A Study on Centralizing Monoids with Majority Operation Witnesses¹

Hajime MACHIDA²

Abstract

A centralizing monoid M is a set of unary operations which commute with some set F of operations. Here, F is called a witness of M. On a 3-element set, a centralizing monoid is maximal if and only if it has a constant operation or a majority minimal operation as its witness.

In this paper, we take one such majority operation, which corresponds to a maximal centralizing monoid, on a 3-element set and obtain its generalization, called $m_{\rm b}$, on a k-element set for any $k \ge 3$. We explicitly describe the centralizing monoid $M(m_{\rm b})$ with $m_{\rm b}$ as its witness and then prove that it is not maximal if k > 3, contrary to the case for k = 3.

Keywords: clone; centralizer; centralizing monoid; majority operation; minimal operation

1 Introduction

1.1 Overview

Let A be a finite set with |A| > 2, and \mathcal{O}_A be the set of operations on A. A majority operation $m \in \mathcal{O}_A$ is a ternary operation, i.e., $m : A^3 \to A$, which

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License

¹This is an extended version of [2] which is to appear in the Proceedings of ISMVL23.

²Formerly with: Hitotsubashi University, Tokyo, Japan, Email: machida.zauber@gmail.com

takes the majority value among the elements in the argument, i.e., m(x, x, y) = m(x, y, x) = m(y, x, x) = x holds for all $x, y \in A$.

A centralizer $C \subseteq \mathcal{O}_A$ is the set of operations which commute with all members of some set $F \subseteq \mathcal{O}_A$, and a centralizing monoid M is the unary part of a centralizer C. We call F a witness of the centralizing monoid M. (For the precise definition of some terms, refer to the next subsection.)

A remarkable fact on a 3-element set A is that a centralizing monoid is maximal if and only if it has a constant operation or a majority minimal operation as its witness [3].

Up to conjugacy, there are three majority operations on a 3-element set which are minimal and serve as witnesses of maximal centralizing monoids. In this article, they are called m_1 , m_2 and m_3 .

The aim of our study is to know how these properties can be generalized from a 3-element set to a k-element set with $3 \le k < \omega$. For m_1 and m_3 , generalizations were presented in [4], which are summarized in Section 3.

The main part of this paper is Section 4 where we generalize the remaining majority operation m_2 on a 3-element set to a majority operation on a *k*-element set for any $3 \le k < \omega$. A generalization is successfully achieved, but it fails to inherit the property of maximality from a 3-element case.

1.2 Basic Terminology

Let k > 1 be a fixed integer and E_k be the initial segment of \mathbb{N} with k elements, i.e., $E_k = \{0, 1, \ldots, k-1\}$. Denote by $\mathcal{O}_k^{(n)}$, n > 0, the set of *n*-ary operations on E_k , that is, functions from E_k^n into E_k , and by \mathcal{O}_k the set of all operations on E_k , i.e., $\mathcal{O}_k = \bigcup_{n=1}^{\infty} \mathcal{O}_k^{(n)}$. The *n*-ary *i*-th projection e_i^n on E_k , for $1 \le i \le n$, is an operation

The *n*-ary *i*-th projection e_i^n on E_k , for $1 \le i \le n$, is an operation in $\mathcal{O}_k^{(n)}$ which is defined by $e_i^n(x_1, \ldots, x_n) = x_i$ for $x_1, \ldots, x_n \in E_k$. Denote by \mathcal{J}_k the set of projections on E_k .

Let $\text{CONST}_k (\subseteq \mathcal{O}_k^{(1)})$ (or simply CONST) be the set of unary constant operations on E_k and \mathcal{S}_k be the symmetric group on E_k .

For $f, g \in \mathcal{O}_A^{(n)}$, g is conjugate to f if there exists a permutation σ on A for which $g(x_1, \ldots, x_n) = \sigma^{-1}(f(\sigma(x_1), \ldots, \sigma(x_n)))$ holds for all $x_1, \ldots, x_n \in A$. In other words, g is conjugate to f if g is obtained from f by renaming the elements of the base set E_k .

A subset C of \mathcal{O}_k is a *clone* on E_k if C contains all the projections, i.e., $\mathcal{J}_k \subseteq C$, and is closed under (functional) composition. The set of clones on E_k forms a lattice with respect to set inclusion and is denoted by \mathcal{L}_k . For $F \subseteq \mathcal{O}_k, \langle F \rangle$ denotes the smallest clone containing F. We say F generates a clone C if $C = \langle F \rangle$. When $F = \{f\}$, we often write $\langle f \rangle$ instead of $\langle F \rangle$.

