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The signal-to-noise ratio (SNR) of seismic data is the key to seismic data
processing, and it also directly affects interpretation of seismic data results.
The conventional denoising method, independent variable analysis, uses
adjacent traces for processing. However, this method has problems, such as
the destruction of effective signals. The widespread use of velocity and
acceleration geophones in seismic exploration makes it possible to obtain
different types of signals from the same geological target, which is
fundamental to the joint denoising of these two types of signals. In this study,
we propose a joint denoising method using seismic velocity and acceleration
signals. This method selects the same trace of velocity and acceleration signal for
Independent Component Analysis (ICA) to obtain the independent initial effective
signal and separation noise. Subsequently, the obtained effective signal and noise
are used as the prior information for a Kalman filter, and the final joint denoising
results are obtained. This method combines the advantages of low-frequency
seismic velocity signals and high-frequency and high-resolution acceleration
signals. Simultaneously, this method overcomes the problem of inconsistent
stratigraphic reflection caused by the large spacing between adjacent traces,
and improves the SNR of the seismic data. In a model data test and in field data
from a work area in the Shengli Oilfield, the method increases the dominate
frequency of the signal from 20 to 40 Hz. The time resolution was increased from
8.5 to 6.8 ms. The test results showed that the joint denoising method based on
seismic velocity and acceleration signals can better improve the dominate
frequency and time resolution of actual seismic data.
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1 Introduction

With the development of exploration technology, exploration targets have changed from
large, thick, and high porosity reservoirs to small, thin, low porosity reservoirs, and from
structural reservoirs to stratigraphic, lithological, and other complex reservoirs.
Requirements for exploration resolution and accuracy are increasing. Seismic data
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denoising is a key step in seismic data processing and affects
subsequent data interpretation (Han and Van, 2013).
Conventional suppression methods for random noise in seismic
data are mainly divided into space domain and transform domain
methods (Necati, 1986; Joachim, 1997). Noise suppression methods
in the space domain can be divided into median filtering (Wang
et al., 2012), diffusion filtering (Perona and Malik, 1990), etc.,; The
methods in transform domain noise suppression can be divided into
frequency domain denoising (Necati, 1986), wavelet transform
denoising (Morlet et al., 1982), meander transform denoising
(Cao et al., 2015), and empirical mode decomposition-based
denoising methods (Mirko and Maiza, 2009). Median filter
denoising can easily destroy the continuity of events and lose
detail (Chen et al., 2019). Diffusion filtering lacks the use of
nonlocal information, which may damage some effective signals
(Wang et al., 2021). Although frequency-domain denoising is one of
the most commonly-used denoising methods, it cannot suppress
noise in the frequency range that coincides with the effective signal
(Sergio and Tad, 1988). Wavelet transform denoising can only
perform signal transformation in a single direction, and cannot
adapt to signals with multi-directional changes (Spanias et al., 1991).
Curved transform denoising is a derivative of wavelet transform
denoising, which overcomes the above disadvantages; however, it
has other problems, such as slow computing efficiency (Cao et al.,
2012). The denoising method based on empirical mode
decomposition has the problems of low accuracy or instability in
the decomposition process due to boundary effects, and mode
aliasing occurs during the decomposition process (Damaševičius
et al., 2017). In addition, these methods only use one type of data for
processing, and so cannot take into consideration the advantages of
multiple signals from different geophones.

Velocity and acceleration geophones are widely used in seismic
exploration to satisfy the requirements of high-precision exploration
(Nicolas and Jérôme, 2017). By comparing the frequency
characteristics and waveforms of the velocity and acceleration
signals, Hons et al. (2007; 2008) proposed that the two signals
were similar after mathematical conversion, and that there was only
a slight difference in themain wave. However, the acceleration signal
has a wider frequency band than the velocity signal, which improves
seismic resolution (Denis, 2004; Zhang et al., 2020). In addition,
some researchers have shown that the acceleration signal has little
waveform distortion, high signal-to-noise ratio (SNR), and fidelity
(Lansley et al., 2008; Liu et al., 2012; Bai et al., 2014). By comparing
the frequency band information of different signals in the same
domain, Ren (2018) proposed that the velocity signal has more
information in the low-frequency region than the acceleration
signal, and the acceleration signal has more information in the
high-frequency region than the velocity signal. Wei (2018) pointed

out that in the filed seismic data, the SNR of the velocity signal is
higher than the acceleration signal. But the acceleration signal has a
higher dominate frequency. Although in theory the velocity and
acceleration signals can be consistent after mathematical
transformation, different types of geophones have different
advantages in actual acquisition. Therefore, the velocity and
acceleration signals can be combined for denoising, and the
respective advantages of the two signals can be retained.

