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Modeling cell-mediated
immunity in human type 1
diabetes by engineering
autoreactive CD8+ T cells

Leeana D. Peters1, Wen-I Yeh1, Juan M. Arnoletti 1,
Matthew E. Brown1, Amanda L. Posgai1,
Clayton E. Mathews1 and Todd M. Brusko 1,2*

1Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes
Institute, University of Florida, Gainesville, FL, United States, 2Department of Pediatrics, College of
Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
The autoimmune pathogenesis of type 1 diabetes (T1D) involves cellular

infiltration from innate and adaptive immune subsets into the islets of

Langerhans within the pancreas; however, the direct cytotoxic killing of

insulin-producing b-cells is thought to be mediated primarily by antigen-

specific CD8+ T cells. Despite this direct pathogenic role, key aspects of their

receptor specificity and function remain uncharacterized, in part, due to their low

precursor frequency in peripheral blood. The concept of engineering human T

cell specificity, using T cell receptor (TCR) and chimeric antigen receptor (CAR)-

based approaches, has been demonstrated to improve adoptive cell therapies for

cancer, but has yet to be extensively employed for modeling and treating

autoimmunity. To address this limitation, we sought to combine targeted

genome editing of the endogenous TCRa chain gene (TRAC) via CRISPR/Cas9

in combination with lentiviral vector (LV)-mediated TCR gene transfer into

primary human CD8+ T cells. We observed that knockout (KO) of endogenous

TRAC enhanced de novo TCR pairing, which permitted increased peptide:MHC-

dextramer staining. Moreover, TRAC KO and TCR gene transfer increased

markers of activation and effector function following activation, including

granzyme B and interferon-g production. Importantly, we observed increased

cytotoxicity toward an HLA-A*0201+ human b-cell line by HLA-A*02:01

restricted CD8+ T cells engineered to recognize islet-specific glucose-6-

phosphatase catalytic subunit (IGRP). These data support the notion of altering

the specificity of primary human T cells for mechanistic analyses of autoreactive

antigen-specific CD8+ T cells and are expected to facilitate downstream cellular

therapeutics to achieve tolerance induction through the generation of antigen-

specific regulatory T cells.
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1 Introduction

Autoreactive T cells specific for b-cell antigens have been shown
to be integral to type 1 diabetes (T1D) disease pathogenesis in the

non-obese diabetic (NOD) mouse and are associated with human

disease progression through immune studies and histopathological

evidence (1). Murine models of T1D have helped to illuminate

numerous antigens targeted during the initiation and propagation

of the autoimmune process (2–4). One of these antigens, islet-

specific glucose-6-phosphatase catalytic subunit-related protein

(IGRP), has been implicated as a key autoantigen in the non-

obese diabetic (NOD) mouse model of T1D (5). Moreover,

landmark human tissue studies have visually confirmed the

targeting of this and other antigens by CD4+ and CD8+ T cells in

situ in T1D with peptide-MHC multimer staining (6).

In order to understand the contribution of autoreactive T cells in

driving T1D, we previously generated islet antigen-specific T cell

“avatars” via lentiviral-mediated TCR gene transfer to primary CD8+

T cells. Our previous work using the IGRP265-273 reactive (clone 32)

(7) T cell “avatars” highlighted the role of innate cytokines IL-12 and

IL-18 to synergistically drive a Tc1 phenotype (8), which enhanced

the killing of the b-cell line blox5 (9). Moreover, our group has also

utilized this clone to investigate the regulatory mechanism underlying

type I interferon-mediated T cell cytotoxicity (10). Importantly, we

demonstrated the utility of these avatars in constructing an isogenic

system to investigate key disease relevant cellular interactions (11).

Despite these advances in assessing antigen-specific T cell function,

there remain a number of outstanding questions regarding which

receptor specificities are directly pathogenic and thus, important for

T1D initiation and progression. Our lab (12) and others (13, 14) have

previously demonstrated that despite some repertoire sharing across

tissues (up to 24% of clones), the CD8+ T cell repertoire in islet

infiltrates and secondary lymphatics remains remarkably diverse,

with reactivities against both native and post-translationally

modified antigens detected (14). Importantly, the vast majority of

CD8+ T cell lines from handpicked islets of a recent onset T1D donor

were of unknown reactivities (14), highlighting the need for studies

examining a broader range of autoantigen targets and immune

receptors in T1D. There is also increasing evidence of divergent

patterns of initial targets of autoimmunity, characterized by insulin

autoantibody (IAA) or GAD autoantibody (GADA) initial

seroconversion, which seems to be linked to age (15) as well as

genetic risk at the HLA region (16) (HLA-DR4 and HLA-DR3,

respectively). Thus, these potential disease endotypes, coupled with

the large impacts of environmental exposures and aging on the

immune repertoire (17, 18), as well as heterogeneity in immune

phenotypes of CD8+ T cells in T1D (19), all serve to complicate the

assessment of antigen-specific phenotype and function.

