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Zusammenfassung

Das Thema dieser Arbeit sind effiziente Primzahltests.

Vor 25 Jahren formulierte G. L. Miller [86] einen Primzahltest, der gleichzeitig schnell
und zuverléssig ist, dabei aber von der Annahme ausgeht, dass die Erweiterte Riemann-
sche Hypothese korrekt ist. Seither versuchten viele, einen Test ohne diese Annahme
zu formulieren. Diese Versuche brachten jedoch nicht die gewiinschten Ergebnisse und
scheiterten darin, gleichzeitig schnell und zuverlassig zu sein.

Dieses Dilemma ist der Ausgangspunkt der vorliegenden Arbeit. In einem ersten Schritt
habe ich versucht, einen Primzahltest zu formulieren, der sowohl die Bedingung der
Schnelligkeit als auch die der Zuverléssigkeit erfiillt und nicht von der Korrektheit der
Erweiterten Riemannschen Hypothese abhangt. Denn es existiert ein Bereich, fiir den die
Riemannsche Hypothese bereits bewiesen ist. Mein Fokus lag nun darin, fiir den Prim-
zahltest ebenfalls einen solchen giiltigen Bereich zu finden. Folgende drei Ergebnisse, die
fiir die Riemannsche Hypothese gelten, werden dabei beriicksichtigt:

(1) Bereits 1979 zeigte H. W. Lenstra, Jr. in [76], dass Millers Primzahltest die
Korrektheit der Erweiterten Riemannsche Hypothese nicht benotigt, wenn die
zu testende Zahl nicht quadratfrei ist.

(2) J. van de Lune, H. J. J. te Riele und D. T. Winter zeigten in [82], dass die
Riemannsche Zeta-Funktion genau 1 500 000 001 Nullstellen der Form o + it
im Bereich 0 < t < 545 469 823,215 besitzt. Diese Nullstellen haben alle den
Realteil 0 = % und bestatigen damit die Riemannsche Hypothese in diesem
Bereich.

(3) J. B. Conrey bewies in [34], dass mindestens 40% aller nichttrivialen Nullstellen
der Riemannschen Zeta-Funktion auf der kritischen Geraden liegen.

Dieser Ansatz hat es ermoglicht, ihre Notwendigkeit innerhalb des Beweises des Prim-
zahltests von G. L. Miller auf nur noch ein Schliissellemma zu begrenzen. Zusatzlich
konnte ich den Rechenaufwand fiir diesen Primzahltest verringern, indem nun weniger
Basen fiir diesen Test notwendig sind. Leider konnte ich die Hypothese nicht vollig elimi-
nieren, weshalb ich in einem zweiten Schritt einen neuen Ansatz fiir einen Primzahltest
gewahlt habe, dem die folgende These zugrundeliegt:

Es ist von Vorteil, fiir einen Pseudoprimzahltest die Kommutatorkurve
in der zweidimensionalen speziellen linearen Gruppe zu verwenden.

Dieser neue Pseudoprimzahltest bendtigt im Gegensatz zum Pseudoprimzahltest von
J. Grantham [52] nur einen skalaren Parameter; dariiber hinaus ist die feste Anzahl von



Probedivisionen deutlich kleiner, weil nur all jene Primzahlen iiberpriift werden miissen,
die kleiner als 80 sind, statt 50 000 wie es beim Pseudoprimzahltest von J. Grantham
erforderlich ist. Auflerdem ist er in mehrerlei Hinsicht ausbaufahig.

Die Arbeit ist insgesamt in sechs Kapitel und drei Appendizes gegliedert: Die theore-
tischen Grundlagen fiir das oben formulierte Ziel sind im Kapitel 2 zusammengetragen.
Kapitel 3 liefert eine Ubersicht aller entscheidenden Forschungsergebnisse, die withrend
der 25 Jahre seit Miller erschienen sind und von denen ich einige auf ihre Vor- und
Nachteile hin analysiere. Die eigentliche Forschungsarbeit beginnt mit Kapitel 4. Es wer-
den Kommutatorkurven in der zweidimensionalen speziellen linearen Gruppe eingefiihrt
und ihr Nutzen fiir einen Primzahltest ausgearbeitet. Aufgrund der erarbeiteten Ergeb-
nisse werden die Kommutatorkurven fiir einen neuen Pseudoprimzahltest verwendet.
Dies ist Thema des Kapitels 5 ist. Schliellich greife ich in Kapitel 6 den Miller-Test
wieder auf und diskutiere fiir ihn die Notwendigkeit der Erweiterten Riemannschen Hy-
pothese.

Als konkrete Ergebnisse dieser Arbeit erhalte ich folgendes:

(1) Ich fithre in Kapitel 4 die Kommutatorkurve ein, welche durch einen skalaren
Parameter in der zweidimensionalen speziellen linearen Gruppe bestimmt wird,
und erarbeite fiir sie die theoretischen Grundlagen, die im weiteren Verlauf
der Arbeit flir einen Primzahltest eingesetzt werden. In den darauf folgenden
Abschnitten werden alle moglichen Elementordnungen und deren Haufigkeit auf
dieser Kurve ausgearbeitet. Die konkrete Verteilung der Elementordnungen auf
dieser Kurve wird zuerst Modulo einer Primzahlpotenz in Theorem 4.32 und
dann Modulo einer zusammengesetzen Zahl in Theorem 4.35 und Theorem 4.36
analysiert. Dabei stellt sich in Lemma 4.40 heraus, dass eine ordnungserhaltende
Bijektion zwischen einem Bereich der Kommutatorkurve Modulo einer Primzahl
p und einer Untergruppe von F existiert. Der verbleibende Bereich dieser Kurve
kann bijektiv und ordnungserhaltend auf einer Teilmenge von F abgebildet
werden, was in Lemma 4.42 gezeigt wird.

(2) In Abschnitt 7 des Kapitels 4 erarbeite ich rekursive Formeln und in Theo-
rem 4.61 eine Beziehung zu den Lucas-Folgen, um Elementordnungen auf der
Kommutatorkurve schnell ermitteln zu konnen. Im letzten Abschnitt 8 wer-
den dann sieben Varianten zur Berechnung der Ordnung eines Elements auf
dieser Kurve theoretisch nach dem , best-case®, ,,worst-case“ und ,,average-case*
Zeitverhalten beziiglich des Miller-Tests ausgewertet. Dabei stellt sich heraus,
dass die schnellste Variante auf einer Lucas-Folge basiert und etwa dreimal soviel
Laufzeit benotigt wie die Exponentiation Modulo einer natiirlichen Zahl.

(3) Dann, in Theorem 4.53 des Kapitels 4 beweise ich ein Kriterium fiir die Kommu-
tatorkurve tiber einer Primzahl p, welches analog zum Euler-Kriterium fir )
ist; dieses Kriterium ist das grundlegende Hilfsmittel fiir den spater eingefiithrten
und diskutierten Kommutatorkurventest.

(4) Es werden LN-Zahlen analog zu den Carmichael-Zahlen betrachtet. Diese Zah-
len sind so definiert, dass sie analoge Eigenschaften zu den Carmichael-Zahlen



haben. Ich beweise dann schliellich in Corollary 4.48 des Kapitels 4, dass solche
Zahlen nicht existieren konnen.

(5) Im Kapitel 5 erfolgt genau diese Einbindung der Kommutatorkurve in ver-
schiedene Pseudoprimzahltests. Zuerst werden zwei einfache Tests aufgestellt,
die analog zum Fermat- und Euler-Test sind (Algorithm 5.1 und Algorithm 5.2).
Ich beweise dariiber hinaus in Theorem 5.10, dass dieser Pseudoprimzahltest,
der auf das Euler-Kriterium beruht, als zuverlassiger Primzahltest eingesetzt
werden kann. Als wichtigster Pseudoprimzahltest ist der Kommutatorkurventest
(Commutator Curve Test) zu nennen. In Theorem 5.28 beweise ich, dass dieser
Test nach einer festen Anzahl von Probedivisionen (alle Primzahlen kleiner 80)
das Ergebnis ,, wahr“ fiir eine zusammengesetzte Zahl mit einer Wahrschein-
lichkeit ausgibt, die kleiner als % ist; das heift, dieser Test liefert das Ergebnis
,wahr® fiir eine zusammengesetzte Zahl mit einer Wahrscheinlichkeit kleiner als
Nﬁ, wenn k Basen in unabhangiger Weise zufallig gewahlt werden.

(6) Zum Abschuss des Kapitels 5 wird, basierend auf dem Kommutatorkurventest,
ein neuer Hypothetical Commutator Curve Primality Test aufgestellt, der schnell
und — zumindest fiir alle Zahlen kleiner als 107 (Theorem 5.31) — zuverlissig ist.

(7) In Kapitel 6 fithre ich einen neuen Beweis zur Korrektheit des Miller-Tests durch
und tiiberpriife dabei jede Stelle, die die Korrektheit der Erweiterte Riemannsche
Hypothese vorraussetzt. Auferdem diskutiere ich alternative Beweismoglich-
keiten. Schlieflich 148t sich die Notwendigkeit der Erweiterten Riemannschen
Hypothese fiir den Beweis des Primzahltests von G. L. Miller auf nur noch ein
Schliissellemma 6.38 eingrenzen. Dariiber hinaus zeige ich in Theorem 6.7 unter
der Annahme, dass die Erweiterte Riemannsche Hypothese korrekt ist, dass
der Miller-Test zur Uberpriifung einer Zahl n nur noch fiir alle Primzahlbasen
kleiner als 2 In(n)? durchgefiihrt werden muss.

Die drei Appendizes haben den folgenden Inhalt:

(1) Appendix A gibt eine obere Schranke fiir die kleinsten quadratischen Nichtreste
an. Dies findet in Kapitel 6 Verwendung.

(2) Appendix B enthilt Tabellen, die als Basis fiir Beobachtungen und Vermutungen
in dieser Arbeit allgemein dienen.

(3) Appendix C bietet fiinf unterschiedliche Implementierungen und Laufzeitver-
gleiche meines Hypothetical Commutator Curve Primality Test an.
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CHAPTER 1

Introduction

This thesis is about efficient primality tests.

25 years ago, G. L. Miller [86] formulated a primality test that was both fast and
reliable. But it depended on the assumption that the Extended Riemann Hypothesis is
true. Since then, many attempts have been made to formulate a test that does not need
this assumption. These attempts did not bring up the desired result, for they either
lacked speed or reliability.

This dilemma is the starting point of my thesis. In a first step, I have tried to formulate
a primality test that fulfills both requirements, speed and reliability, and that does not
depend on the truth of the Extended Riemann Hypothesis. Nevertheless, the Riemann
Hypothesis have been proved for a certain range. My main focus was to find such a valid
range of numbers for Miller’s primality test. The following three results, which are valid
for Riemann’s Hypothesis, are taken into account:

(1) As soon as 1979, H. W. Lenstra, Jr. proved in [76] that Miller’s primality test
does not depend on the Extended Riemann Hypothesis being true, if the tested
number is not squarefree.

(2) J. van de Lune, H. J. J. te Riele and D. T. Winter shown in [82] the truth of
the Riemann Hypothesis for the first 1 500 000 001 roots of the form o + it in
the critical strip with 0 < ¢ < 545 469 823.215, i.e., all these roots have real
part o = 1.

(3) J. B. Conrey proved in [34] that at least 40% of all non-trivial roots of Riemann’s
zeta function lie on the critical line.

As an effect, the necessity of the Extended Riemann Hypothesis in Miller’s primality test
could be reduced to one key lemma. In addition, by reducing the bases that are required
for this test, I could reduce the run time. Nevertheless, I cannot remove the hypothesis
completely. I therefore have chosen a second step for a new starting point to set up a
primality test. One of its core elements, the following thesis, is a central element of this
work:

It is advantageous to use the commutator curve in the two-dimensional
special linear group for a compositeness test.

This new compositeness test is constructed in a more simple way than that of J. Grantham
[52]. Tt requires just one scalar parameter; furthermore, the fixed number of trial divi-
sions has been reduced considerably. The reason for this is that only prime numbers up
to 80 have to be tested, compared with up to 50,000 which was the case beforehand.
Additionally, it is in many ways expandable.

1



2 1. INTRODUCTION

The thesis is overall organized in six chapters and three appendices. The theoretical basis
of the work will be laid in Chapter 2. There, I will list the fundamental mathematical
preliminaries. Chapter 3 will give a summary and survey of all important researches
and results that have come up during the 25 years since Miller. I will comment each of
them and show their pros and cons. After the known theoretical foundations are laid,
Chapter 4 will start with my own research. I introduce commutator curves in the two-
dimensional special linear group, and I will show their usefulness for a primality test.
Having this results, the commutator curves will be used in a new compositeness test.
This is subject of Chapter 5. Finally, in Chapter 6, I will go back to Miller’s Test. Here,
I will discuss the necessity of the Extended Riemann Hypothesis.

The main results of this work can be summarized in the following items:

(1) In Chapter 4, I will introduce the commutator curve which is described by one
scalar parameter in the two-dimensional special linear group, and I will build
the theoretical basis which will be used for a primality test in further working.
In the sections following up to that, I will elaborate all possible orders of the
elements, and their frequency on the curve. The definite distribution of the
element’s orders on this curve will first be analysed modulo a prime power
in Theorem 4.32 and then modulo a composite number in Theorem 4.35 and
Theorem 4.36. In Lemma 4.40, we will see that there exists an order-preserving
bijection between a part of the cummutator curve modulo a prime number p and
a subgroup of F. The remaining part of this curve can be mapped bijectively
and order-preserving onto a subset of [F 5. This will be shown in Lemma 4.42.

(2) In Section 7 of Chapter 4, I elaborate recursive formulas, and in Theorem 4.61
I will show a connection to Lucas’ sequences. This will make possible a fast
calculation of order of an element on the commutator curve. In the last Section 8,
I will evaltuate seven variants of calculating the order of an element on this
curve. They will theoretically be considered according to their best-case, worst-
case and average-case running times with regard to Miller’s test. We will see
that the fastest variant is based on a Lucas sequence. It needs three times the
running time of the exponentiation modulo a natural number.

(3) Then, in Theorem 4.53 of Chapter 4, I prove a criterion for a commutator curve
over a prime number p, which is analogous to Euler’s criterion for F; this
criterion is the basic aid for the later introduced and discussed commutator
curve test.

(4) Twill consider LN -numbers anologous to the Carmichael numbers. The numbers
are defined in such a way that their properties are analogous to the Carmichael
numbers. Finally, in Corollary 4.48 of Chapter 4, I prove that such numbers
cannot exist.

(5) In Chapter 5, the commutator curve will be included into different composite
tests. First, I will formulate two simple tests that are analogous to Fermat’s
and Euler’s tests (Algorithm 5.1 und Algorithm 5.2). In addition, I will prove
in Theorem 5.10 that this commutator test, that is based on Euler’s criterion,
can be used as reliable primality test. The most important commutator test is
the Commutator Curve Test. In Theorem 5.28, I prove that this test, after a
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fixed number of trial divisions (all prime numbers up to 80), returns the result
1

“true” for a composite number with a probability less than ¢; this means that
this test gives the result “true” for a composite number with a probability less
than #, if k bases are chosen randomly and independently.

(6) At the end of Chapter 5, I will introduce a new Hypothetical Commutator Curve
Primality Test, that is based on the commutatuor curve test. This test is fast
and — at least for all numbers up to 107 (Theorem 5.31) — reliable.

(7) In Chapter 6, I will make a new proof for the correctness of Miller’s test. I
will check every part of this proof that depends on the Extended Riemann
Hypothesis being true; in addition, I will discuss alternative ways of proof.
Finally, I can reduce the necessity of the Extended Riemann Hypothesis for the
proof of Miller’s primality test to a single key Lemma 6.38. In addition, I show
in Theorem 6.7 that Miller’s test to check a number n, only has to be carried
out for all prime bases less than %ln(n)? This happens under the assumption

that the Extended Riemann Hypothesis is true.
The three appendices have the following contents:

(1) Appendix A gives an upper bound for the least quadratic non-residue and is
used in Chapter 6.

(2) Appendix B consists of tables which serve as a basis for observations and con-
jectures in this thesis.

(3) Appendix C offers five different implementations and comparisons of running
times of my Hypothetical Commutator Curve Primality Test.






CHAPTER 2

Mathematical Preliminaries

1. Symbols and Notations

The following symbols are used in this thesis:

the set of the natural numbers {0,1,2,...}
the set of the positive integers N — {0}

the set of the integers

the set of the rational numbers

the set of the prime numbers

the commutative ring of integers modulo n, {a +nZ | a € Z}
if R is a ring then R* denotes the group of units of R
the finite field of p elements, where p is a prime number

the set of the real numbers
the set of the positive real numbers {zr € R | z > 0}
an open interval {z € R | a < x < b} with a,b € Q
a closed interval {z € R | a <z < b} with a,b € Q
the set of the complex numbers
the real part of a complex number s
the imaginary part of a complex number s
the residue at a € C of the meromorphic function f
the greatest common divisor of a, and b
the least common multiple of a, and b

) 1, ifm=n
Kronecker’s symbol 9,,, := { 0. else
the m x m identity matrix
the determinant of the matrix A
the exponential function of indeterminate x
the natural logarithm
the logarithm to an unspecified base

Euler’s constant v = lim,, .o (3 4_; 1 — In(n))

the gamma function for complex numbers s, T'(s) := lim,, . T 7H
k=0

n!ns



6 2. MATHEMATICAL PRELIMINARIES

2. Number-Theoretic Functions

DEFINITION 2.1. We will use the following number-theoretic functions in this thesis:
v, + Nyg— N:n— max{k € N|pF|n}
is the maximal power of p € P in n.

¢  Nog—=N:n— [{keNy|k<n,ged(k,n) =1}
is the number of positive integers less than or equal to n relatively prime to n.

7 : Nyg—=N:in— |{keP|k<n}
is the number of primes less than n.

THEOREM 2.2. Let n be a positive integer with prime factorization n = [[,_, pi*. Then
we have

o) =[] ' — D) =n][Q-p")

ProoFr. This theorem is well known in Number Theory; for a proof we refer for
example to Satz 6.8 in [43] on page 51. O
THEOREM 2.3. Let p be an odd prime number. Then

p—1 5)
——— < e’ln(In(p)) + ———.
ErE T AP T)
PRrOOF. We refer to Theorem 15 in [112] on page 72 for a proof. O
COROLLARY 2.4. Let p be a prime number greater than 200 560 490 131. Then
p _
—— < 2In(In(p)).
p(p—1) (In(p))

PrOOF. Consider the following diagram:

6.8

6.75

6.7

6.65

6.6 - .
e’ -In(In(p) +5/(2 - In(In(p)))) ——
2-In(In(p)) - -

| | | | |
10t 5- 10t 1012
p
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Then we see that the images of the function p — 2In(In(p)) are greater than the images
of the function p — e In(ln(p)) + m for p > 6 - 10'*. Therefore, the assertion for

p > 6 - 10! follows by Theorem 2.3 and for p < 6 - 10'! by computation. O

3. The Chinese Remainder Theorem

THEOREM 2.5. Let m be a natural number with coprime factorization [],_, my such that
ged(my,my) =1 for all 1 < kIl < r /k #1, and let by be integers for 1 < k < r. Then
the system

r=b, (mod my) foralll1<k<r

1s solvable and has a unique solution modulo m.

ProoOF. This theorem is well known in Number Theory; for a proof we refer to Satz
6.6 in [43] on pages 47-48. O

4. The Legendre-Jacobi Symbol

First of all we define in this section a special symbol, called the Legendre symbol. This
symbol is essentially a homomorphism from (Z/pZ)* to {—1,1}, where p is an odd prime
number.

DEFINITION 2.6. Let p be an odd prime number, and let a be an integer. Then we
denote by (“) the Legendre symbol

P

0, ifal|p
(%) = 1, ifa=2* (mod p) for some = € Z
—1, else.

C. G. J. Jacobi generalized the domain of the Legendre symbol to odd numbers, but not
necessarily to odd prime numbers. This symbol, called the Jacobi symbol, is also written
such as the Legendre symbol.

DEFINITION 2.7. Let n be an odd integer with prime factorization [[,_, px, and let a be
an integer. We denote by (%) the Jacobi symbol
() =116
k=1

where (pik) denotes the corresponding Legendre symbol.
Jacobi’s generalization has the virtue of being multiplicative and it is the same as the

Legendre symbol if n is an odd prime number.

