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A Study on Centralizing Monoids with

Majority Operation Witnesses1

Hajime Machida2

Abstract

A centralizing monoidM is a set of unary operations which commute
with some set F of operations. Here, F is called a witness of M . On a
3-element set, a centralizing monoid is maximal if and only if it has a
constant operation or a majority minimal operation as its witness.

In this paper, we take one such majority operation, which cor-
responds to a maximal centralizing monoid, on a 3-element set and
obtain its generalization, called mb, on a k-element set for any k ≥ 3.
We explicitly describe the centralizing monoid M(mb) with mb as its
witness and then prove that it is not maximal if k > 3, contrary to the
case for k = 3.

Keywords: clone; centralizer; centralizing monoid; majority operation;
minimal operation

1 Introduction

1.1 Overview

Let A be a finite set with |A| > 2, and OA be the set of operations on A. A
majority operation m ∈ OA is a ternary operation, i.e., m : A3 → A, which
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takes the majority value among the elements in the argument, i.e., m(x, x, y)
= m(x, y, x) = m(y, x, x) = x holds for all x, y ∈ A.

A centralizer C (⊆ OA) is the set of operations which commute with all
members of some set F ⊆ OA, and a centralizing monoid M is the unary
part of a centralizer C. We call F a witness of the centralizing monoid M .
(For the precise definition of some terms, refer to the next subsection.)

A remarkable fact on a 3-element set A is that a centralizing monoid is
maximal if and only if it has a constant operation or a majority minimal
operation as its witness [3].

Up to conjugacy, there are three majority operations on a 3-element set
which are minimal and serve as witnesses of maximal centralizing monoids.
In this article, they are called m1, m2 and m3.

The aim of our study is to know how these properties can be generalized
from a 3-element set to a k-element set with 3 ≤ k < ω. For m1 and m3,
generalizations were presented in [4], which are summarized in Section 3.

The main part of this paper is Section 4 where we generalize the remain-
ing majority operation m2 on a 3-element set to a majority operation on a
k-element set for any 3 ≤ k < ω. A generalization is successfully achieved,
but it fails to inherit the property of maximality from a 3-element case.

1.2 Basic Terminology

Let k > 1 be a fixed integer and Ek be the initial segment of N with k

elements, i.e., Ek = {0, 1, . . . , k−1}. Denote by O(n)
k , n > 0, the set of n-ary

operations on Ek, that is, functions from En
k into Ek, and by Ok the set of

all operations on Ek, i.e., Ok =
⋃∞

n=1O
(n)
k .

The n-ary i-th projection eni on Ek, for 1 ≤ i ≤ n, is an operation

in O(n)
k which is defined by eni (x1, . . . , xn) = xi for x1, . . . , xn ∈ Ek. Denote

by Jk the set of projections on Ek.

Let CONSTk (⊆ O(1)
k ) (or simply CONST) be the set of unary constant

operations on Ek and Sk be the symmetric group on Ek.

For f, g ∈ O(n)
A , g is conjugate to f if there exists a permutation σ

on A for which g(x1, . . . , xn) = σ−1(f(σ(x1), . . . , σ(xn))) holds for all x1, . . . ,
xn ∈ A. In other words, g is conjugate to f if g is obtained from f by
renaming the elements of the base set Ek.

A subset C of Ok is a clone on Ek if C contains all the projections, i.e.,
Jk ⊆ C, and is closed under (functional) composition. The set of clones
on Ek forms a lattice with respect to set inclusion and is denoted by Lk. For
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F ⊆ Ok, ⟨F ⟩ denotes the smallest clone containing F . We say F generates
a clone C if C = ⟨F ⟩. When F = {f}, we often write ⟨f⟩ instead of ⟨F ⟩.

An atom of Lk is called a minimal clone. In other words, C (∈ Lk) is
a minimal clone if Jk ⊂ C ′ ⊆ C implies C = C ′ for any C ′ in Lk. Clearly,
a minimal clone is generated by a singleton set. An operation f (∈ Ok) is
called a minimal operation if f generates a minimal clone C and its arity is
minimum among the arities of all operations which generate C.

