A Study on Centralizing Monoids with Majority Operation Witnesses ${ }^{1}$

Hajime Machida ${ }^{2}$

Abstract

A centralizing monoid M is a set of unary operations which commute with some set F of operations. Here, F is called a witness of M. On a 3-element set, a centralizing monoid is maximal if and only if it has a constant operation or a majority minimal operation as its witness.

In this paper, we take one such majority operation, which corresponds to a maximal centralizing monoid, on a 3 -element set and obtain its generalization, called m_{b}, on a k-element set for any $k \geq 3$. We explicitly describe the centralizing monoid $\mathrm{M}\left(m_{\mathrm{b}}\right)$ with m_{b} as its witness and then prove that it is not maximal if $k>3$, contrary to the case for $k=3$.

Keywords: clone; centralizer; centralizing monoid; majority operation; minimal operation

1 Introduction

1.1 Overview

Let A be a finite set with $|A|>2$, and \mathcal{O}_{A} be the set of operations on A. A majority operation $m \in \mathcal{O}_{A}$ is a ternary operation, i.e., $m: A^{3} \rightarrow A$, which

[^0]takes the majority value among the elements in the argument, i.e., $m(x, x, y)$ $=m(x, y, x)=m(y, x, x)=x$ holds for all $x, y \in A$.

A centralizer $C\left(\subseteq \mathcal{O}_{A}\right)$ is the set of operations which commute with all members of some set $F \subseteq \mathcal{O}_{A}$, and a centralizing monoid M is the unary part of a centralizer C. We call F a witness of the centralizing monoid M. (For the precise definition of some terms, refer to the next subsection.)

A remarkable fact on a 3 -element set A is that a centralizing monoid is maximal if and only if it has a constant operation or a majority minimal operation as its witness [3].

Up to conjugacy, there are three majority operations on a 3-element set which are minimal and serve as witnesses of maximal centralizing monoids. In this article, they are called m_{1}, m_{2} and m_{3}.

The aim of our study is to know how these properties can be generalized from a 3 -element set to a k-element set with $3 \leq k<\omega$. For m_{1} and m_{3}, generalizations were presented in [4], which are summarized in Section 3.

The main part of this paper is Section 4 where we generalize the remaining majority operation m_{2} on a 3-element set to a majority operation on a k-element set for any $3 \leq k<\omega$. A generalization is successfully achieved, but it fails to inherit the property of maximality from a 3-element case.

1.2 Basic Terminology

Let $k>1$ be a fixed integer and E_{k} be the initial segment of \mathbb{N} with k elements, i.e., $E_{k}=\{0,1, \ldots, k-1\}$. Denote by $\mathcal{O}_{k}^{(n)}, n>0$, the set of n-ary operations on E_{k}, that is, functions from E_{k}^{n} into E_{k}, and by \mathcal{O}_{k} the set of all operations on E_{k}, i.e., $\mathcal{O}_{k}=\bigcup_{n=1}^{\infty} \mathcal{O}_{k}^{(n)}$.

The n-ary i-th projection e_{i}^{n} on E_{k}, for $1 \leq i \leq n$, is an operation in $\mathcal{O}_{k}^{(n)}$ which is defined by $e_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ for $x_{1}, \ldots, x_{n} \in E_{k}$. Denote by \mathcal{J}_{k} the set of projections on E_{k}.

Let $\operatorname{CONST}_{k}\left(\subseteq \mathcal{O}_{k}^{(1)}\right.$) (or simply CONST) be the set of unary constant operations on E_{k} and \mathcal{S}_{k} be the symmetric group on E_{k}.

For $f, g \in \mathcal{O}_{A}^{(n)}, g$ is conjugate to f if there exists a permutation σ on A for which $g\left(x_{1}, \ldots, x_{n}\right)=\sigma^{-1}\left(f\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right)\right)$ holds for all x_{1}, \ldots, $x_{n} \in A$. In other words, g is conjugate to f if g is obtained from f by renaming the elements of the base set E_{k}.

A subset C of \mathcal{O}_{k} is a clone on E_{k} if C contains all the projections, i.e., $\mathcal{J}_{k} \subseteq C$, and is closed under (functional) composition. The set of clones on E_{k} forms a lattice with respect to set inclusion and is denoted by \mathcal{L}_{k}. For
$F \subseteq \mathcal{O}_{k},\langle F\rangle$ denotes the smallest clone containing F. We say F generates a clone C if $C=\langle F\rangle$. When $F=\{f\}$, we often write $\langle f\rangle$ instead of $\langle F\rangle$.

An atom of \mathcal{L}_{k} is called a minimal clone. In other words, $C\left(\in \mathcal{L}_{k}\right)$ is a minimal clone if $\mathcal{J}_{k} \subset C^{\prime} \subseteq C$ implies $C=C^{\prime}$ for any C^{\prime} in \mathcal{L}_{k}. Clearly, a minimal clone is generated by a singleton set. An operation $f\left(\in \mathcal{O}_{k}\right)$ is called a minimal operation if f generates a minimal clone C and its arity is minimum among the arities of all operations which generate C.

