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Semidegenerate Congruence-modular Algebras

Admitting a Reticulation

George Georgescu1

Abstract

The reticulation L(R) of a commutative ring R was introduced by
Joyal in 1975, then the theory was developed by Simmons in a remark-
able paper published in 1980. L(R) is a bounded distributive algebra
whose main property is that the Zariski prime spectrum Spec(R) of R
and the Stone prime spectrum SpecId(L(R)) of L(R) are homeomor-
phic. The construction of the lattice L(R) was generalized by Belluce
for each unital ring R and the reticulation was defined by axioms.

In a recent paper we generalized the Belluce construction for al-
gebras in a semidegenerate congruence-modular variety V. For any
algebra A ∈ V we defined a bounded distributive lattice L(A), but
in general the prime spectrum Spec(A) of A is not homeomorphic
with the prime spectrum SpecId(L(A)). We introduced the quasi-
commutative algebras in the variety V (as a generalization of Belluce’s
quasi-commutative rings) and proved that for any algebra A ∈ V, the
spectra Spec(A) and SpecId(L(A)) are homeomorphic.

In this paper we define the reticulation A ∈ V by four axioms and
prove that any two reticulations of A are isomorphic lattices. By using
the uniqueness of reticulation and other results from the mentioned
paper, we obtain a characterization theorem for the algebras A ∈ V
that admit a reticulation: A is quasi-commutative if and only if A
admits a reticulation. This result is a universal algebra generalization
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of the following Belluce theorem: a ring R is quasi-commutative if and
only if R admits a reticulation.

Another subject treated in this paper is the spectral closure of the
prime spectrum Spec(A) of an algebra A ∈ V , a notion that generalizes
the Belluce spectral closure of the prime spectrum of a ring.

Keywords: semidegenerate congruence - modular algebras, axiomatic
reticulation, quasi-commutative algebras, spectral algebras, spectral
closure

1 Introduction

The reticulation of a commutative ring R is a pair (L(R), λR) composed of a
bounded distributive lattice L(R) and a function λR : R→ L(R) preserving
some operations and constants (see [21, 23, 36]). The most important
property of reticulation is that the Zariski prime spectrum SpecZ(R) of R
is homeomorphic with the Stone prime spectrum SpecId,Z(L(R)) of L(R).
By using the reticulation we can move some properties from commutative
rings to algebras and vice-versa (see [2, 21, 36]). An axiomatic definition of
reticulation for arbitrary (unital) rings was proposed by Belluce in [6]. He
observed that the reticulation does not exist for any arbitrary ring. In [6] the
quasi-commutative and the spectral rings are introduced and it is proven that
a ring R admits a reticulation iff R is quasi-commutative iff R is spectral.

The reticulation of a ring inspired a rich literature of reticulation
theories for other algebraic structures: F -rings [21], MV -algebras [5], BL-
algebras [29, 30], 0-distributive lattices [35], residuated lattices [22, 31, 32, 33],
bounded BCK-algebras [10], etc.

These reticulations are used to obtain new results on the algebraic
structures. For example, the reticulation of an MV -algebra was the main
tool used in [28] for solving the spectrum problem in theMV -algebras theory,
i.e the characterization of the topological spaces homeomorphic to the prime
spectra of MV -algebras.

The commutator theory, developed by R. Fresee and R. McKenzie
in [14] for algebras in congruence-modular varieties, allowed us to endow
these algebras with prime spectra having important topological properties
(see [1]). By using the ideas of [1], C. Mureşan and the author proposed
in [18] a notion of reticulation for the algebras A in a semidegenerate
congruence-modular variety V, satisfying the hypothesis (H): the set K(A)
of compact congruences of A is closed under commutators. These algebras
generalize the Kaplansky neo-commutative rings (cf. [24], p. 73, a ring R
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is neo-commutative if the product of two finitely generated ideals of R is
finitely generated). Therefore an algebra A ∈ V fulfilling (H) will be called
a neo-commutative algebra. In [18] it is proven that the prime spectrum
SpecZ(A) of a neo-commutative algebra is homeomorphic with the prime
spectrum SpecId,Z(L(A)) of reticulation L(A) of A. Thus SpecZ(A) is a
spectral space in the sense of [12, 19]. The reticulation and its transfer
properties were used in [17] for studying the functorial properties of this
construction and in [15] for obtaining the characterization theorems for
several classes of neo-commutative algebras.

The reticulation theory developed in [18] does not cover the Belluce
reticulations for arbitrary rings [6]. Recently, we introduced in [16] the
quasi-commutative algebras and the spectral algebras in a semidegenerate
congruence-modular variety V. These two classes of algebras coincide. For
each algebra A ∈ V we built a bounded distributive lattice L(A) and proved
that for each quasi-commutative algebra A, the prime spectra SpecZ(A) and
SpecId,Z(L(A)) are homeomorphic.

This paper aims to propose an axiomatic approach of the reticulation
for an arbitrary algebra A in a semidegenerate congruence-modular vari-
ety V. Firstly we will introduce the notion of pre-reticulation of A by three
axioms and develop some elementary matter. Then we define the notion
of reticulation of A by adding a fourth axiom that ensures that the prime
spectrum of reticulation is homeomorphic with the prime spectrum of A. We
prove that all reticulations of A are isomorphic (whenever these reticulations
exist), then we obtain a characterization theorem for the algebras A ∈ V that
admit a reticulation. Another subject treated in this paper is the spectral
closure of the prime spectrum SpecZ(A) of an algebra A ∈ V, a notion that
generalizes the Belluce spectral closure of the prime spectrum of a ring [7].

Now we shall describe the content of this paper. In Section 2 we
present some definitions and results on commutators [14], the prime spectra
of algebras in a semidegenerate congruence-modular variety V and some
elementary properties of these spectra [1].

Section 3 concerns the axiomatic theory of reticulation for algebras
in V. The first piece in this construction is the set C(A) generated by the
set K(A) of compact congruences of A ∈ V, under commutators and finite
joins of congruences. The notion of pre-reticulation of A is axiomatically
introduced. A pre-reticulation of A is a pair (L, λ : C(A) → L), where L is
a bounded distributive lattice and λ : C(A) → L is a function that satisfies
some natural axioms. We define two functions (·)∗ : Con(A) → Id(L) and
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(·)∗ : Id(L) → Con(A) that connect the congruences of A and the ideals
of the lattice L. A reticulation of A is a pre-reticulation of A fulfilling a
new axiom that ensures a homeomorphism between the topological spaces
SpecZ(A) and SpecId,Z(L(A)). We introduce the quasi-commutative and the
spectral algebras of the variety V as generalizations of the quasi-commutative
and the spectral rings. We prove that any two reticulations of algebra A are
isomorphic (whenever they exist) and we characterize the algebras of the
variety V that admit a reticulation: an algebra A admits a reticulation iff A
is quasi-commutative iff A is spectral. If we apply this theorem for rings we
obtain the Belluce results from [6].

In Section 4 we define the spectral closure XSpecZ(A) of the prime
spectrum SpecZ(A) of an algebra A ∈ V. XSpecZ(A) is a spectral space
such that SpecZ(A) is a dense subspace of XSpecZ(A). We characterize the
elements of XSpecZ(A) as the locally prime congruences of A. The results
of this section can be viewed as a universal algebra generalization of some
results obtained by Belluce for the spectral closure of prime spectrum of a
ring [7].

2 Preliminaries

Throughout this paper we shall assume that the algebras have a finite
signature τ . For any algebra A we shall denote:

• Con(A) is the complete lattice of the congruences of A; ∆A and ∇A

are the first and the last elements of Con(A);

• PCon(A) is the set of principal congruences of A;

• K(A) is the set of all finitely generated congruences of A (also called
compact congruences). We know that K(A) is closed under finite joins
of Con(A) and ∆A ∈ K(A).

Recall from [9] that a variety V of algebras is said to be congruence-modular
if for any member of V, Con(A) is a modular lattice.