In the following theorem we collect some important properties of the Jacobi symbol,
including the Law of Quadratic Reciprocity.
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THEOREM 2.8. Let a,b be integers, and let m,n be odd positive integers. Then the
following equations are valid:

—~
PRl

o
:|

~— — ~— —
|

/N N A~

S S

PROOF. We refer to [61] on pages 50-61 for a proof. O

5. Euler’s Criterion for Quadratic Residues

THEOREM 2.9 (Euler). Let p be an odd prime number. Then we have for every integer
a

e (¢)  (mod p).

PROOF. This theorem is well known in Number Theory; for a proof we refer to Satz
11.1 in [43] on page 86. O

6. The Order of a Group Element

DEFINITION 2.10. Let a be an element of a multiplicatively written finite group (G, -).
The order of a, denoted by ord(a), is the least positive integer b such that a® = 1, where
1 is the neutral element of G:

ord : G — Nyg : a — min{b € Nog | ¢’ = 1}.

If n is a natural number with |G| = n, and if a € G is an element of order n, then G is
said to be cyclic and a is called a generator or a primitive element of G.
Let n be a natural number. Assume a can be considered modulo n. Then we define

ord,(a) := ord(a mod n).
The following result is due to Lagrange and is the base for many useful theorems in
number theory.
THEOREM 2.11 (Lagrange). The order of an element divides the cardinality of the group.

PRrROOF. This theorem is well known in Number Theory; for a proof we refer to Satz
7.1 in [43] on page 54. O
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7. Irreducible Polynomials over F,

Let p be a prime number. Then a polynomial f(z) € F,[z] of degree n > 1 is said to
be irreducible over I, if it cannot be written as a product of two polynomials in F[z]
each having a degree less than n. Such a polynomial f(x) can be used to represent the
elements of the finite field F . = F [z]/f(2)F [z], the set {g(z) + f(2)Z | g(x) € F,[z]},
where the addition and multiplication of polynomials is performed modulo f(z). In this
thesis we will use the following polynomials:

DEFINITION 2.12. Let n be a natural number, and let p be a prime number. Let F .
be a finite field, and let a € F,.. The minimal polynomial of  over F, is the monic
polynomial of least degree in F, [z] having « as a root.

THEOREM 2.13. Let n be a natural number, and let p be a prime number. Let ¥ . be a
finite field, and let o € F . Then

1) The minimal polynomial of o over F,, denoted by mq(x), is unique.
2) The polynomial me(x) is irreducible over IF,.

3) The leading coefficient of mq(x) is 1.

4) The degree of mq(z) is a divisor of n.

(
(
(
(

PROOF. We refer to [42] on pages 128-130 for a proof. O

8. Commutators

DEFINITION 2.14. Let a,b be two elements of a group (G, -). Then the commutator of
a, and b is defined by

a ‘b lab.

The commutator is the element that commutes the two elements a, and b in group G by
multiplication:

ab = ba(a" ‘b ab).

DEFINITION 2.15. Let G be a group. The commutator group G’ is the group which is
generated by all commutators:

G' = {a b tab|a,beq).

A group G is called perfect, if G = G'. G is commutative if and only if G’ = 1, where 1
is the neutral element of G.

9. Linear Groups

In this thesis, we are especially interested in the following two linear groups:
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DEFINITION 2.16. Let m be a positive integer, and p be a prime number. We denote by
GLn(p) :={A € F,"™ [ det(A) # 0}

the general linear group and by
SLn(p) :={A€F,"™ [ det(A) =1}

the special linear group.
We define by I,,, the m x m identity matriz:

Ly = (0k1)1<ki<m,

1, if k=1

0 else is the Kronecker symbol.

where 9y, := {

The set G'L,,(p) of all invertible matrices of degree m over the finite field F,, is a group
under the usual multiplication of matrices. It is called the general linear group of degree
m over the finite field F,. Obviously, GL,,(p) is just M,,(p)*, where M,,(p) is the ring
of all matrices of degree m over the finite field F,. For m > 2, the group G'L,,(p) is non-
commutative. Very important in this thesis is the normal subgroup SL,,(p) of GL,,(p)
consisting of all matrices with determinant 1, which is called the special linear group.
Especially we concentrate on the two-dimensional special linear group over finite fields
which offers many useful properties for a primality test. An important work about these
groups is [37] by L. E. Dickson.

We now introduce some fundamental theorems of groups of matrices over finite fields,
which we will use later for the primality test.

THEOREM 2.17. Let m be a positive integer, and p be a prime number. Then

m(m—1) "
GLa(p)| =p = JJ0* -1

k=1
and -
m(m—1)
SLa(p)=p~ = [[0"-1).
k=2
PRrOOF. We refer to (9.11) in [124] on page 81 for a proof. O

DEFINITION 2.18. Let m be a positive integer, p be a prime number, and M € F"*™ a
m x m matrix over F,, then we define the characteristic polynomial as follows:

xum(x) = det(xl,, — M),
with indeterminate x.

THEOREM 2.19. Let m be a positive integer, p be a prime number, M € GL,,(p), and
xu trreducible. Then

OI'd(M) | pm - ]-7
and
ord(M) 1 pF —1 forallk, 1 <k <m.
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PROOF. We refer to 7.3 in [57] on page 187 for a proof. O

Previously, we have seen many useful properties for the m-dimensional linear groups. But
in this thesis we will reduce our focus on the two-dimensional special linear group in view
of a primality testing algorithm where especially the following theorem of L. E. Dickson
is fundamental:

THEOREM 2.20 (Dickson). Let p be an odd prime number, and a € F) with (a) = F,.

Then we have g
10 11
<(a 1>7<0 1)>:SL2(p>‘

PROOF. We refer to Theorem 8.4 in [48] on page 44 for a proof. O

THEOREM 2.21. Let p be an odd prime number. Then SLs(p) contains cyclic subgroups
of order p— 1 and p + 1.

PRrROOF. We refer to Theorem 8.3 in [48] on page 42 for a proof. O

We will discuss these two theorems more detailed in Chapter 4.

Moreover, we need an extended definition of the two-dimensional special linear group
for the commutative ring Z/nZ, where n is a positive integer, to use this group for a
primality test on n.

DEFINITION 2.22. Let m, and n be positive integers, and
A= (akl)lgk,lgm, and B = (bkl>1§k,l§m
be m x m matrices over integers. Then we denote by
A=B (modn),
if ag; = by (mod n) for all 1 < k,l < m.

Different from usual notation in group theory
SLy(p*) = {A e IFpQ,fQ | det(A) = 1},

where p is a prime number, and k is a positive integer, the following definition is in-
troduced for SLy(n), because in this thesis that group is only needed for the base of a
primality test on n, where n is a positive integer.

DEFINITION 2.23. Let n be a positive integer. We denote by
GLy(n) = {A € (Z/nZ)** | det(A) # 0}
the two-dimensional general linear group and by
SLy(n) = {A € (Z/nZ)** | det(A) = 1}

the two-dimensional special linear group.






CHAPTER 3

Primality Testing

1. Introduction

One very important concern in number theory is to establish whether a given number n
is prime or composite. At first sight the decision might seem to have the same order as
factoring n. But factoring is not feasible in general if the length of n exceeds for example
200 decimal digits — in August 1999, the record in solving this task is the factorization of
the 512-bit RSA-155 key using the Number Field Sieve by H. J. J. te Riele et al. [109],
a number that can be written as the product of two 78 digit primes.

Until the work of E. Lucas in 1876, however, the problems of primality testing and
factorizing were not considered separately. Although Fermat’s theorem had been known
since 1640, Lucas in 1876 (see [138], p. 53ff) seems to have been the first to recognize
that this theorem could be useful in determining whether a number is composite. Several
investigators, particularly M. Kraitchik and D. H. Lehmer in the 1920’s, refound Lucas’
work and tested the primality of many large numbers. Nevertheless, they are often
applicable only to numbers 7 of a certain form, such as n = 2¥ 4+ 1. Indeed, particularly
for Mersenne numbers M, = 2% —1, an efficient method has been known since Lucas, and
in June 1999 the largest prime is the 38th known Mersenne prime Mggro593, & number
with more than 2 million decimal digits (see [45]).

In this chapter, we are not interested in primality tests for numbers of a certain form.
A general-purpose primality test is of course not as fast as the special test designed for
Mersenne primes, but we can test integers with many thousands of decimal digits.

2. Compositeness Tests

In this section, we shall discuss numerous tests which are mathematically simple and
computationally fast. A primality test has generally the following form: If certain con-
ditions on a number n are satisfied then n is a prime number, otherwise n is a composite
number. Conversely, the following definition is possible:

DEFINITION 3.1. Let n be a natural number. We call a test a compositeness test which
has the following form: If certain conditions on n are satisfied then n is a composite
number, otherwise n is a prime number or in rare occasions a composite number. We
denote such a rare occasion as a failure and call n in that case a pseudoprime, because
n satisfies the conditions of the test like a prime.

These compositeness tests may have as a result that a composite number is being indi-
cated as a prime (if the test fails), but never vice versa. Furthermore, they return the

13
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correct result only with high probability and not with certainty. Briefly, if a composite-
ness test is performed on n, and the condition for being composite is not satisfied, then
primality of n is not necessarily proved.

2.1. The Converse of Fermat’s Theorem. Fermat’s (little) theorem is the base
for most efficient primality and compositeness tests.

THEOREM 3.2 (Fermat). Let p be a prime number. Then we have for all a € F
a? =1 (mod p).

PROOF. Let a € F;. By Theorem 2.11, there exists a natural number b such that
b-ord(a) = [Fy| =p—1. Then a*~' = (a° @) = 1> = 1 (mod p). O

Thus, if Theorem 3.2 is not satisfied for some integer n, and some a relatively prime to
n, then n is successfully proved composite. Unfortunately, Fermat’s theorem could not
be used as a primality test, because there exist certain combinations of a and composite
n for which ¢®~' =1 (mod n), and these values of n are thus not revealed as composite
by this criterion. For example n = 341 = 11 - 31 is the smallest composite number n
with
2" =1 (mod n).

It can be observed that such numbers are rare; there are exactly 264 239 pseudoprimes
for the base 2 up to 10 (see [99]). This number is very small compared to the number
of primes 7(10'3) = 346 065 536 839 (see [14] on page 300). Thus, if a randomly chosen
number n satisfies the condtion a®™' =1 (mod n) for a base a then it is very likely that
n is prime.

DEFINITION 3.3. Let n be a natural number greater than 2. We denote by F'(n) the set
F(n):={a€ (Z/nZ)*|a"'=1 (mod n)}.

The algorithm for Fermat’s test is very simple:

ALGORITHM 3.4 (Fermat Test).
Input: neN, anda e N withl <a<n.
Output: R € {true,false}.

(1) Ifa™ ' #£1 (mod n), then terminate with the result false, otherwise terminate with
the result true.

The result of the Fermat test is always true for prime numbers, since F(p) = F; for
pelP.

THEOREM 3.5. Let n be a natural number with prime factorization n = [[,_, pi*. Then
we have

F(n)| =[] eed(n — Lpe — 1),

k=1

PRrOOF. We refer to Theorem 1 in [16] for a proof. O
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2.2. Carmichael Numbers. Unfortunately, there exist composite numbers n such
that F'(n) is equal to (Z/nZ)*; as a result, n is a pseudoprime to all bases relatively
prime to it. Such a number can never be proved to be composite by using Fermat’s
Theorem 3.2 and is called a Carmichael number (see [30]). The following theorem gives
a characterization of Carmichael numbers.

THEOREM 3.6 ([30]). A composite number n is a Carmichael number if and only if

A(n) |n—1.
The function A(n) is defined as follows:
(1) A1) =1,

(2) Mp®) =p*p—1), if p is an odd prime;
(3) A(2) = 1 )\(4) =2,\(2¢) =22 fore > 3;
(4) ifn = Hk LD, then A(n) = lem(A(pF)) ey

The smallest Carmichael number is 561 = 3 - 11 - 17, and there are only 246 683 Car-
michael numbers smaller than 10'® (see [100], and [101]). This number is also very
small compared to 7(10'%) = 279 238 341 033 925 (see [14] on page 300). However, it
is shown in [5] that there are infinitely many Carmichael numbers. Therefore, Fermat’s
test should not be used as a compositeness test.

2.3. The Solovay-Strassen Test. According to Euler’s criterion for quadratic
residues, we have

n—1

az =(% (modn),
if n is an odd prime, and a is relatively prime to n. We refer to Theorem 82 in [56] on

page 69 for a proof.

DEFINITION 3.7. Let n be a natural number greater than 2. We denote by E(n) the set
of bases a that satisfy Euler’s criterion

E(n):={a € (Z/nZ)" | a"7 = (%) (mod n)}.

In 1974 R. Solovay and V. Strassen [120] have given a probabilistic algorithm based on
this equation for compositeness proving that it has expected polynomial time.

ALGORITHM 3.8 (Solovay-Strassen Test).

Input: neN,anda e N withl <a<n.
Output: R € {true, false}.

(1) If a"z # (¢) (mod n), then terminate with the result false, otherwise terminate
with the result true.

Like for the Fermat test, compositeness of a number n can be proved with certainty,
but a proof of primality cannot be obtained from the Solovay-Strassen test, because for
example the Carmichael number n = 561 = 3-11- 17 and the base a = 2 satisfy Euler’s
criterion.

Since the Jacobi symbol is only +1 for a base a relatively prime to n, we see that
E(n) C F(n). However, the Solovay-Strassen test can recognize composite numbers that
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cannot be recognized as composite by the Fermat test, e.g. the Carmichael number 561
does not satisfy Euler’s criterion for the base 5. Furthermore, the following theorem
shows that no composite number can satisfy Euler’s criterion for all bases.

THEOREM 3.9 ([120]). Let n be an odd composite number greater than 2. Then E(n) is
a proper subgroup of (Z/nZ)*, and

[E(n)| <

N =

p(n).

This Theorem 3.9 gives rise to the first compositeness test, which is probabilistic in
nature: for 50 randomly chosen values of a, which are tested true by Algorithm 3.8. If
it is not true for any value of a, then n is composite. If it is true for all 50 values, then
we say that n is probably prime, with probability of error less than 27°° ~ 1071°.

2.4. The Miller-Rabin Test. The idea of using Euler’s criterion instead of Fer-
mat’s Theorem 3.2 to distinguish between primes and composites, can be carried a little
further, if n =1 (mod 4).

DEFINITION 3.10. Let n be a natural number greater than 2. We denote by S(n) the
set of bases a for which n is a strong pseudoprime

Sn) =={a € (Z/nZ)* | b=w(n—1),a” V2" =1 (mod n)

(n-1)2¢7" — 4

or a (mod n) for some 0 < ¢ < b}.

This concept was introduced by J. Selfridge using the following algorithm in 1974.

ALcorITHM 3.11 (Miller-Rabin Test).

Input: neN, andaec N withl <a<n.
Output: R € {true, false}.

(1) Setb:=uvs(n—1), and m := 5L
(2) If a™ # 1 (mod n), and there exists 0 < ¢ < b with a™* # —1 (mod n), then
terminate with the result false, otherwise terminate with the result true.

A variant of this test was first published by G. L. Miller in [86] as a non-probabilistic
polynomial-time algorithm assuming the correctness of the Extended Riemann Hypo-
thesis'. Four years later, a practical probabilistic variant of this test was independently
shown by M. O. Rabin in [106] and L. Monier in [87], which has two advantages to the
Solovay-Strassen test. Firstly, it does not require any computation of the Jacobi symbol.
Secondly, we will show in Theorem 3.12 that |S(n)| is smaller than |E(n)|, hence fewer
trials have to be made to ensure a given probability. Rabin’s original algorithm requires
a small number of gcd computations. A simplification of his algorithm, which does not
require any ged computation and which is due to D. E. Knuth [66] on page 395, is now
often called the Miller-Rabin test.

1For more details see Chapter 6.
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THEOREM 3.12 ([106]). Let n be an odd composite number greater than 9. Then S(n)
is a subset of E(n), and
p(n).

By this Theorem 3.12, we see that if a base a satisfies the Miller-Rabin test, then it will
also satisfy the Solovay-Strassen test, so the Miller-Rabin test completely supersedes the
Solovay-Strassen test.

Likewise, for the Solovay-Strassen test, compositeness of a number n can be proved with
certainty, but a proof of primality cannot be obtained from the Miller-Rabin test, e.g.
n = 2047 = 23 - 89 is the smallest number which is a strong pseudoprime to the base 2.
There exists many numbers like

8911 = 7-19-67 (see [108] on page 123)
2000436751 = 481-1531-2683 (see [106))
and 4987757503 = 49939 - 99877 (see [66] on page 662)

1S(n)] <

=

which show that the estimate of Theorem 3.12 cannot be improved in general. But the
Algorithm 3.11 was carefully analysed by [17], [35], and [65].

2.5. Lucas-based Tests. In this section we briefly define a generalized version of
the well-known Fibonacci sequence, and show a connection between these sequences and
the compositeness tests. For more details we refer to H. C. Williams ([138], chapter 4).
Let D, P, and @ be integers such that D = P?—4@Q # 0 and P > 0. The Lucas sequences
{Uk(P, Q) }ken, and {Vi(P, Q) }ren are defined recursively as follows

UO(P Q) = 0,
W(Ph,Q) = 2,
UI(P7Q) = 1
Vi(P,Q) = P,
Up2(P,Q) = PUwn(P,Q) — QUL(P,Q),
Viia(P,Q) = PV (P,Q) — QVi(P,Q) for k € N.

Fermat’s Theorem 3.2 has an analogue for Lucas sequences:

THEOREM 3.13 ([78]). If p is an odd prime number, where pt Q, and (%) = —1, then
p | Up+1(P7 Q)

Thus if Theorem 3.13 is not satisfied for some odd integer n such that n { @, and

(%) = —1, then n is successfully proved composite. An odd composite number n, which

satisfies n | Upy1(P, Q) with n 1 @Q, and (%) = —1, is called a Lucas pseudoprime with
parameter P, and ().

Like Euler’s criterion and strong pseudoprimes, we can make the analogous definitions
for Lucas’ sequences. For more details we refer to [16]. More interesting for us is that
P. Erdos, P. Kiss, A. Sarkozy [40] and D. M. Gordon, C. Pomerance [47] have shown that
the distribution of the Lucas pseudoprimes is hardly different from that of the ordinary
pseudoprimes. This suggests that it is likely to be of little advantage for a compositeness
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test using Lucas sequences on a number which is prime or a ordinary pseudoprime. In
the next subsection we will give the first test which combine Fermat’s test and Lucas
sequences.

2.6. The Baillie - PSW Primality Test. In 1980, R. Baillie, C. Pomerance,
J. L. Selfridge and S. S. Wagstaff, Jr., proposed a test, based on a combination of the
Miller-Rabin test and a Lucas-based test, that seems very powerful ([16],[104]). Indeed,
nobody has yet claimed the $620 that they offer for a counter-example that passes it,
or a proof that no such number exists. It is known (see chapter 8 in [23]) that this
algorithm is correct for all numbers n less than 10'®. But it is considered very likely that
such a counter-example exist, which has shown by C. Pomerance in [103] using heuristic
arguments.

ALGORITHM 3.14.
Input: n eN.
Output: R € {true,false}.

(1) If 2"=1 £ 1 (mod n), then terminate with the result false.

(2) Find the number D := (—1)™(2m+5), where m = min{k € N | ((_1)k(++5)) =—1}.

(3) If nt Upsi(1,352), then terminate with the result false, otherwise terminate with
the result true.

The success of this test suggests that it is possible to construct a test that is, in some
sense, stronger than the Miller-Rabin test. R. Baillie prefers to find the number

D :=min{4k +5 | k e N, (£2) = —1}

in step (2) of Algorithm 3.14. References which discuss this primality test more de-
tailed are for example [90], and [91]. Recently, A. O. L. Atkin [9] has even offered a
prize of $2500 to the first person who can exhibit a composite number n which satisfies
simultaneously a sequence of conditions involving three different compositeness criteria.

2.7. Grantham’s Probable Primality Test. J. Grantham modified the “Baillie -
PSW?” primality test in such a way that he can give a concrete estimate of the probability
that a composite number passes the test with the incorrect result true. Instead of Lucas’
recurrence sequences, he computed in finite fields.

ALGORITHM 3.15.
Input: n €N, wheren > 2 and 21 n.
Output: R € {true,false}.