For n-ary operation $f \in \mathcal{O}_{k}^{(n)}$ and m-ary operation $g \in \mathcal{O}_{k}^{(m)}$ for any $m, n \geq 1$, we say that f commutes with g, or f and g commute, if

$$
\begin{aligned}
& g\left(f\left(x_{11}, x_{12}, \ldots, x_{1 n}\right), \ldots, f\left(x_{m 1}, \ldots, x_{m n}\right)\right) \\
= & f\left(g\left(x_{11}, x_{21}, \ldots, x_{m 1}\right), \ldots, g\left(x_{1 n}, \ldots, x_{m n}\right)\right)
\end{aligned}
$$

holds for all $x_{i j} \in E_{k}$ where $1 \leq i \leq m$ and $1 \leq j \leq n$. We write $f \perp g$ when f commutes with g.

In particular, for $m=1, f \perp g$ means that

$$
f\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)=g\left(f\left(x_{1}, \ldots, x_{n}\right)\right)
$$

holds for all $x_{1}, \ldots, x_{n} \in E_{k}$.
For any subset F of \mathcal{O}_{k}, let F^{*} be the set of operations which commute with all members of F, i.e.,

$$
F^{*}=\left\{g \in \mathcal{O}_{k} \mid g \perp f \text { for all } f \in F\right\}
$$

A subset C of \mathcal{O}_{k} is a centralizer if $C=F^{*}$ for some $F \subseteq \mathcal{O}_{k}$. We also say that F^{*} is the centralizer of F. It is easy to see that F^{*} is a clone for any subset F of \mathcal{O}_{k}. When $F=\{f\}$, we write f^{*} for F^{*}.

As extreme examples, \mathcal{O}_{k} is a centralizer since $\mathcal{J}_{k}^{*}=\mathcal{O}_{k}$ and \mathcal{J}_{k} is a centralizer since $\left(\mathcal{O}_{k}\right)^{*}=\mathcal{J}_{k}$.

A subset M of $\mathcal{O}_{k}^{(1)}$ is a centralizing monoid on E_{k} if

$$
M=F^{*} \cap \mathcal{O}_{k}^{(1)}
$$

for some $F \subseteq \mathcal{O}_{k}$. Thus a centralizing monoid is the unary part of a centralizer. Since the centralizer F^{*} is a clone, the set M defined above is a monoid.

In the above definition, a subset F of \mathcal{O}_{k} is called a witness of M. The centralizing monoid M with F as its witness is denoted by $\mathrm{M}(F)$, i.e.,
$\mathrm{M}(F)=F^{*} \cap \mathcal{O}_{k}^{(1)}$. When F is a singleton, i.e., $F=\{f\}$, we write $\mathrm{M}(f)$ for $\mathrm{M}(F)$.

The "top" elements of the set of centralizing monoids are of special interest. A centralizing monoid M is maximal if $\mathcal{O}_{k}^{(1)}$ is the only centralizing monoid properly containing M. Maximal centralizing monoids have a strong connection to minimal clones.

Proposition 1 ([3]) For every maximal centralizing monoid M there exists a minimal operation f such that $M=\mathrm{M}(f)$.

On the 3 -element set the result is more striking, as is shown below.

2 Results on \boldsymbol{E}_{3}

There are 84 minimal clones on E_{3} [1]. Among them, three are generated by constant operations and seven by majority operations. A striking fact is the following.

Proposition 2 ([3]) For a centralizing monoid M on E_{3}, the following are equivalent.
(1) M is a maximal centralizing monoid.
(2) $M=\mathrm{M}(f)$ for some $f \in \mathcal{O}_{k}$ which is a constant operation or a majority minimal operation.

Thus, there are 10 maximal centralizing monoids on E_{3}. Three of them have unary constant operations as their witnesses and seven have majority minimal operations as their witnesses.

Below are majority minimal operations on E_{3}. Only the values on (x, y, z) for mutually distinct $x, y, z \in E_{3}$ need to be specified.

- $m_{1}(x, y, z)=0 \quad$ if $|\{x, y, z\}|=3$
- $m_{2}(x, y, z)= \begin{cases}0 & \text { if } \quad(x, y, z) \in \sigma \\ 1 & \text { if } \quad(x, y, z) \in \tau\end{cases}$
- $m_{3}(x, y, z)=x$ if $|\{x, y, z\}|=3$

Here σ and τ are the sets defined by $\sigma=\{(0,1,2),(1,2,0),(2,0,1)\}$ and $\tau=\{(0,2,1),(1,0,2),(2,1,0)\}$.

Among seven majority minimal operations on E_{3}, two are conjugate to m_{1} and the other two are conjugate to m_{2}.

As m_{2} is the main target of this article, we explicitly present the centralizing monoid $\mathrm{M}\left(m_{2}\right)$ having m_{2} as its witness:

$$
\begin{aligned}
\mathrm{M}\left(m_{2}\right)= & \mathrm{CONST} \cup\left\{s \in \mathcal{O}_{3}^{(1)} \mid s(0)=s(1) \neq s(2)\right\} \\
& \cup\left\{s \in \mathcal{S}_{3} \mid s(2)=2\right\}
\end{aligned}
$$

Naturally, we are lead to investigate how much the above results on E_{3} can be generalized to E_{k} for $3 \leq k<\omega$.