Let us fix a congruence - modular variety V . According to Definition 3.2
of [14], for each algebra A ∈ V we can define a multiplication operation [·, ·]
on the congruence lattice Con(A), named the commutator operation. This
abstract notion extends the commutator operation existing in group theory,
as well as the multiplication of ideals in ring theory. The definition of
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commutator operation for algebras of V is very technical (see Section 3
of [14]), so we do not recall it here. The proofs of the results in this paper do
not use the definition of the commutator, but only its properties mentioned in
this section. It is useful to remind the following properties of the commutator
operation: [·, ·] is commutative, increasing in each argument and distributive
with respect to arbitrary joins.

Lemma 1 ([14]) For any congruence - modular variety V the following are
equivalent:

(1) [∇A,∇A] = ∇A, for all A ∈ V;

(2) [θ,∇A] = θ, for all A ∈ V and θ ∈ Con(A).

Recall from [26], that a variety V is semidegenerate if no nontrivial algebra
in V has one - element subalgebras. According to [26], a variety V is
semidegenerate if and only if for any algebra A in V, the congruence ∇A

is compact.

Proposition 1 ([1]) If V is a semidegenerate congruence - modular variety
then for each algebra A in V we have [∇A,∇A] = ∇A.

If R is a ring then the lattice Id(R) of its ideals is isomorphic to the
lattice Con(R) of congruences of R. The commutator operation in Id(R) is
defined by [I, J ] = IJ + JI, for all ideals I, J of R. It is clear that the class
of rings is a semidegenerate congruence-modular variety.

Let us fix a semidegenerate congruence-modular variety V and A ∈ V.
By Lemma 1 and Proposition 1, for any θ ∈ Con(A) we have [θ,∇A] = θ.
Define on the lattice Con(A):

• the residuation operation (implication): α→ β =
∨
{γ|[α, γ] ⊆ β};

• the annihilator operation (polar): α⊥ = α→ ∆A =
∨
{γ|[α, γ] = ∆A}.

Recall from [1] that the implication → fulfills the usual residuation property:
for all α, β, γ ∈ Con(A), α ⊆ β → γ if and only if [α, β] ⊆ γ. The
algebraic structure (Con(A),∨,∧, [·, ·],→,∆A,∇A) is a commutative and
integral complete l - groupoid (see [8, 20, 27, 34]).

Following [14], p.82 or [1], p.582, a congruence ϕ ∈ Con(A) − {∇A}
is prime if for all α, β ∈ Con(A), [α, β] ⊆ ϕ implies α ⊆ ϕ or β ⊆ ϕ. We
denote by Spec(A) the set of prime congruences and by Max(A) the set of
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maximal congruences of Con(A). If θ ∈ Con(A)− {∇A} then there exists
ϕ ∈ Max(A) such that θ ⊆ ϕ. By [1], the inclusion Max(A) ⊆ Spec(A)
holds. Spec(A) is called the prime spectrum of A and Max(A) is called the
maximal spectrum of A. An abstract theory of prime spectra can be found
in the very interesting paper [13].

According to [1], p.582, the radical ρ(θ) = ρA(θ) of a congruence θ ∈ A
is defined by ρA(θ) =

⋂
{ϕ ∈ Spec(A)|θ ⊆ ϕ}; if θ = ρ(θ) then θ is a radical

congruence. For the basic properties of radicals, see [1, 18]. In particular,
ρ(∆A) =

⋂
Spec(A). The algebra A is semiprime if ρ(∆A) = ∆A.

Let L be a bounded distributive lattice and Id(L) the set of its ideals.
Then SpecId(L) will denote the set of prime ideals in L and MaxId(L) the
set of maximal ideals in L. SpecId(L) (resp. MaxId(L)) endowed with Stone
topology will be denoted by SpecId,Z(L) (resp. MaxId,Z(L)).

For any ideal I of L we denote DId(I) = {Q ∈ SpecId(L)|I ̸⊆ Q}
and VId(I) = {Q ∈ SpecId(L)|I ⊆ Q}. If x ∈ L then we use the notation
DId(x) = DId((x]) = {Q ∈ SpecId(L)|x /∈ Q} and VId(x) = VId((x]) = {Q ∈
SpecId(L)|x ∈ Q}, where (x] is the principal ideal of L generated by the
set {x}. Recall from [21] that the family (DId(x))x∈L is a basis of open sets
for the Stone topology on SpecId(L).

Following [12, 19], a spectral space (or a coherent space in the terminol-
ogy of [21]) is a topological space X such that the following properties hold:

(a) X is a compact T0-space;

(b) the compact open subsets of X form a basis of the topology of X,
closed under finite intersections;

(c) any irreducible closed subset of X has a generic point.

Let us consider the following property for a topological space X:

(b′) X has a basis of compact open subsets, closed under finite intersections.

Then a topological space X is a spectral space if and only if it satisfies the
conditions (a), (b′) and (c).

The main examples of spectral spaces arise from commutative rings and
bounded distributive lattices: the prime spectrum SpecZ(R) of a commuta-
tive ring R and the prime spectrum SpecId,Z(L) of a bounded distributive
lattice L are spectral spaces (cf. [12, 19, 21]). If L is a bounded distributive
lattice then (DId(a))a∈L is a basis of compact open sets for SpecId,Z(L).
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Let A be an algebra of a semidegenerate congruence-modular variety V .
Now we shall recall from [1, 18] some definitions and notations regarding
the topology of the prime spectrum Spec(A).

For any θ ∈ Con(A) we denote VA(θ) = V (θ) = {ϕ ∈ Spec(A)|θ ⊆ ϕ}
andDA(θ) = D(θ) = Spec(A)−V (θ). If α, β ∈ Con(A) thenD(α)

⋂
D(β) =

D([α, β]) and V (α)
⋃
V (β) = V ([α, β]). For any family of congruences

(θi)i∈I we have
⋃

i∈I D(θi) = D(
∨

i∈I θi) and
⋂

i∈I V (θi) = V (
∨

i∈I θi). Thus
Spec(A) becomes a topological space whose open sets are D(θ), θ ∈ Con(A).
We remark that this topology is the universal algebra generalization of the
Zariski topology (defined on the prime spectra of commutative rings) [3] and
the Stone topology (defined on the prime spectra of bounded distributive
lattices) [4, 8]. Thus this topology on the prime spectrum Spec(A) of the
algebra A will be named Zariski topology and the respective topological space
will be denoted by SpecZ(A). We mention that the family (D(α))α∈K(A) is
a basis of open sets for the Zariski topology.

Lemma 2 Assume that A is an algebra of a semidegenerate congruence-
modular variety V. Then the following hold:

(1) SpecZ(A) is a T0-space;

(2) Any irreducible closed subset of SpecZ(A) has a generic point.

Proof: By Proposition 2.6 of [13], SpecZ(A) is a sober space, i.e. SpecZ(A)
is a T0-space and any irreducible closed subset of SpecZ(A) is the closure of
a point set. The compactness of SpecZ(A) follows from the fact that ∇A is a
compact congruence of A (because A ∈ V and V is a semidegenerate variety).

2

In other words, SpecZ(A) is a compact sober space. In general, SpecZ(A)
is not a spectral space. In virtue of Lemma 2, SpecZ(A) is a spectral
space if and only if it has a basis of compact open sets, closed under finite
intersections.

3 Reticulation of a Universal Algebra

Let V be a semidegenerate congruence - modular variety and A an algebra
of V. We shall define the reticulation of A in an axiomatic manner. Our
source of inspiration is the Belluce axiomatic definition for the reticulation
of an arbitrary (unital) ring [6].
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Following [16], let C(A) be the smallest subset of Con(A) with the
following properties:

• K(A) ⊆ C(A);

• If θ, χ ∈ C(A) then θ ∨ χ ∈ C(A);

• If θ, χ ∈ C(A) then [θ, χ] ∈ C(A).

We remark that the algebraic structure (C(A),∨, [·, ·],∆A,∇A) is similar to
a semi-ring, but without the associativity of multiplication [·, ·]. If A is a
ring then C(A) is exactly the commutative semi-ring Sem(A), generated
by the principal ideals of A, under the commutator operation and the sum
(cf. [6], p. 1856 or [5], p. 1515).