An atom of \mathcal{L}_k is called a *minimal clone*. In other words, $C \ (\in \mathcal{L}_k)$ is a minimal clone if $\mathcal{J}_k \subset C' \subseteq C$ implies C = C' for any C' in \mathcal{L}_k . Clearly, a minimal clone is generated by a singleton set. An operation $f \ (\in \mathcal{O}_k)$ is called a *minimal operation* if f generates a minimal clone C and its arity is minimum among the arities of all operations which generate C.

For *n*-ary operation $f \in \mathcal{O}_k^{(n)}$ and *m*-ary operation $g \in \mathcal{O}_k^{(m)}$ for any $m, n \geq 1$, we say that f commutes with g, or f and g commute, if

$$g(f(x_{11}, x_{12}, \dots, x_{1n}), \dots, f(x_{m1}, \dots, x_{mn}))$$

= $f(g(x_{11}, x_{21}, \dots, x_{m1}), \dots, g(x_{1n}, \dots, x_{mn}))$

holds for all $x_{ij} \in E_k$ where $1 \le i \le m$ and $1 \le j \le n$. We write $f \perp g$ when f commutes with g.

In particular, for $m = 1, f \perp g$ means that

$$f(g(x_1),\ldots,g(x_n)) = g(f(x_1,\ldots,x_n))$$

holds for all $x_1, \ldots, x_n \in E_k$.

For any subset F of \mathcal{O}_k , let F^* be the set of operations which commute with all members of F, i.e.,

$$F^* = \{ g \in \mathcal{O}_k \mid g \perp f \text{ for all } f \in F \}.$$

A subset C of \mathcal{O}_k is a *centralizer* if $C = F^*$ for some $F \subseteq \mathcal{O}_k$. We also say that F^* is the centralizer of F. It is easy to see that F^* is a clone for any subset F of \mathcal{O}_k . When $F = \{f\}$, we write f^* for F^* .

As extreme examples, \mathcal{O}_k is a centralizer since $\mathcal{J}_k^* = \mathcal{O}_k$ and \mathcal{J}_k is a centralizer since $(\mathcal{O}_k)^* = \mathcal{J}_k$.

A subset M of $\mathcal{O}_k^{(1)}$ is a *centralizing monoid* on E_k if

$$M = F^* \cap \mathcal{O}_k^{(1)}$$

for some $F \subseteq \mathcal{O}_k$. Thus a centralizing monoid is the unary part of a centralizer. Since the centralizer F^* is a clone, the set M defined above is a monoid.

In the above definition, a subset F of \mathcal{O}_k is called a *witness* of M. The centralizing monoid M with F as its witness is denoted by $\mathsf{M}(F)$, i.e., $\mathsf{M}(F) = F^* \cap \mathcal{O}_k^{(1)}$. When F is a singleton, i.e., $F = \{f\}$, we write $\mathsf{M}(f)$ for $\mathsf{M}(F)$.

The "top" elements of the set of centralizing monoids are of special interest. A centralizing monoid M is maximal if $\mathcal{O}_k^{(1)}$ is the only centralizing monoid properly containing M. Maximal centralizing monoids have a strong connection to minimal clones.

Proposition 1 ([3]) For every maximal centralizing monoid M there exists a minimal operation f such that M = M(f).

On the 3-element set the result is more striking, as is shown below.

2 Results on E_3

There are 84 minimal clones on E_3 [1]. Among them, three are generated by constant operations and seven by majority operations. A striking fact is the following.

Proposition 2 ([3]) For a centralizing monoid M on E_3 , the following are equivalent.

- (1) M is a maximal centralizing monoid.
- (2) $M = \mathsf{M}(f)$ for some $f \in \mathcal{O}_k$ which is a constant operation or a majority minimal operation.

Thus, there are 10 maximal centralizing monoids on E_3 . Three of them have unary constant operations as their witnesses and seven have majority minimal operations as their witnesses.

Below are majority minimal operations on E_3 . Only the values on (x, y, z) for mutually distinct $x, y, z \in E_3$ need to be specified.

•
$$m_1(x, y, z) = 0$$
 if $|\{x, y, z\}| = 3$
• $m_2(x, y, z) = \begin{cases} 0 & \text{if } (x, y, z) \in \sigma \\ 1 & \text{if } (x, y, z) \in \tau \end{cases}$
• $m_3(x, y, z) = x$ if $|\{x, y, z\}| = 3$

Here σ and τ are the sets defined by $\sigma = \{(0, 1, 2), (1, 2, 0), (2, 0, 1)\}$ and $\tau = \{(0, 2, 1), (1, 0, 2), (2, 1, 0)\}.$

Among seven majority minimal operations on E_3 , two are conjugate to m_1 and the other two are conjugate to m_2 .