3 Generalization of Majority Operations

Hereafter we assume $3 \leq k<\omega$, unless otherwise stated.
Regarding the generalization, we have already obtained the results for m_{1} and m_{3} (submitted; [4]), which we shall present here without proof.

Let $W\left(\subset E_{k}^{3}\right)$ be the set of triples on E_{k} whose components are mutually distinct, i.e.,

$$
W=\left\{(a, b, c) \in E_{k}^{3}| |\{a, b, c\} \mid=3\right\}
$$

By definition, a majority operation m is completely determined by the values of m on W.

For a unary operation $s \in \mathcal{O}_{k}^{(1)}, \operatorname{ker}(s)$ is defined by

$$
\operatorname{ker}(s)=\left\{(x, y) \in E_{k}^{2} \mid s(x)=s(y)\right\}
$$

Clearly, $\operatorname{ker}(s)$ is an equivalence relation on E_{k}. An equivalence class containing $x \in E_{k}$ will be denoted by $[x]_{\operatorname{ker}(s)}$.

3.1 Constant-like Majority

A generalization of m_{1} is trivial. Let $m_{\mathrm{c}} \in \mathcal{O}_{k}^{(3)}, k \geq 3$, be a majority operation on E_{k} which takes the constant value 0 on W :

$$
m_{\mathrm{c}}(x, y, z)=0 \quad \text { for all }(x, y, z) \in W
$$

It is known that m_{c} is a minimal operation for any $k \geq 3$ [5]. The centralizing monoid $\mathrm{M}\left(m_{\mathrm{c}}\right)$ is characterized as follows.

Lemma 1 ([4]) $\mathrm{M}\left(m_{\mathrm{c}}\right)$ is exactly the set of unary operations $s \in \mathcal{O}_{k}^{(1)}$ satisfying one of the following:
(1) $|\operatorname{Im}(s)|=1 \quad$ (i.e., $s \in \mathrm{CONST}$)
(2) $|\operatorname{Im}(s)|=2$ and $\left|[0]_{\operatorname{ker}(s)}\right|=k-1$
(3) $|\operatorname{Im}(s)| \geq 3, \quad s(0)=0$ and $\left|[x]_{\operatorname{ker}(s)}\right|=1$ for any $x \notin[0]_{\operatorname{ker}(s)}$

After a bit of elaborate discussion, we get:
Proposition 3 ([4]) $\mathrm{M}\left(m_{\mathrm{c}}\right)$ is a maximal centralizing monoid.

3.2 Projection-like Majority

A generalization of m_{3} on E_{3} to $E_{k}, k \geq 3$, is also straightforward. Let $m_{\mathrm{p}} \in \mathcal{O}_{k}^{(3)}, k \geq 3$, be a majority operation which behaves like a projection e_{i}^{3} $(1 \leq i \leq 3)$ on W. Here, let us assume $i=1$:

$$
m_{\mathrm{p}}(x, y, z)=x \quad \text { for all }(x, y, z) \in W
$$

The centralizing monoid $\mathrm{M}\left(m_{\mathrm{p}}\right)$ is easily obtained (e.g., [4]).
Lemma $2 \mathrm{M}\left(m_{\mathrm{p}}\right)=S_{k} \cup$ CONST.
Regarding the maximality, $\mathrm{M}\left(m_{\mathrm{p}}\right)$ is maximal in most cases, but not always, as shown below.

Proposition 4 ([4])

(1) For $k=3$ or $k \geq 5, \mathrm{M}\left(m_{\mathrm{p}}\right)$ is a maximal centralizing monoid.
(2) For $k=4, \mathrm{M}\left(m_{\mathrm{p}}\right)$ is not a maximal centralizing monoid.

For the case of $k=4$, we shall see further what is happening there.
Let $M_{2}\left(\subset \mathcal{O}_{4}^{(1)}\right)$ be the monoid which consists of unary operations s satisfying one of the following: (1) $\left|E_{4} / \operatorname{ker} s\right|=4$ (i.e., permutation), (2) $\left|E_{4} / \operatorname{ker} s\right|=1$ (i.e., constant) and (3) $\left|E_{4} / \operatorname{ker} s\right|=2$ with two blocks of size 2. The following fact is well-known.

Lemma $3 M_{2}$ is a centralizing monoid.
Proof: Let $g \in \mathcal{O}_{4}^{(2)}$ be the binary operation on E_{4} defined by the following Cayley table.