Let us consider a bounded distributive lattice L and a surjective function
λ : C(A) → L. The pair (L, λ : C(A) → L) is said to be a pre-reticulation
of the algebra A if for all α, β ∈ C(A), the following axioms are satisfied:

(Ax.1) λ(α ∨ β) = λ(α) ∨ λ(β);

(Ax.2) λ([α, β]) = λ(α) ∧ λ(β);

(Ax.3) λ(∆A) = 0; λ(∇A) = 1.

A pre-reticulation (L, λ : C(A) → L) will be shortly denoted by (L, λ).
The notion of pre-reticulation, defined above, is weaker than that of

reticulation (introduced later, by Definition 2). Now we will present some
valid results in the abstract framework offered by pre-reticulations.

Lemma 3 Assume that (L, λ) is a pre-reticulation of A. For all α, β ∈
C(A), α ⊆ β implies λ(α) ≤ λ(β).

Proof: If α ⊆ β then α∨β = β, so, by (Ax.1) we have λ(β) = λ(α)∨λ(β),
hence λ(α) ≤ λ(β). 2

Proposition 2 Assume that (L, λ) is a pre-reticulation of A. Let (θj)j∈J
be a family of congruences in C(A) such that

∨
j∈J θj ∈ C(A). Thus

λ(
∨

j∈J θj) =
∨

j∈J λ(θj).

Proof: Similar to the proof of Proposition 3.3 of [16]. 2



Semidegenerate congruence-modular algebras admitting a reticulation13

If (L, λ) is a pre-reticulation of A, then for all θ ∈ Con(A) and I ∈ Id(L)
we shall denote:

θ∗ = {λ(α)|α ∈ C(A), α ⊆ θ}; I∗ =
∨
{α ∈ K(A)|λ(α) ∈ I}.

Lemma 4 Assume that (L, λ) is a pre-reticulation of A and θ ∈ Con(A),
I ∈ Id(L). Then the following hold:

(1) θ∗ is an ideal of the lattice L and I∗ is a congruence of A;

(2) If θ ∈ C(A) then θ∗ = (λ(θ)], where the second member is the principal
lattice ideal generated by {λ(θ)} in L.

Proof:

(1) Let x, y be two elements of θ∗, so there exists α, β ∈ C(A) such that
x = λ(α), y = λ(β), α ⊆ θ and β ⊆ θ. Thus α∨β ⊆ θ and α∨β ∈ C(A),
therefore, by applying (Ax.1) we get x ∨ y = λ(α ∨ β) ∈ θ∗.

In a similar way, by using (Ax.2), one can prove that for all x, y ∈ L,
x ≤ y and y ∈ θ∗ imply x ∈ θ∗. Then θ∗ is an ideal of L(A).

That I∗ is a congruence of A is obvious.

(2) Similar to the proof of Lemma 3.5 in [16]. 2

According to Lemma 4(1) one obtains two order - preserving functions
(·)∗ : Con(A) → Id(L) and (·)∗ : Id(L) → Con(A). These two functions will
be good vehicles in transferring some properties from congruences of A to
ideals of L and vice-versa. This thesis will be illustrated by the following
lemmas and propositions.

Lemma 5 Assume that (L, λ) is a pre-reticulation of A. Then for all
α ∈ K(A) and I ∈ Id(L), α ⊆ I∗ if and only if λ(α) ∈ I.

Proof: Assume that α ⊆ I∗ =
∨
{α ∈ K(A)|λ(α) ∈ I} so there exist

an integer n ≥ 1 and β1, · · · , βn ∈ K(A) such that α ⊆ β1 ∨ ... ∨ βn and
λ(βi) ∈ I, for all i = 1, · · · , n (because α is a compact congruence). Thus
λ(α) ≤ λ(β1) ∨ ... ∨ λ(βn) ∈ I, so λ(α) ∈ I (because I is an ideal of the
lattice L). The converse implication is obvious. 2

Lemma 6 Assume that (L, λ) is a pre-reticulation of A. If θ ∈ Con(A)
and I ∈ Id(L) then θ ⊆ (θ∗)∗ and I ⊆ (I∗)

∗.
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Proof: According to the definition of the map (·)∗, we have the equality
(θ∗)∗ =

∨
{α ∈ K(A)|λ(α) ∈ θ∗}. We remark that α ∈ K(A) and α ⊆ θ

imply that λ(α) ∈ θ∗, so α ⊆ (θ∗)∗. Then the inclusion θ ⊆ (θ∗)∗ follows.
In order to prove that I ⊆ (I∗)

∗, assume that x ∈ I, so x = λ(ε) for
some ε ∈ C(A). Let α be a compact congruence of A such that α ⊆ ε, hence
λ(α) ≤ λ(ε). Thus λ(α) ∈ I, hence, by using Lemma 5, one obtains α ⊆ I∗.
It follows that ε ⊆ I∗, so x = λ(ε) ∈ (I∗)

∗. We conclude that I ⊆ (I∗)
∗. 2

Proposition 3 Assume that (L, λ) is a pre-reticulation of A, α ∈ C(A)
and P ∈ SpecId(L). If P∗ ∈ Spec(A), then α ⊆ P∗ if and only if λ(α) ∈ P .

Proof: Assume P ∈ SpecId(L). By using the induction on the way in
which C(A) is defined, we shall prove that the following sentence is true:

(3.1) ∀α ∈ C(A)[α ⊆ P∗ ⇔ λ(α) ∈ P ].

We shall consider three cases:

(a) Assume α ∈ K(A). The sentence (3.1) holds by Lemma 5.

(b) Assume that α = α1 ∨ α2 and the congruences α1, α2 ∈ C(A) fulfill
the induction hypothesis: αi ⊆ P∗ iff λ(αi) ∈ P , for i = 1, 2. Then the
following equivalences hold:

α ⊆ P∗ iff α1 ⊆ P∗ and α2 ⊆ P∗

iff λ(α1) ∈ P and λ(α2) ∈ P

iff λ(α1) ∨ λ(α2) ∈ P

iff λ(α) ∈ P .

(c) Assume that α = [α1, α2] and the congruences α1, α2 ∈ C(A) verify
the induction hypothesis, that is αi ⊆ P∗ iff λ(αi) ∈ P , for i = 1, 2.

By taking into account that P ∈ SpecId(L) and P∗ ∈ Spec(A) (by
hypothesis) it results that the following equivalences hold:

α ⊆ P∗ iff α1 ⊆ P∗ or α2 ⊆ P∗

iff λ(α1) ∈ P or λ(α2) ∈ P

iff λ([α1, α2]) = λ(α1) ∧ λ(α2) ∈ P

iff λ(α) ∈ P . 2

Example 1 Following [16], let us consider on C(A) the following equiva-
lence relation ≡: for all α, β ∈ C(A), α ≡ β if and only if ρ(α) = ρ(β).
Let α̂ be the equivalence class of α ∈ Con(A) and the special elements
0 = ∆̂A, 1 = ∇̂A. Then ≡ is a congruence on C(A) w.r.t. the join and
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the commutator operations: for all α, β α′, β′ ∈ C(A), α ≡ α′ and β ≡ β′

implies α ∨ β ≡ α′ ∨ β′ and [α, β] ≡ [α′, β′]. For all α, β ∈ C(A), define

α̂ ∨ β̂ = ˆα ∨ β and α̂ ∧ β̂ = ˆ[α, β]. Then the quotient set L(A) = C(A)/≡
is a bounded distributive lattice. We shall denote by λA : C(A) → L(A)
the function defined by λA(α) = α̂, for all α ∈ C(A). By construction, the
pair (L(A), λA : C(A) → L(A)) fulfills the axioms (Ax.1)-(Ax.3), so it is a
pre-reticulation of A. We remark that for all α, β ∈ C(A), λA(α) = λA(β)
if and only if ρ(α) = ρ(β).