In vitro modeling of autoimmunity and clinical adoptive cell

therapy (ACT) strategies rely on the generation of large numbers of

autoreactive T cells, surpassing the frequency obtainable in

peripheral blood without extended months of clonal expansion,

potentially altering the phenotype from the in vivo state. Despite the

success of common methods to generate antigen-specific T cells

(20), namely using a viral (often lentiviral) vector to deliver a de

novo T cell receptor (TCR), there remain concerns of off-target
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effects arising from heterologous TCR chain pairing (21, 22). Work

in the cancer immunotherapy space have demonstrated the utility

of gene editing technologies (i.e., CRISPR/Cas9) in targeting

endogenous TCRs to enhance on target-specificity and anti-tumor

functionality (21, 22), though to our knowledge this has not been

shown previously for T1D autoantigen reactive T cells. We

hypothesized that reducing the potential for heterologous chain

pairing would translate into enhanced effector phenotype and

function of a T1D-associated IGRP265-273 reactive clone (clone

32) (7). We chose to test our workflow in engineered IGRP-

reactive CD8+ T cells, as a number of studies have explored the

importance of this antigen in T1D as a target for human CD8+ T

cells in circulation (5, 23) and in situ (6). Therefore, we used

CRISPR/Cas9 to knockout (KO) the endogenous TCRa in

engineered IGRP-reactive CD8+ T cells, with the goal of more

effectively recapitulating autoreactive CD8+ T cell function in T1D.
2 Materials and methods

2.1 Human subjects

Peripheral blood mononuclear cells (PBMCs) were isolated via

density-gradient centrifugation from leukapheresis-processed blood

of healthy donors (N=4, median age: 25.5 years, range 21-27 years,

25% male) purchased from LifeSouth Community Blood Centers

(Gainesville, FL).
2.2 Cell isolation and expansion

Naïve CD8+ T cells were isolated in a two-step procedure

consisting of negative selection followed by positive selection

from leukapheresis products using the naïve CD8+ T cell isolation

kit (Miltenyi Biotec) and were cultured as reported previously (9).

Briefly, cells were seeded at a concentration of 2.5 x 105 cells/mL in

complete RPMI formulated as previously described (9) and

stimulated with a-CD3/28 coated beads (Dynabeads, Thermo

Fisher) at a 1:1 ratio with 100 IU/mL recombinant human IL-2

(Teceleukin, NIH). Media and IL-2 were added assuming

consumption every 2-3 days, with 5 ng/mL IL-7 (R&D systems)

added every 2-3 days after day 5 of culture.
2.3 Generation of autoreactive
T cell avatars

Cells were transduced 48 hours post-activation with a

multicistronic (pCCL.TRB.P2A.TRA.T2A.eGFP) lentiviral vector

(LV) encoding the HLA-A*02:01 restricted IGRP reactive clone

32 TCR (7) or mock (pCNFW.eGFP) control LV as previously

described (24, 25). Briefly, virus was added at 3 transducing units

(TU)/cell along with 8 µg/mL protamine sulfate, and cells were

spinnoculated at 1000xg for 30 minutes at 32°C. Transduction

efficiency was 34.0±4.1%. Cells were expanded, using methods

described above, for 5-7 days post-transduction, then assessed by
frontiersin.org
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flow cytometry for stable transduction by expression of GFP. Data

were acquired on an LSRFortessa flow cytometer (BD Biosciences)

and analyzed using FlowJo software v10 (BD).
2.4 CRISPR/Cas9-mediated KO of TRAC

After 5-7 days of expansion post-transduction, a-CD3/28
coated beads were removed, and transduced T cells were

electroporated with ribonucleoprotein (RNP) complexes

comprised of a single guide RNA (sgRNA, Synthego) and Cas9

(Thermo Fisher Scientific) at a 6:1 molar ratio (26) (assembled at

room temperature for 10 minutes) using the Lonza 4D-

Nucleofector X Unit and P3 Primary Cell 4D-Nucleofector X Kit

(Lonza Bioscience) with the pulse code EH100. For the negative

control condition, cells were electroporated without sgRNA or

Cas9. The sequence for the TRAC guide used was as follows:

GUCAGGGUUCUGGAUAUCUG.
2.5 Confirmation of TCRa KO and MHC-
multimer binding

Efficiency of TRAC KO was assessed 5-7 days post CRISPR/Cas9

(culture day 12-14). Briefly, cells were stained with Live/Dead Fixable

Near-IR (Thermo Fisher Scientific) for 10 minutes at 4°C, washed

with stain buffer (PBS + 2% FBS + 0.05% NaN3), and subsequently

stained for 30 minutes at 4°C with anti-human CD3e-PerCP-Cy5.5

(clone UCHT1, BioLegend) and TCRab-BV421 (clone IP26,

BioLegend) for 30 minutes at 4°C. Endogenous TCRa KO efficiency

was assessed by percentage of TCRab negative cells within the internal
control untransduced (GFP-) cells for each donor culture. To assess

changes in alpha chain expression and proper de-novo TCR chain

pairing, cells were stained with Live/Dead Fixable Near-IR as above in

addition to CD8-BV605 (clone SK1, BioLegend), TCR V alpha 2

(V⍺2, clone F1, Thermo Fisher) conjugated in house using the Zenon

Alexa Fluor 647 mouse IgG2a labeling kit (Invitrogen) according to

manufacturer instructions, and TCR V beta 20-1-PE (Vb2, clone
MPB2D5, Beckman Coulter) or TCRab-BV421 (clone IP26,

BioLegend) for 30 minutes at 4°C. To assess changes in functional

receptor avidity, IGRP265-273 MHC class I dextramer staining was

conducted as per manufacturer’s instructions (Immudex). Briefly, cells

were stained with fixable Live Dead NIR as above, followed by

incubation with TruStain Fc block (BioLegend) for 5 minutes and

incubation with 10 µL dextramer for 10 minutes at room temperature,

after which cells were extracellularly stained with anti-human CD8-

BV605 (clone SK1, BioLegend) and TCRab-BV421 (clone IP26,

BioLegend) for 20 minutes at room temperature. Data were

acquired on an LSRFortessa flow cytometer (BD Biosciences) and

analyzed using FlowJo software v10 (BD).
2.6 Stimulation assays

A derivative of the chronic myelogenous leukemia (CML) cell

line K562 engineered to express HLA-A*02:01 (9, 24), kindly
Frontiers in Immunology 03
provided by Drs. James Riley and Bruce Levine (University of

Pennsylvania), was used as a source of artificial antigen

presenting cells (aAPCs) for our T cell avatars. K562s were loaded

with 10 µg/mL IGRP265-273 peptide (GenScript) at a concentration

of 1 x 106cells/mL at 4°C for one hour. IGRP TCR transduced

(IGRP) or eGFP mock transduced T cells (mock), with or without

TRAC KO, were plated at a 1:1 ratio with peptide-pulsed K562s.

Cells were stained to assess expression of activation markers using

Live/Dead Fixable Near-IR as above, after which cells were

incubated with TruStain Fc block (BioLegend) for 5 minutes at 4°

C. Cells were stained for 30 minutes at 4°C with anti-human CD69-

BV711 (clone FN50, BioLegend) and CD25-APC (clone BC96, BD

Biosciences) at baseline and after 2, 4 and 24 hours of stimulation.

To assess the cytokine production profile, cells were stimulated as

above for 4 hours at 37°C in the presence of 0.66 µL/mL Golgistop

(BD Biosciences), after which cells were stained with anti-human

CD8a-APC (clone RPA-T8, BD Biosciences) and anti-GFP-AF488

(clone FM264G, BioLegend) prior to fixation and permeabilization

with FOXP3 transcription factor staining buffer set (eBioscience)

according to manufacturer’s protocol. Intracellular staining was

performed for 30 minutes at room temperature with anti-human

GZMB-PE (clone GB11, BD Biosciences), TNFa-BV650 (clone

MAb11, BioLegend), Perforin-BV421 (clone dG9, BioLegend),

IFNg-PE-Cy7 (clone 4S.B3, BioLegend), and IL-2-PerCP-Cy5.5

(clone MQ1-17H12, BioLegend).
2.7 Cell-mediated lympholysis

TRAC KO or electroporation only negative control IGRP265-273
reactive CD8+ T cells were assayed for their capacity to kill the