Using the observed signal to separate the effective signal and
noise is a problem of blind source separation. Blind source
separation problem is that only the observed mixed signal is used
to recover the source signal when both the source signal and
transmission channel are unknown During signal transmission
(Zhang et al., 2022). Independent component analysis (ICA) is
one of the most effective and widely-used methods for solving
this problem. Based on the adjacent seismic traces approximation
theory, Meng and Su (Meng et al., 2021) used ICA to separate noise
and effective signals to improve the resolution of seismic data. At the
same time, ICA requires that the number of observed signals be
greater than or equal to the number of source signals. For
consistency, conventional ICA approximates the reflection
coefficients of adjacent seismic traces. However, when the
spacing between adjacent traces is too large, or when there are
special geological structures between adjacent traces, there are large
differences between the formation reflection coefficients of adjacent
seismic traces. Nonetheless, when the formation reflection
coefficients of the same trace of the velocity and acceleration
signals are consistent, and there is no such problem. Owing to
the consistency of the reflection coefficient, the effective signals of
the velocity and acceleration signals can be consistent after
mathematical transformation, but different types of signals have
different noise signals due to different acquisitions. Therefore, the
velocity and acceleration signals of the same trace can be considered
to have certain differences that satisfy the requirements of ICA.

In this paper, we propose a joint denoising method based on
seismic velocity and acceleration signals. First, based on the
mathematical relationship between the speed and acceleration
signals, ICA is used to obtain approximately independent
effective and noise signals. Second, the effective and noise signals
obtained by ICA are taken as the prior information for the Kalman
filter, which provides the Kalman estimation components more
comprehensive prior information. Denoising data can then be
obtained after joint processing.

This method is based on the theoretical relationship between
seismic velocity and acceleration signals, and uses ICA and Kalman
filter for denoising. At the same time, this method takes into account
the advantages of velocity and acceleration signals, solves the
problem of the inconsistency of adjacent traces data, and thus

FIGURE 1
Independent component analysis model.
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improves the resolution of seismic signal and is suitable for further
application.

2 Materials and methods

2.1 Independent component analysis

As an independent source signal separation method, ICA is one
of the most effective and widely-used methods for solving the
problem of blind source separation (Saruwatari et al., 2006). The
ICAmethod can realize the separation of effective seismic signal and
random noise according to their statistical characteristics (Liu et al.,
2007). ICA is a method for determining a set of non-orthogonal
coordinate systems in multidimensional data, and obtaining another
set of statistically independent data in the original multidimensional
data through the projection of coordinates. This method requires

that the number of observed signals be greater than the number of
source signals, and that the source signals are independent of each
other and follow a non-Gaussian distribution (Qin et al., 2018). In
seismic data, the required effective signal and noise are independent
of each other. In addition, a seismic wavelet can be considered as a
non-Gaussian distribution. Therefore, seismic signals meet the
preconditions of the ICA method, which can be used to separate
seismic signals from noise.

The ICA requirement that the number of observed signals be
greater than the number of source signals is generally based on
multiple observations of data from the same or similar channels. The
actual seismic data have many seismic traces, and each seismic data
point can be regarded as an independent one-dimensional signal. If
each seismic trace is processed separately, the number of observed
data points is less than the number of source signals. The data
obtained from separate observations of the velocity and acceleration
signals of the same seismic trace satisfy the preconditions of ICA.

FIGURE 2
Flow chart of seismic velocity and acceleration signal combined denoising.
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In the mathematical model of ICA it is assumed that there are m
source signals S � (s1, s2, . . . , sm)T , n mixed signals
X � (x1, x2, . . . , xn)T . Mixed signals composed of mixed source
signals are obtained after passing through an unknown system A,
and then m estimated source signals Y � (y1, y2, . . . , ym)T are
obtained by blind separation system B. When the estimated
source signal Y is infinitely close to the real source signal S,

source signal S (which cannot be obtained by direct observation)
is obtained. Figure 1 shows the system model of ICA.

The denoising method based on ICA can be described as follows:
Assume there are m source signals S � (s1, s2, . . . , sm)T , and n

observed signals X � (x1, x2, . . . , xn)T , which can be expressed as

xi � ai1s1 + ai2s2 + . . . + aimsm (1)

FIGURE 3
Comparison of the processing results of theoretical models (A).
Theoretical reflection coefficient; (B). Synthesize velocity signal; (C).
Synthetic acceleration signal; (D). Acceleration signal obtained.