Lemma 7 ([16]) Consider an algebra A ∈ V. For all α, β ∈ C(A), the
following hold:

(1) λA(α) = 1 if and only if α = ∇A;

(2) If A is semiprime then λA(α) = 0 if and only if α = ∆A;

(3) λA(α) ≤ λA(β) if and only if for any ϕ ∈ Spec(A), β ⊆ ϕ implies
α ⊆ ϕ.

Lemma 8 ([16]) Consider an algebra A ∈ V, θ ∈ Spec(A) and I ∈
Id(L(A)). Then the following hold:

(1) θ ̸= ∇A if and only if θ∗ is a proper ideal of L(A);

(2) I∗ is a proper ideal of L(A) if and only if I∗ ̸= ∇A.

Lemma 9 ([16]) Consider an algebra A ∈ V and ϕ ∈ Con(A). Then the
following hold:

(1) If ϕ ∈ Spec(A) then (ϕ∗)∗ = ϕ;

(2) If ϕ ∈ Spec(A) then ϕ∗ is a prime ideal of the lattice L(A).

Lemma 10 ([16]) If ϕ ∈ Spec(A) and α ∈ C(A) then α ⊆ ϕ if and only if
λ(α) ∈ ϕ∗.

According to Lemma 9(2), one can consider the function u : Spec(A) →
SpecId(L(A)), defined by u(ϕ) = ϕ∗, for any ϕ ∈ Spec(A).

Lemma 11 The following hold:

(1) For all I ∈ Id(L(A)) and ϕ ∈ Spec(A), I∗ ⊆ ϕ if and only if I ⊆ ϕ∗;
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(2) For all α ∈ C(A) and ϕ ∈ Spec(A), α ⊆ ϕ if and only if (α∗)∗ ⊆ ϕ;

(3) For any ideal I of L(A), u−1(DId(I)) = D(I∗);

(4) For any α ∈ C(A), u−1(DId(λA(α))) = D(α).

Proof:

(1) For all I ∈ Id(L(A)) and ϕ ∈ Spec(A), the following hold:

• I ⊆ ϕ∗ ⇒ I∗ ⊆ (ϕ∗)∗ = ϕ (by Lemma 9(1));

• I∗ ⊆ ϕ⇒ I ⊆ (I∗)
∗ ⊆ ϕ∗ (by Lemma 6).

(2) Assume that α ∈ C(A) and ϕ ∈ Spec(A). If α ⊆ ϕ then (α∗)∗ ⊆
(ϕ∗)∗ = ϕ (by Lemma 9(1)). Conversely, if (α∗)∗ ⊆ ϕ then α ⊆ (α∗)∗ ⊆
ϕ (by Lemma 6).

(3) Let I be an ideal of L(A). By (1), for each ϕ ∈ Spec(A) we have
I∗ ⊆ ϕ if and only if I ⊆ ϕ∗, therefore

ϕ ∈ u−1(DId(I)) iff ϕ
∗ ∈ DId(I) iff I ̸⊆ ϕ∗ iff I∗ ̸⊆ ϕ iff ϕ ∈ D(I∗).

It follows that u−1(DId(I)) = D(I∗).

(4) From (2) we infer that D(α) = D((α∗)∗), for any α ∈ C(A). Then, by
using (3) and Lemma 4(2), for any α ∈ C(A) the following equalities
hold:

u−1(DId(λA(α))) = u−1(DId((λA(α)])) = u−1(DId(α
∗)) = D((α∗)∗) =

D(α). 2

Corollary 1 u is an injective continuous map.

Proof: By Lemma 11(3), it follows that u is a continuous map. In order
to show that u is injective, assume that ϕ, ψ ∈ Spec(A) and u(ϕ) = u(ψ),
hence ϕ∗ = ψ∗. According to Lemma 9(1), we get ϕ = ϕ∗ = ψ∗ = ψ. 2
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Proposition 4 ([16]) The following properties are equivalent:

(1) For any I ∈ Id(L(A)), I = (I∗)
∗;

(2) For any P ∈ SpecId(L(A)), P∗ is a prime congruence of A.

If the equivalent properties from Proposition 4 hold, then one can define the
map v : SpecId(L(A)) → Spec(A) by v(P ) = P∗, for any P ∈ SpecId(L(A)).

Lemma 12 ([16]) If the equivalent properties from Proposition 4 hold, then
for any θ ∈ Con(A) we have v−1(D(θ)) = DId(θ

∗).

Proposition 5 ([16]) Assume that the equivalent properties from Propo-
sition 4 hold. Then the functions u : SpecZ(A) → SpecId,Z(L(A)) and
v : SpecId,Z(L(A)) → SpecZ(A) are homeomorphisms, inverse to one
another.

The previous proposition shows that in the presence of the equivalent
conditions (1) and (2) of Proposition 4 the prime spectra of A and L(A) are
homeomorphic (recall that this is the principal property of any notion of
reticulation).

Let (L, λ) be an arbitrary pre-reticulation of A. Now it is time to
introduce a new axiom:

(Ax.4) For any prime ideal P of the lattice L, P∗ is a prime congru-
ence of the algebra A and the assignment P 7→ P∗ defines a
homeomorphism from SpecId,Z(L) to SpecZ(A).

Definition 1 A pair (L, λ : C(A) → L) is said to be a reticulation of the
algebra A if the axioms (Ax.1)-(Ax.4) are satisfied.

In other words, a reticulation of A is a pre-reticulation of A fulfilling (Ax.4).
We remark that this axiomatic definition of a reticulation of A is a

universal algebra generalization of the axiomatic definition of reticulation of
rings, introduced by Belluce in [6], p. 1856.

The reticulation (L, λ : C(A) → L) of A will be shortly denoted
by (L, λ).

Assume that (L(A), λA) is a reticulation of A. We remark that the
homeomorphism from SpecId,Z(L) to SpecZ(A), given by (Ax.4), is exactly
the restriction v = (·)∗|SpecId,Z(L) : SpecId,Z(L) → SpecZ(A).

Recall from Example 1 that the pair (L(A), λA) is a pre-reticulation
of A. The following theorem gives some necessary and sufficient conditions
for (L(A), λA) to be a reticulation of A.
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Theorem 1 The following properties are equivalent:

(1) (L(A), λA) is a reticulation of A;

(2) For any I ∈ Id(L(A)), we have I = (I∗)
∗;

(3) For any P ∈ SpecId(L(A)), P∗ is a prime congruence of A.

Proof:

(2)⇔(3) By Proposition 4.

(1)⇒(3) By (Ax.4).

(3)⇒(1) By Proposition 5. 2

Proposition 6 Assume that (L, λ) is a reticulation of A. Then for all
α, β ∈ C(A), λ(α) = λ(β) if and only if ρ(α) = ρ(β).

Proof: According to (Ax.4), for any prime ideal P of the lattice L, P∗ is
a prime congruence of the algebra A and v : SpecId,Z(L) → SpecZ(A) is a
bijective map. In fact, u and v are order-isomorphisms between SpecId,Z(L)
and SpecZ(A). Then, by using Proposition 6, it follous that for all α, β ∈
C(A), the following properties are equivalent:

• λ(α) = λ(β);

• For all P ∈ SpecId(L), λ(α) ∈ P iff λ(β) ∈ P ;

• For all P ∈ SpecId(L), α ⊆ P∗ iff β ⊆ P∗;

• For all ϕ ∈ Spec(A), α ⊆ ϕ iff β ⊆ ϕ;

• ρ(α) = ρ(β).
2

From the previous proposition, it follows that for any reticulation (L, λ)
of A, the following holds:

(3.2) for all α, β ∈ C(A), λ(α) ≤ λ(β) if and only if ρ(α) ⊆ ρ(β).

Definition 2 A pre-reticulation (L, λ) of A is said to be a semi−reticulation
of A if for all α, β ∈ C(A), λ(α) = λ(β) if and only if ρ(α) = ρ(β).
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By Proposition 6, any reticulation of A is a semi-reticulation. We
remark that (L(A), λA) is a semi-reticulation (see Example 1).