HLA-A*02:01-expressing human b-cell line bLox5, as previously

described (9). In brief, bLox5 cells were harvested from flasks by

incubating with Cell Dissociation Buffer for 5-10 minutes at 37°C

and 5% CO2 (Gibco). bLox5 cells were then washed, resuspended at

5-10 x 106 /mL in PBS, and labeled with 5uM CellTrace Violet

(Thermo Fisher Scientific) according to manufacturer’s

instructions. Labeled bLox5 were plated at a concentration of

30,000 cells per well in a 48-well tissue culture treated plate in

complete DMEM (cDMEM) formulated as previously described

(27). After 24hr, CD8+ T cell avatars were plated with bLox5 at 0:1,
1:1, and 5:1 effector:target (E:T) ratios in duplicate, and co-cultured

for 16 hours at 37°C and 5% CO2. Cells were harvested and stained

with a master mix comprised of 88uL Annexin V-Binding Buffer

(BioLegend), 2uL Annexin V-AF647 (BioLegend) and 10uL of

propidium iodide at 3mg/mL (PI, Invitrogen). Data were acquired

on an LSRFortessa flow cytometer (BD Biosciences) and analyzed

using FlowJo software v10 (BD).
2.8 Statistical analyses

Statistical testing and visualization were performed in

GraphPad Prism Software V9. Data were analyzed by Two-Way

ANOVA with Bonferroni correction or Tukey’s multiple

comparison test and paired t test as described in the figure
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legends and text. Data are represented as mean ± standard deviation

(SD) unless otherwise specified. P-values <0.05 were

considered significant.
3 Results

3.1 KO of the endogenous TCRa
enhances pairing of an engineered
T1D-associated TCR

We hypothesized that deletion of the endogenous TCRa would

reduce heterologous pairing with an exogenously introduced T1D-

associated IGRP-reactive TCR, thereby improving on-target

specificity. Thus, we generated CD8+ T cell avatars reactive to

IGRP265-273 (7) and targeted the TCRa chain constant (TRAC)

region via CRISPR/Cas9 (Figure 1A), as has been previously

reported to improve on-target efficacy of avatars specific for a

melanoma antigen (22). Our IGRP-TCR construct possesses 4 base

pair (bp) mismatches as well as a mutated protospacer adjacent motif

(PAM) (26) at the location targeted by sgRNA1 (Figure S1), which

importantly, prevents cleavage of the de novo TCR by Cas9; hence, we

selected this guide for our studies. We first validated the efficiency of

endogenous TRAC KO in primary human CD8+ T cells transduced

with the IGRP-reactive clone 32 TCR (9, 10). We achieved, on

average, an 86% KO efficiency (86.13 ± 5.5) after targeting TRAC

via CRISPR/Cas9, as quantified by the percentage of TCRab negative

cells (Figures 1B, D). Moreover, we noted increased expression of the

clone 32 TCR alpha variable region, TCRVa2 in the TRAC KO

avatars (IGRP KO (red triangles), 2074.0 ± 122.3) relative to those

that received electroporation but not sgRNA or Cas9 (IGRP negative

control (NC, blue circles), 541.7 ± 68.1, fold difference=3.8), andmock

transduced cells lacking the de novo TCR which received

electroporation only (Mock NC (blue), 189.0 ± 32.1, fold

difference=10.9) or mock transduced cells deleted for TRAC (Mock

KO (red), 163.3 ± 21.7, fold difference=12.7) (Figures 1C, E). We also

observed a corresponding increase in cells positive for TCRVa2 in

the TRACKO avatars (52.7 ± 3.8) relative to the negative control cells

(15.8 ± 1.3, fold difference=3.3), and mock transduced negative

control (3.8 ± 0.8, fold difference=13.9) and KO (0.7 ± 0.3, fold

difference=71.2) cells (Figures 1C, F). This increase in TCRa
expression occurred independently of differences in total TCRab
expression between TRAC KO and negative control avatars

(Figure 1G), indicative of increased proper TCR pairing following

editing. Indeed, we observed increased proper pairing in the TRAC

KO avatars (67.0 ± 13.7) relative to negative control avatars (19.6 ±

6.8, fold difference=3.4), while mock controls lacked expression of

both chains, when stained with the de novo TCR variable chains

TCRVa2 and TCRVb2 (Figures 1C, H).

It has been shown that competition for TCR-CD3 complex

assembly between the endogenous and exogenously introduced

TCR chains influences pairing and thereby, the functional avidity

of each TCR dimer (28). Given that self-reactive T cells are by nature

lower affinity to permit escape from thymic negative selection (29,

30), as compared to pathogen-specific T cells, mispairing could limit
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avidity and thus, functionality of the de novo autoreactive TCR. We

hypothesized that deletion of the endogenous TCRa would result in

an increase in avidity of the de novo clone 32 TCR to cognate antigen.