As m_2 is the main target of this article, we explicitly present the centralizing monoid $M(m_2)$ having m_2 as its witness:

$$\mathsf{M}(m_2) = \text{CONST} \cup \{ s \in \mathcal{O}_3^{(1)} \mid s(0) = s(1) \neq s(2) \} \\ \cup \{ s \in \mathcal{S}_3 \mid s(2) = 2 \}.$$

Naturally, we are lead to investigate how much the above results on E_3 can be generalized to E_k for $3 \le k < \omega$.

3 Generalization of Majority Operations

Hereafter we assume $3 \leq k < \omega$, unless otherwise stated.

Regarding the generalization, we have already obtained the results for m_1 and m_3 (submitted; [4]), which we shall present here without proof.

Let $W (\subset E_k^3)$ be the set of triples on E_k whose components are mutually distinct, i.e.,

$$W = \{(a, b, c) \in E_k^3 \mid |\{a, b, c\}| = 3\}.$$

By definition, a majority operation m is completely determined by the values of m on W.

For a unary operation $s \in \mathcal{O}_k^{(1)}$, ker(s) is defined by ker $(s) = \{(x, y) \in E_k^2 \mid s(x) = s(y)\}.$

Clearly, ker(s) is an equivalence relation on E_k . An equivalence class containing $x \in E_k$ will be denoted by $[x]_{\text{ker}(s)}$.

3.1 Constant-like Majority

A generalization of m_1 is trivial. Let $m_c \in \mathcal{O}_k^{(3)}$, $k \geq 3$, be a majority operation on E_k which takes the constant value 0 on W:

$$m_{\rm c}(x, y, z) = 0$$
 for all $(x, y, z) \in W$.

It is known that m_c is a minimal operation for any $k \ge 3$ [5]. The centralizing monoid $M(m_c)$ is characterized as follows.

Lemma 1 ([4]) $M(m_c)$ is exactly the set of unary operations $s \in \mathcal{O}_k^{(1)}$ satisfying one of the following:

- (1) $|\operatorname{Im}(s)| = 1$ (*i.e.*, $s \in \operatorname{CONST}$)
- (2) |Im(s)| = 2 and $|[0]_{\text{ker}(s)}| = k 1$
- (3) $|\text{Im}(s)| \ge 3$, s(0) = 0 and $|[x]_{\text{ker}(s)}| = 1$ for any $x \notin [0]_{\text{ker}(s)}$

After a bit of elaborate discussion, we get:

Proposition 3 ([4]) $M(m_c)$ is a maximal centralizing monoid.

3.2 Projection-like Majority

A generalization of m_3 on E_3 to E_k , $k \ge 3$, is also straightforward. Let $m_p \in \mathcal{O}_k^{(3)}, k \ge 3$, be a majority operation which behaves like a projection e_i^3 $(1 \le i \le 3)$ on W. Here, let us assume i = 1:

$$m_{\mathbf{p}}(x, y, z) = x$$
 for all $(x, y, z) \in W$.

The centralizing monoid $M(m_p)$ is easily obtained (e.g., [4]).

Lemma 2 $M(m_p) = S_k \cup CONST.$

Regarding the maximality, $M(m_p)$ is maximal in most cases, but not always, as shown below.

Proposition 4 ([4])

- (1) For k = 3 or $k \ge 5$, $M(m_p)$ is a maximal centralizing monoid.
- (2) For k = 4, $M(m_p)$ is not a maximal centralizing monoid.

For the case of k = 4, we shall see further what is happening there.

Let $M_2 (\subset \mathcal{O}_4^{(1)})$ be the monoid which consists of unary operations s satisfying one of the following: (1) $|E_4/\ker s| = 4$ (i.e., permutation), (2) $|E_4/\ker s| = 1$ (i.e., constant) and (3) $|E_4/\ker s| = 2$ with two blocks of size 2. The following fact is well-known.

Lemma 3 M_2 is a centralizing monoid.

Proof: Let $g \in \mathcal{O}_4^{(2)}$ be the binary operation on E_4 defined by the following Cayley table.

