and Müller, 2018), the tempo estimation problem is considered as a
classification problem (instead of a regression one) into 256 tempo classes rang-
ing from 30 to 286 BPM. This range is chosen to cover the different tempo values
of the most popular music genres (and therefore those present in the majority of
the state-of-the-art datasets) In DR, the outputs are either the C = 256 classes
of tempo or the C = genre classes number for genre classification. To do so, the
output of the last convolution layer which is flattened and followed by a dropout
with p = 0.5 (to avoid over-fitting (Srivastava et al., 2014)), a fully-connected
layer of 256 units and the last fully-connected layer of C units. All layers are
preceded by a Batch Normalisation (BN) layer (Ioffe and Szegedy, 2015). Recti-
fied Linear Units (ReLU) (Nair and Hinton, 2010) are used for all convolutional
layers and Exponential Linear Units (ELU) (Clevert et al., 2016) for the first
fully-connected layer. The architecture of the DR network is described in Fig. 3.

For the training, there are several τ ′-HCQM for a given track as input which
are all associated with the same ground-truth (multiple instance learning). For
the output dense layer, a softmax activation function is generally used for single
label classification and is often associated with a categorical cross-entropy as
loss-function between the predicted class ŷc and the ground-truth yc:

L = −
C∑
c=1

yc log(ŷc) (2)
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D C

dense

flatten

(4, 6) (4, 6) (4, 6) (120, 6)

b

h 128 64 3264 8

φ

Input Convolutional
Layers

Output
classes(4, 6)

Convolution + ReLU + BN Dense + ELU + Dropout = 0.5 softmax

Fig. 3. DR model Architecture with τ ′-HCQM as input (of size (φ, b, h)), the size of
convolutional filters is indicated in red (filter height, filter width), the number of
kernel is indicated in black under each convolutional layer, D denotes the number of
units in the dense layer while C is the number of units in the output layer (i.e. the
classes logits).

where c ∈ [1, C] refers either to the 256 tempo classes or to the genre classes.
In this article, we assume that genres are estimated from methods based on
rhythm analysis. We therefore deliberately choose not to make a distinction
between rhythmic patterns and genres.

1.3 Proposals and article organisation

In this article, we present some extensions of the DR method. The development
of each of these representations has as a starting point a musical intuition. For
each of these extensions, we present our motivations and the resulting method.

Complex Network. In the original DR network, the input HCQM and the net-
work do not allow to represent the inter-relationship between the various fre-
quency bands b. This is due to the fact that each OEF is modeled by the modu-
lus of the CQT and the modulus does not preserve the information of temporal
location. Therefore, the network cannot consider the inter-relationship between
the various acoustic frequency bands b. To face this, we propose to replace the
use of the modulus of the HCQM by a complex-valued HCQM and turn it into
an input of a complex CNN. This is described in section 2.

Recently, complex neural networks have appeared in the MIR field and allow
model training on inputs with complex values. These models have proven their
efficiency for various tasks such as automatic transcription (Trabelsi et al., 2017)
of music or speech enhancement with a deep U-net (Choi et al., 2019). However,
they have never been used for classification purposes.
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Multitask Learning. In the original DR method, independent systems are trained
for the task of tempo estimation and genre classification. We propose here a
multitask approach where a single system is trained to solve both tasks simulta-
neously. This is done by defining two losses for the optimisation of the system.
We believe that using a single network jointly trained for the two tasks would
allow sharing information in the network. We want to exploit the rhythmic as-
pect common to both tasks so that each benefits from the other’s learning. This
is described in section 3.

Multitask learning methods have already shown their efficiency in various
domains like computer vision (Girshick, 2015), natural language processing (Col-
lobert and Weston, 2008) or speech recognition (Deng et al., 2013). In MIR field,
they have been used for the estimation of the fundamental frequency (Bittner
et al., 2018). In the case of rhythm description, the work of Böck et al. (2019)
have showed good results by learning tempo estimation in parallel with the beat
tracking.