(1) If a prime number less than 50 000 divides n, then terminate with the result false.
(2) If \/n € Z, then terminate with the result false.
(3) Choose a,b € Z/nZ such that

(M) = -1 and (9) = 1.

n n
n+1

(4) Define the polynomial p(z) := 2> —ax+b € (Z/nZ)[x] and q(z) = x> (mod p(x)).
(5) If q(x) € Z/nZ or q(x)* £ b (mod p(x)), then terminate with the result false.
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(6) Letn®—1=2"s, where s is odd. If z* £ 1 (mod p(z)) and z*** £ —1 (mod p(x))
for all 0 < k < r—2, then terminate with the result false, otherwise terminate with
the result true.

THEOREM 3.16 ([52]). Let p be a prime number, and n be an odd composite number.
The result of Algorithm 3.15 is always true for p. The probability that the Algorithm 3.15

returns the result true for n is less than ﬁ.

3. Primality Tests

The primality tests in this section are methods by which natural numbers n can be proved
to be prime. The practical problem of rigorously proving that a number n is prime,
is generally more computationally intensive than the compositeness tests of previous
Section 2. Consequently, before applying one of these tests to a candidate prime n,
the candidate should be subjected to a compositeness test such as the Miller-Rabin
Algorithm 3.11.

Of course, Fermat’s Theorem 3.2 can be used and simply extended to prove efficiently
compositeness of a number n. Unfortunately, as already noted, all these approaches of
previous Section 2 suffer from a serious defect: they cannot directly be used to prove
the primality of n. In this section we will see that only Miller’s compositeness method
(Algorithm 3.11) could be used to establish primality in deterministic polynomial running
time, but it requires the Extended Riemann Hypothesis which still seems very far from
being proved. However, we want to see how successful we will be if we remove the
Extended Riemann Hypothesis from Miller’s test in Chapter 6.

Briefly, we describe all modern primality tests only as an overview. A few ideas of these
tests are also important for Chapter 5.

3.1. Pocklington’s Theorem. An appropriate modification of the Fermat Theo-
rem 3.2 can be used to find the properties of all divisors of the number n that has to be
tested. If a sufficient number of such properties are known, this can lead to the proof of
the primality of n. A theorem towards this goal has been shown by H. C. Pocklington
in [102] in 1914.

THEOREM 3.17 (Pocklington). Let n be a natural number, p be a prime number dividing
n — 1, and a be relatively prime to n. If

a”'=1 (modn) and gcd(anT?1 —1,n) =1, (1)
then every prime divisor q of n satisfies
¢=1 (mod p»"Y).
PROOF. Let d := ord,(a). By Lagrange’s Theorem 2.11, and (1), we have
d|n—1 and dT"TTl and d|qg—1.

Hence,
pr™@ V1 d  and d|q-—1.
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Thus,
pr Y g -1
Therefore, the proof of the assertion follows by
g=m-p?"D 41,
for a natural number m. 0

COROLLARY 3.18 (Pocklington). Let n be a natural number, and n = RF + 1 with
prime factorization F =[], _, pi¥ > /n— 1, and gcd(F, R) = 1. If there exists a base a
relatively prime to n such that
n—1

1

a (mod n)

and g;f,cd(anp—;1 —1,n) =1 foralk,1<k<r,

then n s prime.

PROOF. Assuming n is composite, and let ¢ be the smallest prime factor of n. Then
clearly ¢ < /n. By Theorem 3.17, and the Chinese Remainder Theorem 2.5, it follows
that ¢ =1 (mod F'). But hence ¢ > F + 1 > y/n, we have a contradiction. O

A more elaborated version of Pocklington’s Theorem 3.17 is presented in [24] by J. Brill-
hart, D. H. Lehmer and J. L. Selfridge, who show for example, that only a partial
factorization F' > /n of n — 1 is needed to prove the primality of n with Pocklington’s
theorem.

We can also design primality proofs that depend on knowing the factorization of n + 1,
n?+1, and n® £ n + 1 (see [134], [135]), or also on higher degree finite fields and com-
bine them. Since |F;[ = (p — 1)(p + 1), and |SLy(p)| = p(p — 1)(p + 1), it seems to be
reasonable to carry out the proof using not only F,, but rather a finite ring or group
which is isomorphic to F , or SLy(p), respectively, if indeed p is prime. We will use a
special linear group for a primality test in Chapter 5.

3.2. Modern Primality Tests Using Algebraic Number Theory. Previously,
we saw various primality tests and recognized that they require the knowledge of the
factorization of n — 1 (or n+1, etc.). Even though only a partial factorization is needed,
and combinations of calculating in different finite rings are used, the tests based only on
Pocklington’s Theorem 3.17 become impractical as soon as n has more than about 100
decimal digits.

A breakthrough with the Jacobi sum test was made in 1980 by L. M. Adleman, C. Pomer-
ance and R. S. Rumely [3], who devised an algorithm for primality testing, which has
a nearly polynomial running time of O(In(n)¢ ™)) for a suitable constant C. The
basic idea is to check a set of congruences which are analogous of Fermat’s Theorem 3.2
in certain cyclotomic rings. If n is prime, these congruences always will be true. If n
is composite, however, these identities are probably not satisfied like in a compositeness
test. If, however, all these congruences are verified, then we get some information about
the possible divisors of n, like Pocklington’s Theorem 3.17. More precisely, the possible
divisors of n must fall into a relatively small number of congruence classes, and these
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can easily be checked. The following simple example roughly illustrates the flavor of the
information obtained. Suppose for some integer a we have T = —1 (mod n). Then
we will see by Lemma 5.4, that vo(p — 1) > va(n — 1) for every prime divisor p of n.
The version of the Jacobi sum primality test used in practice is a randomized algorithm,
which terminates within O(kIn(n)¢ ()} steps with probability at least 1 — 27,
for every k € Ny, and always gives a correct answer. The original Jacobi sum test was
simplified, both theoretically and algorithmically by H. Cohen and H. W. Lenstra, Jr.
[31], and H. Cohen and A. K. Lenstra have given in [32] an implementation report. We
do not enter into all the details here, and refer for further improvements of the Jacobi
sum test to W. Bosma, M. van der Hulst [19] and P. Mihailescu [85]. This improved
version of the Jacobi sum test is, indeed, practical in the sense that the primality of num-
bers with about 1000 decimal digits can be proved in a not too unreasonable amount of
time. However, the test is not as easy to program as the probabilistic Miller-Rabin test
(Algorithm 3.11), and the resulting code is not simple.

In 1986, another primality testing algorithm was invented, first for theoretical purposes
by S. Goldwasser and J. Kilian [46]: almost all primes could now be proved in probabilis-
tic polynomial time. A. O. L. Atkin and F. Morain [8] considerably modified it to obtain
a practical algorithm. This algorithm is based on an elliptic curve analogue to Pockling-
ton’s Theorem 3.17, by replacing the group (Z/nZ)* by the group of points on an elliptic
curve modulo n. The advantage of elliptic curves modulo n is the number of points m
on an elliptic curve over Z/nZ being inside the interval® |n + 1 — 2\/n,n + 1 + 2y/n[, if
n is prime. Thus, it should be possible to construct an elliptic curve such that m can
be partially factored. Fortunately, R. Schoof has developed a deterministic algorithm
[118] for computing m if n is a prime number. With heuristic arguments the expected
running time of this algorithm for proving the primality of n has been shown to be
O(In(n)%t¢) for any € > 0, hence it is a polynomial time; but this is only an average,
since for some numbers the running time could be much larger. Elliptic curve primality
proving algorithms have been used to prove the primality of numbers of more than 1000
decimal digits. For more details we refer to [8].

L. M. Adleman and M.-D. Huang [2] later found an unpractical version, using a higher
dimensional analogue of the elliptic curves test® that finds rigorous proofs of primality
for all prime numbers n with a running time that is polynomial in log(n) with high
probability. However, their method is purely of theoretical interest, even if it is the only
known polynomial time primality proving algorithm, so we can formulate the follow-
ing theorem, which is one of the major achievements of theoretical algorithmic number
theory.

THEOREM 3.19 ([2]). There exists a probabilistic polynomial time algorithm which can
prove or disprove that a given number n is prime.

>This was an important result of H. Hasse. A proof can be found on page 131 of [119], or an
elementary proof in [132].
3nstead of using elliptic curves they use curves y? = f(z), where f(x) is a polynomial of degree 6.
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4. Deterministic Versions

In Section 2 and also in Section 3, we have not specified how to choose the bases for
the compositeness test or for Pocklington’s Theorem 3.17. There are two fundamentally
different approaches to solve this problem. The first approach is to select randomly a
base among all possible bases; the second approach is to select a base or a set of bases
by using a deterministic algorithm. The goal of this section is to describe methods to
find “good” bases or, more precisely, to avoid combinations of “bad” bases. In other
words, we are looking for the smallest set of bases which are neccessary for proving the
primality of n.

4.1. Miller’s Test and the Extended Riemann Hypothesis. A. Granville and
C. Pomerance [53] have proved that there always exists a composite number that will
pass the Algorithm 3.11 for every fixed set of bases. So we are interested in an algorithm
which constructs a set of bases such that the number n is a proved prime. We will see
in Chapter 5, that it might be possible to solve this problem with only two bases if we
extend Miller’s test a little.

Assuming the truth of the Extended Riemann Hypothesis, G. L. Miller has proved in
[86] that consecutive Miller-Rabin tests can constitute a primality test working in poly-
nomial time. He proved that if n is composite, there exists a base a < C - In(n)? such
that the Algorithm 3.11 returns the result false. In Chapter 6, we will prove that the
constant C' can be taken as %

The Extended Riemann Hypothesis is required to prove the existence of a “small” qua-
dratic non-residue for every divisor of the testing number n (see [76]).

This hypothesis is a generalization of the ordinary Riemann Hypothesis to the Dirichlet
L-function. In the Extended Riemann Hypothesis, it is assumed that all L-functions
have their non-trivial roots exactly on the line s = %

We refer to Chapter 6 for more details about this test. Moreover, it is interesting and
also useful to know the smallest strong pseudoprime to several bases simultaneously.

e If n < 2047 and the result of Algorithm 3.11 is true for the base 2, then n is a
prime number.

e If n < 1373 653 and the result of Algorithm 3.11 is true for the bases {2, 3},
then n is a prime number.

e If n < 25326 001 and the result of Algorithm 3.11 is true for the bases {2, 3,5},
then n is a prime number.

o If n < 3 215 031 751 and the result of Algorithm 3.11 is true for the bases
{2,3,5,7}, then n is a prime number.

o If n <2152 302 898 747 and the result of Algorithm 3.11 is true for the bases
{2,3,5,7,11}, then n is a prime number.

o If n < 3474 749 660 383 and the result of Algorithm 3.11 is true for the bases
{2,3,5,7,11,13}, then n is a prime number.

e If n < 341 550 071 728 321 and the result of Algorithm 3.11 is true for the bases
{2,3,5,7,11,13,17}, then n is a prime number.
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The first three results are calculations of C. Pomerance, J. L. Selfridge and S. S. Wagstaff,
Jr. [104]. The other extended results are provided by G. Jaeschke [62]. Additionally,
in the same article, he has shown some other results:

e If n <9080 191 and the result of Algorithm 3.11 is true for the bases {31, 73},
then n is a prime number.

o If n < 4 759 123 141 and the result of Algorithm 3.11 is true for the bases
{2,7,61}, then n is a prime number.

e If n < 1000 000 000 000 and the result of Algorithm 3.11 is true for the bases
{2,13,23,1662803}, then n is a prime number.

4.2. Pocklington’s Theorem. By Miller’s test and assuming the Extended Rie-
mann Hypothesis, we know that the prime recognition problem can be solved in poly-
nomial time. But the problem is that the truth of the Extended Riemann Hypothesis is
not yet proved.

It has been known since Lucas, that it is easy to find a proof of primality for a prime p if
the complete factorization of p — 1 is known. Indeed, we merely have to present a primi-
tive root for p and prove that it is the primitive root by using the prime factorization of
p—1. In fact, E. Bach [13] has recently shown that if the Extended Riemann Hypothesis
is true, there exists a fast deterministic algorithm for finding a primitive root for a prime
p. Another method that works very well in practice, is choosing random integers until
a primitive root is found. The expected number of tries is O(In(In(p))), which follows
from Theorem 2.3.

But M. R. Fellows and N. Koblitz [41] have shown that they can determine whether a
number n is prime or composite in deterministic polynomial time, if the complete fac-
torization of n — 1 is given. The advantage of it is, that this result does not rely on the
truth of any unproved hypotheses. Their algorithm needs O(In(n)?) tries, and does not
guarantee that it will find a primitive root or a set of generators; but it proves primality
and is deterministic.

In 1997, a more elaborate version was given by S. Konyagin and C. Pomerance in [68].
They have shown how the prime or composite nature of p can be decided deterministi-
cally and in polynomial time O(ln(p)g). In addition, they only require a fully factorized
divisor F' of p — 1, where F' > p%“. In particular, they presented an algorithm which
allows to decide whether n is prime or composite, if it is known that all prime divisors
of n are congruent 1 (mod F) with F > nio, which is a practical addition to [24].
Nevertheless, we have to know a large partial factorization of n—1 to prove the primality
of n by this approach. Generally, this is not feasible for large numbers n, because it can
be very time consuming.






CHAPTER 4

Commutator Curves

1. Introduction

DEFINITION 4.1. Let n be a positive integer. We define the commutator flat C,, by the
set

Cn :={c(z,y) (modn)|z,ye (Z/nZ)'} C SLy(n),

where the commutator ¢ in the two-dimensional special linear group is defined by

e = (1) (1) GG
-G DGD0Y
E E G

1—|—my—|—x2y2 %y
1—zy )

with z,y € (Z/nZ)*.

Regarding the commutator flat, our main interest will be the distribution of the orders
in SLy(n) of the points on this flat, where n is a positive integer. We consider this
distribution of orders with regard to a compositeness test.

It is easy to see that the commutator flat is a subset of SLs(n), where n is a positive
integer. But from the definition above it is not directly clear how many points are on the
commutator flat C),; or more precisely do there exist some points with the same image?
This question will be answered in this section.

First, we will prove that the commutator flat can be represented by the disjoint union
of sets which we will call commutator curves. In this context, we use the term curve for
a set described by a single parameter.

THEOREM 4.2. Let n be a positive integer. Then C,, is the disjoint union of C%:
c.= | ¢
z€(Z/nZ)*

where
Cy ={c(z,y) (modn)|ye (Z/nZ)"}

is a commutator curve for x € (Z/nZ)*.

25
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PRrROOF. Obviously, we have

c.= |J ca

z€(Z/nZ)*

Therefore, we have to show that no different points have the same image under the map
¢ to complete the proof of this theorem.
Let x1, 22, y1,y2 € (Z/nZ)* such that c¢(z1,y1) = ¢(x2,92) (mod n). Then from Defini-
tion 4.1, we have the following equations

ety = a3yz  (mod n), (2)
11y = xoys  (mod n), (3)
r1y1 = x2y2 (mod n). (4)
Since x1, 9, Y1, Y2 are invertible and from division (2) by (4), we have
r1 =122 (mod n).
Similarly, divide (3) by (4), we have
y1 =yo (mod n).
Thus, the points (z1,y;) and (x9,y2) are equal modulo n. O

The commutator has, above all, the following useful property

LEMMA 4.3. Let G be a group, x,y € G, m be a positive integer, and 1 be the unit
element of G. Then we have

(z 7ty toy)™ =1 if and only if (z lyzy )™ = 1.

PROOF. The proof of the assertion follows directly by

m

(e 7ty tay)™ = [ [((ye) M (wy)) = 1

k=1

& :L"yH yx) Nzy)) = ya
& yIH xy)” yx Ty

& 1=zyz l_[(y‘lﬂc‘l?ﬂ)y‘1 = (z7lyzy )™ O
k=2

COROLLARY 4.4. Let n be a positive integer, and x,y € (Z/nZ)*. Then
OI‘d(C(.I‘7 y)) = OI'd(C(I, _y>>

PROOF. It can be directly concluded from Lemma 4.3. U
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By this corollary, we see that the orders on the commutator flat are symmetrical to the
second argument. Before we collect more properties of the distribution of the orders on
the commutator flat, we introduce the standard commutator curve over n, where n is a
positive integer.

DEFINITION 4.5. Let n be a positive integer. We define the standard commutator curve
C} by the set

Cl:={c(1,) (modn) |z € (Z/nZ)*},
where the commutator ¢ in the two-dimensional special linear group is defined by

an = (3D (2 (EHEY

_ l+z+2°2 =
(1:1) —x2 1—=z
with z € (Z/nZ)*.

Obviously, working with the standard commutator curve is more simple than with the
commutator flat. But the main reason why we reduce the consideration from the com-
mutator flat to the standard commutator curve, is because every commutator curve C}
is conjugate to the standard commutator curve C! via conjugation' by

( [1) qu ) € GLy(n).

Hence both have the same distribution of orders and therefore they are equal under
statistical considerations, where n is a positive integer. We will show this by the following
theorem.

THEOREM 4.6. Let n be a positive integer, and x,y € (Z/nZ)*. Then we have
c(x,y)" =1, (mod n) if and only if  c(1,zy)" = I, (mod n).

PRrROOF. We have the following equation

(1+xy~|—:c2y2 22y )

C($, y) = —zy 1— a2y

(4.1)

o )c(l,xy) ( oY ) . (5)

IThe conjugation for a group G is defined by the map x : G x G — G : (a,z) — aza™!, e.g. see

[42] on page 38.
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Note that
( oY ) ¢ SLo(n) ifz#1 (modn).

T

“=": We have c¢(x,y)” = Iy (mod n). Then from (5), we have

(3 2)en (32
(3 e

1
0
= ((1) g)((l) x91>212 (mod n).

(1, zy)"

—
ot
=

(
c(z,y)" 5 (
(

8

L
~~
8

\.l—‘

=

s

3 <
VR

O = —
8 O g
~

xol)(é 2):12 (mod n). O

In Theorem 4.6 we have shown that every point on the commutator flat can be transferred
to a point on the standard commutator curve with the same order.

c(x,1) c(1,x)
c(z,y) c(1, zy)
c(z, 27 1y) c(1,y)
o Ch

Therefore, we will concentrate our consideration of the distribution of orders on the
standard commutator curve.

The Chinese Remainder Theorem 2.5 can be transferred on the standard commutator
curve.

THEOREM 4.7. Let my, my be positive integers with ged(my, ms) = 1, and let
c(l,z1) € Cp,  and c(1,35) € C,

ma?

then there exists a unique solution

c(1,z3) € C}

mima2

with ¢(1,z3) = ¢(1,21) (mod my), and ¢(1,x3) = ¢(1,z2) (mod my).
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PROOF. Let k € {1,2}. Then

( 1+zs+axi B A A e A B
c(l,z3) = < a2 1 —2 ) = a2 P c(l,z)  (mod my)

is in C}, ... a unique solution since 3 is a unique solution modulo myms with

r3 =z (mod my)

by Theorem 2.5. O

2. The Order of a Group Element in SLs(p)

We know that the standard commutator curve over n is a subset of SLy(n), where n is
a positive integer. So before considering the orders on the standard commutator curve,
we will know which orders can be found in SLy(p), where p is an odd prime number.

THEOREM 4.8. Let p be an odd prime number,

A= ( i > € SLsy(p),

Q21 A22
and € = (%). Then we have exactly one of the following assertions

AP~ =1, (mod p) if € # 0,
and

A =1, (mod p) if e =0.
ProoOF. We have the characteristic polynomial
aj; —t a
xa(t) = det ( " 1i ) = (a1 —t)(ag —t) — a12a2
ag Qg —1

2
= 1° — (a1 + axn)t + a11a2 — a12as; -
NV

=1

This polynomial x 4(¢) has the discriminant
D2 = (CLH + CL22>2 —4.

Let &1, &2 be the two roots of x4(t) in an algebraic closure of FF,,.
First of all, we assume that (a;; + a)? # 4 (mod p). Then it is easy to show that

_of &0 -
aes(§ 0)s

o 1 ( 2a; axp—an+D
5 =(2D) ( —2as ann —ap+D )’

where

The following two cases are possible
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(1) If (%2) = 1, the two eigenvalues {; and & are distinct elements of F,, and we
get

p—1 &0 —1\p—
= is(§ 0 ) s

B & 0\
- s(G o) s
= S ( S ) S™t=1, (mod p).

p—1
0 &

(2) If (%2) = —1, the two eigenvalues & and & are distinct elements of F.—-F,
and we get

APTL — (S( %1 502 )S—l)p+1

_ & 0 p 1
-s(§ o) s

pt+1
= S ( & p0+1 ) St=1, (mod p).