$x \backslash y$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Notice that g is commutative and associative. Denote g(x, y) by $x \oplus y$. (Note: $(E_4; \oplus)$ is an elementary 2-group.) Let $f \in \mathcal{O}_4^{(3)}$ be defined by $f(x, y, z) = x \oplus y \oplus z$. Then, M_2 is proved to be a centralizing monoid with f as its witness, i.e., $M_2 = \mathsf{M}(f)$. The proof is carried out by elementary calculations which verify $s \perp f$ for all $s \in M_2$ while $s \not\perp f$ for all $s \in \mathcal{O}_4^{(1)} \setminus M_2$. The details are omitted. (Clearly, $s \in \mathcal{O}_4^{(1)} \setminus M_2$ if and only if $|E_4/\ker s| = 3$ or $|E_4/\ker s| = 2$ with a block of size 1 and a block of size 3.) \Box

Apparently, $\mathsf{M}(m_p) \subset M_2$ is a proper inclusion (Lemma 2) and, therefore, $\mathsf{M}(m_p)$ is not a maximal centralizing monoid.

4 Balanced Majority

Now we shall make an attempt to generalize the majority operation m_2 on E_3 to a majority operation on E_k , $k \ge 3$. A generalization of m_2 is less obvious than that of m_1 and m_3 .

4.1 Definition of $m_{\rm b}$

Let σ be the operation on W, i.e.,

 $\sigma: W \longrightarrow W$

defined by $\sigma(x, y, z) = (y, z, x)$ for (x, y, z) in W. By convention, we write $\sigma(x, y, z)$ in place of $\sigma((x, y, z))$. Clearly, the order of σ is 3.

Let a binary relation \sim on W be defined as follows:

For any $(a, b, c), (a', b', c') \in W$, $(a, b, c) \sim (a', b', c')$ if and only if $(a', b', c') = \sigma^i(a, b, c)$ for some $0 \le i \le 2$. It is clear that the relation \sim is an equivalence relation on W and the equivalence class of (a, b, c), denoted by $[(a, b, c)]_{\sim}$, consists of 3 triples in W.

 E_k is considered as the initial segment of \mathbb{N} . Let the order \leq on \mathbb{N} be naturally introduced into E_k , i.e., $0 < 1 < \cdots < k - 1$.

A triple $(a, b, c) \in W$ will be called *even* if a < b < c and *odd* if a < c < b. Let W_{even} and W_{odd} be subsets of W defined by

$$W_{\text{even}} = \bigcup \left\{ \left[(a, b, c) \right]_{\sim} \mid (a, b, c) : \text{even} \right\} \right\}$$

and

$$W_{\text{odd}} = \bigcup \left\{ \left[(a, b, c) \right]_{\sim} \mid (a, b, c) : \text{odd} \right\}.$$

We shall extend the meaning of even and odd and call any element $(a, b, c) \in W$ even if it is in W_{even} and odd if it is in W_{odd} .

 W_{even} and W_{odd} can be characterized in the following way. For $\boldsymbol{a} = (a_1, a_2, a_3) \in W$ the number of *reversed pairs* in \boldsymbol{a} , denoted by $r(\boldsymbol{a})$, is given by

$$r(\mathbf{a}) = |\{(i,j) \mid i, j \in \{1,2,3\}, i < j, a_i > a_j\}|.$$

The following property is easy to see, from which the terms even and odd stem.

Lemma 4 For any $a \in W$,

- (1) $\boldsymbol{a} \in W_{\text{even}} \iff r(\boldsymbol{a})$ is even.
- (2) $\boldsymbol{a} \in W_{\text{odd}} \iff r(\boldsymbol{a}) \text{ is odd.}$

Proof: For $\boldsymbol{a} = (a, b, c) \in W$, if a < b < c then $\boldsymbol{a} \in W_{\text{even}}$ by definition and, also, $r(\boldsymbol{a})$ is even as $r(\boldsymbol{a}) = 0$. Similarly, if a < c < b then $\boldsymbol{a} \in W_{\text{odd}}$ and, also, $r(\boldsymbol{a})$ is odd as $r(\boldsymbol{a}) = 1$. Then the proof follows from an observation that the process of applying σ to $\boldsymbol{x} \in W$ does not alter the parity, i.e., $r(\sigma(\boldsymbol{x})) = r(\boldsymbol{x})$.

The following is essential in defining the majority operation $m_{\rm b}$, a generalization of m_2 .

Lemma 5 $\{W_{\text{even}}, W_{\text{odd}}\}$ is a partition of W, i.e.,

- (1) $W = W_{\text{even}} \cup W_{\text{odd}}$, and
- (2) $W_{\text{even}} \cap W_{\text{odd}} = \emptyset$.

Proof: Obvious from Lemma 4.