Multi-input Network. The DR network was designed to represent the rhythm
content of an audio track. As shown previously, the tempo range and possible
rhythm patterns are strongly correlated to the music genre of the track. We be-
lieve that exploiting the benefits of other music-knowledge descriptors in addition
to rhythm could improve the classification. We therefore study an extension of
the DR by associating it with a second input branch. This branch is a network
dedicated to the representation of timbre with a mel-spectrogram as input. It is
based on a commonly-used network for audio tagging presented in (Choi et al.,
2016). This is described in section 4.

Evaluation. Finally, we present the evaluation of the three methods in section 5
for the sake of comparison not only between them but also with the DR method.
As these methods can be combined, the analysis of the results is also clearer.

2 Complex Deep Rhythm

A rhythmic pattern can be affiliated to simpler rhythm pattern (quarter note,
eighth note, ...) played by different instruments at different frequency bands.
Two different rhythm pattern examples are represented in Fig. 4.

1 The bass drum and the snare drum are played simultaneously.

2 The bass drum and the snare drum are played alternately.

In the original HCQM representation, the modulation frequencies φ are mod-
eled independently by calculating the HCQT of the OEF in each acoustic fre-
quency bands b. Since only the modulus of the HCQT is computed, the temporal
information relative to the rhythmic components is not taken into account. The
representation is then passed through a deep CNN. The network does not con-
sider the inter-relationship between the various frequency bands b when it learns
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1 2

Fig. 4. Two examples of rhythm patterns.

the different rhythmic structure to perform the tempo (or the genre) estimation.
For example, the snare drum and the bass drum being located on two different
frequency bands, we can assume that the DR method is not able to differentiate
between the two rhythmic patterns illustrated in Fig. 4. Moreover, ignoring these
inter-band relationships impacts the learning of rhythmic components related to
tempo within the HCQM.

In (Marchand and Peeters, 2014), the authors deal with the same limitation
with their modulation scale spectrum representation. They therefore show in
that modeling the inter-relationships between acoustic frequency bands using
inter-band correlation coefficients allows to better estimate the rhythm pattern.

In our case, due to the data-driven aspect of the DR method, we would like
to find a way to keep the temporal information of the rhythmic content present
in each acoustic band b of the HCQM and furthermore to be able to train a
network that includes this information.

In a temporal representation of the frequency evolution such as the STFT or
the CQT, the positional information of the windowed signals are contained in
the phase of the complex-values.

We propose here to use a complex HCQM as input of a complex layer con-
volutional network (using the complex convolution described by Trabelsi et al.
(2017)) in order to take into account the inter-relationships between the acoustic
bands.

2.1 Complex HCQM

In order to obtain a complex representation of the HCQM, we modify one of
its computation steps. When the HCQT is computed on the OEF of the STFT
summed in acoustic frequency bands we keep the complex-values (in addition to
the modulus). We therefore keep its real and imaginary parts instead of keeping
only its absolute value. To be used as input of a CNN, the two parts are then
superimposed on top of each other (Trabelsi et al., 2017), resulting in Cplx-τ ′-
HCQM of a size (Φ× b× 2h).
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2.2 Complex Convolution

The cplx-HCQM input to the layers is denoted by H = HRe + iHIm (with HRe

and HIm its real and imaginary parts, respectively). The complex kernel matrix
of the layer (which is the trainable parameter) is denoted by K = KRe + iKIm

(with KRe and KIm its real and imaginary parts, respectively). The complex
convolution is then expressed as:

K ∗H = (KRe ∗HRe −KIm ∗HIm) + i(KIm ∗HRe +KRe ∗HIm) (3)

or expressed in matrix form as:[
<(K ∗H)
=(K ∗H)

]
=

[
KRe −KIm

KIm KRe

]
∗
[
HRe

HIm

]
(4)

The output of each complex convolution layer is itself complex and is then
used as input to the next complex convolution layer. All convolution layers of the
original DR network are therefore replaced by complex convolution layers. Also,
each complex convolution layers is followed by a complex-BN (as described in
(Trabelsi et al., 2017)). After the last complex convolution, the resulting feature
maps are flattened, hence by concatenating the real and imaginary outputs.