Definition 3 Two pre-reticulations (L1, λ1) and (L2, λ2) of the algebra A
are said to be isomorphic if there exists an isomorphism of bounded distribu-
tive lattices f : L2 → L1 such that f ◦ λ1 = λ2. Two reticulations (L1, λ1)
and (L2, λ2) of A are isomorphic if they are isomorphic as pre-reticulations.

Theorem 2 Any two semi-reticulations (L1, λ1) and (L2, λ2) of the alge-
bra A are isomorphic.

Proof: Assume that (L1, λ1) and (L2, λ2) are two semi-reticulations of
the algebra A. According to Definition 2, for all α, β ∈ C(A), the following
equivalences hold:

(3.3) λ1(α) = λ1(β) iff ρ(α) = ρ(β) iff λ2(α) = λ2(β).

In order to define a function f : L1 → L2, consider an arbitrary element
x ∈ L1, so there exists α ∈ C(A) such that x = λ1(α). We set f(x) = λ2(α).
By (3.3), the function f is well-defined.

Let x, y be two elements of the lattice L1, so x = λ1(α), y = λ2(β), for
some α, β ∈ C(A). By using (Ax.1) we get: f(x ∨ y) = f(λ1(α) ∨ λ1(β)) =
f(λ1(α ∨ β)) = λ2(α ∨ β) = λ2(α) ∨ λ2(β) = f(x) ∨ f(y). In a similar way
we obtain f(x∧ y) = f(x)∧ f(y), f(0) = 0 and f(1) = 1, so f is a morphism
of bounded lattices.

By using (3.3) it results that f is an isomorphism in the category of
bounded distributive lattices. From the definition of f we get f ◦ λ1 = λ2,
so the pre-reticulations (L1, λ1) and (L2, λ2) are isomorphic. 2

In particular, any two reticulations of A are isomorphic. The following
result gives an explicit characterization of the reticulations of A.

Proposition 7 Let (L, λ) be a reticulation of A. Then (L(A), λA) is a
reticulation of A.

Proof: Let (L, λ) be a reticulation of A. Then (L, λ) is a semi-reticulation
of A, so (L, λ) and (L(A), λA) are isomorphic (by Theorem 2). Therefore
there exists an isomorphism f : L → L(A) of bounded distributive lattice
such that f ◦ λ = λA. Let P be a prime ideal of the lattice L(A), so f−1(P )
is a prime ideal of the lattice L. It is easy to see that for any α ∈ K(A), the
following equivalence holds: λA(α) ∈ P if and only if λ(α) ∈ f−1(P ). Then
the following equality holds:
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(3.4)
∨
{α ∈ K(A)|λA(α) ∈ P} =

∨
{α ∈ K(A)|λ(α) ∈ f−1(P )}.

Since (L, λ) is a reticulation of A and f−1(P ) is a prime ideal of L, by
(Ax.4) it follows that

∨
{α ∈ K(A)|λ(α) ∈ f−1(P )} ∈ Spec(A). In ac-

cordance with (3.4), we get
∨
{α ∈ K(A)|λA(α) ∈ P} ∈ Spec(A), so the

pre-reticulation (L(A), λA) verifies the equivalent conditions of Proposition 4.
In virtue of Theorem 1, (L(A), λA) is a reticulation of A. 2

Now we shall recall from [16] the definitions of the quasi-commutative
algebras and the spectral algebras. They are universal algebra generalizations
of the quasi-commutative rings, respectively the spectral rings, introduced
by Belluce in [6].

Definition 4 ([16]) The algebra A is said to be quasi-commutative if for
all α, β ∈ PCon(A) there exists γ ∈ K(A) such that γ ⊆ [α, β] and ρ(γ) =
ρ([α, β]).

Lemma 13 ([16]) The following are equivalent:

(1) A is a quasi-commutative algebra;

(2) For all α, β ∈ K(A) there exists γ ∈ K(A) such that γ ⊆ [α, β] and
ρ(γ) = ρ([α, β]).

Definition 5 ([16]) The algebra A is said to be a spectral algebra if the
following conditions are fulfilled:

(1) SpecZ(A) is a spectral space;

(2) For any compact congruence α, D(α) is a compact subset of SpecZ(A).

Theorem 3 If the algebra A is quasi-commutative then the pair (L(A), λA)
is a reticulation of A.

Proof: We know that (L(A), λA) is a semi-reticulation of A. If A is a
quasi-commutative algebra then the equivalent conditions from Proposition 4
are fulfilled (cf. Theorem 3.26 of [16]). By applying Theorem 1 it follows
that (L(A), λA) is a reticulation of A. 2

The following theorem shows that the quasi-commutative algebras
coincide with the spectral algebras and they are exactly the algebras of V
that admit a reticulation.
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Theorem 4 For any algebra A ∈ V the following are equivalent:

(1) A is a spectral algebra;

(2) A is a quasi-commutative algebra;

(3) For any ideal I of L(A), we have I = (I∗)
∗;

(4) For any P ∈ SpecId(L(A)), P∗ is a prime congruence of A;

(5) A admits a reticulation;

(6) (L(A), λA) is a reticulation of A.

Proof:

(1)⇔(2) ⇔(3) See Theorem 3.26 of [16].

(3)⇔(4) ⇔(6) See Theorem 1.

(5)⇔(6) By Proposition 7.

(6)⇔(5) Obviously. 2

Remark 1 According to [5], p.1865, there exists a semiprime ring R which is
not quasi-commutative (see also [7], p.1533 and Section 7 of [25]). Therefore
there exist semidegenerate congruence-modular varieties V and semiprime
algebras A in V which are not quasi-commutative. According to the previous
theorem, for such algebras A, the semi-reticulation (L(A), λA) is not a
reticulation.

Corollary 2 If A is a quasi-commutative algebra then SpecZ(A) is a spectral
space.

Proof: By Theorem 4, A is a spectral algebra, so the SpecZ(A) is a
spectral space. 2

The neo-commutative rings were introduced by Kaplansky in [24]: a
ring R is neo-commutative if the product of two finitely generated ideals is
a finitely generated ideal. Kaplansky proved that the prime spectrum of a
neo-commutative ring is a spectral space.

The notion of neo-commutative ring can be extended to a universal alge-
bra setting: an algebra A in a semidegenerate congruence-modular variety V
is neo-commutative if K(A) is closed under commutator operation. If A is
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neo-commutative then C(A) = K(A), so A is quasi-commutative (see [16]).
Then, for any neo-commutative algebra, the equivalent six conditions from
Theorem 4 are fulfilled. In particular, a generalization of the Kaplansky
theorem holds: if the algebra A is neo-commutative then its prime spectrum
SpecZ(A) is a spectral space.

Let A be an algebra of V and θ ∈ Con(A). We inductively define
[θ, θ]n, for any integer n ≥ 0: [θ, θ]0 = θ, [θ, θ]1 = [θ, θ] and [θ, θ]n+1 =
[[θ, θ]n, [θ, θ]n], for all n.

Lemma 14 ([18]) Assume that A is a neo-commutative algebra. For any
congruence θ of A, ρ(θ) =

∨
{α ∈ K(A)|[α, α]n ⊆ θ, for all n}.

By the previous lemma, if A is a neo-commutative algebra, then for all
θ ∈ Con(A) and α ∈ K(A) the following equivalence holds: α ⊆ ρ(θ) if and
only if [α, α]n ⊆ θ, for some integer n ≥ 0.

Theorem 5 Let A be a neo-commutative algebra and (L, λ) a pre-reticulation
of A. Then the following are equivalent:

(1) (L, λ) is a reticulation of A;

(2) For all α, β ∈ K(A), λ(α) ≤ λ(β) if and only if [α, α]n ≤ β, for some
integer n ≥ 0.

Proof:

(1)⇔(2) Assume that (L, λ) is a reticulation of A. Let α, β be two
compact congruences of A. According to (3.2) and Lemma 14,
the following equivalences hold: λ(α) ≤ λ(β) iff ρ(α) ⊆ ρ(β) iff
α ⊆ ρ(β) iff [α, α]n ≤ β, for some integer n ≥ 0.