Now we assume that (ai; + a)®> = 4 (mod p). Then the eigenspace corresponding to
& = & has dimension two or one and since det(A) = 1 we have & € {£1}. So

_ (& 0 _
A_(dﬁ)_ih

hence A% = I} = I,, or there exists a matrix S € GLy(p) such that

& 0 -1
A=S ST
(1 &)
For & = & =1 we have

10\ o 10 o

Similarly, for &, = & = —1 we have A% = [, (mod p). O

COROLLARY 4.9. Let p be an odd prime number, x € F;, and ¢ = (Q’QITH). Then we have
exactly one of the following assertions

c(l,x)P*=1, (mod p) if e #0,
and
ord,(c(1,z)) = 2p if e =0.
PrOOF. If € # 0, then this corollary follows directly by Theorem 4.8.
If ¢ =0, then, by Theorem 4.8, we have
c(l,7)* =1, (mod p),
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and there exists a matrix S € GLs(p) and £ € £1 such that

o1, 2) —S(i 2)51.

Suppose & = 1. Then the trace of the matrix
trace(c(1,2)) =2* +2=2( =2 (mod p)
contradicts = € F. Thus, § = —1. Therefore, ord,(c(1, 7)) = 2p as claimed. O

3. The Orders on the Standard Commutator Curve

First we consider a few examples of orders on the standard commutator curve over a
prime number, before we collect some general properties about the distribution of the
orders on the standard commutator curve.

EXAMPLE 4.10. Let p = 7, and x € F), where p = 3 (mod 4). Then we have the
following table for the orders on CI} :

x 1 23 456
ord(c(1,2)) |8 3 8 8 3 8
Thus, we have the following frequencies of orders:
ord(c(l,2)) |2 3 4 6 7 8 14
frequency ‘0 20004 0

EXAMPLE 4.11. Let p = 11, and x € F;, where p = 3 (mod 4). Then we have the
following table for the orders on C’; :

x\12345678910
0rd(c(1,az))\5 12 4 5 12 12 5 4 12 5

Thus, we have the following frequencies of orders:

ord(c(1,x)) |2 3 4 5 6 10 11 12 22
frequency [0 0 2 4 0 0 0 4 0

EXAMPLE 4.12. Let p = 13, and x € F), where p = 1 (mod 4). Then we have the
following table for the orders on C’; :

x |1 2 3 4 5678 9 10 11 12
ord(c(T,)) [14 14 26 14 6 3 3 6 14 26 14 14

Thus, we have the following frequencies of orders:

ord(c(1,2))[2 3 4 6 7 12 13 14 26
frequency [0 2 0 2 0 0 0 6 2

EXAMPLE 4.13. Let p = 1009, and x € F, where p = 1 (mod 4). Then we have the
following diagram for the orders on C; :
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2500

2000 : T

1500 4
ord(c(1,x))
1000 = — PR - - [—— - —— -l

BOO fre ¢ v rermmeese s e s s s m s e mmmmene e sy

0 , _' ,_- J.}', , |-‘ R ,r '| *, __ ..1
0 200 400 600 800 000
xT

If we take all values of this diagram, we have the following frequencies of orders:

ord(¢(L,x)) |3 4 6 7 8 9 10 12 14 18 21 24 28 36 42
frequency |2 2 2 6 4 6 4 4 6 6 12 8 12 12 12

ord(c(1,z)) |56 63 72 84 126 168 202 252 504 1010 2018
frequency |24 36 24 24 36 48 100 72 144 400 2

OBSERVATION 4.14. These previous examples are a small selection of observations which
are made on many numbers, e.q. in Appendiz B. They give the following assertions:

(1) The frequency of an order on the standard commutator curve is even.
(2) Let n be a natural number greater than 2. Then we have ord(c(1,z)) > 3 for
every x € Z with x Z 0 (mod n).

(3) Let n be a squarefree odd natural number. Then we have exactly two numbers
x1, 29 € (Z/nZ)* such that

ord(c(1,x1)) = ord(c(1,xs)) = 2n
if and only if n is a prime number with n =1 (mod 4) and

v =23=—-4 (modn)

(4) Let p be a prime number, and v € F such that ord(c(1,)) { 2p. Then
{y € F, | ord(e(1,y)) = ord(c(1, %))} = p(ord(c(1, x))).
(5) Let p be a prime number, and x € F such that ord(c(1,z)) | p+ 1. Then®
ve(ord(e(1,x))) = va(p+ 1).
(6) Let p be a prime number, and v € F such that ord(c(1,z)) [ p— 1. Then
va(ord(c(1,x))) < va(p — 1).

2The definition of the number-theoretic function v can be found in Definition 2.1 on page 6.
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In this section, we will prove the first item of Observation 4.14, because it is easy. The
proofs of the other five items of Observation 4.14 are more complex and they will be
treated in the following three sections.

The first item of Observation 4.14 can easily be proved by Corollary 4.4.
THEOREM 4.15. Let n be a natural number greater than 2, and x € (Z/nZ)*. Then

H{y € (Z/nZ)* | ord(c(1,y)) = ord(c(1, z))}| is even.

ProoF. This can be concluded from Corollary 4.4. OJ

4. Recurrence Relations

In this section we are interested in points on the standard commutator curve which have a
fixed order. These points can be characterized by the roots of the following polynomials.

DEFINITION 4.16. Let n be a natural number. Then we recursively define the polyno-
mials 6,,(X),w,(X) € Z[X] by

0p(X):=0,01(X) =1+ X,
wo(X) :=0,w(X) =1,
Osa(X) = (X2 4 2)0pn41(X) = 0n(X) + X,
Wini2(X) = (X? + 2) w1 (X) — wn(X) for m € N.
In addition, we define the polynomial

Un(X) 1= ged(0n(X),wn (X)) - [T ged(0a(X), wa( X))

dln
d<n

Using these polynomials we will prove some further equations.
LEMMA 4.17. Let n be a natural number. Then we have

X0 (X) = (X2 4+ X + Dwpa (X) = wa(X) - 1,
and  X’w,1(X) = (X = 1D)0p1(X) +0,(X) + 1.

ProoF. First, we have the following simple relations:

X0,(X) o X2+ X+1-1=X*+X, V
4.

X2w(X) = X*—1+1=X% V
(4.16)
X0,(X) o (X2 +)(X?+X+1)-1-1=X*"+X>+3X>+2, v
4.16
and X2 (X) = (X-D(X*+X*4+3X+2)+1+X+1=X*"+2X2 v

(4.16)
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We proceed by induction on n. Let n > 0 and assume that we have the assertion for n
by induction. Then, by the inductional assumption, we have

X0,5(X) o (X% 4 2)X0,41(X) — X0,(X) + X2

= (X?+D((XP+ X+ Dwp1(X) —wn(X) = 1) = (X2 + X + Dw,(X)

(14)
+wp 1 (X)) +1+ X2
= (X?H+ X +1D)((X?+2)wp1(X) —wn(X)) = (X2 + 2)w,(X)
+ w1 (X) =1
(4.16) (X% + X + Dwni2(X) = wnia (X) — 1,
and
X?wnia(X) (4?6) XX + 2w (X) = X 2w, (X)
(I:A) (X2 +2)((X = 10,1 (X) +0,(X) +1) — (X — 1)0,(X)
— 0,1 (X) —
= (X >((X2+2) O (X) = 0,(X) + X) + (X2 +2)0,(X)
O 1(X)+ X +1
(W1o) (X 16,11 (X) + 0,(X) +1. O

THEOREM 4.18. Let m be a natural number, n be a positive integer, and x € (Z/nZ)*.

Then
m 14+ 20,(2) T (2)
o(L, )" = ( —220,(x) 14 2l () — (2 + 2)wn(2) ) '

PRrooF. First, we have the following simple relations:
(12 = 1+ z6y(x) Twp(T)
’ —2?wo(z) 1+ 26h(x) — (2 + x)wo(2)

— 127
(4.16)

and

We proceed by induction on m. Let m > 0 and assume that we have the assertion for m
by induction. We write 6, instead of 6,,(z) and w,, instead of wy,(x) for better reading.
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Then, by the inductional assumption, we have
C( m+1
_ 1 + x@ TWm 1+ +a? x
(14) —22wy, 1420, — 22+ 2)wn —x? 11—z
_ 1—|—:z: 1+x—|—(1—|—33—|—1:)0 — 2%w,,) (1 + 20 + Wi — Twn,)
o —2?(14+ x4+ 2w + 1+ 20, — 22+ 2)wn) —23wn + (1 + 20, — 22+ 2)w,) (1 — )
_ 1—1—33 ac—|— (2 + 22 )9 —0m—1) (22 4 2)wm — Wim—1)
(4.17) (22 + 2)wm — Wim—1) 1+2(2+ 20 — 01 — 2 — (20, — Wi + 20 (2 + 7))
_ 1+ x0m+1 TWyn+1
(4.17) %Wy 1+ 2001 —2(1+ (@22 + 2+ Dwp —wme1 — 1+ (1 —2)wn) (2 + )
_ 14 2041 TWmt1 0
(4.17) — w1 1420 — 22+ )wmpr )

COROLLARY 4.19. Let m be a natural number, n be a positive integer, and x € (Z/nZ)*.
Then we have

O (x) = 20p(2)? + 20, (7) — 22w, (2)?,

and  won(r) = (Wnt1(®) — w1 (2))wm ().

PRrROOF. The proof of the assertion follows directly from Theorem 4.18 and the equa-
tion

c(l,x

1 —|—:U9 TWm, 2
—2%wy 1+ 20, — (2 + 2)wn

2(2 —|— 2260, —x(2 + x)wm)wm (14 20m — 2(2 + )wp)? — 23wy,

< (14 20,,)% — 2302, 2(2 + 220, — (2 + T)wp )W, >
< 1 —l— 93 x02 +20,, —2%W2) 22((@® 4+ 2+ Dwm — Wm-1) — (2 + T)wm)wm )
(4.16) <

(22 4 2)wm — 2Wim_1)wm (14 20, — 2(2 + 2)wm)? — 23w

1+ x02 + 20, — 2%w2) T(Wm+1 — Wm—1)wm
2(Wma1 — Wine1)wm 1+ 202 — (24 2)wam )’

where we write 6, instead of 6,,(z) and w,, instead of w,,(x) for better reading. O

Using this Theorem 4.18 it is easy to prove the second item of Observation 4.14.

THEOREM 4.20. Let n be a natural number greater than 2, and x € (Z/nZ)*. Then
ord(c(1,z)) > 3.

PROOF. Since z # 0 (mod n), we have ¢(1,x) # Iy (mod n). Thus ord(c(1,x)) > 2.
Suppose we have an integer = with x # 0 (mod n) such that ord(¢(1,z)) = 2. Then

2 1+ 20y(x) Tws ()
(1,7) (4.18) < —2?wy(x) 1+ 2by(x) — 2(2 + x)wa(x) )
_ < 14+ 2(2+ 22 + (3 + 2?)) z(2 + 2?) )
(4.16) —r%(2 + 2%) 1—z(2+2—2?%)
= I, (modn).
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Therefore,

2+2°=0 (modn) and 2+2*+2(3+2°)=0 (mod n).
Thus, we have 1 =0 (mod n), which contradicts n > 3. O
Moreover, by Theorem 4.18, we can determine all points point on the standard commu-

tator curve with the order m by finding the roots of polynomial ,,(X), where m is a
positive integer.

THEOREM 4.21. Let m,n be positive integers, and x € (Z/nZ)*. Then
Ym(x) =0  (mod n) = ord,(c(1,z)) = m.

PrROOF. We have 0,,(z) = wy,(z) = 0 (mod n). By Definition 4.16 of v,,(x), and
Theorem 4.18, we have

c(l,2)" =1, (modn) and c(1,2)*# I, (modn) for all d | m with d < m.
Therefore, by Lagrange’s Theorem 2.11, we get
ord,(c(1,x)) = m.
O

For example, we can characterize all points on the standard commutator curve, which
have an order equal to six.

COROLLARY 4.22. Let n be an odd positive integer, and x € (Z/nZ)*. Then we have
2= -1 (mod n) = ord(c(1,z)) = 6.

PrROOF. We have the following equations

f2(X) o (X2+2)1+X)+ X =X+ X +3X +2
4.16

w(X) = X?42
(4.16)

05(X) e (XP+2)( X3P+ X2 +3X+2) - X —-1+X
4.16

= X'+ X*4+5X34+4X%°+6X +3
= (X*+3)(X*+X2+2X +1)

ws(X) o (X242 —1=X*+4X*+3
4.16
= (X*+3)(X*+1)
0s(X) o) X(X°+ X* +5X3 +4X% +6X + 3)?

+2(X° 4+ X* +5X° +4X? +6X + 3)
— X3(X* +4X% 4 3)?

= XU X4 11X% + 10X +45X7 +36X5 4+ 84X° + 56 X1 + 70X
+35X% 421X +6
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= (XPH+D(XP+3)(X+ X +7X° +6X" +14X° +9X* + 7X +2)

we(X) = (XCH+6X"+10X%+4— X?-2)(X* +4X%+3)
(4.19)

= X104 10X®%4+36X%+56X%+35X2+6
(XZ4+3)(X2+2)(X?+ 1) (X" +4X2 +1).
Therefore, we have

YolX) ged(05(X), we(X)) - ged(2(X), wa(X)) ™ - ged (65(X), w3 (X))~

= (X*+D)(X*+3)-17" - (X?+3)7!
X*+1
and the proof of the assertion follows directly from Theorem 4.21. OJ

EXAMPLES 4.23. Using (for example) the algebra package Maple from the University of
Waterloo (Canada), we can calculate the following polynomials:

v3(X) = X*+3

V(X)) = X242
Ys(X) = X*45X%45
ve(X) = X241
Pr(X) = XO 47X+ 14X% 47
Ye(X) = X144Xx%242
Po(X) = XO+6X*+9X%+3
Vo(X) = X*+3X%2+1
Y1i(X) = X043 11X% +44X% + 77X 4 55X2 + 11
Y12(X) = X1+4X?+1
Y13(X) = X2+ 13X10 +65X8 +156X° +182X* 4 91X2 + 13
Yu(X) = XO+5X*+6X%+1
P15(X) = X®34+7X0 4+ 14X +8X2 41
P16(X) = X®+8X%+20X* 4 16X2 +2
Y17(X) = XU 417X 119X 4 442X 10 4 935X8 +1122X6 + 714 X% + 204X2 4 17
P1s(X) = XO+6X149X%+1
Pro(X) = X 419X 4 152X + 665X 12 + 1729X10 4 2717X® + 2508 X6 4 1254 X%

+285X2 +19.

5. Distribution of Orders

In this section, we consider the set of orders on the standard commutator curve, split up
into three sets.

DEFINITION 4.24. Let n be a natural number greater than 2. Considering the map

¢: (Z/nZ)* — SLs(n) : z — ( Ltata® @ ) — c(1,),

-z 1—=zx
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we define the set
N_i(n) :={x € (Z/nZ)* | c(1,2)""' = I, (mod n)},

which contains all elements = € (Z/nZ)*, for which the order of the commutator ¢(1, x)
divides n + 1. Hence,

Ni(n) == {z € (Z/nZ)* | c(1,2)" ' = I, (mod n)}

contains all elements « € (Z/nZ)*, for which the order of the commutator ¢(1, z) divides
n — 1. Finally,

No(n) :={z € (Z/nZ)* | ¢(1,2)** = I, (mod n)}
is the set of all elements z € (Z/nZ)*, for which the order of the commutator ¢(1, )
divides 2n.
The following theorem will show that the three sets N_i(n), No(n), and Nj(n) are dis-

joint, if n is a natural number greater than 2.

THEOREM 4.25. Let n be a natural number greater than 2. Then
N_i(n) U No(n) U Ny(n) C (Z/nZ)*.

PROOF. Let z be an integer such that = # 0 (mod n). We split up the proof of this

theorem into three cases to prove that x is at most in one of the three sets N_;(n), Ny(n),
and Ni(n).

(1) If ¢(1,2)"" = ¢(1,2)"! = I, (mod n), then we have
c(1,2)? = ¢(1, )" 0D = ¢(1, )" e(1,2)" P =L, (mod n).

But this equation contradicts Theorem 4.20.
(2) If ¢(1,2)""! = ¢(1,2)* = I, (mod n), then we have

c(1,2)" = ¢(1,2) D) = ¢(1,2)" - ¢(1,2)" = I, (mod n).

Hence, we get a contradiction by considering the first case.
(3) If c(1,2)" ' = ¢(1,2)* = I, (mod n), then we have

c(1,2)" = ¢(1,2) D = ¢(1,2)" - (¢(1,2)" )P =1, (mod n).
Hence, we get a contradiction by considering the second case.

Therefore, the three sets are disjoint. 0

Before we consider more details about these three sets, we will define in this section
other three sets, which are also disjoint and whose size is easier to estimate.

DEFINITION 4.26. Let n be a natural number greater than 2. Then we define the
following three sets

Le(n) = {z € (Z/nZ)" | (=) = e},
where € € {—1,0,1}.
It is immediate that (Z/nZ)* = L_1(n) U Ly(n) U Ly(n) holds.
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5.1. The Standard Commutator Curve with Prime Power Modulus. First,
we consider the six sets defined above only for prime numbers. In this case we will easily
see by the following theorem that N.(p) is equal to L¢(p), where e € {—1,0,1}, and p is
an odd prime number.

THEOREM 4.27. Let p be an odd prime number. Then

Ne(p> - Le(p)a
where € € {—1,0,1}.

ProOF. This theorem follows directly from Corollary 4.9. O

In this subsection, we will determine the size of L.(p*) for an odd prime number p, and a
positive integer k, hence also for N.(p*). Doing this, we need a theorem which considers
the sum over Legendre’s symbol of a quadratic polynomial, and two lemmata which have
been already proved by K. F. Gau8.

LEMMA 4.28. Let p be an odd prime number, and let a and k be positive integers. Then

PP p -1, ifa=0 (mod p)
Z (2(111);1)) _ _pk—l(%) , ifa#0 (mod p), and k is odd
=0

PP (p—2), else.

PROOF. If a =0 (mod p), then

(o) = (=) =

0, else.

{ (;—,}), if 20 (mod p)

Therefore, we have

k

p—1
() = (ph) - (55" =" - ()" (6)
=0
If a 2 0 (mod p), then we have for all b € F . the following identity
pE—1 pE—1
S - Y (), "
=0 =0

since there exists ¢ € F, with bc = a (mod p¥) such that

pF—1 pF-1 pF-1 , pr—1

z(a—x cd(a—cd c“d(b—d z(b—=x
Yo EED) =D () = () =D (5.
=0 d=0 d=0 =0
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If k is even, then we have the identity
pk—1pk—1
XY ®=0""r-1)
y=0 z=0

Combining these two cases, we finally get

il sla—s)y —pk— l(p), if k is odd
Z( p* )_ pk

“p—2), else.
U

LEMMA 4.29. Let p be an odd prime number, and let a,b, and k be positive integers.
Then

pF—1 pF—1
> (G- % ()
=0 x=0

PRrROOF. The proof of the assertion follows directly by the following calculation

- @Y )

yEIFp*k

= PG+ X ()

xGIF;k

prF—1

_ j : 2+ab2

=0
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THEOREM 4.30. Let p be an odd prime number, and let a and k be positive integers.
Then

St P p=1), ifa=0 (modp)
(%) _ —p* 1t ifa#0 (mod p) and k is odd
P p—1— (=)' (9), else.

PROOF. If a =0 (mod p), then

SoER =) (%) =) =p - 1) (8)

Let a #0 (mod p). If (g) =1, then (a%) =1, and there exists b € F, such that

a'=b* (mod p").
Therefore,

() = () Y () = 3 (G

p

I
—

:dl\')
”%r‘ 3

—
~—
—~
o)
=

=0

8

=0 x=0

Let u € F;k with (%) =—1.If (%) = —1, then there exists b € F;k such that

u=ab® (mod ph).