We illustrate this in Fig. 5 on which we only detail the complex convolution
for the first convolution layer (the one applied to the input complex HCQM H).
Instead of BN (Ioffe and Szegedy, 2015), which is applied only to real-values,
we use complex-BN preceding each complex-convolution layer in order to ensure
equal variance in both real and imaginary components. The whole complex-BN
computation process is detailed in (Trabelsi et al., 2017).

On this Fig., the number of feature maps indicated under the layers are
doubled compared to the original DR network since the number of complex-
kernel are considered. For the implementation of the 2D complex convolution
layers, we rely on the package complexnn4 provided in (Trabelsi et al., 2017).
We denote this method as Complex Deep Rhythm (Cplx-DR).

3 Multitask Learning

The goal of MultiTask Learning (MTL) is to share information between two
related tasks in order to enable a model to generalise better on both of these
tasks. The origin of MTL is biological. For example, according to our experience
in learning to play tennis and squash, we find that the skill of playing tennis can
help learn to play squash and vice versa. From a machine learning point of view,
MTL can be seen as an inductive operation that can help learning a model by
introducing an inductive bias. In this case, the inductive bias is provided by the
auxiliary task which lead the model to favor hypotheses that are beneficial to
all several tasks at once.

4 https://github.com/ChihebTrabelsi/deep_complex_networks

https://github.com/ChihebTrabelsi/deep_complex_networks
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Fig. 5. Cplx-convolution applied to Cplx-τ ′-HCQM as input and Cplx-DR model
Architecture. D is the number of units in the dense layer, C is the number of units in
the output layer (i.e. the classes logits).

The classification of certain meta-genres such as Electronic Dance Music (EDM)
and Ballroom Dances into sub-genres is mainly based on the analysis of their
rhythmic structure since they are musical styles dedicated to dance. Thus it is
possible to identify the sub-genre of one of these sounds by the tempo range at
which it is played (in addition to their rhythmic patterns).

With the DR method (Foroughmand and Peeters, 2019), it is shown that the
same network architecture can be used to achieve two different tasks: tempo es-
timation and genre classification. For each task, two different training and hence
a different set of parameters are used. We want here to exploit this multitasking
aspect through the implementation of a single network which jointly estimates
the tempo and the rhythm pattern class.

Two main strategies stand out when it comes to MTL in the field of deep
learning. These reside in the type of parameter sharing carried out between the
hidden layers of the network.
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When using the soft-sharing (Yang and Hospedales, 2016), each task has its
own network. In order to learn similar parameters, the distance between them is
regularised for each layer of the networks. With hard-sharing, the hidden layers
are shared between all tasks while conserving specific layers for each task. This is
the most common strategy and the one we chose to use. Hard parameter sharing
has been proven to limit the risk of overfitting (Baxter, 1997).

Other benefits of using MTL in deep learning are to be considered. A model
that jointly learn two tasks is able to learn a more general representation: it has
an implicit data augmentation effect. It can be difficult for a model to learn the
differences between relevant and irrelevant features, MTL acts as a focus on the
various features since it combines the relevance of features from two linked tasks.

3.1 Multitask Deep Rhythm

Architecture. We illustrate the architecture of the network in Fig. 6. The convo-
lutional part is the same as the original DR network (Foroughmand and Peeters,
2019). The extension starts at the flatten layer that follows the last convolutional
layer. The associated vector then acts as input for two independent branches,
each with two fully-connected layers ending with a softmax activation function.
One branch is dedicated to genre classification, the other to tempo estimation.
We choose D = 64 based on parameter validation experiments. The output of
the first (resp. of the second) branch has the same size as the number of genre
to be detected (resp. as the number of tempo classes).