(2)⇔(1) Let α, β be two compact congruences of A. By using the hy-
pothesis (2) and Lemma 14, the following equivalences hold:
λ(α) ≤ λ(β) iff [α, α]n ≤ β, for some integer n ≥ 0 iff α ⊆ ρ(β) iff
ρ(α) ⊆ ρ(β). Therefore, for all α, β ∈ K(A), λ(α) = λ(β) if and
only if ρ(α) = ρ(β), i.e. (L, λ) a semi-reticulation of A. Accord-
ing to Theorem 2, the semi-reticulations (L, λ) and (L(A), λA)
are isomorphic. By hypothesis, A is a neo-commutative algebra,
so it is quasi-commutative. In virtue of Theorem 3, (L(A), λA)
is a reticulation of A, hence (L, λ) is a reticulation of A (cf.
Proposition 7). 2
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4 The Spectral Closure

Let V be a semidegenerate congruence - modular variety and A an algebra
of V. In Section 3 we defined the map u : SpecZ(A) → SpecId,Z(L(A)) by
u(ϕ) = ϕ∗, for any ϕ ∈ SpecZ(A). By Corollary 1, u is an injective continuous
map. In general, SpecZ(A) is not a spectral space, so u is not bijective.

In [5], Belluce studied the spectral closure XSpec(R) of the prime
spectrum Spec(R) of an arbitrary (unital) ring R. XSpec(R) is a spectral
space that contains Spec(R) as a dense subspace. A quantale version of this
spectral closure can be found in [11].

This section contains a generalization of the Belluce spectral closure to a
universal algebra framework: we shall enlarge the prime spectrum SpecZ(A)
of the algebra A ∈ V to a spectral space XSpecZ(A) such that SpecZ(A)
is a dense subspace of XSpecZ(A). The construction and the study of
XSpecZ(A) will use the algebraic and topological transfer properties of the
lattice L(A).

We mention that the results obtained in this section are generalizations
of some results proven by Belluce for the case of rings [7].

Proposition 8 Let S be a non-empty subset of SpecZ(A) such that⋂
S = ∆A. Thus u(S) is a dense subset of the space SpecId,Z(L(A)).

Proof: We observe that
⋂
S = ∆A implies

⋂
Spec(A) = ∆A, hence

the algebra A is semiprime. According to the definition of u, we have
u(S) = {ϕ∗|ϕ ∈ S}. We have to prove that for any congruence α ∈ C(A),
DId(λA(α)) ̸= ∅ implies DId(λA(α)) ∩ u(S) ̸= ∅.

Assume that DId(λA(α)) ̸= ∅, so there exists a prime ideal P of the
lattice L(A) such that λA(α) ̸∈ P . Thus α ̸= ∆A, so there exists ϕ ∈ S such
that α ̸⊆ ϕ (because

⋂
S = ∆A). By Lemma 10, α ̸⊆ ϕ implies λA(α) ̸∈ ϕ∗,

so ϕ∗ ∈ DId(λA(α)) ∩ u(S) ̸= ∅.
It results that u(S) is a dense subset of the space SpecId,Z(L(A)). 2

Let Min(A) be the set of minimal prime congruences of A. Min(A) is
called the minimal prime spectrum of the algebra A. If we restrict the
topology of SpecZ(A) toMin(A) then we obtain a topological space, denoted
by MinZ(A). For any ϕ ∈ Spec(A) there exists ψ ∈ Min(A) such that
ψ ⊆ ϕ (by Zorn lemma), therefore for any semiprime algebra A we have⋂
Min(A) = ∆A.

Corollary 3 If the algebra A is semiprime then u(Spec(A)) and u(Min(A))
are dense subsets of SpecId,Z(L(A)).
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Throughout the rest of this section A will be a semiprime algebra.

Definition 6 [6] Let X,Y be two topological spaces such that Y is a spectral
space. A continuous map f : X → Y is said to be spectral if for any compact
subset U of Y , f−1(U) is a compact subset of X.

Proposition 9 If u : SpecZ(A) → SpecId,Z(L(A)) is a spectral map then u
is a homeomorphism.

Proof: We know from the Stone duality theory [4] that C = (DId(λA(α)))α∈C(A)

is the basis of compact open sets of SpecId,Z(L(A)) and C is closed under
finite intersections. Let us consider the family B = u−1(DId(λA(α)))α∈C(A).
Since u is a spectral map, B is a family of compact open subsets of SpecZ(A).
It is clear that B is closed under finite intersections. In accordance with
Lemma 11(4), B = (D(α))α∈C(A).

An open subset of SpecZ(A) has the form D(θ), where θ is an arbitrary
congruence of A. We remark that

D(θ) = D(
∨
{α ∈ K(A)|α ⊆ θ}) =

⋃
{D(α)|α ∈ K(A), α ⊆ θ}.

It follows that B is a basis of SpecZ(A). We proved that SpecZ(A) has
a basis B of compact open sets, closed under finite intersections and, by
Lemma 2, we know that SpecZ(A) is a compact sober space. Then SpecZ(A)
is a spectral space such that for any α ∈ C(A), D(α) is a compact open
subset of SpecZ(A), so A is a spectral algebra. By Theorem 4, the equivalent
conditions from Proposition 4 are verified, so u is a homeomorphism (cf.
Proposition 5). 2

Proposition 10 If u : SpecZ(A) → SpecId,Z(L(A)) is a surjective map
then u is a homeomorphism.

Proof: We shall prove that u is a spectral map. We know that the prime
spectrum SpecId,Z(L(A)) of the lattice L(A) is a spectral space. Let U be
a compact subset of SpecId,Z(L(A)). We have to show that u−1(U) is a
compact subset of SpecZ(A). Assume that u−1(U) ⊆

⋃
j∈J D(αj), whenever

(αj)j∈J is a family of compact congruences of A.

Let P be an element of U , hence P ∈ SpecId,Z(L(A)). Since u is
a surjective map, there exists ϕ ∈ SpecZ(A) such that P = u(ϕ) = ϕ∗,
so ϕ ∈ u−1(U) ⊆

⋃
j∈J D(αj). Thus ϕ ∈ D(αj), for some j ∈ J , hence

αj ̸⊆ ϕ. By Lemma 10, αj ̸⊆ ϕ implies λA(αj) ̸∈ ϕ∗ = P , therefore
P ∈ DId(λA(αj)). We have proven that U ⊆

⋃
j∈J DId(λA(αj)). But U is
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a compact subset of SpecId,Z(L(A)), so there exists a finite subset T of J
such that U ⊆

⋃
j∈T DId(λA(αj)). Then the following hold:

u−1(U) ⊆ u−1(
⋃

j∈T DId(λA(αj))) =
⋃

j∈T u
−1(DId(λA(αj))).

By applying Lemma 11(4), we obtain u−1(DId(λA(αj))) = D(αj), for
any j ∈ T , therefore u−1(U) ⊆

⋃
j∈T D(αj), so u

−1(U) is a compact subset
of SpecZ(A). Thus u is a spectral map. By using Proposition 9, it follows
that u is a homeomorphism. 2

Proposition 11 Let I be an ideal of the lattice L(A) and P a prime ideal
of L(A). If P∗ ⊆ I∗ then P ⊆ I.

Proof: Assume that P∗ ⊆ I∗. In order to show that P ⊆ I, it suffices to
prove that the following sentence is valid:

(4.1) ∀α ∈ C(A)[λA(α) ∈ P ⇒ λA(α) ∈ I].

We shall prove this fact by induction on how C(A) is defined, so we consider
three cases:

(a) Assume that α ∈ K(A). According to Lemma 5, the following implica-
tions hold:

λA(α) ∈ P ⇒ α ⊆ P∗ ⇒ α ⊆ I∗ ⇒ λA(α) ∈ I.

(b) Assume that α = α1 ∨ α2, where the congruences α1, α2 ∈ C(A)
verify the sentence (4.1). Thus we have λA(α) = λA(α1) ∨ λA(α2),
therefore the following implications hold: λA(α) ∈ P ⇒ λA(α1) ∈ P
and λA(α2) ∈ P ⇒ λA(α1) ∈ I and λA(α2) ∈ I ⇒ λA(α) ∈ I.