Hence, by Lemma 4.29, we have

pF—1 pEo1
z24a\ _ 224w
2 ) 5 2 58 (10)
If £ is odd, then
pF—1pk-1
"o (5)
=0 a=0
pF—1pF—1
- (%)
a=0 z=0
pF—1 PPl
- — - x? 224
(8).(9).(10) P = 1)+ it (55 + (%)
=0 =0

If k is even, then we have the identity

pF—1ph-1

YD ) =0 - 1)

=0 a=0
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Therefore,
N “opF1 ik is odd .
; (p—k) + ; ( p* ) T 2 (p—1), else. (11)

The proof of the assertion will be completed by equations (9), (10), (11), and the following
two case considerations:

(1) If (_71) = 1, then there exists b € F; such that > = —1 (mod p*). By
Lemma 4.28, we have
2241 _ 22—b2\ _ (z—b)(z+b)\ _ y(y—2b) 2b) (2b )
S - X - e -3 e 3 e
z=0 =0 =0 y=0 y=0
_ pF1 if kis odd
(4.28) (p 2), else.
(2) If (;) = —1, then from (10), and Lemma 4.28, we have
pF—1 pF—1 pF—1 pk*1
z24u _ z2-1\ _ (=1\k (z+1)(1—=x)\ __ k
Y o L - (Y e
=0 =0 =0 y:0
_ —pF=1 i k is odd
(4.28) pFl(p —2), else.

This Theorem 4.30 can easily be extended to all quadratic polynomials.

COROLLARY 4.31. Let p be an odd prime number, and let a,b, and k be positive integers.
Then we have

pE-1 PP (p—1), ifa®>—4b=0 (mod p)
> () = —pF ifa® —4b £ 0 (mod p) and k is odd
= P p— 1 - (~1)% (£4)) | else.

PROOF. Let ¢ = 5, and d = c2. Then the proof of the assertion follows directly from
Theorem 4.30, and the equations

pk—1 pk—1 pk—1 pk—1
Z (:Jc2+pim+b) _ Z (x2+ax;;d+b7d) _ Z ((x+c)2:(bfd)) — Z (y%}fzfd)).
=0 =0 =0 y=0

U

Now we know the exact value of the sum over Jacobi’s symbol of a quadratic poly-
nomial. In the following theorem we give an exact value of the size of the three sets
L_1(p¥), Lo(p*), and L, (p*) for an odd prime number p, and a positive integer k.
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THEOREM 4.32. Let p be an odd prime number, and let k be a positive integer. Then
(231 ifp=3 (mod4), and k is odd

2
;5. k—1 prEl

i

k 5P, (mod 4), and k is odd
[Li(p")| = pl U ,
P p—1), ifp=3 (mod4), and k is even
L pFl(p—3), ifp=1 (mod4), and k is even,
( ;%l'pkfla ifp=3 (mod4), and k is odd
L") = { BLphl ifp=1 (mod4), and k is odd
\ 0, ifp=+1 (mod 4), and k is even,
0, ifp=3 (mod4)
k _ 9
and |Lo(p™)| = { b=t ifp=1 (mod 4).

Note that |L(p*)] =0 (mod p*~1) in all cases e € {—1,0,1}.

Proor. We split up the proof of this theorem into the following five steps:

(1) The equation 2> = —4 (mod p*) has no solution, if —1 is a quadratic non-residue

modulo p. Otherwise, the equation 72 = —4 (mod p*) has 2p*~! solutions, if
—1 is a quadratic residue modulo p. Moreover, we have

(__1):{ —1, ifp=3 (mod 4)

p 1,ifp=1 (mod 4).
Therefore,
0, ifp=3 (mod4)
k o )
[Lo(p")] = { 20F1 ifp=1 (mod 4).
(2) We have

| Ly (p")] + | Lo(p")] + [ L1 ()] = [F | = o(p*) = p" ' (p — 1).

(3) Let p =3 (mod 4). Then from the first step we have (%) # 0 for all integers
x. By Theorem 4.30, we have

L") = HeeFp| (5 =1

p

= 1 (G

zelF*
ok

- BT Y 5

xEF;k

pF-1

- Y (E)
=0

3 ph=t U if K is odd
PP i(p—1), else.
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(4) Let p=1 (mod 4). Then from the first step we have +a € F, such that
a? = —4  (mod p"). (12)
By Theorem 4.30, we have the following equation analogous to the third step:
L = HzeFu| (5 =1

p

N[ =

z244 k
S (1) - 1
(12) ot <( ) L O(p,_/”

_zpk—l

%.pk—l_i_% Z (%)_pkq

:1:6]1“;,C

|
3

prF—1

- ALY ()
x=0

P2 ph=t if & is odd
(4.30) p"l(p—3), else.

(5) Combining them all, we finally get the proof of the assertion. [

5.2. The Standard Commutator Curve with Composite Modulus. Consid-
ering the sets N.(n) and L.(n) for a composite number n, where € € {—1,0, 1}, is more
difficult than for a prime power as the previous subsection. In this subsection we will
give a lower and an upper bound for the two sets L;(n) and L_;(n), where n is a natural
number.

Based on this subsection we will discuss in the next subsection the equality of N¢(n) and
L(n) for a composite number n, where € € {—1,0,1}. That consideration is similar to
the question about the existence of numbers analogous to the Carmichael Numbers.
From Corollary 4.4 we can directly conclude that the number of elements in each of the
three sets of Definition 4.24 is even, which is valid not only for prime numbers.

COROLLARY 4.33. Let n be a natural number greater than 2. Then
2 | N_l(n), 2 | Ng(’fl), 2 | N1<7’L)

ProOOF. This can be concluded from Corollary 4.4. U

The same property is also valid for the three sets of Definition 4.26 by the following
lemma.

LEMMA 4.34. Let n be a natural number greater than 2. Then
2 | L_l(n), 2 | LQ(TZ), 2 | Ll(n)

PROOF. Let z € (Z/nZ)*, and € € {—1,0, 1} such that (m27+4> = €. Then
tx € L(n). O
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In the following two theorems we give an upper and a lower bound for the size of the
two sets L_1(n), and Li(n), where n is an odd squarefree and composite number.

THEOREM 4.35. Let n be an odd squarefree and composite number. Then

Ly (n)] < &9 0 and  |Loy(n)| < €71

PROOF. Let [[,_, px be the factorization of n.
If r = 2 and n = p1py, then we have by Theorem 4.32, the Chinese Remainder Theo-
rem 2.5 and the multiplicativity of the Jacobi symbol

|Li(pip2)| = |La(p)| - [La(p2)| + [L—1(p1)] - [L-1(p2)|

p1—3  p2-3 pitl  pa+l
< 2 2 + 2 2

_ p1p2—3p1—3p2+9 + pip2+pi1+p2+1
4 4
p1p2—p1—p2+5
2

p(p1p2)+4
2 )

and

\Loi(pip2)l = |La(p1)| - [La(p2)| + [La(p1)] - [L-1(p2)]
pitl  p2—3 p1—3  p2+l
2 2 + 2 2

_ p1p2—3p1—p2—3 + p1p2+p1—3p2—3
4 4

pP1p2—p1—p2—3
2

_ o(p1p2)—4
=

We proceed by induction on r. Let n = mp, where p is prime, and assume that we have
by induction

[Li(m)] < 252 and - |Log(m)] < 252 (13)

Then, from the Chinese Remainder Theorem 2.5 and the multiplicativity of the Jacobi
symbol, we have by the inductional assumption

[Li(mp)] = [La(m)] - [Li(p)| + [L-a(m)] - [L-1(p)]
< p(m)+4  p(p)—2 + p(m)—4  p(p)+2
(13),(4.32) 2 2 2 2

_ plmp)—2p(m)+4p(p)=8 | p(mp)—dp(p)+2p(m)—8
1 1

_ ¢(mp)—8

2
p(mp)+4

< 2

Obviously, the proof of the estimate |L_;(mp)| < % is analogous. O]
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THEOREM 4.36. Let n be a squarefree odd composite number with prime factorization
[I.—,pr- Then

ol
—
S

|
w

S~—

|
o

(p (=2)""', pm=1 (mod 4)

B
Il
—

| Le(n)| =

K
L
-

(pr —3) —€-(=2)""1, py=3 (mod 4),

2

T

2
where € € {£1}.

PROOF. If r =2, p; =1 (mod 4), and n = p;ps, then we have by Theorem 4.32, the
Chinese Remainder Theorem 2.5, and the multiplicativity of the Jacobi symbol

[Li(pip2)| = [La(p)| - [La(p2)| + [L-1(p1)] - [L-1(p2)]

p1—3  p2—9 pi—l  p2—1
2 2 + 2 2

v

(4.32)

P1p2—5p1 —5p2+25 4 bip2—p1 —p2+1
4 4

_ p1p2—3p1—3p2+13
2

_ (P1—3)2(p2—3) +2,
and

|Loa(pip2)| = |[Loa(po)| - [La(p2)| + [La(p1)] - [L-1(p2)]

pi—1  p2-5 p1—=5  p2—1
Z 2 2 + 2 2

—  pip2—5p1—p2+5 4 pip2 —p1—5p2+5
4 4

p1p2—3p1—3p2+5
2

_ (p1=3)(p2—3)
p1 2]’2 —92.

If r =2, p1 =3 (mod 4), and n = pyp,, then similar to the previous case we get

[Li(pap2)l = [Lapo)| - [La(p2)] + [Loa(po)] - [Loa(p2)]
> p1—3  p2—5 + pi+l  po—1
(43 2 2 2 2
— p1p2—5p1 —3p2+15 + pip2—p1+p2—1
4 4

—  Pip2=3pi—p2+T
2

_ (p1*1)2(P2*3) +2,

and
ILoi(pap2)] = [Loa(p)] - [La(p2)| + [La(p1)] - [L-1(p2)|
> pi+l  p2—5 + p1—3  p2—1
o 2 2 2

_ p1p2—5p1+p2—>5 + p1p2—p1—3p2+3
4 4
pip2—3p1—p2—1
2
-1 -3
_ (p1 )2(P2 )_2_
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We proceed by induction on r. Let mp,.; = H;ill pr be the prime factorization of n,
and assume that we have by induction
s [ —=3)—€-(=2)"", pp=1 (mod 4)
k=1
| Le(m)| = ,
P Tk —3) —e- (=2, p =3 (mod 4),
k=2
where € € {+1}. If p; = 1 (mod 4), then from the Chinese Remainder Theorem 2.5,
and the multiplicativity of the Jacobi symbol, we have by the inductional assumption

(14)

[Li(mprid)] = [La(m)| - [La(pra)| + [Loa(m)] - [ L1 (prsa)]
> Pr41—5 1 —3)— (-2 r—1
T Q(kHI(pk )—(=2)"")
+e5= ([ [ =3) + (=2
k=1
= p7+2173 H(pk _ 3) + 2 (_2)7‘71
k=1

r41
> 3 H(pk —3)—(-2)

k=1

Obviously, the proof of the estimate |L_(mp,41)| > 3 [Tit (px — 3) +(—2)" is analogous
to the estimate given above.
If py =3 (mod 4), then the proof is similar to the previous case. 0

COROLLARY 4.37. Let n > 15 be a squarefree odd natural number. Then
| Le(n)| > 0,
where € € {£1}.
ProOF. If n is composite, then this corollary follows directly from Theorem 4.36.
Otherwise, if n is prime, then this corollary follows directly from Theorem 4.32. O

THEOREM 4.38. Let n be an odd composite number with prime factorization [[,_, pi*
such that aq s odd. Then

Lo(m) U L(w)] = 252 — e (=27 [ (0= -2,
k=1

0, if ar is odd

1, else.

where € € {£1}, and 6 = {

PROOF. Assume r = 2 and n = p{'p5°.
If ay is odd, then we have by Theorem 4.32, the Chinese Remainder Theorem 2.5, and
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the multiplicativity of the Jacobi symbol
|Lo(p1'p5?) U Li(p1'p5*)| = |Lo(pt") U Li(pt)] - [Lo(p5*) U L1 (p5?)|
+ | Lo(py") U Loa(pi")| - [Lo(p3*) U L_1(p5?)]
- ’LO(P?H : ’LO(P§2)|

p1—3  p2—3 p1+1  p2+1 a1—1 az—1
>(2'2+2'2)-p1p2

_ p1p2—3p1—3p2+9 p1p2+p1+p2+1 a1—1, as—1
= i + 7 )P D

pip2—pi—p2+5  a1—1, as—1

= T P P

_ @(P;PZ) + 2p(11171p§2717

and
|Lo(p?*p5?) U L_1(p1'p5?)| = |Lo(pf*) U L_1(pi*)| - |Lo(p5?) U L1 (p5?)|
+ [Lo(p1") U Li(pt*)| - [ Lo(p3*) U L_1(p3?)|
— | Lo(pi")] - [ Lo(p5?)]

pit+l  p2-3 p1=3  p2tly  _a1—1 a2—1
2 ( 2 2 + 2 2 ) P Y2
(4.32)
— p1p2—3p1+p2—3 | pipa+p1—3p2—3y  a1—1 az—1
= i + i )Py
— pip2—pi—p2—3  a1—1 az—1
- B Py o)
_  e(pip2) a;—1_az—1

=S 200 D
If a5 is even, then similar to the previous case we get
[Lo(pi'p”) U La(p'p5?)] > B2 (py — 1) pipg* ™

(4.32)
_ p1p2—p1—3p2+3 a1—1,_az—1
- 9 * D1 Do

— so(p;pz) — (po — 1)pclb1flpngl’

and
| Lo(p$'p5?) U L (pf'p3?))| = B (py — 1) - s

— p1p2—pi+pa+1 a1—1 _as—1
- 2 P17 Do

— <P(p;p2) +pill1—1pgz

> (= T
We proceed by induction on r. Let mp,,, = H;J:l p, be the prime factorization of n,
and assume that we have by induction

r—1
|Lo(m) U Le(m)| > €20 — e (=2 [ [ (1 — 6 - 2521, (15)
k=1

where € € {£1}.
If a,,4 is odd, then, from the Chinese Remainder Theorem 2.5, and the multiplicativity
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of the Jacobi symbol, we have by the inductional assumption
| Lo(mpr41) U Li(mp,41)|

= | Lo(pry1) U Li(prya)] - [Lo(m) U Ly (m)]
+ [ Lo(prs1) U Lo1(pria)] - [Lo(m ) U L_y(m)] = |Lo(prs1)] - [Lo(m)]

> pre1=3 art1—lop(m) r 1 ap—1 1 Y Pk+1
(15).4.32)  ° i (5 Hp - )
+ pr+21+1 pfff 1((_ r 1 Hpak 1 1 — O - pk+1))
_ <p(mpr+1 . Hpak 1 1 . k X Pk;‘l)‘

(6r4+1=0)
Similarly, if a,,; is even, then we have by the inductional assumption

|L0(mpr+1) U Ll(mpr+1)|
= | Lo(pry1) U Li(pria)] - [Lo(m) U Ly (m)]
+ 1 Lo(pry1) U Lo1(pria)| - [Lo(m) U Loy (m)] — | Lo(pr41)] - [Lo(m)]

r—1
> (Prs1 — 1)??-?11 1(@ — (=2 pZ“l(l — Ok - kaH))
(15),(4.32) k=1
— M — A )
(6r1=1) ];[ . )

Obviously, the proof of the estimate

r

| Lo(mprs1) U Loy (mpy )| > 208es2) 4 ()7 Hpg’“_l(l — O, - Betl)
k=1

is analogous to the one given above. Il

By the results of this subsection, we can now prove the third item of Observation 4.14.

THEOREM 4.39. Let n be a squarefree odd natural number. Then we have exactly two
numbers x1,xy € (Z/nZ)* such that

ord(c(1,x1)) = ord(c(1, z3)) = 2n

if and only if n is a prime number with n =1 (mod 4), and 2? = 23 = —4 (mod n).

ProoOF. “=": Let p be a prime divisor of n. Then we have
c(l,21)* = c(1,22)** = I, (mod p).
By Lagrange’s Theorem 2.11, and Theorem 2.17, we get
c(l,21)?® = c¢(1,22)® = I, (mod p).
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Therefore, by Corollary 4.9, we have
(T = (2t —

p p

Thus,
(x§+4) _ (m§+4) —0

n n

Suppose n is a natural number with r distinct prime divisors. Then every prime divi-
sor of n must be congruent 1 modulo 4. Otherwise, we do not have a solution for the
congruence z° = —4 (mod n) in (Z/nZ)*. This gives us 2" solutions. But since we have
only two solutions z1, x9 for the congruence above, we get r = 1. Therefore, n is a prime
number.

“«<": The proof of this direction follows from Corollary 4.9, Theorem 4.27, and Theo-
rem 4.32. U

5.3. How Frequent does an Order of a Point on the Standard Commutator
Curve Occur? In this subsection, we will prove the fourth item of Observation 4.14.
Therefore, we start with proving one lemma which considers the frequency of an order of
a point on the standard commutator curve which divides p — 1, and then another lemma
in which we consider p 4+ 1 instead.

LEMMA 4.40. Let p be an odd prime number, and a € ¥ such that ord(a) =p—1. Then
the map
La*—a™®), if1 <k<t?
a:A— B:d?*— ol,a®=a™), 1< 4
c(1,a7% —a*), ifp%l <k< 1%3
with
A= {a® |k € Noo, k < B2 k # 211},
and

B:={M e C) |ord(M) |}

1s bijective and order-preserving, i.e.

ord(a(a®)) = ord(a®*) = ﬁi%)

for positive integers k < ]%3 with k # p%l.

PrROOF. We prove this lemma in three steps that the map « is injective and surjective,
hence bijective, and order-preserving.

Injective: Let a**,a? € A with 1 < k,I < 2% such that
c(1,a” —a™") = a(a®*) = a(a®) = ¢(1,d' —a™") (mod p).
Then, by Definition 4.5, we have

F_al=d"—d =d" (a7 —a7")  (mod p).

S|

Thus,

d=-1=a"T (modp) or d"=d (modp).
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By 1<kl< %,we have

Therefore,
a®* =a®  (mod p).
Similarly, we get a** = a? (mod p) for 24 < k1 < B2,

Suppose 1 < k < ’%1 and ’%1 << p%g. Then, by Definition 4.5, we have

a " +al=d"+d =d"a" +a7F) (mod p).

Thus,
a"'=1=a"" (mod p) or aF=—a =a"7 (mod p).
Therefore,

k+1=0 (modp—1) or k—1=0 (mod 1),

which contradict 1 < k < p%l and ”4;1 << ;%3'
Similarly, we get a contradiction for p%l <k< p;23 and 1 <[ < %.
Surjective: We have ord(a) = p — 1. Therefore,
Al = k€ Noo | k< B2k # 27

2 ifp=3 (mod4)
N B2 ifp=1 (mod 4).

Thus, it follows by a forward reference on Theorem 4.53 (which is not critical)

Al = |L
Al = )
= N
(4.27) |N1(p)]
(434) {x € F) | c(1,z)P' =1, (mod p)}|
* =1
(4§3) {x € F, |e(l,z) 2 =1, (mod p)}|
= |B|.
Order-preserving: Let k be a positive integer with k£ < ’%3 and k # p%l. By
ord(a) = p — 1, we have ord(a?) = W_i%). Therefore, we have to show that

ord(c(1, e(a® — a7%))) = ord(a(a*)) = ord(a®*)
where € € {£1}. By the matrix

M = c(1,e(a" —a™*))
B e(d*—aF)+a*+a?* -1 e(a*—a7F)
(4.5) 2 —a*t —q7%* 1—e(a*—a*) )’

we get the characteristic polynomial

xaur(t) =12 — (a® 4 a )t 4+ 1= (t — a®)(t — a™?).
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Hence,
ord(a(a®*)) = ord(c(1, e(a® — a™%))) = ord(a®*). O

EXAMPLE 4.41. Let p = 13, and a = 2. Then, by the table of Example 4.12, we get the

following sets
A=1{34,9,10} = {2*,22,2%,2!°}  (mod 13),

and
B=1{ ¢1,22-2?)=¢(1,4—10) =¢(1,7) (mod 13),
c(1,2' =271 =¢(1,2 - 7) = ¢(1,8) (mod 13),
c(1,27* —2%) =¢(1,9 - 3) = ¢(1,6) (mod 13),
c(1,27% = 2%) = ¢(1,11 — 6) = ¢(1,5) (mod 13)},

which are an example for the previous Lemma 4.40.

LEMMA 4.42. Let p be an odd prime number, and a € F, such that ord(a) = 2(p + 1).