D 256

dense

flatten

(4, 6) (4, 6) (4, 6) (120, 6)

b

h 128 64 3264 8

φ

Input Convolutional
Layers

(4, 6)

Convolution + ReLU + BN Dense + ELU + Dropout = 0.5 softmax

D C

Outputs

Genre 
classes

Tempo 
classes

Fig. 6. MTL model Architecture with τ ′-HCQM as input (of size (φ × b × h)), D is
the number of units in the dense layer, C is the number of genre classes in an output
layer and 256 tempo classes in the other.

It is important to note that using the MTL network architecture to deal with
both tasks simultaneously allows to halve the number of trainable parameters.
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Indeed, the original DR network is trained to perform the two tasks separately
and therefore requires two independent training. The computation time remains
quite similar between the DR and the MTL models training.

Losses. To train the system, we simultaneously minimise two categorical cross-
entropy losses: one for the rhythm pattern classes Lgenre and one for the tempo
classes Ltempo. Both are applied to the output of the sub-networks ended by a
softmax activation function. Inspired by Bittner et al. (2018), we choose the use
of an additive loss with equal weights between the genre loss and the tempo loss.

L = Lgenre + Ltempo

= −
C∑

cg=1

ycg log(ŷcg )−
256∑
ct=1

yct log(ŷct) (5)

with the predicted genre class ŷcg and the genre ground-truth ycg (ct for the
tempo classes, respectively). We then minimise L (both losses Lgenre and Ltempo
are equally weighted) with the same ADAM optimiser as original DR method.

4 Multi-Input Network

The Deep Rhythm network was designed to represent the rhythm content of an
audio track. As shown in (Gouyon et al., 2006) and demonstrated in our previous
methods, the tempo range and possible rhythm patterns are strongly correlated
to the music genre of the track. The DR network, however, focuses exclusively
on the aspects related to rhythm, not on other features like instrumentation or
timbre.

Since we want to perform a genre classification, our method could benefit
from representations describing other musical elements. For instance in EDM,
many genres were also defined, beyond their rhythmic structure, by timbre ac-
cording to Butler (2006).

This intuition led us to the creation of a new network in order to introduce
information distinct from rhythm when training the network for genre classifi-
cation. To do so, we keep the convolutional part of the DR dedicated to rhythm
with the HCQM as input and we add a convolutional branch dedicated to the
representation of timbre and instrumentation with a log-mel magnitude spec-
trogram as input. We obtain a multi-input, multi-branch network and to denote
this network we use the term multi-input network (and by extension Multi-Input
MI method).

4.1 Method

The main inspiration of the additional branch is the work of Choi et al. (2016,
2017) who uses this type of convolutional layers with a mel-spectrogram as input
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to perform an automatic tagging task from large annotated databases. Pons et al.
(2017) also recommend the use of log-mel magnitude spectrogram5 as input of a
CNN to analyse timbre patterns through the convolutional feature maps of the
network.

Mel-spectrogram. Timbre is defined as the character or quality of a musical sound
appart from its pitch, loudness and duration (Wessel, 1979). Also, music timbre
is often associated with the identification of the instrument characteristics. It
is related to the spectral envelope shape and the time variation of the spectral
content (Peeters et al., 2011). Thus, it can be assumed that the mel-spectrogram
is an adequate representation of timbre since it is a time/frequency expression
well-suited to the human auditory system and so to the music perception.

Therefore, the mel-spectrogram contains timbre patterns that are considered
as more pitch invariant than the STFT ones since they are based on a perceptual
scale (Pons et al., 2017). For all these characteristics and also for the gain in
performance it allows, this representation is one of the widespread features used
in deep learning for various MIR tasks.