FIGURE 4
Comparison diagram of processing results of noisy data (A).
Velocity signal with noise; (B). Acceleration signal containing noise;
(C). Acceleration signal obtained; (D). Residual difference between
original acceleration signal and processed acceleration signal.
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where i � 1, 2, . . . , n.
Rewrite Eq. 1 into vector form,

X � AS (2)
where A is the mixed matrix of the unknown system, which can be
expressed as

A �
a11 . . . a1j
..
.

1 ..
.

ai1 . . . aij

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

where aij represents the influencing factor of the jth source signal in
the ith observed signal, i=1,2... n, j=1,2... m.

Equation. 2 represents the standard ICA model. In actual
seismic data, the observed signal X is known, whereas the source
signal S and mixed matrix A are unknown. Assuming that the
mixture matrix A is invertible, Eq. 2 can be written as

S � BX (4)
where B is the inverse of the mixed matrix A.

The core function of ICA is to obtain the above Eq. 4, obtain
matrix B, and then realize the separation of the observed signal X,
and finally obtain different source signals S.

Prior to ICA, the data need to be zero-centered and whitened.
The purpose of zero-centering is to make the mean value of each
data observation zero, and simplify the ICA algorithm. The purpose
of whitening is to remove the correlation between observed signals,
so that the algorithm convergence speed is faster and the algorithm
is more stable during ICA.

Zero-centering can be expressed as:

Xi,j � Xi,j − Xmj (5)
where X is the observed data, Xi,j is the i-row data of the jth channel,
and Xmj is the mean value of the observed data of the jth channel.

Whitening can be expressed as:

Xw � D−1I−1X (6)
whereXw is the data afterwhitening,D is the eigenvalue of the covariance
data of data X after zero-centering, and I is the identity matrix.

When calculating the separation matrix B, negative entropy was
adopted in this study as a measure of non-Gaussian signal. The
iterative equation of the ICA algorithm can be expressed as
(Hajsadeghi et al., 2020):

bk+1 � E XwG′ bTk Xw( ){ } − E G″ bTk Xw( ){ }bk (7)

where b is the row vector of separation matrix B, Xw is the observed data
after whitening, and G can be selected in different expressions according
to the type of signal. This method selects (Hajsadeghi et al., 2020):

G′ Xw( ) � −1
a
exp −aX2

w/2( )
G″ Xw( ) � Xw exp −aX2

w/2( )
⎧⎪⎪⎨⎪⎪⎩ (8)

where Xw is the observed data after whitening, the value of a is about
1, G′ represents the first derivative of G, G″ represents the second
derivative of G.

The final separation matrix B can be obtained after satisfying the
iteration termination condition. Using the separation matrix B, the
observed signal X can be reconstructed to obtain the source signal S.

2.2 Kalman filter method

Although the ICA method has the advantages of fast
convergence speed, ease of use, simple calculation, and small

FIGURE 5
Comparison diagram of processing results of additional noisy
data (A). Velocity signal with noise; (B). Acceleration signal with
additional noise; (C). Acceleration signal obtained; (D). Residual
difference between original acceleration signal and processed
acceleration signal.
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FIGURE 6
Shot gather (A). Velocity shot gather; (B). Acceleration shot gather.

FIGURE 7
De-noising data (A). Processed acceleration shot gather; (B). Noise.
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memory requirement, the order of the output vectors and the
amplitude of the output signal are uncertain. The Kalman filter
method has the problem of uncertainty of prior information. The
decomposition components obtained by ICA of seismic records can
provide Kalman filter components with more comprehensive prior
information. Therefore, the Kalman filter method is used to denoise

the acceleration and the original acceleration signals by using the
information obtained from the ICA as the prior information.

The mathematical model of the Kalman filter method is divided
into two types of equations: the state equation and observation
equation. These two equations are used to describe the system. The
state equation can be written as (Ott and Meder, 1972):

FIGURE 8
Joint processing results (A). Original velocity profile; (B). Original acceleration profile; (C). Processed acceleration profile.
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Xk � ΦkXk−1 +Wk (9)
where Xk is the n-dimensional column vector and is the state of the
system at time k. Φk is a square matrix of order n × n, which is the
state transition square matrix of the system and describes the law of
the system from k-1 time to k time.Wk is the n-dimensional column
vector, which is also the system noise. The expression of the
observation equation is

Zk � HkXk + Vk (10)
where Zk is the m-dimensional column vector and observation
vector. Hk is a matrix of order m×n. Vk is the m-dimensional
column vector, which is the observation noise.