For n-ary operation f ∈ O(n)
k and m-ary operation g ∈ O(m)

k for any
m, n ≥ 1, we say that f commutes with g, or f and g commute, if

g(f(x11, x12, . . . , x1n), . . . , f(xm1, . . . , xmn))

= f(g(x11, x21, . . . , xm1), . . . , g(x1n, . . . , xmn))

holds for all xij ∈ Ek where 1 ≤ i ≤ m and 1 ≤ j ≤ n. We write f ⊥ g
when f commutes with g.

In particular, for m = 1, f ⊥ g means that

f(g(x1), . . . , g(xn)) = g(f(x1, . . . , xn))

holds for all x1, . . . , xn ∈ Ek.
For any subset F of Ok, let F

∗ be the set of operations which commute
with all members of F , i.e.,

F ∗ = { g ∈ Ok | g ⊥ f for all f ∈ F }.

A subset C of Ok is a centralizer if C = F ∗ for some F ⊆ Ok. We also
say that F ∗ is the centralizer of F . It is easy to see that F ∗ is a clone for
any subset F of Ok. When F = {f}, we write f∗ for F ∗.

As extreme examples, Ok is a centralizer since J ∗
k = Ok and Jk is a

centralizer since (Ok)
∗ = Jk.

A subset M of O(1)
k is a centralizing monoid on Ek if

M = F ∗ ∩ O(1)
k

for some F ⊆ Ok. Thus a centralizing monoid is the unary part of a
centralizer. Since the centralizer F ∗ is a clone, the set M defined above is a
monoid.

In the above definition, a subset F of Ok is called a witness of M .
The centralizing monoid M with F as its witness is denoted by M(F ), i.e.,
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M(F ) = F ∗ ∩ O(1)
k . When F is a singleton, i.e., F = {f}, we write M(f)

for M(F ).

The “top” elements of the set of centralizing monoids are of special

interest. A centralizing monoid M is maximal if O(1)
k is the only centralizing

monoid properly containing M . Maximal centralizing monoids have a strong
connection to minimal clones.

Proposition 1 ([3]) For every maximal centralizing monoid M there exists
a minimal operation f such that M = M(f).

On the 3-element set the result is more striking, as is shown below.

2 Results on E3

There are 84 minimal clones on E3 [1]. Among them, three are generated by
constant operations and seven by majority operations. A striking fact is the
following.

Proposition 2 ([3]) For a centralizing monoid M on E3, the following are
equivalent.

(1) M is a maximal centralizing monoid.

(2) M = M( f) for some f ∈ Ok which is a constant operation or a
majority minimal operation.

Thus, there are 10 maximal centralizing monoids on E3. Three of them
have unary constant operations as their witnesses and seven have majority
minimal operations as their witnesses.

Below are majority minimal operations on E3. Only the values on
(x, y, z) for mutually distinct x, y, z ∈ E3 need to be specified.

• m1(x, y, z) = 0 if |{x, y, z}| = 3

• m2(x, y, z) =

{
0 if (x, y, z) ∈ σ
1 if (x, y, z) ∈ τ

• m3(x, y, z) = x if |{x, y, z}| = 3

Here σ and τ are the sets defined by σ = {(0, 1, 2), (1, 2, 0), (2, 0, 1)} and
τ = {(0, 2, 1), (1, 0, 2), (2, 1, 0)}.
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Among seven majority minimal operations on E3, two are conjugate
to m1 and the other two are conjugate to m2.

As m2 is the main target of this article, we explicitly present the
centralizing monoid M(m2) having m2 as its witness:

M(m2) = CONST ∪ {s ∈ O(1)
3 | s(0) = s(1) ̸= s(2)}

∪ {s ∈ S3 | s(2) = 2}.

Naturally, we are lead to investigate how much the above results on E3

can be generalized to Ek for 3 ≤ k < ω.