For tagging task, the mel-spectrogram is often used as input representation of
a CNN trained with large-scale datasets. We choose to use a common architecture
dedicated to the timbre branch of our MI network.

Network Architecture The first branch of the network is the one dedicated to
rhythm with the HCQM as input followed by the DR convolutional layers. The
second branch is the one dedicated to timbre characteristics followed by a net-
work commonly-used for audio tagging with the mel-spectrogram as input. This
latter branch is inspired from the well-known VGG network (Simonyan and Zis-
serman, 2015). Its architecture is adapted to large-scale analysis in the sense
that its efficiency has been shown on large annotated databases. It is composed
of a series of convolution layers associated with max-pooling layers.

The complete architecture of the MI network is described in Fig. 7. We
take the same network parameters described in (Choi et al., 2016) and in (Choi
et al., 2017). This network uses mel-spectrograms as input followed by five con-
volutional layers of (3 × 3) kernels6 each connected to a max pooling layer
(2× 4), (2× 4), (2× 4), (3× 5), (4× 4) in order to reduce the size without losing
information during training. In the original network, the last layer then predicts
the tags. We skip it here. The output of the timbre branch does not need to
be flatten since using max pooling already shapes the last layer as a (1× 2048)
vector. The flatten layer of the DR branch is concatenated with the last layer
of the timbre branch and used as input of a dense layer of size 256. The output
layer of the MI network is, as for the previous methods, the softmax activation

5 For ease of reading we refer to it as mel-spectrogram
6 In (Pons et al., 2017), it has been shown that the use of domain-knowledge inspired

kernel size (e.g. by taking the whole frequency axis) leads to better performance
in the case of large-scale training. However, because the difference in results is not
significant on smaller scale analyses, so we choose to use square filters.
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Fig. 7. MI model architecture. [Top] Branch dedicated to ”timbre”, VGG-like convolu-
tional layers with a mel-spectrogram as input. [Bottom] Branch dedicated to rhythm,
DR convolutional layers with an τ ′-HCQM as input.

function of C classes (C as the genre classes in the case of genre classification
task or 256 tempo classes in the case of global tempo estimation). Again, the
network is trained by minimizing a categorical cross-entropy.

5 Evaluation

5.1 Aggregating decisions over time

It is important to consider here that the DR network processes each temporal
frame τ ′ independently. We denote by xτ ′ the segment of the audio signal cen-
tered on time τ and of 8 s duration. During training, a Multiple Instance Learning
paradigm is considered: each xτ ′ is seen as an instance of the single global ground-
truth tempo TBPM and the network trained accordingly. For testing, the output
of the network (the softmax output) provides for each xτ ′ a tempo likelihood
vector p(TBPM |xτ ′) which represents the likelihood of each tempo TBPM . The
average over frame τ ′ of this vector is computed, p(TBPM ) =

∫
τ ′
p(TBPM |xτ ′)dτ ′

and used to estimate the global tempo: T̂BPM = arg maxTBPM
p(TBPM ).

Oracle Frame Predictor. Can we find a better way to infer TBPM from the
sequence of tempo likelihood vectors p(TBPM |xτ ′) ?. To answer this question, we
would like to know what would be the upper bound achievable by DR to predict
TBPM from the succession of p(TBPM |xτ ′). To do so we define an Oracle Frame
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Predictor. This oracle knows which is the best frame τ ′ to be used to predict
TBPM . We denote this best frame by τ ′∗. The oracle defines the best frame as
τ ′∗ = arg minτ ′(TBPM−arg maxTBPM

p(TBPM |xτ ′)2. It is important to note that
the final prediction of the oracle still uses the tempo likelihood vector to estimate
the tempo (but only using the best frame): T̂ ∗BPM = arg maxTBPM

p(TBPM |xτ ′∗).
Typically, if the track only contains a single frame corresponding to TBPM

and if the network is performing well, the Oracle should be able to find τ ′∗

and the corresponding T̂ ∗BPM would be a good estimation. In the contrary, the

average value p(TBPM ) will be blurred and T̂BPM = arg maxTBPM
p(TBPM )

would provide a wrong prediction. Hence T̂ ∗BPM is an upper bound.