In order to examine this, we employed peptide-major

histocompatibility complex (pMHC)-dextramer reagents, which

permit visualization of binding to TCR and can serve as a measure

of TCR avidity, as reviewed previously (31). We expected that

minimization of TCR chain mispairing would result in enhanced

IGRP pMHC dextramer binding capability, as reduced dextramer

binding has been shown upon TCR transduction in cells with an

intact endogenous TCR (32). Indeed, staining with HLA-A2-

IGRP265-273 dextramer revealed an increased percentage of IGRP

dextramer+ cells in TRAC KO clone 32 T cell avatars (58.9 ± 13.3%)

relative to clone 32 avatars that received electroporation but not

sgRNA or Cas9 (negative control, 13.4 ± 10.7%, fold difference = 4.4)

and mock transduced T cells lacking the de novo TCR and exposed to

electroporation without CRISPR editing (0.21 ± 0.18%, fold

difference= 276.5) and with endogenous TCR KO (0.39 ± 0.35%,

fold difference = 150.1) (Figures 2A, B). TRAC KO clone 32 T cell

avatars also showed increased IGRP dextramer mean fluorescence

intensity (MFI) (693.3 ± 437.1) relative to negative control avatars

(330.2 ± 342.2, fold difference = 2.1), both indicative of enhanced on

target pMHC-TCR binding capacity (Figure 2C).
3.2 TRAC KO T cell avatars display
increased activation in response
to autoantigen

TCR affinity and functional avidity have been shown to be

linearly correlated with activation by cognate antigen and

downstream effector function in the context of TCR:pMHC

interactions (33). We investigated whether the increased pMHC

avidity observed in our TRAC KO avatars would translate to

increased activation in response to cognate antigen. To test this,

we loaded HLA-A2+ K562 cells with IGRP265-273 peptide and co-

cultured these aAPCs with our TRAC KO or negative control

avatars. We observed no significant differences in CD69

expression at 2 hours post-stimulation (Figure S2A), but after 4

hours of co-culture, TRAC KO avatars exhibited a greater

percentage of cells expressing the early activation marker CD69

(79.5 ± 7.9%) relative to negative control clone 32 avatars (with

intact endogenous TRAC, 44.8 ± 5.8%, fold difference = 1.8) and

mock transduced control T cells with (26.1 ± 7.7%, fold difference =

3.0) or without TRAC KO (23.6 ± 11.1%, fold difference = 3.4)

(Figures 3A, B), indicative of sustained activation in the IGRP

TRAC KO avatars. Moreover, at the 24-hour time point, we

observed an increased percentage of IGRP-reactive TRAC KO

avatars expressing the late activation marker CD25 (81.2 ±

12.8%) as compared to IGRP-reactive negative control avatars

(21.6 ± 6.7%, fold difference = 3.76) and mock transduced cells

(mock TRAC KO: 4.1 ± 0.63%, fold difference = 19.8; mock negative

control: 5.2 ± 0.83%, fold difference = 15.6) (Figures 3C, D). These

data indicate that deletion of the endogenous TCRa permits

increased activation by the de novo TCR.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1142648
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peters et al. 10.3389/fimmu.2023.1142648
3.3 TRAC KO T cell avatars demonstrate
enhanced GZMB-dependent
b-cell cytotoxicity

TCR signal strength has been shown to largely influence the

efficiency of cytotoxic T lymphocyte (CTL) killing (34). After

demonstrating that endogenous TRAC KO enhanced the avidity of
Frontiers in Immunology 05
the clone 32 TCR, evidenced by increased pMHC-dextramer binding

and activation, we reasoned that this would translate to augmented

killing of IGRP-expressing target cells. We utilized the HLA-A2+ b-
cell line bLox5 (11) as such targets in order to test the in vitro killing