The state equation and observation equation applied to the
seismic system can be rewritten as (Eikrem et al., 2019):

Rk � FkRk−1 +Wk (11)
Sk � BkRk + Vk (12)

where R is the reflection coefficient sequence, B is the seismic
wavelet sequence, S is the seismic record obtained by
observation, F is the state transition matrix, W and V are the
system noise and observation noise, respectively, and their
variances are Q and C, respectively.

The core of the Kalman filter method is to obtain the state
quantity in the state equation using the observed quantity.

The implementation process of the Kalman filter method is as
follows.

First, calculate the initial state estimation and error covariance
matrix as follows:

Rk � FkRk−1 (13)
P′
k � FkPk−1FT

k + Qk (14)
where R is the sequence of reflection coefficients, P is the initial error
covariance estimate, k is the number of iterations, and T is the
transpose of the matrix in the upper-right corner.

Then, calculate the gain matrix K:

Kk � P′
kB

T
k BkP

′
kB

T
k + Ck[ ]−1 (15)

According to the gain matrix K, the state prediction and
error covariance matrices are updated using the following
equation:

Rk � Rk−1 + Kk Sk − BkRk−1[ ] (16)
Pk � I − KkBk[ ]P′

k (17)
where P is the updated error covariance matrix and I is the identity
matrix.

The above equation shows that the result obtained from one use
of the Kalman filter method becomes the prior information for the
next use. Finally, the obtained state prediction R and wavelet can be
reconstructed to obtain a denoised result.

FIGURE 9
Comparison results before and after denoising (Left is the original acceleration signal; Right is noise removal).

FIGURE 10
Spectrum of joint processing results (Yellow curve, original
velocity profile spectrum; Red curve, original acceleration profile
spectrum; Black curve, profile spectrum after combined processing).
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2.3 Assessment method

In this study, SNR and time resolution were used to evaluate the
merits and practicability of the denoising method.

The equation for calculating SNR is as follows:

SNR � 10lg
Ps

Pn
(18)

where Ps is the power of the signal, Pn is the power of the noise, and
lg is the logarithm of base 10.

The power of discrete signal x(n) can be expressed as:

P � ∑N−1
n�0 x n( )2
N

(19)

where N is the length of discrete signal x(n).

2.4 Joint denoising process

In this method, the initial normalized and whitened data were
obtained using the original seismic velocity and acceleration signals.
Then, ICA was performed to obtain the independent initial effective
signal and separation noise. Finally, the initial processing data, initial
effective signal, and noise were taken as the inputs of the Kalman
filter, and the final joint denoising results were obtained. Figure 2
shows a flow chart of the denoising using seismic velocity and
acceleration signals.

3 Results

3.1 Model data

A two-dimensional model was established (Figure 3A) to
verify the joint denoising processing method for seismic
velocity and acceleration signals. The wavelet of the velocity
signal was the Riker wavelet with a dominate frequency of
20 Hz, and the wavelet of the acceleration signal was the
derivative of the Riker wavelet with a dominate frequency of
20 Hz. Figure 3A shows the theoretical reflection coefficient,
Figure 3B shows the synthesized velocity signal, Figure 3C

shows the synthesized acceleration signal, and Figure 3D shows
the acceleration signal obtained by this method. A comparison
between shows that this method can obtain more accurate seismic
signals without noise.

The combined denoising method proposed in this paper was
used to process the synthesized seismic record by adding Gaussian
white noise with a SNR of 5 dB to verify the anti-noise ability of the
method. Figures 4A, B show the velocity and acceleration signals,
respectively, after adding noise, and Figure 4C shows the seismic
acceleration signal obtained by this method. Figure 4D shows the
residual difference between the original and processed acceleration
signals. The comparison between Figure 3C, Figures 4C, D shows
that the joint denoising method proposed in this paper can still
separate accurate effective signals with the same Gaussian white
noise.

Based on Figure 4, additional Gaussian white noise with a SNR
of 15 is added to the synthesized acceleration signal, and the
proposed joint denoising processing method was used to verify the
anti-noise capability of this method. Figures 5A, B show the
velocity signal after noise is added, and the acceleration signal
after noise is added twice. Figure 5C shows the seismic acceleration
signal obtained using this method. Figure 4D shows the residual
difference between the original and processed acceleration signals.
From Figure 3C, Figure 4C, Figure 5C, D, it can be seen that the
joint denoising method proposed in this study can still separate
accurate and effective signals containing mixed noise.
Additionally, the SNR of the signals in Figures 5B, C were
calculated to be 14.5 dB and 20.5 dB respectively, indicating that
the proposed joint denoising method can significantly improve the
SNR of the signal.