Then the map
ka7 k), 4 +1
a:A— B:d*— o(l,0" —a )’2f1§k<p7
c(la™®—a"), if B <k <p+1
with
A=1{a* |k eNog, 21k, k<p+1k# %}7
and
B:={MeC,|ord(M)|p+1}
18 bijective and order-preserving, i.e.

ord(a(a*)) = ord(a®*) = ﬁjl,k)

.- . . +1
for odd positive integers k < p+1 with k # P&=.

PROOF. We prove this lemma in three steps that the map « is injective and surjective,

hence bijective, and order-preserving.
Injective: Let a*,a* € A with k,l odd and 1 < k,l < &L such that

c(1,a” —a™%) = a(a®*) = a(a®) = ¢(1,d —a™") (mod p).

Then, by Definition 4.5, we have
a—al=d"—d =d" (a7 —a™") (mod p).

Thus,

a"'=—-1=a"" (modp) or da"=d (modp).
By1<k/l< ’%1, we have

a" £ @™ (mod p).

Therefore,
a”® =a” (mod p).
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Similarly, we get a** = a? (mod p) for k,l odd and 25 < k1 < p+ 1.
Suppose k,lis odd, 1 < k < ’%1 and p—;rl <[ < p+ 1. Then, by Definition 4.5,

we have
a " +al=d"+d =d"a"+aF) (mod p).
Thus,
"' =1=a*"" (modp) or d"=—-d =a"' (mod p).
Therefore,

E+1=0 (mod2(p+1)) or kE—1=0 (modp+1),

which contradict 1 < k < %1 and }%1 <Il<p+1.
Similarly, we get a contradiction for &21 <k<p+land1<I< &21.
Surjective: We have ord(a) = 2(p + 1). Therefore,

Al = {keNso |21k k<p+1k#E1}
{ pil ifp=3 (mod 4)

;%17 ifp=1 (mod 4).

Thus,
Al = |L
|Al (432) |L1(p)|
= |N
(427) [N1(p)]
5y Mo eE e =1 (mod )}
= |B].
Order-preserving: Let k be an odd positive integer with k£ < p+1 and k # }%1.
By ord(a) = 2(p+ 1), we have ord(a?) = ﬁim- Therefore, we have to show

that
ord(c(1, e(a® — a7%))) = ord(a(a*)) = ord(a®*)
where € € {£1}. By the matrix

M = c(1,ea®—a*))
B ela* —a*)+a*+a?* -1 eld*—aF)
(4.5) 2—a?* —q 1—e(a*—a*) )’

we get the characteristic polynomial

xu(t) =t* = (a® +a )t +1=(t —a®)(t —a™ ).
Hence,

ord(a(a®*)) = ord(c(1, e(a® — a™))) = ord(a®*). O

By the previous lemmata, we know which orders on the standard commutator curve
occur, and from the following theorem we get the frequency of an occuring order on the
curve.
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THEOREM 4.43. Let p be a prime number, and x € F; such that ord(c(1,z)) { 2p. Then
{y € F; | ord(e(1,y)) = ord(e(1, 2))} = p(ord(e(1, 2))).

PROOF. Let d be a positive integer such that d | p— 1. Then we have ¢(d) elements
with the order equal to d in F,. If ord(c(1,z)) | p — 1, then the proof of the assertion
is complete by Lemma 4.40. Otherwise, if ord(c(1,x)) | p + 1, then the proof of the
assertion follows from Lemma 4.42. U

An interesting result is given by the following theorem that the group G, which is gener-
ated by all points on the standard commutator curve, is equal to SLs(p) if p is a prime
number greater than 3; hence G is perfect.

THEOREM 4.44. Let p be a prime number greater than 3. Then
(c(l,z) |z € F;) = SLa(p).

PROOF. By Lemma 4.40, and Lemma 4.42, we have z1, o € F with

ord(c(l,21)) = &2 and ord(c(l,22)) =p+ 1.

If p=1 (mod 4), then by Theorem 4.39, we have a x3 € Fy with ord(c(1,z3)) = 2p.
Therefore,

[{c(1,21),c(1,29),c(1,23))] > lem(ord(e(1, 1)), ord(c(1, z2),ord(c(1, x3)))
= Pre(p+1)p

IS L2 (p)|

(2.17) 4
By 8.27 in [57] on page 213 and easy calculations, the index
|SLa(p) : (e(1,21),c(1,x2),c(1,23))] < 4
must be equal to 1. Therefore,
(e(1,21),¢c(1,xq),c(1,23)) = SLa(p).
If p=3 (mod 4), then
[{c(1,21),¢(1,29))| > lem(ord(c(1,x1)),ord(c(1, 25))) = ;%1 “(p+1).

By 8.27 in [57] on page 213 and easy calculations, the index

|SLa(p) : (e(1,21), c(1,22))| < 2p
must be equal to 1 for p > 11. Therefore,

(c(1,21),c(1,22)) = SLa(p).

If p € {5,7,11}, then we can easily verify the results of the following table by calculating:

p [ 1SLa(p)] | [{e(L, ) | = € Fy)|

) 120 120
7 336 336
11} 1320 1320
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Theorem 4.44 is not correct for the prime numbers 2 and 3:

p [ 1SLa(p)] | [{e(1, ) | = € Fp)|
2‘ 6 ’ 3

3 24 8

Comment: In all cases (c(1,z) | x € F};) is the commutator subgroup of SLy(p). Recall
that SLs(p) is solvable for p € {2, 3}.

5.4. Numbers Analogous to the Carmichael Numbers. In this subsection we
will see that N(n) is not equal to L.(n) for a composite number n, where € € {£1}.

(1) In the first theorem, we will prove that if such an LN-number exists, this number
must be squarefree.

(2) In the second theorem, we will prove that an LN-number cannot exist.

(3) In two lemmata and another theorem, we consider specific divisibility relations.

Before we prove the theorems of this section, we state a well known fact which is funda-
mental for this subsection.

LEMMA 4.45. Let n be an odd natural number. Then

gedin —1,n+1) =2,

PROOF. Since n—1 and n+ 1 are even, the lemma follows directly from the equation
n+1)—(n—1)=2. O

THEOREM 4.46. Let n be an odd composite number. If we have for every integer x with
e(n) = (%) # 0 the relation

c(1,2)" ™ = I, (mod n),

then n is squarefree.

PROOF. Suppose n is not squarefree. Then we have n = p® - m for a prime number
p, an exponent e > 2, and a number m coprime to p. First, we consider the case that
p € {3,5}.
Let p = 3. Then we have ordg(c(1,z)) = 12 for z = 2 (mod 9) and (9‘2:4) = (&) #0
since n is odd. Therefore, we have 12 | ord, (c(1,2)). Henoe 12 | n — (2). It follows that
n=+1 (mod 12), which contradicts n =0 (mod 3).
Let p = 5. Then we have ordss(c(1,x)) = 30 for z = 2 (mod 25) and (x2+4) =) #£0
since n is odd. Therefore, we have 30 | ord,(c(1,2)). Hence, 30 | n— (2). It follows that
n =41 (mod 30), which contradicts n =0 (mod 5).
Now let p > 5. Since (Z/p°Z)* is a cyclic group of order ¢(p¢) = p¢ — p~!, we have an
element a € (Z/p°Z)* with

ordye(a) = p°* —p* L =pH(p - 1).
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Since n #Z 0 (mod 3), we have a? # 1 (mod p). Set  := a —a~'. Then z € (Z/p°Z)*
since > — 1 # 0 (mod p). By n# 0 (mod 5), we have also a? + 1 # 0 (mod p). Let

s=(1 )

S_lz(a2+1)_1(a<a+%) l1—a )

then we have

1—a*> a*—1
and
S-c(l,x)-S' = S-c(l,a—a')-S7*
B 1 (a+1)7! a—a'+a*+a?*-1 a-—at g1
N 1 ala—1)7" 2—a’—a? l—a+at
a> d*(a+1)71 ala+1) 1—-a _
- (a_2 a_l((a—l))_l)( E—aQ) a2—1)(a2+1)1
a’> 0 .
= ( 0 a‘2> (mod p°).
Hence,

ordpe (c(1,2)) = Ordpe(a,2> —pel.2ol
By the divisibility relation
ordye (e(1,2)) | 1 — e(m),

e=1.2-1 |y —¢(n), in particular p | n — e(n), which contradicts p | n. O

it follows that p 5

THEOREM 4.47. Let n be a squarefree odd composite number. Then there exists at least
one integer x with € = (%) € {£1} such that

c(l,z)" ¢# I, (mod n).

PROOF. If n = 15, then the assertion follows by ¢(1,2)™ # I, (mod 15).
Assume n # 15 and ¢(1,z)" ¢ = I, (mod n) for all integers = with e = (%) e {£1}.
If 3 | n, then, by Corollary 4.37, there exist two integers x; and x5 such that
(ﬁ) _ _(@) — 1.

n n

Since ords(c(1,z1)) = ords(c(1,x2)) = 4, we have 4 | n—1 and 4 | n+1, which contradicts
Lemma 4.45. Thus, 31 n.
If 5 | n, then, by Corollary 4.37, there exist two integers x; and xs such that

(m§+4) _ _(m§+4) —1

n n

Since ords(c(1,z1)) = ords(c(1, x22)) = 6, we have 6 | n—1 and 6 | n+1, which contradicts
Lemma 4.45. Thus, 51t n.

Let [],_, px be the prime factorization of n. Then, by Theorem 4.36, Lemma 4.40, and
Lemma 4.42, we have xq, x5 € F such that

ordy, (c(1,21)) = 24 and  ordy, (c¢(1,z3)) =p1 + 1. (16)
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By Corollary 4.37, there exist xop_1, o € F) for 2 < k < r such that

(x§k71+4) 1 and (xgk+4) :{ -1, ifk=2

Pk Pk 1, else.

Then, by Chinese Remainder Theorem 2.5, there exist v, y» € (Z/nZ)* such that
y1 = xop—1 (mod pp) and ys =x9, (mod pp) for 1<k <r.

Therefore, we have (#) = (#) = 1. Hence, by the assumption and equations (16),
we get
c(Ly)" P =c(l,)" ' =1, (mod n)
and
plin—1 and pi4+1|[n—1 (17)

By Corollary 4.37, there exists an integer z such that (%) = —1. Let d := ord,, (¢(1, 2)).

Then d | n+1, and either d | % or d | p1+1. Hence, by divisibility relation (17), we get
d | n—1. Therefore, by Lemma 4.45, we get d < 2, which contradicts Theorem 4.20. [J

COROLLARY 4.48. Let n be an odd composite number. Then there exists at least one
integer x with € = (#) € {£1} such that

c(l,x)" £ I, (mod n).

PROOF. It can be directly concluded from Theorem 4.46 and Theorem 4.47. OJ

LEMMA 4.49. Let n be an odd natural number with prime factorization n = szl Pk,

[eope <p? Bt In—1andp +1|n+1. Then

2
_ pi+l1
n=p -5

PrRoOOF. We have

n=1 (mod 2-) and n=-1 (modp; +1)

and p;=1 (mod2-1) and py=-1 (modp;+1).

Thus,
n=p (mod 2-1) and n=p; (modp;+1).
Therefore,
n—p =p(l— Hpk) =0 (mod plel(pl +1))
k=2
r 2
= 1—J[pe=0 (mod 21,

(ged(p1,pf—-1)=1) kl_IQ ; ( 7

By

1< ]]px<ni
k=2
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we have
,
2
_ p3+1
Hpk - 12 )
k=2

hence 9
+1
n=p 4= 0O

LEMMA 4.50. Let n be a squarefree odd composite number with the prime factorization
2
n = p1paps with paps = plTH. Assume p3 < py < p1. Then

pr<V2p, and p<2ps;—1

PROOF. Suppose p3 < pl“. Then

pi+l o pi+l
P1 > P2 = 2P32p1+1>p1_1

is a contradiction since ps is an integer. Thus, p3 > plTH > B
Suppose py < \’7— Then

ps = P+l o P+l p "
3 2p2 — V2p1 V2

is a contradiction to ps > p3. Thus, p1 < v/2 po. U

P
\/_p >\/1§Zp2

THEOREM 4.51. Let n be a squarefree odd composite number with the prime factorization
n = p1pops with ps < po < p1. Then at least one of the following four divisibility relations
fails:

Pl in—1,pi+1n+1,20 n—1andpr+1|n+1.

PROOF. Suppose we have
plT_1|n—17P1+1|n+1,p22_1 |mn—1and ps+1|n+1.

Then from Lemma 4.49, and Lemma 4.50, we have

and p; < \[21?2- (18)

pops = &

Moreover, we have
=1 (mod 2-!) and n=-1 (mod p,+1)
and py=1 (mod p2;1) and py=-—1 (mod ps +1).

Thus,
n=p, (mod21) and n=p, (modp,+1).
Therefore,
2_
n—py=pa(l —pips) =0 (mod 22-)

-1
= pips =1 (mod 22-).
(gcd(p2,p3—1)=1) ( 2 )

From p; (< V2 pa, we have pips < \/_p2 3p2 p2+1 +2- pQ . Thus,

pips = 2, (19)
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Therefore from (18), and (19), we have

p3+l ps = pi+1
= p3 = _
1 (19) 77 (18) P2

Hence,
Since the map ¢ — 2t(¢* + 1) is strictly monotonic increasing, we have
b1 = P2,
which contradicts p; > p». O

6. Euler’s Criterion on the Standard Commutator Curve

In this section, we will see that we can prove a theorem on the standard commutator
curve, which is similar to Euler’s criterion for the quadratic residues. By this theorem,
we can give — in Subsection 3.1 of Chapter 5 on pages 154-164 — a precise estimate for
the exponent of 2 in p + 1 for every prime divisor p of a natural number n, and we can
prove the fifth and sixth item of Observation 4.14. But first of all, we need the following
lemma.

LEMMA 4.52. Let p be an odd prime number, v € F, and e = (””%4) € {£1}. Then
there exists a matriv A € SLy(p) with A*> = c(1,z) if and only if e = 1.

PROOF. “<": We have ¢ = 1. Hence, there exists o € F,, such that a % =24 4.
Let
A_(—a(x2+x+2) —ax )
N ar? alr—2) )

It is easy to see that det(A) = a*(2* 4+ 4) = 1 and from a € F,, we have A € SLy(p).
Thus, the proof of this direction will be complete by the following calculation:

A2 — a2<—(1‘2+2$+2) - )2

x T —2
_ 2 (2?2 + 2 +2)? — a3 r(x? +x+2) —2* + 22
- —r?(2® +x +2) + (v — 2)2? —23 4 (z — 2)?
oA+ 4t + 4 x? + 4x
- @ —z* — 4x? —2? + 2% —4x+4
. (22 + x4+ 1)(2* +4) z(z? +4)
R —2?(2? + 4) (1—xz)(x? + 4)
= ¢(1,z).

“=": Let
A= ( i ) € SLy(p)

a21 A2
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such that

A2 — < a11 Q12 )2
Q21 A22
a3y + aras  arz(ar; + ag)
N asi(ayy + ags) a%g + aq2a21

2
- c(l,x>=(1+fi”5 i )

T 11—z

Therefore, we get the following equations:

a%l + ajga91 = 142+ LU2 (20)
U0 + a1pa9; = 1—x (21)
arp(a +ax) = = (22)
agi(ay + az) = —a? (23)
anag — a12as = 1L (24)
Firstly, we generate five simple relations.
(1) Since x # 0, we have
a1 + az # 0. (25)
(2) Subtract (21) from (20). Then we have
ai; — a5y = (a1 — age)(an; + ag) = z(x + 2). (26)
(3) Substitute one x of (23) by (22), and divide the resulting equation by
ap +axp # 0,
(25)
then we have
a9 =— —IA12. (27)
(4) Add (21) to (24). Then we have
CLQQ(&QQ + &11) =2—x. (28)
(5) Multiply both sides of (22), and (28), and divide the resulting equation by
ap +axp # 0,
(25)
then we have
A2 = (2 - ZE)alg. (29)
Secondly, we consider the case x = 2. By (27), and (28), we have as; = —2a; and

age = 0. Thus, we have the following matrix equation

2 2
o [ a1y —2aiy apan ) _ . 7T 2
A= ( —2&12&11 —2@%2 ) - 0(172) o ( -4 -1 ) '

Therefore, we have, by addition of a?, — 2a?, = 7 and 2a?, = 1, the equation a?;, = 8.
Hence

=E =)= =1



6. EULER’S CRITERION ON THE STANDARD COMMUTATOR CURVE 61

Thirdly, we consider the case x? + = + 2 = 0. By addition of (20), and (24), we have
ay1(a; + age) = 0. Thus, by (25), we get the equation a;; = 0 and aj2a9; = —1 from
(24). By x # 0, (22), and (23), we have ag; = —wajs. Therefore, we get a3, = x from
the equation aj2a91 = —1 and so we have (%) = 1. Hence

2?44y _ (224(=2)?) _ (224 (22 4w)?

( P ) - ( D ) - ( P )
_ 224t 4203 a2\ (22242 ta+x)\ (23 _ (z
- ( P ) - ( P ) - (p) - (p)

€ —_=

= 1.

Now we can assume that x # 2 and 22 +x+2 # 0. In the following six steps, we evaluate
exact equations for the four coefficients of matrix A.

(1) Divide (26) by (28). Then we have

x(xr +2)
air — Qg2 = Q22—
2—x
x(x +2 ? + 42
= app=agg |1+ ¥ = Qp———. (30)
2—x 2—x
(2) Substitute (27) and (29) in (23). Then we have
—ZECL12(6L11 + (21’_1 — 1)(112) = —IQ
= —x(207' —1)al, — vaja, = —2°
2
Traiq T
~ a%2_x—2a12+x—2 =0
xay r2a3, x?
= = + _
“2= 50w —2) \/4@; o2 2
_ zap + V(a3 — 4z + 8) (31)
2(x — 2)
(3) Substitute (31) in (29) and substitute the resulting equation in (30), then we
have
2—1 22 +x+2 zan £ /22(a}, —4x +8)
a - . .
" 2—x 2(x — 2)
(@ +r+2)(an £ \ai, —4x+38)
B 2(z — 2)
2(x — 2) ) 2 —2+ -6\,
—_— aj,=|——=] a
24z +2 1 24+ +2 1
=a?, — 4z +8
4 2 3 2
5 [T+ 27+ 36 —22° 4+ 122° — 122
= —1)=-4 8
an( x4+ a2+ 4+ 223 + 422 + 4o v
32 — 42 + 82% — 16 21 4)(8—-4
Lo x° + 8 x _ %1(1:+)( x>:8—4x

(2 4+ +2)? (22 4+ x4 2)?
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2 (2° +z +2)?

1 x2+4 (32)
(4) Substitute (32) in the square of (30). Then we have
2 (2 — )
= 33
@22 x?+4 (33)

(5) Substitute (33) in the square of (29). Then we have
2

5 x
= 4
ago 2 +4 (3 )

(6) Substitute (34) in the square of (27). Then we have

4

s X
an = vt (35)
By equation (34), we have 22 + 4 = 2% - 4}, hence € = 1. O

Now we can formulate Euler’s criterion on the standard commutator curve as follows.

THEOREM 4.53. Let p be an odd prime number, x € F), and € := (%). Then

p—e€

c(lyz) 2 =e€- Iy, if € #0,

and
c(1,2)% = Iy, if e=0.

PROOF.

(1) If e = 1. By Corollary 4.9, and Lemma 4.52, there exists a cyclic subgroup G
of order p — 1 such that A € G with A% = ¢(1,z). Then

c(l,a:)p2;1 =A""'=1, (modp).

(2) If e = —1. Let G be a cyclic subgroup of SLy(p) with |G| = p+1and ¢(1,z) € G.
The group G exists by virtue of Corollary 4.9. By Lemma 4.52, ¢(1,x) is not a
square, and so there exists a generator g € G with ¢(1,z) = g%, where a is an
odd integer. Since g is a generator, we have

g7 =1 (mod p).
Hence, it follows
ptl ay PEL Pl , “
cliz)z =(g")2 =(g7 )" =(-h)"=—I (modp).
(3) If € = 0. The assertion follows directly from Theorem 4.39. [

REMARK 4.54. This theorem can also be proved by using Lemma 4.40 and Lemma 4.42.