capacity of our TRAC KO avatars. After 16 hours of co-culture, we

observed significant increases in killing between the 5:1 vs the 1:1 E:T

ratios in both TRAC KO (red, p=0.0074) and negative control (blue,
A

B

D E F G H

C

FIGURE 1

Efficient KO of the endogenous TCR is achieved by targeting TRAC. (A) Schematic of our experimental procedure wherein CD8+ T cells are
transduced with a LV encoding the IGRP-reactive clone 32 TCR as reported previously (24), after which CRISPR/Cas9 was performed targeting TRAC
using RNP complexes comprised of a 6:1 molar ratio of sgRNA : Cas9. Created with BioRender.com. (B) Representative plots of TCRab and CD3
expression in GFP- cells (internal controls within each donor culture which are exposed to editing conditions but are not stably transduced with the
de novo TCR) show high efficiency KO as delineated by largely all TCRab negative cells (far left) as compared to the electroporation only negative
control condition (middle left), as compared to fluorescence minus one (FMO) controls for TCRab (middle right) and CD3 (far right). (C)
Representative plot of TCRVa2 and TCRab expression (top) and paired TCRVa2 and TCRVb2 expression (bottom) across all conditions (+ or –
transduction with the IGRP reactive clone 32 TCR and + or - CRISPR/Cas9 deletion of endogenous TRAC). (D) The TRAC KO condition possesses
significantly more cells that are TCRab negative (paired t test, n=4, p value shown on figure). (E) TRAC KO avatars show significantly increased
expression of the clone 32 a-chain TCRVa2 (24), as well as (F) increased TCRVa2+ cells (Repeated Measures two-way ANOVA with Tukey’s multiple
comparison test, n=3, p values shown on figures), without a significant increase in (G) total TCR expression between clone 32 TCR transduced
negative control and KO avatars (Repeated measures two-way ANOVA with Tukey’s multiple comparison test, n=3, p value shown on figure). We
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p=0.0217) conditions, as expected (Figures 4A, B). Importantly, we

also observed a significant increase in killing capacity in the 5:1 E:T

TRAC KO condition as compared to the 5:1 E:T negative control

condition (p=0.0207) (Figure 4B).

The mechanisms underlying CD8+ T cell dependent b-cell
cytotoxicity have been shown to include cytolysis by perforin and

granzyme B (10), as well as the induction of stress through the

production of soluble effector molecules such as interferon gamma

(IFN-g) and tumor necrosis factor alpha (TNF-a) (29, 35). Thus, we
assayed for the production of cytolytic molecules, namely TNF-a,
IFN-g, perforin, and GZMB, as well as IL-2 as a readout of

mitogenic capacity (36), after stimulation with aAPCs presenting
Frontiers in Immunology 06
cognate antigen for four hours in the presence of a protein transport

inhibitor. While we observed no differences in the production of

TNF-a, IL-2 or perforin (Figures S2B–D), we observed notably

enhanced production of GZMB (47.7 ± 25.5) and IFN-g (10.2 ± 1.7)

by the TRAC KO versus negative control (23.2 ± 15.8, fold

difference = 2.1 and 1.2 ± 0.5, fold difference = 8.2, respectively)

clone 32 avatars (Figures 5A, B). This enhancement was found to be

specific to cells possessing the clone 32 TCR as there was no

difference in production of these molecules between the TRAC

KO and negative control conditions in internal control GFP- T cells

(i.e., derived from the same cultures as the GFP+ cells but lacking

the de novo TCR; Figures S2E, F).
A

B C

FIGURE 2

TRAC KO confers increased pMHC avidity. Clone 32 IGRP TCR transduced CD8+ T cells were stained with a pMHC-IGRP265-273 dextramer. (A)
Representative plots of dextramer binding cells within the KO as compared to the negative control condition. (B) Significant enhancement of the
dextramer binding fraction within the TRAC KO condition as compared to the negative control (NC; transduced with LV TCR, no endogenous TRAC
KO) and mock conditions (electroporated with or without CRISPR but not transduced with LV TCR). Repeated measures two-way ANOVA with
Tukey’s multiple comparison test, p value shown on figure (n=4). (C) Significant enhancement in dextramer mean fluorescence intensity (MFI)
between the TRAC KO and NC conditions. Paired t-test, p value shown on figure (n=4).
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4 Discussion

In our study, we utilized CRISPR/Cas9 to delete the endogenous

TCRa of engineered autoreactive CD8+ T cell avatars, as has been

previously performed with LV transduced cancer-reactive T cells

(22). To our knowledge, ours is the first study to illustrate these

improvements in T cell avidity and cytotoxic function as it pertains

to b-cell antigen specificity, though others have utilized a similar

approach when designing chimeric antigen receptor (CAR)

regulatory T cells (Tregs) targeting the HLA-A2 molecule (37).

We first demonstrated the utility of this approach in enhancing the

ability of the de novo IGRP-reactive TCR to bind pMHC-dextramer

reagents. While dextramer reagents demonstrate increased capacity

for binding lower affinity TCRs than tetramer reagents (38),

previous studies have shown that the pMHC-TCR affinity

threshold for multimer binding to be lower than that required for

activation (39), resulting in the possibility for low affinity and
Frontiers in Immunology 07
recently activated T cells which have downregulated the CD3/

TCRab complex (40) to be underestimated using this technique.