Definition 1 The majority operation m_b on E_k is defined as follows:

$$m_{\rm b}(x,y,z) = \begin{cases} 0 & \text{if } (x,y,z) \in W_{\rm even} \\ 1 & \text{if } (x,y,z) \in W_{\rm odd} \end{cases}$$

The subscript 'b' stands for balanced. As is easily seen, $m_{\rm b}$ is a generalization of the majority operation m_2 on E_3 .

4.2 Centralizing Monoid of $m_{\rm b}$

We shall determine the centralizing monoid $\mathsf{M}(m_{\rm b})$ which has $m_{\rm b}$ as its witness.

For an equivalence relation θ on E_k , we call an equivalence class U of θ a *cluster block* (or, simply a *cluster*) of θ if it contains two or more elements, i.e., $|U| \ge 2$. For a unary operation $s \in \mathcal{O}_k^{(1)}$, we abuse the term and say that s has a cluster if there exists a cluster of ker(s).

Lemma 6 Let $s \in \mathcal{O}_k^{(1)}$. If $s \perp m_b$ then s satisfies one of the following:

- (1) s has a cluster U of size k (i.e., $U = E_k$),
- (2) s has a cluster U of size k-1 which contains 0 and 1, i.e., $\{0,1\} \subseteq U$,
- (3) s has no cluster.

Note that (1) is equivalent to saying that s is a constant operation, i.e., $s \in \text{CONST}$, while (3) is equivalent to saying that s is a permutation, i.e., $s \in \mathcal{S}_k$.

Proof: The proof follows from three Claims.

Claim 1. If U is a cluster of s, then $\{0, 1\} \subseteq U$.

Proof of Claim 1. Let $\alpha \in E_k$ be the value of s on U, i.e., $s(U) = \{\alpha\}$.

Suppose $0 \notin U$. Let $a, b \in U$ be elements such that a < b. Since $(0, a, b) \in W$ and 0 < a < b, we have $m_{\rm b}(0, a, b) = 0$. Hence, by $0 \notin U$, $s(m_{\rm b}(0, a, b)) = s(0) \neq \alpha$, whereas $m_{\rm b}(s(0), s(a), s(b)) = m_{\rm b}(s(0), \alpha, \alpha) = \alpha$, implying $s \not\perp m_{\rm b}$. Therefore, $0 \in U$.

Next, suppose $1 \notin U$. Take $a \in U \setminus \{0\}$. Since $(0, 1, a) \in W$ and 0 < 1 < a, we have $m_{\rm b}(1, 0, a) = 1$. The rest is analogous to the above. By $1 \notin U$, $s(m_{\rm b}(1, 0, a)) \neq \alpha$, whereas $m_{\rm b}(s(1), s(0), s(a)) = m_{\rm b}(s(1), \alpha, \alpha) = \alpha$ and we get $s \not\perp m_{\rm b}$. Therefore, $1 \in U$.

As an immediate consequence of Claim 1, we obtain:

Claim 2. For any $s \in \mathcal{O}_k^{(1)}$, there exists at most one cluster of s.

Next, we discuss the size of a cluster.

Claim 3. A cluster U of s satisfies $|E_k \setminus U| < 2$.

Proof of Claim 3. Again, we let $\alpha \in E_k$ satisfy $s(U) = \{\alpha\}$. In particular, $s(0) = s(1) = \alpha$ by Claim 1. Assume to the contrary that there exist two

elements c, d $(c \neq d)$ in $E_k \setminus U$. Let $s(c) = \gamma$ and $s(d) = \delta$ for $\gamma, \delta \in E_k$. Since U is a unique cluster and $c, d \notin U$, we have $\gamma \neq \delta$.

Since both (0, c, d) and (0, d, c) are in W and the values of m_b on W are in $\{0, 1\}$, we have

$$s(m_{\rm b}(0,c,d)) = s(m_{\rm b}(0,d,c)) (= \alpha).$$

On the other hand, we have

$$\begin{aligned} m_{\mathrm{b}}(s(0), s(c), s(d)) &= m_{\mathrm{b}}(\alpha, \gamma, \delta) \\ &\neq m_{\mathrm{b}}(\alpha, \delta, \gamma) \\ &= m_{\mathrm{b}}(s(0), s(d), s(c)). \end{aligned}$$

It follows that s and $m_{\rm b}$ do not commute, i.e., $s \not\perp m_{\rm b}$, against the assumption. \diamond

Evidently, Claims 1, 2, 3 together prove the lemma.

We shall take a closer look at the cases (2) and (3) in Lemma 6. First, the case (2).