3 Generalization of Majority Operations

Hereafter we assume 3 ≤ k < ω, unless otherwise stated.

Regarding the generalization, we have already obtained the results
for m1 and m3 (submitted; [4]), which we shall present here without proof.

LetW (⊂ E3
k) be the set of triples on Ek whose components are mutually

distinct, i.e.,

W = {(a, b, c) ∈ E3
k | |{a, b, c}| = 3}.

By definition, a majority operation m is completely determined by the values
of m on W .

For a unary operation s ∈ O(1)
k , ker(s) is defined by

ker(s) = {(x, y) ∈ E2
k | s(x) = s(y)}.

Clearly, ker(s) is an equivalence relation on Ek. An equivalence class con-
taining x ∈ Ek will be denoted by [x]ker(s).

3.1 Constant-like Majority

A generalization of m1 is trivial. Let mc ∈ O(3)
k , k ≥ 3, be a majority

operation on Ek which takes the constant value 0 on W :

mc(x, y, z) = 0 for all (x, y, z) ∈ W.

It is known that mc is a minimal operation for any k ≥ 3 [5]. The
centralizing monoid M(mc) is characterized as follows.

Lemma 1 ([4]) M(mc) is exactly the set of unary operations

s ∈ O(1)
k satisfying one of the following:
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(1) |Im(s)| = 1 (i.e., s ∈ CONST)

(2) |Im(s)| = 2 and |[0]ker(s)| = k − 1

(3) |Im(s)| ≥ 3, s(0) = 0 and |[x]ker(s)| = 1 for any x ̸∈ [0]ker(s)

After a bit of elaborate discussion, we get:

Proposition 3 ([4]) M(mc) is a maximal centralizing monoid.

3.2 Projection-like Majority

A generalization of m3 on E3 to Ek, k ≥ 3, is also straightforward. Let

mp ∈ O(3)
k , k ≥ 3, be a majority operation which behaves like a projection e3i

(1 ≤ i ≤ 3) on W . Here, let us assume i = 1:

mp(x, y, z) = x for all (x, y, z) ∈ W.

The centralizing monoid M(mp) is easily obtained (e.g., [4]).

Lemma 2 M(mp) = Sk ∪ CONST.

Regarding the maximality, M(mp) is maximal in most cases, but not
always, as shown below.

Proposition 4 ([4])

(1) For k = 3 or k ≥ 5, M(mp) is a maximal centralizing monoid.

(2) For k = 4, M(mp) is not a maximal centralizing monoid.

For the case of k = 4, we shall see further what is happening there.

Let M2 (⊂ O(1)
4 ) be the monoid which consists of unary operations s

satisfying one of the following: (1) |E4/ ker s| = 4 (i.e., permutation), (2)
|E4/ ker s| = 1 (i.e., constant) and (3) |E4/ ker s| = 2 with two blocks of
size 2. The following fact is well-known.

Lemma 3 M2 is a centralizing monoid.

Proof: Let g ∈ O(2)
4 be the binary operation on E4 defined by the following

Cayley table.
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x\ y 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Notice that g is commutative and associative. Denote g(x, y) by x⊕ y.

(Note: (E4;⊕) is an elementary 2-group.) Let f ∈ O(3)
4 be defined by

f(x, y, z) = x⊕y⊕z. Then, M2 is proved to be a centralizing monoid with f
as its witness, i.e., M2 = M(f). The proof is carried out by elementary

calculations which verify s ⊥ f for all s ∈ M2 while s ̸⊥ f for all s ∈ O(1)
4 \M2.

The details are omitted. (Clearly, s ∈ O(1)
4 \M2 if and only if |E4/ ker s| = 3

or |E4/ ker s| = 2 with a block of size 1 and a block of size 3.) 2

Apparently, M(mp) ⊂ M2 is a proper inclusion (Lemma 2) and, there-
fore, M(mp) is not a maximal centralizing monoid.