However, enhancing the capacity of the de novo TCR to bind these

reagents through endogenous TRAC KO could be helpful in a

clinical setting to monitor the persistence of an ACT product. We

also demonstrated that deletion of the endogenous TCRa served to

augment the activation of our T cell avatars and consequently, the

killing capacity of a human b-cell line. We note that at the earlier

activation timepoint (2 hours) there was no difference in activation,

while at the later timepoints (4 and 24 hours) we observed increased

expression of activation markers CD69 and CD25, respectively.

Future experiments will be required to determine the impact on

TCR activation kinetics and to elucidate if the resulting

upregulation of activation markers is the consequence of

increased magnitude or duration of activation, or both.

Furthermore, while the TCR utilized in this manuscript has been

shown to be reactive to IGRP265-273, it has also been indicated that
A B

DC

FIGURE 3

Enhanced activation in TRAC KO avatars. Clone 32 IGRP TCR or mock transduced CD8+ T cells were co-cultured at a 1:1 ratio with IGRP265-273

loaded HLA-A2+ K562 aAPCs for 0, 2, 4, and 24 hours, then assessed for activation markers CD25 and CD69 by flow cytometry. (A) Representative
histograms of CD69 expression on TRAC KO IGRP TCR (upper pink) versus TRAC KO mock transduced (lower pink) and negative control (NC; blue)
avatars at 0-, 2- and 4-hour time points. (B) Significant enhancement of the CD69+ fraction within the TRAC KO condition as compared to the
negative control condition at 4 hours post stimulation. (C) Representative plots of CD25 expression on TRAC KO (upper pink) versus mock
transduced (lower pink) and negative control (blue) avatars at 0- and 24-hour timepoints. (D) Significant enhancement of the CD25+ fraction within
the TRAC KO condition as compared to the negative control and both mock control conditions. Repeated measures two-way ANOVA with Tukey’s
multiple comparison test, p values shown on figure (n=3).
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this receptor might possess promiscuity towards other epitopes

presented in the context of HLA-A2 (7). While a certain degree of

cross-reactivity likely is advantageous in that the limited TCR

repertoire within an individual can provide protection against a

vast array of foreign exposures, it is possible that this promiscuity

may also contribute to autoreactivity. Indeed, studies examining

autoreactive receptors have shown promiscuity to a wide variety of

endogenous and foreign epitopes (41, 42). One particular clone of

note is the 1E6 TCR clone, which is reactive to PPI15-24 and has been
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shown to mediate b-cell killing (35). In a comprehensive set of

experiments testing TCR degeneracy, this clone was shown to

recognize more than one million peptides in the context of HLA-

A2 (41). Thus, it is apparent that cross-reactivity could be a key

feature of autoreactive receptors and an important mechanism of

autoimmunity that warrants further investigation. With isogenic

systems becoming an attractive means to model diseases (11), we

propose that the use of gene edited T cell avatars, such as those

presented herein, will aid in deciphering the mechanisms
A B

FIGURE 5

Enhanced inflammatory cytokine and cytolytic molecule production by TRAC KO avatars. Clone 32 IGRP TCR transduced CD8+ T cells were co-
cultured at a 1:1 ratio with the HLA-A2+ K562 cell line for four hours in the presence of GolgiStop and assessed for production of effector molecules
granzyme B (GZMB) and interferon-g (IFN- g). (A) Representative contour plot of IFN-g and GZMB expression by TRAC KO or negative control T cell
avatars. (B) Significant increase in the percent of cells that express GZMB (left) and IFN- g (right) in the TRAC KO condition as compared to the
negative control condition. Paired t test, p value shown on figures (n=3).
A B

FIGURE 4

TRAC KO avatars display increased cytotoxicity against a human b-cell line. Clone 32 IGRP TCR transduced CD8+ T cells were co-cultured at a 1:1
and 5:1 effector:target (E:T) ratio with the HLA-A2+ bLox5 cell line for 16 hours and assessed for apoptosis and cell death with Annexin V and
propidium iodide (PI) staining. (A) Representative contour plot of Annexin V and PI staining of bLox5 cultured with TRAC KO (upper) or negative
control T cell avatars (lower). (B) Increased cell mediated lysis of bLox5 in the 5:1 vs the 1:1 effector: target (E:T) ratio for both TRAC KO (red,
p=0.0074) and negative control (blue, p=0.0217) avatars, as well as a significant increase in killing capacity in the 5:1 E:T TRAC KO condition as
compared to the 5:1 E:T negative control condition (red, p=0.0207). Repeated measures two-way ANOVA with Bonferroni correction, p values
shown on figure (n=4).
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underlying dysregulation in the form of cell-cell interactions,

chemotaxis, and phenotype and function of antigen specific T

cells. As such, experiments are ongoing to track the movement of

these T cells within an engineered islet niche (43). Further genetic

engineering of T cell avatars and their targets will provide options to

modulate key candidate genes and single nucleotide polymorphisms

(SNPs) (10, 39) predicted to be important for phenotypes, immune

cell or otherwise.