For any $U \in \mathcal{P}(E_k)$ and $c \in E_k \setminus U$ such that $\{0,1\} \subseteq U$ and $E_k = U \cup \{c\}$ and any $\alpha, \beta \in E_k$ such that $\alpha \neq \beta$, we define a unary operation $s_{\triangleright}(c; \alpha, \beta) \in \mathcal{O}_k^{(1)}$ by

$$s_{\triangleright}(c; \alpha, \beta)(x) = \begin{cases} \alpha & \text{if } x \in U, \\ \beta & \text{if } x = c. \end{cases}$$

We often write s_{\triangleright} in place of $s_{\triangleright}(c; \alpha, \beta)$ when c, α, β are understood.

Remark 1 Any $s \in \mathcal{O}_k^{(1)}$ satisfying (2) in Lemma 6 can be expressed as $s_{\triangleright}(c; \alpha, \beta)$ for some $c \in E_k \setminus \{0, 1\}$ and $\alpha, \beta \in E_k$ with $\alpha \neq \beta$.

Lemma 7 For any $U \in \mathcal{P}(E_k)$, $c \in E_k \setminus U$ and $\alpha, \beta \in E_k$ as above, $s_{\triangleright}(c; \alpha, \beta)$ and m_b commute, i.e., $s_{\triangleright}(c; \alpha, \beta) \perp m_b$.

Proof: We are to show that $s_{\triangleright}(m_{\mathrm{b}}(x, y, z)) = m_{\mathrm{b}}(s_{\triangleright}(x), s_{\triangleright}(y), s_{\triangleright}(z))$ holds for all (x, y, z) in W, which easily follows from (i) and (ii) below. (i) Because of $m_{\mathrm{b}}(x, y, z) \in \{0, 1\}$ by definition and $\{0, 1\} \subseteq U$ by assumption, it is immediate to see that $s_{\triangleright}(m_{\mathrm{b}}(x, y, z)) = \alpha$. (ii) Among x, y, z for which $(x, y, z) \in W$, at least two of them are in U and, hence, at least two of $s_{\triangleright}(x), s_{\triangleright}(y), s_{\triangleright}(z)$ are α , which implies $m_{\mathrm{b}}(s_{\triangleright}(x), s_{\triangleright}(y), s_{\triangleright}(z)) = \alpha$. \Box Denote by Σ_{\rhd} the set of $s_{\rhd}(c; \alpha, \beta) \ (\in \mathcal{O}_k^{(1)})$ over all $c \in E_k \setminus \{0, 1\}$ and $\alpha, \beta \in E_k$ with $\alpha \neq \beta$.

Next, we move to the case (3) in Lemma 6. Let $\hat{s} \in \mathcal{O}_k^{(1)}$ be the permutation defined by

$$\widehat{s}(x) = \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{if } x = 1, \\ k + 1 - x & \text{if } 2 \le x < k. \end{cases}$$

Lemma 8 It holds that $\hat{s} \perp m_{\rm b}$.

Proof: The assertion is easy to check for k = 3. Assume k > 3. Then \hat{s} is (strictly) decreasing on $E_k \setminus \{0, 1\}$, that is, a < b implies $\hat{s}(a) > \hat{s}(b)$ for any $a, b \in E_k \setminus \{0, 1\}$.

We are to show $\widehat{s}(m_{\mathrm{b}}(x, y, z)) = m_{\mathrm{b}}(\widehat{s}(x), \widehat{s}(y), \widehat{s}(z))$ for all $(x, y, z) \in W$. First, take the case of $\{x, y, z\} \cap \{0, 1\} = \emptyset$. In this case, $(\widehat{s}(x), \widehat{s}(y), \widehat{s}(z))$ = (k + 1 - x, k + 1 - y, k + 1 - z) and it is readily checked that the parity (i.e., even or odd) of (x, y, z) and $(\widehat{s}(x), \widehat{s}(y), \widehat{s}(z))$ are different. On the other hand, the parity of \widehat{s} on $\{0, 1\}$ is also switched (i.e., $\widehat{s}(0) = 1$ and $\widehat{s}(1) = 0$). Hence, we obtain $\widehat{s}(m_{\mathrm{b}}(x, y, z)) = m_{\mathrm{b}}(\widehat{s}(x), \widehat{s}(y), \widehat{s}(z))$.

The remaining case of $\{x, y, z\} \cap \{0, 1\} \neq \emptyset$ is easy and left to the reader. \Box

Lemma 9 Let $s \in \mathcal{O}_k^{(1)}$ be a permutation. Then, $s \perp m_b$ if and only if s is ε (= id) or \hat{s} .

Proof: Sufficiency follows from Lemma 8.