5.2 Tempo-only estimation

Protocol. To evaluate the performances on tempo estimation, we follow the same
protocol as described in (Foroughmand and Peeters, 2019), i.e. we train the net-
work on 3 datasets and evaluate the performances on 7 independent datasets.
We also summarised the overall performances by indicating the results on the
Combined dataset (the union of the 7 datasets). We indicate the results in terms
of Accuracy1 (( Acc1)) which is the accuracy considering a 4% tolerance window
centered on the ground-truth global tempo value as correct estimation and Ac-
curacy2 (Acc2 ) which is the estimation taking into account the predicted tempo
at the second and the third octave above and below within a 4% window.

Datasets. For Training we used the following datasets:

– Extended Ballroom (EBR) (Marchand and Peeters, 2016) (3,826 tracks): an
extension of the Ballroom (BR) dataset (Gouyon et al., 2006) with additional
ballroom styles. For the tempo estimation task, we remove from the dataset
the tracks already present in BR for experimental training/testing purposes.

– tempo MTG (tMTG): proposed by Faraldo et al. (2017) for EDM key esti-
mation tempo annotated using a tapping method by Schreiber and Müller
(2018) (1,159 tracks).

– tempo LMD (tLMD) : a subset of the Lack MIDI dataset proposed by Raffel
(2016) and tempo annotated by Schreiber and Müller (2017) (3,611 tracks).

For Testing we used the following datasets:

– ACM: (Peeters and Flocon-Cholet, 2012) (1,410 tracks),

– ISMIR04: (Gouyon et al., 2006) (464 tracks),

– Ballroom (BR): (Gouyon et al., 2006) (698 tracks),

– Hainsworth (Hains.): (Hainsworth, 2004) (222 tracks),

– GTzan: (Marchand et al., 2015) (1,000 tracks),

– SMC: (Holzapfel et al., 2012) (217 tracks),

– Giantsteps (GST): (Knees et al., 2015) (664 tracks) and

– Combined: (4,675 tracks) the combination of all the test sets.
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Considered systems. The results are indicated in Fig. 8. DR: original Deep
Rhythm method; Oracle-DR: DR using the Oracle Frame Prediction; Cplx-
DR: complex version of DR (section 2); Oracle-Cplx-DR: Oracle Frame Pre-
diction of Cplx-DR. For comparison purposes, we parameterise the HCQM and
the neural network in the same way as in (Foroughmand and Peeters, 2019)
for the original DR method. Thus the modulation frequencies of the rhythmic
representation correspond to the possible global tempo from 0 to 240 BPM and
h ∈ { 14 ,

1
3 ,

1
2 ,

2
3 ,

3
4 , 1, 1.25, 1.33, . . . , 8}.

Results and discussion. The first remark we can made is that the results of
Oracle-Cplx-DR are better than those of Oracle-DR in terms of Acc1 and Acc2
for all independently evaluated datasets as well as for the combined one. This
clearly demonstrates that the complex version allows a significant improvement
in tempo estimation. It is necessary to mention here that we have verified in
practice that these results were not simply due to the double size of the network
convolutional layers. For this purpose, we have trained a non-complex network
from the real-valued HCQM with the same kernel sizes as the complex network.

Another observation can be made at this stage by comparing the results
obtained in terms of Acc2 : we can see that DR and Cplx-DR, although slightly
below, are almost at the same level as their Oracle version (except for SMC).
This allows us to state that for a given track, the average of its predictions
from its different τ ′-HCQM (respectively Cplx-τ ′-HCQM) reflects the presence
of octave error in the estimated candidate when using the basic methods.