By Euler’s criterion on the standard commutator curve, the fifth and sixth item of
Observation 4.14 are simple corollaries.
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COROLLARY 4.55. Let p be a prime number, and x € F such that ord,(c(1, 7)) | p+ 1.
Then
va(ordy(c(1,x))) = va(p + 1).

PROOF. Let a = ord,(c(1,x)). Then we have, by Theorem 4.53, the following two
divisibility relations
alp+1 and afif

By the relation a | p+ 1, we have vo(a) < v(p+1). Additionally, by a t 251, we get the
assertion vy(a) = vo(p + 1). O

COROLLARY 4.56. Let p be a prime number, and x € F) such that ord,(c(1,)) [ p — 1.
Then

vo(ord,(c(1,2))) < va(p —1).

PROOF. Let a = ord,(c¢(1,z)). Then we have, by Theorem 4.53, the divisibility
VQ(CL 2

relation a | 2%, Then ) < (Bh) < w(p—1). O

7. Correlation to a Lucas Sequence

In this section we will see that we can define another curve which has the same dis-
tribution of orders as the standard commutator curve. Furthermore, we will see that
the recurrence relation of this new curve is better to handle in practice as that of the
standard commutator curve (see Section 4 on page 60). This recurrence relation is the
Lucas sequence {Uy(z, —1)}ren (see Subsection 2.5 of Chapter 3 on page 29).

DEFINITION 4.57. We define a new curve C!, for a positive integer n by the set
C :={c(x) (modn)|xe (Z/nZ)'},

where ¢ in the two-dimensional special linear group is defined by
o) m (0] (1 oz
N1z T\ oz 1422

In the following theorem we will see that the curve C! has the same distribution of orders
as the standard commutator curve C'!.

with x € (Z/nZ)*.

THEOREM 4.58. Let n be a positive integer, and x € (Z/nZ)*. Then
c(r) =S te(1,2)S
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PROOF. The proof of the assertion follows directly by

_1 B -1 -1 l+z+22 =z 0 -1
STLa)S = (—1 0 )( 22 1-z )\ -1 1
B -1 -1 —x —1—2?

- -1 0 r—1 1—a+ 22
_ 1 T
- x 1+ a2

= c(x). O

COROLLARY 4.59. Let n be a positive integer, and x € (Z/nZ)*. Then
ord(c(z)) = ord(c(1,x)).

ProoOF. This corollary follows directly from Theorem 4.58. U

After that consideration we can define the square root curve D,, for a positive integer n
by the set
D, :={d(x) (modn)|xe€ (Z/nZ)"},

where d in the two-dimensional general linear group is defined by

iw=(1})

with z € (Z/nZ)*. Obviously, we have d(x)? = c(z).

COROLLARY 4.60. Let p be an odd prime number, v € F, and € := (%). Then

d(x)P~“=e€-I, (mod p), if € # 0,
and
d(z)* =1, (mod p), if e = 0.
PRroOF. This corollary follows directly from Theorem 4.53, and Theorem 4.58. [

In the next theorem we will see that the power of d(x) can be determined by a Lucas
sequence.

THEOREM 4.61. Let n,m be positive integers, and x € (Z/nZ)*. Then
dlz)™ = Up-a(z,—1) - Iy + Upy(z,—1) - d(z)
B ( Up—1(z,—1) Up(z,—1) )
N Un(z,—1)  2Uy(z,—1) + Up-1(x,—1)
B ( Up-1(x,—1)  Up(x,—1) >
- Un(z,—1)  Upyr(z,—1) )’
with the Lucas sequence
Up(xz,—1) = 0,
Up(z,—1) = 1,
Ugsa(x,—1) = zUppi(z,—1) + Up(z,—1) for k e N.
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Proor. If m € {1, 2}, then the assertion follows directly by
d(x)' = Uy(z,—1) I+ U(z,-1)-d(z), v
d(z)* = Li+x-d(z)
= Uy(z,—1) - I+ (2Uy(z, —1) + Up(x,—1)) - d(x)
= U(x,-1) - I+ Uy(z,—1)-d(z). v

We proceed by induction on m. Assume that we have the assertion for m by induction.
Then

d(@)™ = d(z) - d(z)"

(@) (Upm—1(x, —1) - Iy + Upp (2, —1) - d(x))

= Upi(z,—1)-d(z) + Up(x,—1) - d(z)?

= Upoalz,—1)-d(z)+ Up(z,—1) - (I + 2 - d(z))

= Up(z,=1) - Iy + (2Up(z, 1) + Up_1(x,—1)) - d(z))
Un(z,=1) - Iy + Upyr(x,—1) - d(z). O

|
.

8. Curves in Practice

In this section we are interested in the running time of calculating the power of a point
on the standard commutator curve, i.e. we are interested in calculating ¢(1,z)™ where
m,n are positive integers, and x € (Z/nZ)*.

It is well known that the power algorithm needs O(log(m)) modular multiplications
modulo n using the binary representation of the exponent m € Nyy. Most important
for the running time of the power algorithm is the number of modular multiplications
modulo n per iteration to square a point on the standard commutator curve. It is useful
to differ between multiplications and squarings if we count the number of multiplications
since squaring in (Z/nZ)* is about 33% faster than a normal multiplication®. For more
details about these differences we refer to [117], [130], and [131].

In the analysis of algorithms we concentrate on precisely characterizing the number of
units by determining their best-case, worst-case, and average-case performance. We
use one modular multiplication of the Miller-Rabin test (Algorithm 3.11) as a unit* for
theoretical comparisons of the different methods to implement the power of a point on
the standard commutator curve. The best-case performance for the power algorithm
will be achieved if the exponent is a power of two; the worst-case performance will be
achieved if the binary representation of the exponent contains only digit 1; the average-
case performance will be achieved if the count of digit 1 and digit 0 is equal in the binary
representation of the exponent.

First, we consider the Miller-Rabin test. In the best-case we have only 1 squaring which
takes 75% running time of one modular multiplication. In the worst-case we have 1

3This difference is also correct for Karatsuba’s multiplication and the multiplication based on FFT.
4This unit was also suggested by A. O. L. Atkin in [9].
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squaring and 1 multiplication per iteration. In the average-case we have 1 squaring and

% multiplication per iteration.

Algorithm ‘best—case worst-case average-case
Miller-Rabin test | 0.75 1.75 1.25

Since ¢(1, z) is a matrix, the obvious answer to the performance are 8 multiplications to
multiply two different matrices and 3 multiplications and 2 squarings to square a matrix
in a commutative group. By Strassen’s fast matrix computation [123], we can reduce to
7 multiplications to multiply two different matrices.

Algorithm ‘ best-case worst-case average-case
Matrix multiplication of ¢(1, z) 4.5 12.5 8.5
Strassen’s fast matrix computation of ¢(1, z) 4.5 11.5 8

Using the recurrence relations for the standard commutator curve of Section 4 we need
5 multplications and 2 squaring to calculate 6y, (z) and wa,,(z) and 4 multplications to
calculate 0o, 1(x) and wopy1 () if 0,,(x), 01 (), wm(z) and w,,_1(x) are given and if
we use local variables.

Algorithm ‘ best-case worst-case average-case
Recurrence relation using 0,,(x) and wy,(z) | 6.5 10.5 8.5

We can use the square root curve of the previous section instead of the standard com-
mutator curve if we are only interested in specific information of the order of a point.
Since d(x) is a symmetric matrix, the obvious answer to the performance are 8 multipli-
cations to multiply two different matrices and 1 multiplication and 3 squarings to square
a matrix in a commutative group. By Strassen’s fast matrix computation [123], we can
reduce to 7 multiplications to multiply two different matrices.

Algorithm ‘ best-case worst-case average-case
Matrix multiplication of d(z) 3.25 11.25 7.25
Strassen’s fast matrix computation of d(x) 3.25 10.25 6.75

Now we state a well known theorem (see for example [138]) which gives two identity
properties of the Lucas sequences.

THEOREM 4.62. Let m,n be positive integers, and x € (Z/nZ)*. Then
Umel(ma_l) = Um(ma_1)2 + Umfl(xa_l)za
and  Upp(x,—1) = zUny(z,—1)* + 2U,,(x, = 1)Uy (2, —1)

PrROOF. We write U, instead of U, (x,—1) for better reading. Then by Theo-
rem 4.61, we have

Uspn— U.
d 2m — 2m—1 2m
(z) (4.61) ( Usm Uspmt1

_ Um —1 Um ?
n Um Um+ 1
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_ ux ., + U Upi(Up—1 + Upi1)
N Um(Um—l + Um-i—l) Urzn + Ur2n+1 .

Therefore,
U1 = UL+ U2,
Uy = Un(Un-1+ Uns1)
= Un(Un-1+2Up +Uyq)
= 2U2 4 2U0,Upy. O

Using the Lucas sequence above to calculate a power of a point on the square root curve
we need 2 multplications and 1 squaring to calculate Uy, (z, —1) and 1 squaring and 1
reusable squaring to calculate Usgy,i1(z, —1) if Uy, (z, —1) and Up,—1(z, —1) are given.

Algorithm ‘ best-case worst-case average-case
Lucas sequence using Uy, (z, —1) | 2.75 3.5 3.25

The following theorem gives an improvement to calculate this Lucas sequence for the
square root curve if we consider only a fixed z, e.g. x € {£1}.
THEOREM 4.63. Let m,n be positive integers, and x € (Z/nZ)*. Then

Un (2, =) Up1(z, 1) = 27 (Up (2, =1)? = Upp_1 (2, —1)* + (=1)™).

ProorF. If m € {1,2}, then the assertion follows directly by
Uiz, —1)Up(z,—1) = 0=21(12-0*-1), Vv
Uz, -DUy(z,—1) = z=a (2 -12+1). v
We proceed by induction on m. Assume that we have the assertion for m by induc-

tion. We write U, instead of U,,(z,—1) for better reading. Then, by the inductional
assumption, we have

Um+1Um = (.CI?U + Um 1)($Um 1+ Um_g)
= (( ) m—1 + xUm 2)(xUm71 + Um72)
= 2@+ DU+ 22 + VU 1 Upo +2U2

= a(x® + DYUs_ +a7 (U = Upy + (1))
+ az:U,fl,2 + 222U, 1Upps
= o M@ +322+ )U2_, — U2 5+ (=1)"™) + 20Uy, 1Up o
= oY@+ 1)U, +22(2* + 1)Uy 1Upo + 22U2
— (2%Up1 + 22U 1 Upyo + U2 ) + (—1)™)
2N (2® + V)Upy + 20U —2)? — (2Upq + Upo)® + (=1)™)
e (U2, — U2 +(=)"). O

m

Using this theorem we can replace the multiplication by 2 reusable squarings, e.g. for
x = 1 we have the Fibonacci sequence and the iteration can be calculated by squarings.
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Finally, we get the following list which is ordered by the average-case performance of
each algorithm:

Algorithm best-case worst-case average-case
Miller-Rabin test 0.75 1.75 1.25
Lucas sequence using U,, (1, —1) 1.5 1.5 1.5
Lucas sequence using Uy, (z, —1) 2.75 3.5 3.25
Strassen’s fast matrix computation of d(x) 3.25 10.25 6.75
Matrix multiplication of d(x) 3.25 11.25 7.25
Strassen’s fast matrix computation of ¢(1, z) 4.5 11.5 8
Recurrence relation using 6,,(x) and wy, () 6.5 10.5 8.5
Matrix multiplication of ¢(1, z) 4.5 12.5 8.5

By this table we get the following conclusion:
Let m, n be positive integers, = € (Z/nZ)*, and € € {£1}. Then the running time of the
test ¢(1, )™ = el (mod n) is about 3 times that of the Miller-Rabin test.



CHAPTER 5

Compositeness Tests on the Standard Commutator Curve

1. Introduction

In this chapter, we use the results of the commutator curve to construct three compos-
iteness tests on the standard commutator curve.

First, we describe a simple compositeness test similar to Fermat’s test!. The second
compositeness test is based on Euler’s criterion of the commutator curve?. The following
subsection shows that if a composite number n passes this compositeness test with the
result true, the exponent of 2 in p & 1 can be specified where p is any prime divisor of
n. Additionally, in the next subsection it will be shown that this test based on Euler’s
criterion can recognize every composite number.

By collecting observations of the described compositeness test from the previous chapter,
we construct a commutator curve test, along with a fixed number of trial divisions, which
returns for a composite number n the result true with probability less than %. Thus, if
k different bases = are chosen at random, this test returns the result true for a composite

number n with probability at most ﬁ.

The final section will be a conclusion and further discussion of this chapter.

It should be noted that the idea of primality testing in finite fields, or using Lucas’
recurrence sequences, is not new. Lenstra’s Galois Theory Test [77] is an example of
such a method of proving primality using finite fields. The combination of finite fields
and pseudoprimes also exists in some other works, such as [52]. The goal here, however,
is different, because the algorithms of this chapter are not only a direct combination of
an ordinary pseudoprime and a Lucas-based pseudoprime. They are rather a result of
concentrating on a curve in the non-commutative group SLs(n) where n > 1 is an odd
natural number. This is different from the open problems, where no number is known
which is both a pseudoprime to the base 2 and a Fibonacci pseudoprime?; or many other
problems by combining different pseudoprimes that can be found for example in [104],
[16], [103], [9] and [51].

Up to now, all these powerful tests have depended on one condition: They have to use
the smallest integer as a base, such that the Jacobi symbol is negative. Under this
precondition, no number has been found for which the tests fail. But as soon as not the

ISee Algorithm 3.4 on page 23.
2See Section 6 of previous Chapter 4.
3Fibonacci pseudoprimes are Lucas-based pseudoprime with parameter P =1 and Q = 1

69
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smallest integer is used, there are many counter-examples. The commutator curve test
does not depend on this condition.

2. Compositeness Test Analogous to Fermat’s Test

First, the following simple compositeness test is introduced. In this test the output false
means that the input number n is composite; otherwise, if the output is true, then n is
a pseudoprime®.

ALGORITHM 5.1.

Input: n €N, where24n, and x € (Z/nZ)*, where (”’27“) # 0.
Output: R € {true, false}.

(1) If ¢(1,2)" ¢ £ Iy (mod n) with € = (mQTH), then terminate with the result false,
otherwise terminate with the result true.

By Corollary 4.9, it is easy to see that the result of Algorithm 5.1 is always true for
prime numbers n and arbitrary “bases” x € (Z/nZ)*.

Like Fermat’s Algorithm 3.4, compositeness of a number n can be proved with certainty.
A proof of primality, however, cannot be obtained from this test. The composite number
n = 323 = 17 - 19, for example, and the base x = 1 will pass Algorithm 5.1 with the
result true.

But the main difference between Algorithm 5.1 and Fermat’s test is that this algorithm
can recognize every odd composite number which will not pass the test for all possible
bases x € (Z/nZ)*; see Corollary 4.48.

3. Compositeness Test Based on Euler’s Criterion

In this section, the following compositeness test is introduced. For the results true and
false of this test see the notes on Algorithm 5.1.

ALGORITHM 5.2.
Input: n €N, wheren is odd, and x € (Z/nZ)* with (%) =—1.
Output: R € {true,false}.

n+1

(1) If (z2 +4)"2 = —1 (mod n) and c¢(1,2)"s = —1I, (mod n), then terminate with
the result true, otherwise terminate with the result false.

It is easy to see that Algorithm 5.2 always returns the result true for prime numbers.

THEOREM 5.3. Let p be an odd prime number, and let x € F; with (%) = —1. Then
Algorithm 5.2 returns the result true.

PROOF. This can be concluded from Theorem 2.9, and Theorem 4.53. 0]

4See Definition 3.1 on page 21.
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We can easily construct composite numbers which pass the Algorithm 5.2 with the
incorrect result true, e.g. the smallest number is n = 3281 = 17193 with respect to the
bases x € {81, 1432} (see tables in Appendix B).

3.1. The Exponent of 2 in n + 1. In the end of the previous chapter we have

proved the fifth and sixth item of Observation 4.14 as simple consequences of Euler’s
criterion on the standard commutator curve. This gives us some information about the
exponent 2 in p£1 where p is a prime number. But what can we say about the exponent
of 2 in n &1 if n is a composite number?
This topic was discussed by H. Cohen and H. W. Lenstra, Jr. in [31] on page 311 for
the exponent of 2 in m — 1. The properties which they have found (see for example
Lemma 5.7) are used as a part of their primality test (see Section 3.2 of Chapter 3 on
page 36). In this section, it will be shown that similar results can be obtained for the
exponent of 2 in n + 1, since Euler’s criterion was the main key in [31], which we have
analyzed in the previous section.

The following four lemmata connect the exponent of 2 in n + 1 with Legendre’s symbol
which will be combined in the main theorem of this section.

LEMMA 5.4. Let n be an odd natural number, and let x and m be integers with
ged(n,m) =1 and c¢(1,2)" = —I, (mod n).
Then

va(2m) = vy(ord,(c(1, 7)) < va(p — €(p))
240

for all prime divisors p of n, where €(p) = ( -

PROOF. Let p be a prime divisor of n. Since

c(l,z)™ = -1, (mod p),

then, by Lagrange’s Theorem 2.11, we have
ord,(c(1,z)) | 2m and ord,(c(1,z)) { m.

Hence,

va(2m) = va(ord,(c(1, ))).
By Corollary 4.9, we have ord,(c(1,x)) | p — €(p). Thus,

22Cm) | p — €(p).
Therefore, we have proved the assertion
(2m) < w(p—€e(p)) and 1,(2m) < vy(ordy(c(l,x))). O
LEMMA 5.5. Let n be an odd natural number, and let x, and m be integers with
ged(n,m) =1 and c(1,2)" = —I, (mod n).
Let p be a prime divisor of n with (%) = —1. Then
va(2m) = va(ord,(c(1,z))) = va(p + 1).
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PROOF. Let d := ord,(c¢(1,z)). By Lemma 5.4, we know that
(p+1) > 1e(2m) and wy(d) > 1n(2m). (36)
By Theorem 4.53, we see

dlp+1 and df et and d | 2m.

Hence,
ve(d) < vy(2m) and ov2(ptl) | ¢ and d | 2m.
Thus,
(d) <e(2m) and  w(p+ 1) < 1u(2m).
Therefore, the proof of the assertion follows by (36). O

LEMMA 5.6. Let n be an odd natural number, and let x, and m be integers with
ged(n,m) =1  and c¢(l,2)™ = -1, (mod n).
Let p be a prime divisor of n with (%) =1. Then

v5(2m) = va(ord,(c(1,z))) < va(p — 1).

PROOF. Let d := ord,(c¢(1,z)). By Lemma 5.4, we know that
va(p—1) > 1a(2m) and w(d) > 12(2m). (37)
By Theorem 4.53, we have
c(l,x)% = I, (mod p) and c(l,z)™ = -1, (mod p),
hence

d| et and d | 2m. (38)

2
Therefore, we have

ve(d) < 1p(2m).
Suppose that vo(p — 1) = v5(2m). Then, by (38), we get d | m. But this contradicts
c(l,z)™ = —I, (mod p).
Then the proof of the assertion follows by (37). O

LEMMA 5.7. Let n be an odd natural number, and x, and m be integers such that

m

ged(n,m) =1 and 2™ =-1 (mod n).
Then for every prime divisor p of n we have va(p—1) > v5(2m); and vo(p—1) = v5(2m)
if and only if (%) =—1.

PROOF. The proof of this lemma is similar to the proofs of the previous three lem-
mata, so we refer to lemma (7.23) in [31] on page 311. O
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THEOREM 5.8. Let n be an odd natural number, and x be an integer with

(z? —1—4)%1 = -1 (mod n),

and

c(l,x)nTH = —I, (mod n).
Let p be a prime divisor of n, and define e(p) = (%). Then the following assertions
hold:

(1) If n =3 (mod 4),

w(p+elp) = rn-1)=1
wp—1) > wn+1), ifelp)=1
wp+1) = nn+l1), ifep)=-L

vs(p—1) > w(n—1), if e(p) =1

)
wip+l) = mh+1)=
(
v(p—1) = w(n—1), if e(p) = —1.

Proor. We consider the following two cases:
(1) If n =3 (mod 4):

Let p be a prime divisor of n with €(p) = (%) = —1. By Lemma 5.7 (applied
to 2 + 4 instead of z), and Lemma 5.5, we have

wp+ep) = wnp-1) iyt va(n—1) =1

v(p+1) o va(n +1).