Necessity: Assume $s \perp m_b$. Since $m_b(W) = \{0, 1\}$ by the definition of m_b , it follows from $s \perp m_b$ that $s(\{0, 1\}) \subseteq \{0, 1\}$. Since s is a permutation, this implies that either s(x) = x or s(x) = 1 - x holds on $\{0, 1\}$. Note that, if k = 3, then s(2) = 2 and, hence, $s = \varepsilon$ or \hat{s} . Hereafter, we assume k > 3.

Case 1. s(x) = x on $\{0,1\}$: Let a, b be any elements in $E_k \setminus \{0,1\}$ such that a < b. Since s is a permutation, we have $s(a) \neq s(b)$ and $s(a), s(b) \in E_k \setminus \{0,1\}$. Clearly, we have $s(m_b(0, a, b)) = s(0) = 0$ on the one hand and $m_b(s(0), s(a), s(b)) = m_b(0, s(a), s(b))$ on the other hand. Hence, the assumption $s \perp m_b$ implies $m_b(0, s(a), s(b)) = 0$, which means s(a) < s(b). Thus, it is verified that the restriction of s to $E_k \setminus \{0,1\}$ is a permutation and strictly *increasing*. Therefore, together with the assumption that s(x) = x on $\{0,1\}$, s must be the identity ε on E_k . **Case 2**. s(x) = 1 - x on $\{0, 1\}$: A similar argument as above works. Let a, b be in $E_k \setminus \{0, 1\}$ such that a < b. Since s is a permutation, we have $s(a) \neq s(b)$ and $s(a), s(b) \in E_k \setminus \{0, 1\}$. Now, we have $s(m_b(0, a, b)) = s(0) = 1$ and $m_b(s(0), s(a), s(b)) = m_b(1, s(a), s(b))$. Hence, $s \perp m_b$ implies $m_b(1, s(a), s(b)) = 1$, which means s(a) > s(b). Thus, the restriction of s to $E_k \setminus \{0, 1\}$ is a permutation and strictly *decreasing*. In other words, we have a sequence $s(2) > s(3) > \cdots > s(k-1)$. This property, combined with s(0) = 1 and s(1) = 0, can be satisfied only by \hat{s} . The proof is complete. \Box

Proposition 5 The centralizing monoid $M(m_b)$ which has m_b as its witness is:

$$\mathsf{M}(m_{\mathrm{b}}) = \mathrm{CONST} \cup \Sigma_{\rhd} \cup \{\varepsilon, \widehat{s}\}$$

Proof: Since all constant operations commute with m_b , the proof follows from Lemma 6, Lemma 7 (together with Remark 1) and Lemma 9.

4.3 Is It Maximal?

Is $\mathsf{M}(m_{\mathrm{b}})$ a maximal centralizing monoid? Or, does there exist an operation $f \in \mathcal{O}_k^{(n)}, n \geq 1$, which satisfies $\mathsf{M}(m_{\mathrm{b}}) \subset \mathsf{M}(f) \subset \mathcal{O}_k^{(1)}$?

To begin with, we ask if there exists a monoid (not necessarily a centralizing monoid) M which sits strictly between $\mathsf{M}(m_{\rm b})$ and $\mathcal{O}_k^{(1)}$, i.e., $\mathsf{M}(m_{\rm b}) \subset M \subset \mathcal{O}_k^{(1)}$. The answer is yes. In fact, there are many.

We take one such example, which happens to be minimal among those M's concerned.

Define two permutations $\widehat{s}_1, \widehat{s}_2 \in \mathcal{O}_k^{(1)}$ by:

- (i) $\hat{s}_1 = (01)$, i.e., $\hat{s}_1(0) = 1$, $\hat{s}_1(1) = 0$ and $\hat{s}_1(x) = x$ otherwise,
- (ii) $\hat{s}_2(x) = \begin{cases} x & \text{if } x = 0, 1, \\ k+1-x & \text{if } 2 \le x < k. \end{cases}$

Note that $\hat{s} = \hat{s}_1 \circ \hat{s}_2 = \hat{s}_2 \circ \hat{s}_1$ where \circ denotes the composition of unary operations. In fact, $\{\varepsilon, \hat{s}, \hat{s}_1, \hat{s}_2\}$ is a subgroup of \mathcal{S}_k .