5.3 Joint tempo-genre, genre-only estimation

Protocol. It is not possible to perform the validation using cross-dataset valida-
tion. This is because genre classes are specific to each dataset. We only consider
the datasets which are both annotated into tempo and into genre and perform
for each a ten-fold cross validation (splitting each dataset into ten folds). For
the tempo estimation, we indicate the same metric Acc1 in % as above. We do
not indicate the results in terms of Acc2 here as we focus on joint learning and
its comparison with the original DR method. For the genre classification, we
indicate the mean-over-class recall R̂ in % since it is independent of class distri-
bution. The recall score for a class is the number of correctly detected items over
the number of items in this class. The mean-over-class recall R̂ is the average of
all recall scores of each class.

Datasets. For the experiments, we used the following datasets each in a 10-fold
cross-validation scenario:

– genre Extended Ballroom (gEBR): the selected genres are the same as in
(Marchand and Peeters, 2016) in order to ensure a sufficient number of tracks
per genre, the (3,992 tracks and 9 ballroom genres);

– Ballroom (BR): (Gouyon et al., 2006) (698 tracks and 8 genres);
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Fig. 8. Results of Cplx-DR and Oracle-Cplx-DR methods compared to the DR and
Oracle-DR methods in terms of [Top] Acc1 [Bottom] Acc2.

– genre MTG (gMTG): We propose to merge the two EDM datasets presented
in subsection 5.2, GST and tMTG, keeping no duplicates. The goal is to
obtain a tempo and genre annotated dataset for our experiments in both
tasks (1,823 tracks and 23 electronic genres);

– GTzan (Marchand et al., 2015) (1,000 tracks and 10 various popular genres);

– Greek Dance (Gr) (Holzapfel and Stylianou, 2011) (180 tracks and 6 greek
music genres not annotated in tempo).
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Considered systems. Since the metrics are different we indicate the results in
two tables: Tab. 1 for tempo estimation and Tab. 2 for genre classification.

– DR: Deep Rhythm network;
– Cplx-DR: complex version of DR;
– MTL: multitask learning (in section 3) (which simultaneously estimate the

tempo indicated in Tab. 2 and the genre indicated in Tab. 1),
– Cplx-MTL: complex version of MTL;
– MI: multi-input network (section 4); (which can be used to estimate inde-

pendently the tempo Tab. 2 or the genre Tab. 1),
– Cplx-MI: complex version of MI;
– MI-MTL: the multi-input multitask learning; (which estimate jointly the

tempo Tab. 2 and the genre Tab. 1 independently),
– Cplx-MI-MTL: complex version of MI-MTL;
– For comparison purposes, we also provides the results with CHOI model

(Choi et al., 2017) using the same protocol.

Table 1. Comparative and joint estimation results of genre classification in term of
mean-over-class recall R̂ for all methods.

Dataset CHOI DR Cplx-DR MTL Cplx-MTL MI Cplx-MI MI-MTL Cplx-MI-MTL

BR 60.1 93.0 86.5 92.1 86.1 94.2 92.3 93.0 91.9
gEBR 72.1 95.2 92.1 94.8 92.4 96.5 93.9 96.2 94.6
Gr 38.1 68.9 40.0 - - 69.4 47.2 - -
gMTG 21.7 37.6 36.4 37.1 39.8 37.3 40.6 39.6 40.3
GTzan 74.2 59.1 43.5 57.1 44.0 74.3 74.1 67.2 66.0

Table 2. Comparative and joint estimation results of global tempo estimation in term
of Accuracy1 for all methods.

Dataset CHOI DR Cplx-DR MTL Cplx-MTL MI Cplx-MI MI-MTL Cplx-MI-MTL

BR - 92.8 90.0 93.2 91.4 91.3 92.7 92.2 92.4
gEBR - 95.4 95.7 96.4 95.6 96.1 94.6 96.0 95.7
gMTG - 91.3 91.8 91.2 92.0 91.6 90.1 91.3 91.6
GTzan - 72.4 72.4 74.8 70.8 73.3 69.5 71.5 68.5

Results and discussion. Regarding the genre classification, we noticed that the
results of Cplx-DR are lower to those obtained with the DR method.