$x \backslash y$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Notice that g is commutative and associative. Denote $g(x, y)$ by $x \oplus y$. (Note: $\left(E_{4} ; \oplus\right)$ is an elementary 2-group.) Let $f \in \mathcal{O}_{4}^{(3)}$ be defined by $f(x, y, z)=x \oplus y \oplus z$. Then, M_{2} is proved to be a centralizing monoid with f as its witness, i.e., $M_{2}=\mathrm{M}(f)$. The proof is carried out by elementary calculations which verify $s \perp f$ for all $s \in M_{2}$ while $s \not \perp f$ for all $s \in \mathcal{O}_{4}^{(1)} \backslash M_{2}$. The details are omitted. (Clearly, $s \in \mathcal{O}_{4}^{(1)} \backslash M_{2}$ if and only if $\mid E_{4} /$ ker $s \mid=3$ or $\left|E_{4} / \operatorname{ker} s\right|=2$ with a block of size 1 and a block of size 3.)

Apparently, $\mathrm{M}\left(m_{\mathrm{p}}\right) \subset M_{2}$ is a proper inclusion (Lemma 2) and, therefore, $\mathrm{M}\left(m_{\mathrm{p}}\right)$ is not a maximal centralizing monoid.

4 Balanced Majority

Now we shall make an attempt to generalize the majority operation m_{2} on E_{3} to a majority operation on $E_{k}, k \geq 3$. A generalization of m_{2} is less obvious than that of m_{1} and m_{3}.

4.1 Definition of $\boldsymbol{m}_{\mathrm{b}}$

Let σ be the operation on W, i.e.,

$$
\sigma: W \longrightarrow W
$$

defined by $\sigma(x, y, z)=(y, z, x)$ for (x, y, z) in W. By convention, we write $\sigma(x, y, z)$ in place of $\sigma((x, y, z))$. Clearly, the order of σ is 3 .

Let a binary relation \sim on W be defined as follows:
For any $(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \in W,(a, b, c) \sim\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ if and only if $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\sigma^{i}(a, b, c)$ for some $0 \leq i \leq 2$. It is clear that the relation \sim is an equivalence relation on W and the equivalence class of (a, b, c), denoted by $[(a, b, c)]_{\sim}$, consists of 3 triples in W.
E_{k} is considered as the initial segment of \mathbb{N}. Let the order \leq on \mathbb{N} be naturally introduced into E_{k}, i.e., $0<1<\cdots<k-1$.

A triple $(a, b, c) \in W$ will be called even if $a<b<c$ and odd if $a<c<b$. Let $W_{\text {even }}$ and $W_{\text {odd }}$ be subsets of W defined by

$$
W_{\text {even }}=\bigcup\left\{[(a, b, c)]_{\sim} \mid(a, b, c): \text { even }\right\}
$$

and

$$
W_{\text {odd }}=\bigcup\left\{[(a, b, c)]_{\sim} \mid(a, b, c): \text { odd }\right\} .
$$

We shall extend the meaning of even and odd and call any element $(a, b, c) \in W$ even if it is in $W_{\text {even }}$ and odd if it is in $W_{\text {odd }}$.
$W_{\text {even }}$ and $W_{\text {odd }}$ can be characterized in the following way. For $\boldsymbol{a}=$ $\left(a_{1}, a_{2}, a_{3}\right) \in W$ the number of reversed pairs in \boldsymbol{a}, denoted by $r(\boldsymbol{a})$, is given by

$$
r(\boldsymbol{a})=\left|\left\{(i, j) \mid i, j \in\{1,2,3\}, i<j, a_{i}>a_{j}\right\}\right| .
$$

The following property is easy to see, from which the terms even and odd stem.

Lemma 4 For any $\boldsymbol{a} \in W$,
(1) $\boldsymbol{a} \in W_{\text {even }} \Longleftrightarrow r(\boldsymbol{a})$ is even.
(2) $\boldsymbol{a} \in W_{\text {odd }} \Longleftrightarrow r(\boldsymbol{a})$ is odd.

Proof: For $\boldsymbol{a}=(a, b, c) \in W$, if $a<b<c$ then $\boldsymbol{a} \in W_{\text {even }}$ by definition and, also, $r(\boldsymbol{a})$ is even as $r(\boldsymbol{a})=0$. Similarly, if $a<c<b$ then $\boldsymbol{a} \in W_{\text {odd }}$ and, also, $r(\boldsymbol{a})$ is odd as $r(\boldsymbol{a})=1$. Then the proof follows from an observation that the process of applying σ to $x \in W$ does not alter the parity, i.e., $r(\sigma(\boldsymbol{x}))=r(\boldsymbol{x})$.

The following is essential in defining the majority operation m_{b}, a generalization of m_{2}.

Lemma $5\left\{W_{\text {even }}, W_{\text {odd }}\right\}$ is a partition of W, i.e.,
(1) $W=W_{\text {even }} \cup W_{\text {odd }}$, and
(2) $W_{\text {even }} \cap W_{\text {odd }}=\emptyset$.

Proof: Obvious from Lemma 4.
Definition 1 The majority operation m_{b} on E_{k} is defined as follows:

$$
m_{\mathrm{b}}(x, y, z)= \begin{cases}0 & \text { if }(x, y, z) \in W_{\text {even }} \\ 1 & \text { if }(x, y, z) \in W_{\text {odd }}\end{cases}
$$

The subscript ' b ' stands for b alanced. As is easily seen, m_{b} is a generalization of the majority operation m_{2} on E_{3}.