4 Balanced Majority

Now we shall make an attempt to generalize the majority operation m2

on E3 to a majority operation on Ek, k ≥ 3. A generalization of m2 is less
obvious than that of m1 and m3.

4.1 Definition of mb

Let σ be the operation on W , i.e.,
σ : W −→ W

defined by σ(x, y, z) = (y, z, x) for (x, y, z) in W . By convention, we write
σ(x, y, z) in place of σ((x, y, z)). Clearly, the order of σ is 3.

Let a binary relation ∼ on W be defined as follows:
For any (a, b, c), (a′, b′, c′) ∈ W , (a, b, c) ∼ (a′, b′, c′) if and only if

(a′, b′, c′) = σi(a, b, c) for some 0 ≤ i ≤ 2. It is clear that the relation ∼ is an
equivalence relation on W and the equivalence class of (a, b, c), denoted by
[(a, b, c)]∼ , consists of 3 triples in W .

Ek is considered as the initial segment of N. Let the order ≤ on N be
naturally introduced into Ek, i.e., 0 < 1 < · · · < k − 1.

A triple (a, b, c) ∈ W will be called even if a < b < c and odd if a < c < b.
Let Weven and Wodd be subsets of W defined by

Weven =
⋃

{ [(a, b, c)]∼ | (a, b, c) : even }
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and
Wodd =

⋃
{ [(a, b, c)]∼ | (a, b, c) : odd }.

We shall extend the meaning of even and odd and call any element
(a, b, c) ∈ W even if it is in Weven and odd if it is in Wodd.

Weven and Wodd can be characterized in the following way. For a =
(a1, a2, a3) ∈ W the number of reversed pairs in a, denoted by r(a), is
given by

r(a) = |{(i, j) | i, j ∈ {1, 2, 3}, i < j, ai > aj}|.

The following property is easy to see, from which the terms even and
odd stem.

Lemma 4 For any a ∈ W ,

(1) a ∈ Weven ⇐⇒ r(a) is even.

(2) a ∈ Wodd ⇐⇒ r(a) is odd.

Proof: For a = (a, b, c) ∈ W , if a < b < c then a ∈ Weven by definition
and, also, r(a) is even as r(a) = 0. Similarly, if a < c < b then a ∈ Wodd and,
also, r(a) is odd as r(a) = 1. Then the proof follows from an observation
that the process of applying σ to x ∈ W does not alter the parity, i.e.,
r(σ(x)) = r(x). 2

The following is essential in defining the majority operation mb, a
generalization of m2.

Lemma 5 {Weven,Wodd} is a partition of W , i.e.,

(1) W = Weven ∪Wodd, and

(2) Weven ∩Wodd = ∅.

Proof: Obvious from Lemma 4. 2

Definition 1 The majority operation mb on Ek is defined as follows:

mb(x, y, z) =

{
0 if (x, y, z) ∈ Weven

1 if (x, y, z) ∈ Wodd

The subscript ‘b’ stands for balanced. As is easily seen, mb is a
generalization of the majority operation m2 on E3.
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4.2 Centralizing Monoid of mb

We shall determine the centralizing monoid M(mb) which has mb as its
witness.

For an equivalence relation θ on Ek, we call an equivalence class U of θ
a cluster block (or, simply a cluster) of θ if it contains two or more elements,

i.e., |U | ≥ 2. For a unary operation s ∈ O(1)
k , we abuse the term and say

that s has a cluster if there exists a cluster of ker(s).

Lemma 6 Let s ∈ O(1)
k . If s ⊥ mb then s satisfies one of the following:

(1) s has a cluster U of size k (i.e., U = Ek),

(2) s has a cluster U of size k− 1 which contains 0 and 1, i.e., {0, 1} ⊆ U ,

(3) s has no cluster.

Note that (1) is equivalent to saying that s is a constant operation, i.e.,
s ∈ CONST, while (3) is equivalent to saying that s is a permutation, i.e.,
s ∈ Sk.
Proof: The proof follows from three Claims.