3.2 Field data

To further analyze the accuracy of this method and verify its
effectiveness, we applied it to the velocity and acceleration signals of
an offshore engineering area belonging to Sinopec Petroleum
Engineering Geophysics Co. Figures 6A, B show the seismic
velocity and acceleration shot gathers, respectively. Velocity and
acceleration shot gathers are the signals received at the same position
and time using velocity and acceleration geophones respectively.
Figures 7A, B show the effective acceleration signal and filtered noise
obtained by denoising using the method proposed in this paper
respectively. After denoising, the continuity of the events in the
seismic data is better. And there are fewer effective signals in the
filtered noise.

Figures 8A, B show the seismic velocity and acceleration profiles,
respectively, while Figure 8C shows the seismic profile processed by
the proposed method. Figure 9 shows the original acceleration
profile and the noise filtered by the combined treatment. After
processing, the continuity of the event in the seismic data is better,
the event is compressed, and the structure is easy to recognize.
Additionally, the weak seismic signal in the shallow layer of the
seismic data was strengthened. The comparison results show the
feasibility and practicability of this method for denoising seismic
velocity and acceleration data. It can be seen from the filtered noise
profile that although there are some effective signals in the noise
filtered by this method, their amplitude is small, and their energy is

FIGURE 11
Separate processing result.
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weak, and most of the filtered noise results were incoherent.
Figure 10 shows the frequency spectra of the original velocity
profile, original acceleration profile, and processed profile. The yellow
curve represents the original velocity profile spectrum, the red curve the
original acceleration profile spectrum, and the black curve the profile
spectrum after combined processing. From the spectrum of the data
before and after processing, it can be seen that the proposed joint
denoising method has almost no loss at low frequency. The dominate
frequency of the signal was increased from 20Hz to 40 Hz. The results
show that the time resolution of the original velocity profile, the original
acceleration profile and the processed profile are 10.9 m, 8.5 ms and
6 8ms, respectively. The time resolution was improved by approximately
20%, indicating that this method can significantly improve the time
resolution of seismic data.

To compare the advantages of joint processing, only a seismic
acceleration signal was used for denoising. Figure 11 shows the
seismic profile alone after noise removal; Figure 12 shows the
original acceleration profile and filtered noise separately; and

Figure 13 shows the spectrum of the seismic profile denoised
using only acceleration signals. The time resolution of the seismic
profile obtained using a single denoising processing method was
8 ms. This indicates that the effect of single denoising is weaker
than that of combined denoising in terms of improving time
resolution. Meanwhile, separate processing barely broadens the
frequency band of the original data. Also, separate processing
loses a part of the high-frequency information of the signal, while
it can be observed that there are still many effective signals in the
filtered noise profile. Finally, the joint denoising method is more
sensitive to the identification of pinch-out points, and the event
continuity is better.

4 Discussion and conclusion

The joint denoising method presented in this paper relies on
the system and observation equations, which are represented by
the state transition matrix in the Kalman filter. The state
transition matrix can typically be determined using either the
average value method or the white noise method. In this study, the
white noise method was chosen to determine the state transition
matrix, owing to its simplicity and efficiency in calculation.
Furthermore, when dealing with significant interference and
low-dimensional data, the denoising results obtained using the
average-value method may not accurately reflect the true
situation, whereas the state-transition matrix determined using
the white-noise method provides more reliable results. However,
in joint denoising, the effect of Kalman filter is more dependent on
the establishment of the observation system, that is, the effect of
denoising is affected by the establishment of the state transition
matrix.

The test results of model seismic data both with and without
noise demonstrate that the method outlined in this paper is capable

FIGURE 12
Comparison results before and after denoising (Left is the original acceleration signal; Right is noise removal).

FIGURE 13
Spectrum of separate processing results (Yellow curve, spectrum
of the original velocity profile; Red curve, original acceleration profile
spectrum; Blue curve, profile spectrum alone after processing).
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of effectively separating effective signals and enhancing the SNR.
These results are consistent with the expected theoretical values. The
processing of actual seismic data indicates that this method increases
the signal bandwidth and time resolution. The proposed joint
processing technique has numerous advantages over single-signal
denoising, including a broadened bandwidth, improved time
resolution, and greater continuity of events. Furthermore, this
study highlights that combining different signal recording
methods leads to a more accurate restoration of seismic wave
signals, which will provide valuable insights for improving
seismic acquisition techniques in the future.
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