4.2 Centralizing Monoid of $\boldsymbol{m}_{\mathrm{b}}$

We shall determine the centralizing monoid $\mathrm{M}\left(m_{\mathrm{b}}\right)$ which has m_{b} as its witness.

For an equivalence relation θ on E_{k}, we call an equivalence class U of θ a cluster block (or, simply a cluster) of θ if it contains two or more elements, i.e., $|U| \geq 2$. For a unary operation $s \in \mathcal{O}_{k}^{(1)}$, we abuse the term and say that s has a cluster if there exists a cluster of $\operatorname{ker}(s)$.

Lemma 6 Let $s \in \mathcal{O}_{k}^{(1)}$. If $s \perp m_{\mathrm{b}}$ then s satisfies one of the following:
(1) s has a cluster U of size k (i.e., $U=E_{k}$),
(2) s has a cluster U of size $k-1$ which contains 0 and 1 , i.e., $\{0,1\} \subseteq U$,
(3) s has no cluster.

Note that (1) is equivalent to saying that s is a constant operation, i.e., $s \in \mathrm{CONST}$, while (3) is equivalent to saying that s is a permutation, i.e., $s \in \mathcal{S}_{k}$.
Proof: The proof follows from three Claims.
Claim 1. If U is a cluster of s, then $\{0,1\} \subseteq U$.
Proof of Claim 1. Let $\alpha \in E_{k}$ be the value of s on U, i.e., $s(U)=\{\alpha\}$.
Suppose $0 \notin U$. Let $a, b \in U$ be elements such that $a<b$. Since $(0, a, b) \in W$ and $0<a<b$, we have $m_{\mathrm{b}}(0, a, b)=0$. Hence, by $0 \notin U$, $s\left(m_{\mathrm{b}}(0, a, b)\right)=s(0) \neq \alpha$, whereas $m_{\mathrm{b}}(s(0), s(a), s(b))=m_{\mathrm{b}}(s(0), \alpha, \alpha)=\alpha$, implying $s \not \perp m_{\mathrm{b}}$. Therefore, $0 \in U$.

Next, suppose $1 \notin U$. Take $a \in U \backslash\{0\}$. Since $(0,1, a) \in W$ and $0<1<a$, we have $m_{\mathrm{b}}(1,0, a)=1$. The rest is analogous to the above. By $1 \notin U, s\left(m_{\mathrm{b}}(1,0, a)\right) \neq \alpha$, whereas $m_{\mathrm{b}}(s(1), s(0), s(a))=m_{\mathrm{b}}(s(1), \alpha, \alpha)=\alpha$ and we get $s \not \perp m_{\mathrm{b}}$. Therefore, $1 \in U$.

As an immediate consequence of Claim 1, we obtain:
Claim 2. For any $s \in \mathcal{O}_{k}^{(1)}$, there exists at most one cluster of s.
Next, we discuss the size of a cluster.
Claim 3. A cluster U of s satisfies $\left|E_{k} \backslash U\right|<2$.
Proof of Claim 3. Again, we let $\alpha \in E_{k}$ satisfy $s(U)=\{\alpha\}$. In particular, $s(0)=s(1)=\alpha$ by Claim 1. Assume to the contrary that there exist two
elements $c, d(c \neq d)$ in $E_{k} \backslash U$. Let $s(c)=\gamma$ and $s(d)=\delta$ for $\gamma, \delta \in E_{k}$. Since U is a unique cluster and $c, d \notin U$, we have $\gamma \neq \delta$.

Since both $(0, c, d)$ and $(0, d, c)$ are in W and the values of m_{b} on W are in $\{0,1\}$, we have

$$
s\left(m_{\mathrm{b}}(0, c, d)\right)=s\left(m_{\mathrm{b}}(0, d, c)\right)(=\alpha) .
$$

On the other hand, we have

$$
\begin{aligned}
m_{\mathrm{b}}(s(0), s(c), s(d)) & =m_{\mathrm{b}}(\alpha, \gamma, \delta) \\
& \neq m_{\mathrm{b}}(\alpha, \delta, \gamma) \\
& =m_{\mathrm{b}}(s(0), s(d), s(c)) .
\end{aligned}
$$

It follows that s and m_{b} do not commute, i.e., $s \not \perp m_{\mathrm{b}}$, against the assumption.

Evidently, Claims 1, 2, 3 together prove the lemma.
We shall take a closer look at the cases (2) and (3) in Lemma 6. First, the case (2).