Claim 1. If U is a cluster of s, then {0, 1} ⊆ U .

Proof of Claim 1. Let α ∈ Ek be the value of s on U , i.e., s(U) = {α}.
Suppose 0 ̸∈ U . Let a, b ∈ U be elements such that a < b. Since

(0, a, b) ∈ W and 0 < a < b, we have mb(0, a, b) = 0. Hence, by 0 ̸∈ U ,
s(mb(0, a, b)) = s(0) ̸= α, whereas mb(s(0), s(a), s(b)) = mb(s(0), α, α) = α,
implying s ̸⊥ mb. Therefore, 0 ∈ U .

Next, suppose 1 ̸∈ U . Take a ∈ U \ {0}. Since (0, 1, a) ∈ W and
0 < 1 < a, we have mb(1, 0, a) = 1. The rest is analogous to the above. By
1 ̸∈ U , s(mb(1, 0, a)) ̸= α, whereas mb(s(1), s(0), s(a)) = mb(s(1), α, α) = α
and we get s ̸⊥ mb. Therefore, 1 ∈ U . 3

As an immediate consequence of Claim 1, we obtain:

Claim 2. For any s ∈ O(1)
k , there exists at most one cluster of s. 3

Next, we discuss the size of a cluster.

Claim 3. A cluster U of s satisfies |Ek \ U | < 2.

Proof of Claim 3. Again, we let α ∈ Ek satisfy s(U) = {α}. In particular,
s(0) = s(1) = α by Claim 1. Assume to the contrary that there exist two
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elements c, d (c ̸= d) in Ek \ U . Let s(c) = γ and s(d) = δ for γ, δ ∈ Ek.
Since U is a unique cluster and c, d ̸∈ U , we have γ ̸= δ.

Since both (0, c, d) and (0, d, c) are in W and the values of mb on W
are in {0, 1}, we have

s(mb(0, c, d)) = s(mb(0, d, c)) (= α).

On the other hand, we have

mb(s(0), s(c), s(d)) = mb(α, γ, δ)

̸= mb(α, δ, γ)

= mb(s(0), s(d), s(c)).

It follows that s andmb do not commute, i.e., s ̸⊥ mb, against the assumption.
3

Evidently, Claims 1, 2, 3 together prove the lemma. 2

We shall take a closer look at the cases (2) and (3) in Lemma 6. First,
the case (2).

For any U ∈ P(Ek) and c ∈ Ek \ U such that {0, 1} ⊆ U and Ek =
U ∪ {c} and any α, β ∈ Ek such that α ̸= β, we define a unary operation

s�(c;α, β) ∈ O(1)
k by

s�(c;α, β)(x) =

{
α if x ∈ U ,
β if x = c .

We often write s� in place of s�(c;α, β) when c, α, β are understood.

Remark 1 Any s ∈ O(1)
k satisfying (2) in Lemma 6 can be expressed as

s�(c;α, β) for some c ∈ Ek \ {0, 1} and α, β ∈ Ek with α ̸= β.

Lemma 7 For any U ∈ P(Ek), c ∈ Ek \ U and α, β ∈ Ek as above,
s�(c;α, β) and mb commute, i.e., s�(c;α, β) ⊥ mb.

Proof: We are to show that s�(mb(x, y, z)) = mb(s�(x), s�(y), s�(z))
holds for all (x, y, z) in W , which easily follows from (i) and (ii) below. (i)
Because of mb(x, y, z) ∈ {0, 1} by definition and {0, 1} ⊆ U by assumption,
it is immediate to see that s�(mb(x, y, z)) = α. (ii) Among x, y, z for which
(x, y, z) ∈ W , at least two of them are in U and, hence, at least two of
s�(x), s�(y), s�(z) are α, which implies mb(s�(x), s�(y), s�(z)) = α. 2
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Denote by Σ� the set of s�(c;α, β) (∈ O(1)
k ) over all c ∈ Ek \ {0, 1} and

α, β ∈ Ek with α ̸= β.