(c) Assume that α = [α1, α2], where α1, α2 ∈ C(A) verify (4.1), hence
λA(α) = λA(α1) ∧ λA(α2). Recall that P is a prime ideal of L(A).
Thus the following implications hold: λA(α) ∈ P ⇒ λA(α1) ∈ P or
λA(α2) ∈ P ⇒ λA(α1) ∈ I or λA(α2) ∈ I ⇒ λA(α) ∈ I. 2

Consider the function w : SpecId(L(A)) → Con(A), i.e. w(P ) = P∗, for any
P ∈ SpecId(L(A)).

Corollary 4 w is an injective function.

Proof: Let P,Q be two prime ideals of L(A) such that P∗ = Q∗. By
Proposition 11 we get P = Q. Therefore the function w is injective. 2

By keeping the notation of [7], we set XSpec(A) = w(SpecId(L(A))) =
{P∗|P ∈ SpecId(L(A))}. For each ideal I of L(A) take the set w(DId(I)) =
{P∗|P ∈ SpecId(L(A)), I ̸⊆ P}.
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Lemma 15 The family T = (w(DId(I)))I∈Id(L(A)) is a topology on XSpec(A).

Proof: Let (It)t∈T be a family of ideals in L(A). Then we obtain the fol-
lowing equality:

⋃
t∈T w(DId(It))) = w(DId(

∨
t∈T It)). Assume now that T

is a finite set. Since u is an injective function, we have
⋂

t∈T w(DId(It))) =
w(DId(

∧
t∈T It)). Therefore T is a topology on XSpec(A). 2

The topological space introduced by Lemma 15 will be denoted by
XSpecZ(A). By construction, w : SpecId,Z(L(A)) → XSpecZ(A) is a
homeomorphism. We know that SpecId,Z(L(A)) is a spectral space, so
XSpecZ(A) is also a spectral space. By Lemma 9, for any ϕ ∈ SpecZ(A) we
have ϕ∗ ∈ SpecId,Z(L(A)) and (ϕ∗)∗ = ϕ, hence ϕ ∈ XSpecZ(A). It follows
that SpecZ(A) is a subset of XSpecZ(A).

Lemma 16 SpecZ(A) is a subspace of XSpecZ(A).

Proof: An open subset of SpecZ(A) has the form D(θ), where θ is
an arbitrary congruence of A. We shall prove that D(θ) = w(DId(θ

∗)) ∩
SpecZ(A). Recall that w(DId(θ

∗)) = {P∗|P ∈ SpecId(L(A)), θ
∗ ̸⊆ P}.

Firstly, we shall prove that D(θ) ⊆ w(DId(θ
∗)) ∩ SpecZ(A). Assume

that ϕ ∈ D(θ), so ϕ ∈ SpecZ(A) and θ ̸⊆ ϕ. Assume by absurdum that
θ∗ ⊆ ϕ∗, hence, by using Lemmas 6 and 9, we get θ ⊆ (θ∗)∗ ⊆ (ϕ∗)∗ = ϕ,
contradicting θ ̸⊆ ϕ. Thus θ∗ ̸⊆ ϕ∗, hence ϕ∗ ∈ DId(θ

∗). Then we obtain
ϕ = (ϕ∗)∗ ∈ w(DId(θ

∗)). The inclusion D(θ) ⊆ w(DId(θ
∗)) ∩ SpecZ(A) is

proven.
Conversely, assume that ϕ ∈ w(DId(θ

∗)) ∩ SpecZ(A), therefore there
exists P ∈ SpecId(L(A)) such that ϕ = P∗ and θ∗ ̸⊆ P . Assume by
absurdum that θ ⊆ P∗. Let x be an arbitrary element of θ∗, so x = λA(α),
for some α ∈ C(A) such that α ⊆ θ. Then α ⊆ θ ⊆ P∗, so x = λA(α) ∈ P
(cf. Proposition 3). It follows that θ∗⊆P , contradicting θ∗ ̸⊆ P . Then θ ̸⊆ P∗,
resulting that ϕ = P∗ ∈ D(a). In conclusion, the inclusion w(DId(θ

∗)) ∩
SpecZ(A) ⊆ D(θ) is established. 2

Recall that we assumed that the algebra A is semiprime. By applying
Lemma 16 and Corollary 3 it follows that SpecZ(A) is a dense subspace of
XSpecZ(A). Keeping the terminology of [7], the spectral space XSpecZ(A)
will be called the spectral closure of the prime spectrum SpecZ(A). If A is a
ring then we obtain the notion of spectral closure defined in [7].

Definition 7 A congruence ϕ ̸= ∇A of the algebra A is said to be a locally
prime congruence of A if for all congruences α, β ∈ C(A) and γ ∈ K(A),
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γ ⊆ ϕ and [α, β] ⊆ ρ(γ) imply that there exists a compact congruence γ′ ⊆ ϕ
with α ⊆ γ′ or β ⊆ γ′.

The notion of locally prime congruence is a generalization of the notion
of locally prime ideal in ring theory [7]: an ideal P of a ring R is locally
prime if and only if the congruence of R associated with P is a locally prime
congruence.

Proposition 12 Any prime congruence of A is locally prime.

Proof: Let ϕ be a prime congruence of A. By induction on how the set
C(A) is defined we shall prove that the following sentence is true:

(4.2) ∀α ∈ C(A)[α ⊆ ϕ⇒ ∃γ′ ∈ K(A)[(γ′ ⊆ ϕ) and (α ⊆ γ′)]].

We shall distinguish three cases:

(a) Assume that α ∈ K(A). If α ⊆ ϕ, then, by taking γ′ = α, the sentence
(4.2) is obviously satisfied.

(b) Assume that α = α1 ∨ α2 and the congruences α1, α2 ∈ C(A) satisfy
the sentence (4.2). If α ⊆ ϕ then α1 ⊆ ϕ and α2 ⊆ ϕ, so there exist
γ′1, γ

′
2 ∈ K(A) such that γ′i ⊆ ϕ and αi ⊆ γ′i, for i = 1, 2. If we set

γ′ = γ′1 ∨ γ′2 then γ′ ∈ K(A), γ′ ⊆ ϕ and α = α1 ∨ α2 ⊆ γ′1 ∨ γ′2 = γ′.

(c) Assume that α = [α1, α2] and the congruences α1, α2 ∈ C(A) satisfy
(4.2). If α ⊆ ϕ then α1 ⊆ ϕ or α2 ⊆ ϕ (because ϕ is a prime congruence
of A). Assume that α1 ⊆ ϕ so there exists γ′1 ∈ K(A) such that γ′1 ⊆ ϕ
and α1 ⊆ γ′1. If we set γ

′ = γ′1 then γ
′ ∈ K(A), γ′ ⊆ ϕ and α ⊆ α1 ⊆ γ′.

The case α2 ⊆ ϕ is treated in a similar way.

In order to show that ϕ is locally prime, suppose that the congruences
α, β ∈ C(A) and γ ∈ K(A) fulfill γ ⊆ ϕ and [α, β] ⊆ ρ(γ). From
[α, β] ⊆ ρ(γ) and γ ⊆ ϕ ∈ Spec(A) we get [α, β] ⊆ ϕ, so α ⊆ ϕ or
β ⊆ ϕ.

Assume now that α ⊆ ϕ. By applying (4.2), there exists γ′ ∈ K(A)
such that γ′ ⊆ ϕ and α ⊆ γ′. The case β ≤ ϕ is treated in a similar way.

2

Proposition 13 If ϕ is a locally prime congruence of A then the following
hold:
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(1) If ϕ ∈ K(A) then ϕ ∈ Spec(A);

(2) If A is quasi-commutative then ϕ ∈ Spec(A).

Proof:

(a) Let α, β be two compact congruences of A such that [α, β] ⊆ ϕ. Since
[α, β] ⊆ ϕ = ρ(ϕ) and ϕ ∈ K(A) there exists a compact congruence
γ′ ⊆ ϕ such that α ⊆ γ′ or β ⊆ γ′. Then α ⊆ ϕ or β ⊆ ϕ, so
ϕ ∈ Spec(A).