For any $U \in \mathcal{P}\left(E_{k}\right)$ and $c \in E_{k} \backslash U$ such that $\{0,1\} \subseteq U$ and $E_{k}=$ $U \cup\{c\}$ and any $\alpha, \beta \in E_{k}$ such that $\alpha \neq \beta$, we define a unary operation $s_{\triangleright}(c ; \alpha, \beta) \in \mathcal{O}_{k}^{(1)}$ by

$$
s_{\triangleright}(c ; \alpha, \beta)(x)= \begin{cases}\alpha & \text { if } x \in U, \\ \beta & \text { if } x=c .\end{cases}
$$

We often write s_{\triangleright} in place of $s_{\triangleright}(c ; \alpha, \beta)$ when c, α, β are understood.
Remark 1 Any $s \in \mathcal{O}_{k}^{(1)}$ satisfying (2) in Lemma 6 can be expressed as $s_{\triangleright}(c ; \alpha, \beta)$ for some $c \in E_{k} \backslash\{0,1\}$ and $\alpha, \beta \in E_{k}$ with $\alpha \neq \beta$.

Lemma 7 For any $U \in \mathcal{P}\left(E_{k}\right), c \in E_{k} \backslash U$ and $\alpha, \beta \in E_{k}$ as above, $s_{\triangleright}(c ; \alpha, \beta)$ and m_{b} commute, i.e., $s_{\triangleright}(c ; \alpha, \beta) \perp m_{\mathrm{b}}$.

Proof: We are to show that $s_{\triangleright}\left(m_{\mathrm{b}}(x, y, z)\right)=m_{\mathrm{b}}\left(s_{\triangleright}(x), s_{\triangleright}(y), s_{\triangleright}(z)\right)$ holds for all (x, y, z) in W, which easily follows from (i) and (ii) below. (i) Because of $m_{\mathrm{b}}(x, y, z) \in\{0,1\}$ by definition and $\{0,1\} \subseteq U$ by assumption, it is immediate to see that $s_{\triangleright}\left(m_{\mathrm{b}}(x, y, z)\right)=\alpha$. (ii) Among x, y, z for which $(x, y, z) \in W$, at least two of them are in U and, hence, at least two of $s_{\triangleright}(x), s_{\triangleright}(y), s_{\triangleright}(z)$ are α, which implies $m_{\mathrm{b}}\left(s_{\triangleright}(x), s_{\triangleright}(y), s_{\triangleright}(z)\right)=\alpha$.

Denote by Σ_{\triangleright} the set of $s_{\triangleright}(c ; \alpha, \beta)\left(\in \mathcal{O}_{k}^{(1)}\right)$ over all $c \in E_{k} \backslash\{0,1\}$ and $\alpha, \beta \in E_{k}$ with $\alpha \neq \beta$.

Next, we move to the case (3) in Lemma 6. Let $\hat{s} \in \mathcal{O}_{k}^{(1)}$ be the permutation defined by

$$
\widehat{s}(x)=\left\{\begin{array}{cl}
1 & \text { if } x=0 \\
0 & \text { if } x=1 \\
k+1-x & \text { if } 2 \leq x<k
\end{array}\right.
$$

Lemma 8 It holds that $\widehat{s} \perp m_{\mathrm{b}}$.
Proof: The assertion is easy to check for $k=3$. Assume $k>3$. Then \widehat{s} is (strictly) decreasing on $E_{k} \backslash\{0,1\}$, that is, $a<b$ implies $\widehat{s}(a)>\widehat{s}(b)$ for any $a, b \in E_{k} \backslash\{0,1\}$.

We are to show $\widehat{s}\left(m_{\mathrm{b}}(x, y, z)\right)=m_{\mathrm{b}}(\widehat{s}(x), \widehat{s}(y), \widehat{s}(z))$ for all $(x, y, z) \in W$.
First, take the case of $\{x, y, z\} \cap\{0,1\}=\emptyset$. In this case, $(\widehat{s}(x), \widehat{s}(y), \widehat{s}(z))$ $=(k+1-x, k+1-y, k+1-z)$ and it is readily checked that the parity (i.e., even or odd) of (x, y, z) and $(\widehat{s}(x), \widehat{s}(y), \widehat{s}(z))$ are different. On the other hand, the parity of \widehat{s} on $\{0,1\}$ is also switched (i.e., $\widehat{s}(0)=1$ and $\widehat{s}(1)=0)$. Hence, we obtain $\widehat{s}\left(m_{\mathrm{b}}(x, y, z)\right)=m_{\mathrm{b}}(\widehat{s}(x), \widehat{s}(y), \widehat{s}(z))$.

The remaining case of $\{x, y, z\} \cap\{0,1\} \neq \emptyset$ is easy and left to the reader.

Lemma 9 Let $s \in \mathcal{O}_{k}^{(1)}$ be a permutation. Then, $s \perp m_{\mathrm{b}}$ if and only if s is $\varepsilon(=\mathrm{id})$ or \widehat{s}.