Let \widetilde{M} be a subset of $\mathcal{O}_k^{(1)}$ defined by

$$M = \text{CONST} \cup \Sigma_{\triangleright} \cup \{\varepsilon, \hat{s}, \hat{s}_1, \hat{s}_2\}.$$

Clearly, $\widetilde{M} = \mathsf{M}(m_{\rm b}) \cup \{\widehat{s}_1, \widehat{s}_2\}$. For k > 3, we have $\mathsf{M}(m_{\rm b}) \subset \widetilde{M}$ since $\widehat{s}_1, \widehat{s}_2 \notin \mathsf{M}(m_{\rm b})$. It should be noted, however, that in case of k = 3 we have $\widehat{s}_1 = \widehat{s}$ and $\widehat{s}_2 = \varepsilon$ and, accordingly, $\widetilde{M} = \mathsf{M}(m_{\rm b})$.

The next lemma is straightforward. (The second inclusion is proper because many permutations, for example, are not in \widetilde{M} .)

Lemma 10 Let k > 3. \widetilde{M} is a monoid and $\mathsf{M}(m_{\mathrm{b}}) \subset \widetilde{M} \subset \mathcal{O}_{k}^{(1)}$.

An operation $f \in \mathcal{O}_k^{(n)}$, $n \geq 3$, is a *semiprojection* if there exists $1 \leq i \leq n$ such that $f(a_1, \ldots, a_n) = a_i$ whenever $|\{a_1, \ldots, a_n\}| < n$.

Let $\widetilde{p} \in \mathcal{O}_k^{(3)}$ be the semiprojection defined by $\widetilde{p}(x, y, z) = x$ for $(x, y, z) \in E_k^3 \setminus W$ and

$$\widetilde{p}(x, y, z) = \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{if } x = 1, \\ x & \text{if } x \notin \{0, 1\}. \end{cases}$$

for $(x, y, z) \in W$.

Lemma 11 The semiprojection \widetilde{p} commutes with all members of \widetilde{M} , i.e., $\widetilde{p} \perp \widetilde{M}$. Hence, $\widetilde{M} \subseteq \mathsf{M}(\widetilde{p})$.

Proof: First, $\tilde{p} \perp \text{CONST}$ is trivial. To show $\tilde{p} \perp \Sigma_{\triangleright}$, it is sufficient to observe that $s(\{0,1\}) = \alpha$ for any $c \in E_k \setminus \{0,1\}$ and $s = s_{\triangleright}(c; \alpha, \beta)$. Next, since \hat{s}_1 (resp., \hat{s}_2) is a permutation, $(x, y, z) \in W$ implies $(\hat{s}_1(x), \hat{s}_1(y), \hat{s}_1(z)) \in W$ (resp., $(\hat{s}_2(x), \hat{s}_2(y), \hat{s}_2(z)) \in W$). Then it is easy to see that $\tilde{p} \perp \{\hat{s}_1, \hat{s}_2\}$. Finally, $\tilde{p} \perp \hat{s}$ is clear as $\hat{s} = \hat{s}_1 \circ \hat{s}_2$.

Corollary 1 Let k > 3. $M(m_b)$ is not a maximal centralizing monoid.

The proof follows from Lemmas 10 and 11. (Note that $\mathsf{M}(\tilde{p}) \subset \mathcal{O}_k^{(1)}$ is assured by the existence of, for example, $t \in \mathcal{O}_k^{(1)}$ which is defined by t(0) = 1 and t(x) = 0 if x > 0.)

Remark 2 One might argue that m_b is not a proper generalization of m_2 and a proper one would yield a maximal centralizing monoid. We do not deny such possibility. However, we assert the properness of m_b since it is defined in such a natural way.

A remaining question on $m_{\rm b}$ is whether it is a minimal operation. At the current stage we do not know the answer to it.

References

- B. Csákány. All minimal clones on the three-element set. Acta Cybernetica, 6(3):227–238, 1983.
- [2] Hajime Machida. Search for some majority operation and studies of its centralizing monoid. In 53rd IEEE International Symposium on Multiple-Valued Logic, ISMVL 2023. IEEE Computer Society, 2023 (accepted, to appear).
- [3] Hajime Machida and Ivo G. Rosenberg. Maximal centralizing monoids and their relation to minimal clones. In Jaakko Astola and Radomir S. Stankovic, editors, 41st IEEE International Symposium on Multiple-Valued Logic, ISMVL 2011, pages 153–159. IEEE Computer Society, 2011. doi:10.1109/ISMVL.2011.36.
- [4] Hajime Machida and Ivo G. Rosenberg. Maximal centralizing monoids in connection with minimal clones. 2022 (submitted).
- [5] Tamás Waldhauser. Minimal clones generated by majority operations. Algebra Universalis, 44:15–26, 2000. doi:10.1007/s000120050167.

© Scientific Annals of Computer Science 2023