Next, we move to the case (3) in Lemma 6. Let ŝ ∈ O(1)
k be the

permutation defined by

ŝ(x) =


1 if x = 0 ,
0 if x = 1 ,

k + 1− x if 2 ≤ x < k .

Lemma 8 It holds that ŝ ⊥ mb.

Proof: The assertion is easy to check for k = 3. Assume k > 3. Then ŝ is
(strictly) decreasing on Ek \ {0, 1}, that is, a < b implies ŝ(a) > ŝ(b) for any
a, b ∈ Ek \ {0, 1}.

We are to show ŝ(mb(x, y, z))=mb(ŝ(x), ŝ(y), ŝ(z)) for all (x, y, z) ∈ W .
First, take the case of {x, y, z}∩{0, 1} = ∅. In this case, (ŝ(x), ŝ(y), ŝ(z))

= (k + 1− x, k + 1− y, k + 1− z) and it is readily checked that the parity
(i.e., even or odd) of (x, y, z) and (ŝ(x), ŝ(y), ŝ(z)) are different. On the other
hand, the parity of ŝ on {0, 1} is also switched (i.e., ŝ(0) = 1 and ŝ(1) = 0).
Hence, we obtain ŝ(mb(x, y, z)) = mb(ŝ(x), ŝ(y), ŝ(z)).

The remaining case of {x, y, z}∩{0, 1} ≠ ∅ is easy and left to the reader.
2

Lemma 9 Let s ∈ O(1)
k be a permutation. Then, s ⊥ mb if and only if s is

ε (= id) or ŝ.

Proof: Sufficiency follows from Lemma 8.
Necessity: Assume s ⊥ mb. Since mb(W ) = {0, 1} by the definition

ofmb, it follows from s ⊥ mb that s({0, 1}) ⊆ {0, 1}. Since s is a permutation,
this implies that either s(x) = x or s(x) = 1− x holds on {0, 1}. Note that,
if k = 3, then s(2) = 2 and, hence, s = ε or ŝ. Hereafter, we assume k > 3.

Case 1. s(x) = x on {0, 1}: Let a, b be any elements in Ek \ {0, 1}
such that a < b. Since s is a permutation, we have s(a) ̸= s(b) and
s(a), s(b) ∈ Ek \ {0, 1}. Clearly, we have s(mb(0, a, b)) = s(0) = 0 on the
one hand and mb(s(0), s(a), s(b)) = mb(0, s(a), s(b)) on the other hand.
Hence, the assumption s ⊥ mb implies mb(0, s(a), s(b)) = 0, which means
s(a) < s(b). Thus, it is verified that the restriction of s to Ek \ {0, 1} is a
permutation and strictly increasing. Therefore, together with the assumption
that s(x) = x on {0, 1}, s must be the identity ε on Ek.
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Case 2. s(x) = 1− x on {0, 1}: A similar argument as above works. Let
a, b be in Ek \ {0, 1} such that a < b. Since s is a permutation, we have
s(a) ̸= s(b) and s(a), s(b) ∈ Ek \ {0, 1}. Now, we have s(mb(0, a, b)) =
s(0) = 1 and mb(s(0), s(a), s(b)) = mb(1, s(a), s(b)). Hence, s ⊥ mb implies
mb(1, s(a), s(b)) = 1, which means s(a) > s(b). Thus, the restriction of s
to Ek \ {0, 1} is a permutation and strictly decreasing. In other words, we
have a sequence s(2) > s(3) > · · · > s(k − 1). This property, combined with
s(0) = 1 and s(1) = 0, can be satisfied only by ŝ. The proof is complete. 2

Proposition 5 The centralizing monoid M(mb) which has mb as its wit-
ness is:

M(mb) = CONST ∪ Σ� ∪ {ε, ŝ }

Proof: Since all constant operations commute with mb, the proof follows
from Lemma 6, Lemma 7 (together with Remark 1) and Lemma 9. 2

4.3 Is It Maximal?

Is M(mb) a maximal centralizing monoid? Or, does there exist an operation

f ∈ O(n)
k , n ≥ 1, which satisfies M(mb) ⊂ M(f) ⊂ O(1)

k ?