Proof: Sufficiency follows from Lemma 8.
Necessity: Assume $s \perp m_{\mathrm{b}}$. Since $m_{\mathrm{b}}(W)=\{0,1\}$ by the definition of m_{b}, it follows from $s \perp m_{\mathrm{b}}$ that $s(\{0,1\}) \subseteq\{0,1\}$. Since s is a permutation, this implies that either $s(x)=x$ or $s(x)=1-x$ holds on $\{0,1\}$. Note that, if $k=3$, then $s(2)=2$ and, hence, $s=\varepsilon$ or \widehat{s}. Hereafter, we assume $k>3$.
Case 1. $s(x)=x$ on $\{0,1\}$: Let a, b be any elements in $E_{k} \backslash\{0,1\}$ such that $a<b$. Since s is a permutation, we have $s(a) \neq s(b)$ and $s(a), s(b) \in E_{k} \backslash\{0,1\}$. Clearly, we have $s\left(m_{\mathrm{b}}(0, a, b)\right)=s(0)=0$ on the one hand and $m_{\mathrm{b}}(s(0), s(a), s(b))=m_{\mathrm{b}}(0, s(a), s(b))$ on the other hand. Hence, the assumption $s \perp m_{\mathrm{b}}$ implies $m_{\mathrm{b}}(0, s(a), s(b))=0$, which means $s(a)<s(b)$. Thus, it is verified that the restriction of s to $E_{k} \backslash\{0,1\}$ is a permutation and strictly increasing. Therefore, together with the assumption that $s(x)=x$ on $\{0,1\}, s$ must be the identity ε on E_{k}.

Case 2. $s(x)=1-x$ on $\{0,1\}$: A similar argument as above works. Let a, b be in $E_{k} \backslash\{0,1\}$ such that $a<b$. Since s is a permutation, we have $s(a) \neq s(b)$ and $s(a), s(b) \in E_{k} \backslash\{0,1\}$. Now, we have $s\left(m_{\mathrm{b}}(0, a, b)\right)=$ $s(0)=1$ and $m_{\mathrm{b}}(s(0), s(a), s(b))=m_{\mathrm{b}}(1, s(a), s(b))$. Hence, $s \perp m_{\mathrm{b}}$ implies $m_{\mathrm{b}}(1, s(a), s(b))=1$, which means $s(a)>s(b)$. Thus, the restriction of s to $E_{k} \backslash\{0,1\}$ is a permutation and strictly decreasing. In other words, we have a sequence $s(2)>s(3)>\cdots>s(k-1)$. This property, combined with $s(0)=1$ and $s(1)=0$, can be satisfied only by \widehat{s}. The proof is complete.

Proposition 5 The centralizing monoid $\mathrm{M}\left(m_{\mathrm{b}}\right)$ which has m_{b} as its witness is:

$$
\mathrm{M}\left(m_{\mathrm{b}}\right)=\mathrm{CONST} \cup \Sigma_{\triangleright} \cup\{\varepsilon, \widehat{s}\}
$$

Proof: Since all constant operations commute with m_{b}, the proof follows from Lemma 6, Lemma 7 (together with Remark 1) and Lemma 9.

4.3 Is It Maximal?

Is $\mathrm{M}\left(m_{\mathrm{b}}\right)$ a maximal centralizing monoid? Or, does there exist an operation $f \in \mathcal{O}_{k}^{(n)}, n \geq 1$, which satisfies $\mathrm{M}\left(m_{\mathrm{b}}\right) \subset \mathrm{M}(f) \subset \mathcal{O}_{k}^{(1)}$?

To begin with, we ask if there exists a monoid (not necessarily a centralizing monoid) M which sits strictly between $\mathrm{M}\left(m_{\mathrm{b}}\right)$ and $\mathcal{O}_{k}^{(1)}$, i.e., $\mathrm{M}\left(m_{\mathrm{b}}\right) \subset M \subset \mathcal{O}_{k}^{(1)}$. The answer is yes. In fact, there are many.

We take one such example, which happens to be minimal among those M 's concerned.

Define two permutations $\widehat{s}_{1}, \widehat{s}_{2} \in \mathcal{O}_{k}^{(1)}$ by:
(i) $\widehat{s}_{1}=(01)$, i.e., $\widehat{s}_{1}(0)=1, \widehat{s}_{1}(1)=0$ and $\widehat{s}_{1}(x)=x$ otherwise,
(ii) $\widehat{s}_{2}(x)=\left\{\begin{array}{cl}x & \text { if } x=0,1, \\ k+1-x & \text { if } 2 \leq x<k .\end{array}\right.$

Note that $\widehat{s}=\widehat{s}_{1} \circ \widehat{s}_{2}=\widehat{s}_{2} \circ \widehat{s}_{1}$ where \circ denotes the composition of unary operations. In fact, $\left\{\varepsilon, \widehat{s}, \widehat{s}_{1}, \widehat{s}_{2}\right\}$ is a subgroup of \mathcal{S}_{k}.

Let \widetilde{M} be a subset of $\mathcal{O}_{k}^{(1)}$ defined by

$$
\widetilde{M}=\operatorname{CONST} \cup \Sigma_{\triangleright} \cup\left\{\varepsilon, \widehat{s}, \widehat{s}_{1}, \widehat{s}_{2}\right\}
$$

Clearly, $\widetilde{M}=\mathrm{M}\left(m_{\mathrm{b}}\right) \cup\left\{\widehat{s}_{1}, \widehat{s}_{2}\right\}$. For $k>3$, we have $\mathrm{M}\left(m_{\mathrm{b}}\right) \subset \widetilde{M}$ since $\widehat{s}_{1}, \widehat{s}_{2} \notin \mathrm{M}\left(m_{\mathrm{b}}\right)$. It should be noted, however, that in case of $k=3$ we have $\widehat{s}_{1}=\widehat{s}$ and $\widehat{s}_{2}=\varepsilon$ and, accordingly, $\widetilde{M}=\mathrm{M}\left(m_{\mathrm{b}}\right)$.