(b) Let α, β be two compact congruences of A such that [α, β] ⊆ ϕ. Since A
is quasi-commutative and α, β ∈ K(A) there exists γ ∈ K(A) such that
γ ⊆ [α, β] and ρ(γ) = ρ([α, β]) (cf. Lemma 13). Thus [α, β] ⊆ ρ(γ),
γ ∈ K(A) and γ ⊆ ϕ, so, by taking into account that ϕ is a locally
prime congruence, it follows that there exists a compact congruence
γ′ ⊆ ϕ such that α ⊆ γ′ or β ⊆ γ′, therefore α ⊆ ϕ or β ⊆ ϕ. Conclude
that ϕ ∈ Spec(A).

2

The following theorem generalizes Proposition 3.2 of [7].

Theorem 6 For any ϕ ∈ Con(A), the following are equivalent:

(1) ϕ ∈ XSpec(A);

(2) ϕ is a locally prime congruence.

Proof:

(1)⇒(2) Assume that ϕ ∈ XSpec(A), so ϕ = P∗, for some prime ideal P
of the lattice L(A). By induction on how the set C(A) is defined
we shall prove that the following sentence is true:

(4.3) ∀α∈C(A)[λA(α)∈P⇒∃γ′ ∈ K(A)[(γ′ ⊆ ϕ) and (α ⊆ γ′]].

We shall distinguish three cases:

(a) Assume that α ∈ K(A). If λA(α) ∈ P then α ⊆ P∗ = ϕ.
By taking γ′ = α, the sentence (4.3) is obviously verified.
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(b) Assume that α = α1 ∨ α2, whenever the congruences
α1, α2 ∈ C(A) satisfy the sentence (4.3). If λA(α) ∈ P ,
then λA(α1) ∨ λA(α2) ∈ P , therefore λA(αi) ∈ P , for
i = 1, 2. By applying the induction hypothesis, there
exist γ′1, γ

′
2 ∈ K(A) such that γ′i ⊆ ϕ and αi ⊆ γ′i, for

i = 1, 2. If we take γ′ = γ′1 ∨ γ′2 then γ′ ∈ K(A), γ′ ⊆ ϕ
and α = α1 ∨ α2 ⊆ γ′1 ∨ γ′2 = γ′.

(c) Assume that α = [α1, α2] and α1, α2 ∈ C(A) satisfy (4.3).
If λA(α) ∈ P , then λA(α1)∧λA(α2) = λA(α) ∈ P , therefore
λA(α1) ∈ P or λA(α2) ∈ P . Assume that λA(α1) ∈ P . By
applying the induction hypothesis, there exists γ′1 ∈ K(A)
such that γ′1 ⊆ ϕ and α1 ⊆ γ′1. If we set γ′ = γ′1, then
γ′ ⊆ ϕ and α ⊆ α1 ⊆ γ′. The case λA(α2) ∈ P is treated
similarly.

Then the sentence (4.3) is true. In order to prove that ϕ is a
locally prime congruence consider the congruences α, β ∈ C(A)
and γ ∈ K(A) such that γ ⊆ ϕ and [α, β] ⊆ ρ(γ). By applying
Lemma 5, from γ ∈ K(A) and γ ⊆ P∗ we get λA(γ) ∈ P .
We observe that [α, β] ⊆ ρ(γ) implies ρ([α, β]) ⊆ ρ(γ), hence
λA([α, β]) ≤ λA(γ) (cf. (3.2)). Thus λA(α) ∧ λA(β) ∈ P , so
λA(α) ∈ P or λA(β) ∈ P .

Assume that λA(α) ∈ P . By using (4.3) we can find a congruence
γ′ ∈ K(A) such that γ′ ⊆ ϕ and α ⊆ γ′, so ϕ is a locally prime
congruence. The case λA(β) ∈ P is treated in a similar way.

(2)⇒(1) Suppose that ϕ is a locally prime congruence. Let Q be the ideal
of the lattice L(A) generated by the set {λA(α)|α∈K(A), α⊆ϕ}.

Firstly, we shall prove that Q is a prime ideal of the lattice L(A).
Let α, β be two congruences in C(A) such that λA(α)∧λA(β) ∈
P , hence λA([α, β]) ∈ Q. According to the definition of Q,
there exist an integer n ≥ 1 and the congruences γ1, · · · , γn ∈
K(A) such that γi ⊆ ϕ, for any i = 1, · · · , n and λA([α, β]) ≤∨n

i=1 λA(γi) = λA(
∨n

i=1 γi). Denoting γ =
∨n

i=1 γi, we obtain
γ ∈ K(A), γ ⊆ ϕ and λA([α, β]) ≤ λA(γ), therefore [α, β] ⊆
ρ([α, β]) ⊆ ρ(γ) (by the equivalence (3.1)). Since ϕ is a locally
prime congruence, there exists a compact congruence γ′ ⊆ ϕ
such that α ⊆ γ′ or β ⊆ γ′. If α ⊆ γ′ then λA(α) ≤ λA(γ

′) ∈ Q,
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so λA(α) ∈ Q. Similarly, β ⊆ γ′ implies λA(β) ∈ Q, so Q is a
prime ideal.

Now we shall prove that ϕ = Q∗. For any compact congruence
α, from α ⊆ ϕ we get λA(α) ∈ Q, so α ⊆ Q∗. We proved that
ϕ ⊆ Q∗.

In order to prove the converse inclusion Q∗ ⊆ ϕ, consider a
compact congruence β such that λA(β) ∈ Q, so there exist an
integer n ≥ 1 and the congruences α1, · · · , αn ∈ K(A) such that
λA(β) ≤

∨n
i=1 λA(αi) and αi ⊆ ϕ, for all i = 1, · · · , n. Denoting

α =
∨n

i=1 αi we have α ∈ K(A), α ⊆ ϕ and λA(β) ≤ λA(α). In
accordance with the equivalence (3.1), we get ρ(β) ≤ ρ(α).

We observe that ρ([β,∇A]) = ρ(β) ≤ ρ(α) and α, β and ∇A are
compact congruences, hence there exists a compact congruence
δ ⊆ ϕ such that β ⊆ δ or ∇A ⊆ δ (because ϕ is a locally prime
congruence). But ∇A ⊆ δ implies ∇A ⊆ δ ⊆ ϕ, contradicting
that ϕ is locally prime. It follows that β ⊆ δ ⊆ ϕ. Then we get
Q∗ =

∨
{β ∈ K(A)|λA(β) ∈ Q} ⊆ ϕ. It follows that ϕ = P∗ and

Q ∈ SpecId(L(A)), therefore ϕ ∈ XSpec(A). 2

We remark that the elements of XSpecZ(A) are defined by using the lattice
L(A) and the map w, while the definition of locally prime congruences does
not depend by these notions. Thus the previous theorem offers an intrinsic
characterization of the spectral closure XSpecZ(A).

Corollary 5 The following are equivalent:

(1) Spec(A) = XSpec(A);

(2) A is quasi-commutative.

Proof: (1)⇒(2) Let P be a prime ideal of the lattice L(A), hence P∗ ∈
XSpec(A) (by definition). According to the hypothesis (1), it follows that
P∗ ∈ Spec(A). Taking into account Theorem 4, A is a quasi-commutative
algebra.

(2)⇒(1) Assume that A is quasi-commutative. In order to prove that
XSpecZ(A) ⊆ SpecX(A), suppose that ϕ ∈ XSpecZ(A), hence ϕ is a locally
prime congruence (by Theorem 6). In virtue of Proposition 13(2), it follows
that ϕ ∈ SpecZ(A), therefore XSpecZ(A) ⊆ SpecZ(A).

The converse inclusion Spec(A) ⊆ XSpec(A) was established in
Lemma 16, so SpecZ(A) = XSpecZ(A). 2
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[32] Claudia Mureşan. Algebras of Many–valued Logic. Contributions to the
Theory of Residuated Lattices. PhD thesis, Bucharest University, 2009.
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