To begin with, we ask if there exists a monoid (not necessarily a

centralizing monoid) M which sits strictly between M(mb) and O(1)
k , i.e.,

M(mb) ⊂ M ⊂ O(1)
k . The answer is yes. In fact, there are many.

We take one such example, which happens to be minimal among
those M ’s concerned.

Define two permutations ŝ1, ŝ2 ∈ O(1)
k by:

(i) ŝ1 = (01), i.e., ŝ1(0) = 1, ŝ1(1) = 0 and ŝ1(x) = x otherwise,

(ii) ŝ2(x) =

{
x if x = 0, 1 ,

k + 1− x if 2 ≤ x < k .

Note that ŝ = ŝ1 ◦ ŝ2 = ŝ2 ◦ ŝ1 where ◦ denotes the composition of unary
operations. In fact, {ε, ŝ, ŝ1, ŝ2} is a subgroup of Sk.

Let M̃ be a subset of O(1)
k defined by

M̃ = CONST ∪ Σ� ∪ {ε, ŝ, ŝ1, ŝ2}.



A Study on Centralizing Monoids with Majority Operation Witnesses91

Clearly, M̃ = M(mb) ∪ {ŝ1, ŝ2}. For k > 3, we have M(mb) ⊂ M̃ since
ŝ1, ŝ2 ̸∈ M(mb). It should be noted, however, that in case of k = 3 we have

ŝ1 = ŝ and ŝ2 = ε and, accordingly, M̃ = M(mb).
The next lemma is straightforward. (The second inclusion is proper

because many permutations, for example, are not in M̃ .)

Lemma 10 Let k > 3. M̃ is a monoid and M(mb) ⊂ M̃ ⊂ O(1)
k .

An operation f ∈ O(n)
k , n ≥ 3, is a semiprojection if there exists

1 ≤ i ≤ n such that f(a1, . . . , an) = ai whenever |{a1, . . . , an}|<n.

Let p̃ ∈ O(3)
k be the semiprojection defined by p̃(x, y, z) = x for

(x, y, z) ∈ E3
k \W and

p̃(x, y, z) =


1 if x = 0 ,
0 if x = 1 ,
x if x ̸∈ {0, 1} .

for (x, y, z) ∈ W .

Lemma 11 The semiprojection p̃ commutes with all members of M̃ , i.e.,
p̃ ⊥ M̃ . Hence, M̃ ⊆ M(p̃).

Proof: First, p̃ ⊥ CONST is trivial. To show p̃ ⊥ Σ�, it is sufficient to ob-
serve that s({0, 1}) = α for any c ∈ Ek\{0, 1} and s = s�(c;α, β). Next, since
ŝ1 (resp., ŝ2) is a permutation, (x, y, z) ∈ W implies (ŝ1(x), ŝ1(y), ŝ1(z)) ∈ W
(resp., (ŝ2(x), ŝ2(y), ŝ2(z)) ∈ W ). Then it is easy to see that p̃ ⊥ {ŝ1, ŝ2}.
Finally, p̃ ⊥ ŝ is clear as ŝ = ŝ1 ◦ ŝ2. 2

Corollary 1 Let k > 3. M(mb) is not a maximal centralizing monoid.

The proof follows from Lemmas 10 and 11. (Note that M(p̃) ⊂ O(1)
k

is assured by the existence of, for example, t ∈ O(1)
k which is defined by

t(0) = 1 and t(x) = 0 if x > 0.)

Remark 2 One might argue that mb is not a proper generalization of m2

and a proper one would yield a maximal centralizing monoid. We do not
deny such possibility. However, we assert the properness of mb since it is
defined in such a natural way.

A remaining question on mb is whether it is a minimal operation. At
the current stage we do not know the answer to it.
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