The next lemma is straightforward. (The second inclusion is proper because many permutations, for example, are not in \widetilde{M}.)

Lemma 10 Let $k>3 . \widetilde{M}$ is a monoid and $\mathrm{M}\left(m_{\mathrm{b}}\right) \subset \widetilde{M} \subset \mathcal{O}_{k}^{(1)}$.
An operation $f \in \mathcal{O}_{k}^{(n)}, n \geq 3$, is a semiprojection if there exists $1 \leq i \leq n$ such that $f\left(a_{1}, \ldots, a_{n}\right)=a_{i}$ whenever $\left|\left\{a_{1}, \ldots, a_{n}\right\}\right|<n$.

Let $\widetilde{p} \in \mathcal{O}_{k}^{(3)}$ be the semiprojection defined by $\widetilde{p}(x, y, z)=x$ for $(x, y, z) \in E_{k}^{3} \backslash W$ and

$$
\widetilde{p}(x, y, z)= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { if } x=1 \\ x & \text { if } x \notin\{0,1\}\end{cases}
$$

for $(x, y, z) \in W$.
Lemma 11 The semiprojection \widetilde{p} commutes with all members of \widetilde{M}, i.e., $\widetilde{p} \perp \widetilde{M}$. Hence, $\widetilde{M} \subseteq \mathrm{M}(\widetilde{p})$.

Proof: First, $\widetilde{p} \perp$ CONST is trivial. To show $\widetilde{p} \perp \Sigma_{\triangleright}$, it is sufficient to observe that $s(\{0,1\})=\alpha$ for any $c \in E_{k} \backslash\{0,1\}$ and $s=s_{\triangleright}(c ; \alpha, \beta)$. Next, since \widehat{s}_{1} (resp., \widehat{s}_{2}) is a permutation, $(x, y, z) \in W$ implies $\left(\widehat{s}_{1}(x), \widehat{s}_{1}(y), \widehat{s}_{1}(z)\right) \in W$ (resp., $\left.\left(\widehat{s}_{2}(x), \widehat{s}_{2}(y), \widehat{s}_{2}(z)\right) \in W\right)$. Then it is easy to see that $\widetilde{p} \perp\left\{\widehat{s}_{1}, \widehat{s}_{2}\right\}$. Finally, $\widetilde{p} \perp \widehat{s}$ is clear as $\widehat{s}=\widehat{s}_{1} \circ \widehat{s}_{2}$.

Corollary 1 Let $k>3 . \mathrm{M}\left(m_{\mathrm{b}}\right)$ is not a maximal centralizing monoid.
The proof follows from Lemmas 10 and 11. (Note that $\mathrm{M}(\widetilde{p}) \subset \mathcal{O}_{k}^{(1)}$ is assured by the existence of, for example, $t \in \mathcal{O}_{k}^{(1)}$ which is defined by $t(0)=1$ and $t(x)=0$ if $x>0$.)

Remark 2 One might argue that m_{b} is not a proper generalization of m_{2} and a proper one would yield a maximal centralizing monoid. We do not deny such possibility. However, we assert the properness of m_{b} since it is defined in such a natural way.

A remaining question on m_{b} is whether it is a minimal operation. At the current stage we do not know the answer to it.

References

[1] B. Csákány. All minimal clones on the three-element set. Acta Cybernetica, 6(3):227-238, 1983.
[2] Hajime Machida. Search for some majority operation and studies of its centralizing monoid. In 53rd IEEE International Symposium on MultipleValued Logic, ISMVL 2023. IEEE Computer Society, 2023 (accepted, to appear).
[3] Hajime Machida and Ivo G. Rosenberg. Maximal centralizing monoids and their relation to minimal clones. In Jaakko Astola and Radomir S. Stankovic, editors, 41st IEEE International Symposium on MultipleValued Logic, ISMVL 2011, pages 153-159. IEEE Computer Society, 2011. doi:10.1109/ISMVL.2011.36.
[4] Hajime Machida and Ivo G. Rosenberg. Maximal centralizing monoids in connection with minimal clones. 2022 (submitted).
[5] Tamás Waldhauser. Minimal clones generated by majority operations. Algebra Universalis, 44:15-26, 2000. doi:10.1007/s000120050167.
(C) Scientific Annals of Computer Science 2023

[^0]: This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
 ${ }^{1}$ This is an extended version of [2] which is to appear in the Proceedings of ISMVL23.
 ${ }^{2}$ Formerly with: Hitotsubashi University, Tokyo, Japan, Email: machida.zauber@gmail.com