Though islet antigen specific CD8+ T cells have been implicated

as key players in T1D disease pathogenesis (6, 44), we still know

little about their phenotype and function in vivo. Data resulting

from clinical trials support the critical need to understand CD8+ T

cell signatures in order to unravel mechanisms central to

autoimmune b-cell destruction. In particular, response signatures

of CD8+ T cell exhaustion following teplizumab therapy (45) would

indicate that inducing this phenotype could preserve b-cell
function. However, other studies have observed human T1D

antigen specific CD8+ T cells as having a “self-renewing” stem

cell memory phenotype (46, 47), which would indicate that these

cells are not as susceptible to exhaustion or tolerization as one

would expect from cells that are chronically exposed to antigen (48).

Bridging these gaps in understanding necessitates optimal in vitro

modeling of autoreactive CD8+ T cell function to identify targetable

molecules and pathways to reduce immune-mediated pathology

through pharmacological or biological interventions.

ACT are at the forefront of clinical innovation, with an

increased focus on genetic engineering to enhance the efficacy

and safety of these cell products. In T1D, there is great interest in

developing antigen-specific Treg ACT products (49, 50). Islet

antigen-specific Tregs have the potential to suppress diabetogenic

T cells in vitro (24) and in mouse models of T1D (51), but these cells

have yet to effectively be used to combat disease in humans.

Optimizing the activation of Tregs specific for b-cell antigens is

of particular importance, as we have previously shown that

engineered GAD555-567 specific Tregs possessing the higher

affinity clone R164 TCR outperformed the lower affinity clone

4.13 TCR Tregs, which recognize the same peptide, in antigen-

specific suppressive capacity (24). While both low- and high-avidity

TCR interactions in Tregs appear to be important for suppression of

autoimmunity (52), Tregs possessing higher affinity receptors have

been shown to preferentially home to the pancreatic lymph node

and islets, and express inhibitory receptors to a greater degree than

lower affinity Tregs (52). Therefore, enhancing the avidity of an

antigen-specific Treg cell product via endogenous TRAC KO may

confer several functional advantages.
4.1 Limitations of the study

Our study focuses on a single HLA class I restricted receptor,

thus the impact of endogenous TCR deletion on receptors of

different specificities, HLA restrictions, and affinities in T1D is

unknown, and though others have seen success with higher affinity

tumor-reactive receptors (21, 22), recapitulating the phenotype and

function of a lower affinity receptor may be more challenging.

Additionally, we utilized an immortalized b-cell line, which is not
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functionally identical to primary human islets, thus future efforts

testing this workflow with primary human islet material will be

necessary, particularly for specificities such as derivatives of

preproinsulin, or post-translationally modified epitopes (14).

Moreover, in our study we have targeted the TRAC locus, as the

paired TCRab dimer is necessary for full function of the TCR (53),

though we acknowledge the possibility of residual mispairing

between the endogenous b- and de novo a-chain, as well as

potential alloreactivity due to incomplete HLA matching.

Additionally, the field of genome editing is rapidly evolving, and

newer methodologies allowing for targeted TCR delivery and

regulation via the endogenous promoter (54), as well as base

editing strategies enabling induction of a stop codon with

minimal DNA damage (55), though lower efficiency at the time

of writing, may soon provide more context appropriate results or

products for ACT. We also recognize that utilizing humanized

animal models or cell and tissue engineering strategies will likely be

necessary to confirm in vivo functionality (56) and obtain a

complete picture of islet-immune interactions (43). These studies

may include investigating autoantigen specific T cell function,

homing, and long-term engraftment. Along a similar vein, T1D is

a highly polygenic disease (57), and this study was not designed to

investigate the influence of T1D risk loci on T cell avatar function,

which is known to alter TCR signals (25). We are currently working

to establish isogenic systems in order to appropriately test the

contributions of key SNPs which may modulate TCR signaling and

cytotoxic T cell function (11).
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