The results of the MTL and Cplx-MTL methods presented in the two tables
for tempo estimation and genre classification show that joint learning of the
both tasks is justified. Indeed, the network uses half as many parameters than
DR or MI to perform the two tasks simultaneously and to obtain these results
despite the fact that they perform slightly below the other methods for gEBR
and gMTG. For BR the best results are achieved with the MTL method. Results
for genre classification are similar compared to the other methods for the various
test sets (except for GTzan). We conclude that the MTL method allows both
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estimations to benefit from each other, showing that the genres are strongly
characterised by the global tempo range of the evaluated tracks.

We can also observe that the results obtained with the DR method are much
better than the CHOI baseline for all datasets except for GTzan. We can thus
conclude that a small-scale rhythm-oriented classification method is much more
efficient than a method more generally applied to large-scale dataset tagging.
The results on GTzan can be explained by the fact that the CHOI method has
shown good results in previous work on dataset balanced in various popular
music genres. As learning takes place on this various data, it allows a VGG-like
model to generalise better.

We can observe that the MI method is the most efficient for genre classifica-
tion of BR, gEBR, Gr, GTzan. Moreover, for the MTG dataset it is the Cplx-MI
version that performs best. Although learning is joint, the MI-MTL methods fail
to match the previous ones in terms of statistical results. Thus, we can conclude
that a model combining different input music-informed features of a CNN is
more efficient for genre estimation.

6 Conclusion

In this article, we presented three main extensions of the Deep Rhythm method
(which adapts a harmonic decomposition of rhythm to a deep learning formalism
for tempo estimation and rhythm pattern classification) with the aim of exploit-
ing the specific characteristics of this method to perform tempo estimation and
genre classification. This method shows that using music-informed features as
input of a data-driven system is efficient for such MIR tasks.

First, we wanted to take into account inter-band acoustic relationships in
order to improve our estimation. To do this, we proposed to integrate the tem-
poral relations between the bands through the combined learning of the module
and the phase of our HCQM representation by a neural network. We kept the
complex-values when calculating the Cplx-HCQM used as input of a complex
network using complex convolution layers. The effectiveness of this complex ver-
sion of the DR, the Cplx-DR, is shown through its evaluation for the tempo
estimation task. This method allows a clear improvement of the results when
analyzing the results obtained via the Oracle Frame Prediction in terms of Acc1.

Second, in order to better take into account the interdependences between
tempo and genre we proposed a multitask network where the two tasks of tempo
and genre estimation are jointly solved. For this, we proposed a hard parameter
sharing network architecture with shared hidden layers and with two indepen-
dent output layers dedicated to each task. This network was trained to minimise
the additive categorical cross-entropy losses of the two outputs. We showed that
MTL led to an improvement for both tasks on the only evaluated EDM dataset
gMTG. In addition, even if the results are not better than the ones of the previ-
ous methods, it is important to emphasise that they are obtained using a single
network trained to perform both tasks.
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Third, we wanted to take into account an other descriptor in addition to the
rhythm one represented by the HCQM and the DR network. We put forward
a multi-branch/multi-input network where VGG-like convolutional layers with
mel-spectrogram input are added to represent timbre information. We showed
that this MI architecture allowed a much better genre classification for almost
all evaluated datasets.

As future work, it might be interesting to use the HCQM as input to a
MTL method that estimate other rhythmic element such as beats or downbeats
in addition to tempo. Furthermore, regarding the results of the MI method, it
could be interesting to investigate the effects of other music-related features (in
addition to rhythm) like pitch or other features of timbre on genre classification.
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