Assume that there exists a prime divisor ¢ of n with €(q) = (%) = 1. By
Lemma 5.6, we have

-1 > +1 39
va(q )(5.6) va(n ) (39)
and by Lemma 4.45, and (39),
vo(q + € =15(q+1 = 1.
g +e(@) =g+l =

(2) f n=1 (mod 4):
Let p be a prime divisor of n with €(p) = (%)
Lemma 5.5, we have
va(p — 1) iy ve(n —1)
1) = 1) =1.
P +1) = rn+l)

= —1. By Lemma 5.7, and
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Assume that there exists a prime divisor ¢ of n with €(q) = (#:4) = 1. By
Lemma 5.7, we have

v(g—1) > w(n—1)>1,
(5.7)

thus by Lemma 4.45

1) = 1= 1). O
va(q + )(4.45) va(n+1)

COROLLARY 5.9. Let n be an odd natural number, and x be an integer with
(z% + 4)%1 =—1 (mod n),
and
c(1,:c)nTJrl = —I, (mod n).
Let p be a prime divisor of n such that (%) = 1. Then
v(p—1) > 3.

PROOF. If n =3 (mod 4), then from Theorem 5.8 we have
va(p—1)>wm(n+1)>2.
If n =1 (mod 4), then from Theorem 5.8 we have
vp—1)>wmh-1)>2 0O

3.2. Recognition of Composite Numbers. In the following theorem we will see
that Algorithm 5.2 returns the result false for at least one base if n is composite

THEOREM 5.10. Let n # 15 be a squarefree odd natural number with prime factorization
[l pr- If we have

n+1

c(l,z) 2 =—I, (mod n)
for all x € (Z/nZ)* with (#) = —1, then n is prime.

PROOF. Assume n is composite. Choose p; such that p; € {3,5}. By Lemma 4.40,
there exists z; € ]F‘;1 such that

va(ordy, (¢(1,241))) = 0. (40)

Thus, we have (xi—#) = 1. Moreover, by Theorem 4.32, there exist x) € F) such that
: 244
[[C5) =1
k=2
Then, by Chinese Remainder Theorem 2.5, there exists « € (Z/nZ)* such that

r=u1xr (modpg) forl<k<n.

Therefore, we have (%) = —1. Hence, by the assertion of this theorem, we get

n+1

c(l,z)z =—I, (mod n).
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But by Lemma 5.6, we get

vy(ordy, (c(1,21))) o vo(n+1) >0

which contradicts (40). O

4. Commutator Curve Test

In this section an improved compositeness test which is based on the standard commu-
tator curve is presented.

ALGORITHM 5.11 (Commutator Curve Test).

Input: n,B e N, where B> 7.
Output: R € {true, false}.

(1) Ifne{p eP|p< B,p<n}, terminate with the result true.

(2) If q | n, where g € {p € P | p < B,p < \/n}, terminate with the result false.

(3) If n is a perfect square, terminate with the result false.

(4) Choose x € (Z/nZ)* such that (%) e {0,—1}.

(5) If (#) =0 and c(1,2)" # —1I5 (mod n) or if (%) = —1 and Algorithm 5.2 re-

turns the result false for x, then terminate with the result false, otherwise terminate
with the result true.

This algorithm is an extension of Algorithm 5.2, and can also be formulated with polyno-
mials or recurrence sequences which are discussed in the previous chapter. More details
about different implementations and comparisons of running times can be found in Ap-
pendix C.

A little disadvantage of this algorithm is the requirement of a list which contains all
prime numbers less than or equal to B. A fast algorithm to generate such a set is the
sieve of Eratosthenes. But it is known today that this algorithm is only efficient for
about B < 107 (see for example [130]).

This compositeness test, along with a fixed number of trial divisions for B > 79, returns
for a composite number n the result true with a probability less than %6, which will be
proved in the next subsection. Thus, if k different bases x are chosen at random, this
test returns the result true for a composite number n with a probability at most (15)".
We call that probability the probability of error of Algorithm 5.11.

Of course, if more than one iteration of Algorithm 5.11 is performed, steps 1, 2, and 3

can be omitted in subsequent iterations.

4.1. Probability of Error. We define the following two sets to carry out the proofs
in this subsection.

DEFINITION 5.12. Let n be an odd integer greater than 2. We denote by K(n) and
K'(n) the sets

n—

=1 (mod n)}

K(n):={x € (Z/nZ)* | (2* + 4)
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and
ntl

K'(n) = {z € (Z/nZ)" | (=) = —1,¢(1,2)F = —I, (mod n)}.

By Theorem 3 of [104] it is known that
K(n) C{z € (Z/nZ)" | («* +4)"7 = (ZH)  (mod n)}.
Therefore, we have
K(n) = {z € (Z/nZ)" | (Z) = —1,(z +4)"7 = —1 (mod n)}.

But in general

n+1

{z € (Z/nZ)* | c(1,2) 2 =—I, (modn)} € K'(n),

e.g. we have ¢(1, 12)% = —1I, (mod 377) and (1%2%4) =1.

In many proofs in this subsection we observe the following correlation: the size of |K’(n)|
decreases if the size of |K(n)| increases. By that property, an upper bound for the size
of |[K(n) N K'(n)| can easily be estimated by the minimum of {|K(n)|, |K'(n)|}.

K(n) = K'(n) may be possible, for example K(343) = K'(343) with |K(343)| = 1 or
K(8911) = K'(8911) with | K (8911)] = 445.

The proof of main Theorem 5.28, which gives for B > 79 that Algorithm 5.11 returns the
result true for a composite number n with a probability less than %, is split as follows:
(1) First, two lemmata give the exact number of elements in special subsets of cyclic

groups which are the fundament of all further estimates of |K(n)| and |K’(n)].

(2) In the next lemma we will prove that the probability of error is very small in
the case that n is not squarefree.

(3) After that, we formulate two lemmata, which give in general the base for upper
bounds of |K(n)|.

(4) In addition, we consider ten lemmata for estimating upper bounds of the size
of K(n)N K'(n) in the cases of n being a product of two, three or four distinct
odd prime numbers.

(5) Using the lemmata of this subsection, there follows a theorem with the assertion
that the probability of error is less than % for B > 79.

First, we state a well known lemma® which gives the exact number of elements in special
subsets of cyclic groups.

LEMMA 5.13. Let m, and n be positive integers withn > 2, and let G be a multiplicatively
written cyclic group (G, ) with |G| =n. Then

H{x € G| 2™ =1}| = ged(n, m).

®See Theorem 1 in [16].
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PROOF. Let d := ged(n,m) and g € G be a generator and 1 < k < n. Then an
element g satisfies g*™ = 1 if and only if n | km. This is equivalent to

ke
By ged(%, %) = 1, we have % | k. Thus,
{reGla"=1}=[{1<j<n|g|j={1<j<d|j-§<n}=d O

LEMMA 5.14. Let n be a natural number greater than 1, and write n = q°t where q s
a prime number and q t t. Let G be a multiplicatively written cyclic group (G,-) with
|G| = n. Let & € G — {1} such that % = 1, and let r, and u be natural numbers with
r<sandqtu. Then

H{reGla"" =&} =q" - ged(u,1).

PRrROOF. Let x € G. Then there exists a generator g € G, and natural number k less
than n such that z = ¢* and gq =¢£. From gq &, and n = ¢°t, we get

{zeGla™=¢} = {zeG |z =g1}
= {zeG|a=g""}
= HkeN|k<n,qduk=q¢""t (mod gt}
Let d := ged(q"u, ¢°t) = ¢" - ged(u, t). Then the congruence

T s—1 s
k-t =2t (mod L)

has a unique solution. Therefore, the congruence

k- Lt q&;lt (mod ¢°t)

has d solutions as claimed. O

LEMMA 5.15. Let n be an odd composite number. If p is a prime divisor of n, and k a
positive integer such that p* | n, then

{z € (Z/mZ)* | 2" =1 (modn)}| < £

PROOF. Let # € {z € (Z/nZ)* | "' =1 (mod n)}. By Lemma 5.13, there can be
at most

ged(n —1,p" —p*) = ged(n—1,p—1) <p—1

(pln)
solutions to the congruence
2" ' =1 (mod pb).
Therefore, by the Chinese Remainder Theorem 2.5, we have at most
o0

solutions x to the congruence modulo n. [
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LEMMA 5.16. Let n be a squarefree odd composite number, and let p be a prime divisor
of n. Then
* 2 n-1
o € By | (2H4) = 1,(e? +4)™" = =1 (mod p)}| < ged( [ a—1.p—1)

P>q|n
q#p

and

[z eF) | () = -1, (2 +4)" =1 (mod p)}| < ged([] ¢~ 1,p-1).

£l
PROOF. Let a,b be integers. If 15(a) > v5(b), then
vs(b) = va(a —b). (41)
If a # b and 15(a) = (), then
ve(b) < vo(a — ). (42)

Assume there exists a prime divisor r of n, and y € F* such that

n—1

(g) = —(%) =1 and yz =-1 (modr).

T

Then, by Lemma 5.7, we have

ve(r —1) (;7) ve(n —1) o v((n—1)—(r—1)) =w(n—r). (43)

Assume there exists a prime divisor r of n, and y € F* such that

1

(g) = (ﬂ) =—1 and y =z =-1 (mod 7).

T n

Then, by Lemma 5.7, we have

ve(r —1) o va(n —1) (4<2) vo((n—1)—(r—1)) =wa(n —r). (44)

Let ¢t := v5(n — p). Then

{r €F, | (f’*"2+4

1, (2* —1—4)%1 = -1 (mod p)}|

SN—
I

p

< 2-[{zeF;|(5) =127 =-1 (modp)}

= 2 {reF;[() =12 =1 (modp)}|
()

= 2-|{x€]F;| 2 =—-1 (modp)}

_ ¢ n—p p-—1
(5.14) 2 - ged < ot 2V2(P—1))

= ged(n—p,p—1)

P>q|n
q#p

I
\.H
&
|
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and
{zeF;|(® p4) = (22 +4)7 =—1 (mod p)}|

< 2-{zefF,| (%) = 1,27 =-1 (mod p)}|
= 2-HzeF; ](%): nl(pl)zl (mod p)}|
= 2-{zeF; ](%):—1332 =1 (mod p)}|
= 2. (|{x€F |x2 =1 (mod )}|—|{xEF;|(%):1,x%51 (mod p)}|)
_ . n—p p—1
(513) 2 (ng( >p 1) ng( 7 2 ))
= 2-ged(%3,p—1) —ged(n—p,p—1)
o 2recdn=pp—1)—gedn—pp-1)
= ged(n—p,p—1)
= gd([[e-1.p-1). O
(pn) F3aln

q#p

LEMMA 5.17. Let n be an odd squarefree number with prime factorization n = [[,_, px-

Then
m| < TT eed(p — 1.] o~ ).
k=1 =
14k

PROOF. Let n — 1 =2'm, and p, — 1 = 2%my, for all 1 < k <r. Let y € K(n), and
€ 1= (i) Then, by Lemma 5.7, we have t;, >t for all 1 < k <r, and t;, =t if and only

if e, = —1. Therefore, the Legendre symbol is always equal for all elements of K (n) over
a prime divisor of n, i.e.
x1,x9 € K(n) = (%) = (Zi—fl) forall 1 <k <r. (45)

Thus, by the Chinese Remainder Theorem 2.5, and Lemma 5.16, we get the proof of the
assertion as follows

K(n) = [{ze(@/m2)|(@*+4)"7 =-1 (modn)}
/nZ

= |{x€( Y () = —1, (22 +4)"7 = —1  (mod n)}|
244\ 2 n-1
25) (45) ]}_[1]{1‘ < F ( Pk ) - Ek’(x +4) > =-1 (mod pk)}’
< ged(py — 1 p—1).
(5.16) ]}_[1 H
l;ék

EXAMPLE 5.18. There exist many numbers like
87 = 3-29
3663 = 13-281
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51223 = 181-283
which show that the upper bound of Lemma 5.17 cannot be improved in general.

LEMMA 5.19. Let n be a squarefree odd composite number, and let p be a prime divisor
of n. Then

{M e C}|ord(M) | 222, M5 =1, (modp)}| < i -ged([[ ¢+ 1.p-1)

£l
and
{M e C; | ord(M) s =1, (mod p)}| < 1-g Hq—1p+1
&5
PROOF. Let a,b be integers. If v5(a) > v2(b). Then
vo(b) = va(a + b). (46)
If a # b and v5(a) = v»(b), then
ve(b) < va(a — D). (47)

Assume there exists a prime divisor ¢ of n, and y € K’'(n) such that
(L) = _(24) = .

n q

Then, by Lemma 5.6, we have
va(g — 1) o va(n +1) ) v((n+1)+ (g — 1)) = ra(n+q). (48)

Assume there exists a prime divisor ¢ of n, and y € K’(n) such that
i WY Gk AW
() = () =-1L

Then, by Lemma 5.5, we have

1) = 1) < 1) — 1)) = —q). 49
(g +1) = (4 1) < wl(n+ D) - 0+ 1) = (=g (19)
Let t :== vy(n+p), and let G C > be a cyclic group of order p + 1. Then
[ € Gy ord(M) | 51,075 = 1y (mod )
< HreF|(®)=12"%=-1 (modp)}
(4.40) P
z n+1+(P D
— [reF | (®) =11 =1 (mod p)}
= HzeF, ’(%): 2 =1 (mod p)}|

_ n+p p-1
= 2. ged
(5.14) 8¢ ( ot 7 Qua(p— 1))

-ged(n+p,p—1)

P3q|n
q#p

N[

N[
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and
{MeC!|ord(M) |p+1,M*% =—1I, (modp)}|

'n.+1

< |z eG|ord(z) 2, = —1}

+1 ntl— (p+1)

= |{zeGlod() o =1}
= |{:c€G’|ord(x)J(T T:1}|

= reGla? =1} —|{zeG|ord(z) | B 2 =1
2
= ged(5E,p+ 1) — ged(%FE, p—;l)

(5.13)
= ged("Z,p+1)—3-ged(n—p,p+1)
5 ged(n —p,p+1) — 3 -ged(n —p,p+1)
= 3-ged(n—p,p+1)
= %-gcd(H ¢—1,p+1). O
(pln) E

q#p

LEMMA 5.20. Let n =3 (mod 4) be a product of two distinct odd prime numbers
p1=2"t+1 and py=2"t+1,

where t; and ty are odd. Then

K’ (n))| S{

PROOF. Let k € {1,2}. By Lemma 5.19, we have
dy = |{MeC! |od(M) |22 M% =—1, (modpy)}|
'ng(p2+17p1_ )7 ithk=1

cged(pr + 1,pp — 1), if k=2

~ged(pr + 1,p2 — )27 if 51 < 59
cged(pr — Lpe +1)2, if 51> so.

=

—~
o

=l

L
—
N= N

and
d, = [{MeC |od(M)|p+1,M3 =—I, (mod py)}|
. %ng(p2_1apl+1)7lfk:1
(5.19) % cged(pr — Lipe+ 1), if k= 2.
If s; > s5, then, by Lemma 5.5, and Lemma 5.6, we have (%) = —(%) = 1.
Therefore,
|K'(n)] = |{z € (Z/nZ)" | (””2; ) =—1,¢(1,2) = —1Iy (mod n)}|
* T z ntl
= Hze(@/mz)*|( pj‘l) = —(p—;r‘l) =1,¢(l,z) 2 =—I, (modn)}|
< dy-d,
(4.7)

1oged(pa + 1,p1 — 1)%
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If s1 < s9, then, by Lemma 5.5, and Lemma 5.6, we have —(%) = (%) = 1.
Therefore,

K'(n)] = Hze@mD) | (52 =-1cl2) =-L (modn)}
= [z e(@/mp) | () = —(ZH) = —1,¢(1,2)"" =—L (mod n)}]
<§> G

= Jogedpi+1Lp— 17 O
EXAMPLE 5.21. There exist many numbers like
51 = 3-17
4559 = 47-97
27971 = 83-337

which show that the upper bound of Lemma 5.20 cannot be improved in general.

LEMMA 5.22. Let n =1 (mod 4) be a product of two distinct odd prime numbers p; and
po. Then

[K'(n)] < § - (ged(pa + 1,pr — 1)* + ged(pr + 1,p2 — 1)),

PRrROOF. Let k € {1,2}. By Lemma 5.19, we have

dy = HMeC, |ord(M)| p’“;l,MnTH =—I> (mod py)}|
gcd(p2 + 1,p1 — 1), ifk=1

'ng(P1+1>P2_1)a if k=2

—~

ot

2

=
—N—
N—= N

and
dy = |{MeC |ord(M)|py+1, M3 =—I, (modp)}|

ng(pQ - ]-7p1 + 1) ) ifk=1
(5.19) cged(pr — Lipe + 1), if k=2.

= N

Then we have

K'(n)] = [{ze(@/mz) | (Z) = ~1,¢(1,2)F =L, (mod n)}|
= [z e(@/mz) | (Z) = —(ZH) =1,¢(1,2)"F = -1, (mod n)}|
+ € (Z/nZ)" | () = —(5H) = ~1,¢(1,2)" =—I, (mod n)}|
(S) dy - dy+dy - dy

= 1 (ged(p2+1,p1 —1)? +ged(pr + 1, po — 1)%). O
LEMMA 5.23. Let n be a product of two distinct odd prime numbers

pr=2%"t1+1 and py=2%ty + 1,
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where t; and ty are odd. Then

p12_1, if 81> 89
IK(n) N K'(n)| < 221 ifs; < s
0, else.
PROOF. Let d; :=ged(py — 1,ps — 1), and dy := ged(py — 1,p2 + 1).
If K(n)NK'(n) # 0, then, by Theorem 5.8, we have s; # sy. If $1 > s9, then
didy | pr — 1. (50)
By Theorem 5.8, Lemma 5.17, Lemma 5.19, and Lemma 5.20, we have
[ K (n) N K'(n)|
= min{|K (n)[, [K(n) 0 K'(n)[}
= min{| K (n)], {z € (Z/nZ)" | (5H) = —(55) = 1} 0 K'(n)[}

(5_8) P
< min{d;, i -d3}
(5.17),(5.19),(5.20)

< min{d?, (&-1)?

= (&, (552}
-1

S p12 .

If s1 < s9, then the proof of the assertion is similar. O

LEMMA 5.24. Let mg be a positive integer, and let mq, mo, mg be distinct positive integers.
Then

(momimy — 1)(memyms — 1) (memams — 1) > md((m] — 1)(m3 — 1)(m3 — 1) + 1)

+ mg(ml + mgy + mg).

PROOF. Let a,b be positive integers. Then we have the following relation

mga’b® + moab — mja* — m3a*b* — miab + mia®

= moa((ab®* — a)mg — (ab* — a + b)ymg + b)
= moa(mo — 1)(mg — ﬁ)
> 0. (51)

(a,b,mo>1)

Assume m; > mo > mg. Then the proof of the assertion follows by

(momimg — 1)(memyms — 1)(memams — 1) — ma(m3 — 1)(m3 — 1)(mj — 1) — mj)
= (mimimams — memimy — momyms + 1)(memams — 1)

= mg(mim; —mi —mj + 1)(mg — 1) — my

3.2 2 2 2 2 2 2 2 2
= momimsms; — msmimams — Mmgmymams — Mmgmimaems + Momims + Memyms
30,2, 2 2 22 22 2 2 2 2 2
+ momams — my(mimsms — miyms — mims — myms +mij +m; +m3) — 1

3,2 2 3, 2 2 3, 2 2
= mgmimsz + myMmams + mymims + momiMms + MeM1Mm3z + MyMams

2,2 2 2 2 2 3,,,2 3,,,2 3,,,2
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2,2 2 2,2, 2 2,2 2 2 2 2
> mgmims + mgmams + memims + mgmims + mgmyms + mgmams

(51) 2,2 2 2 2 2 2, 2 2,2 2,2
— MeMi{Mmamaz — MyMmMama — MyMiMeMs — MMy — mymy — Mgmz — 1
2,2, 2 2,22 22,2 2
> mgmimz + momaomsg + mamims; + mgmims
2,2 2 2 2 2 2,2
— MoMi{MmamMm3 — MyMMaMmaz — MyMMaMs — My

202 2 2 92 22 2 2
= mg(mimz + mams + mim; — mimomg — my)

— mgmlmgmg — mgmlmgmg + mgmlmg
= mi(mi(ms — ma)® + mimams + mim3 — mj})
- mgmlmgmg - mgmlmgmg + mgmlmg
mg(mimamg + mim3) — mgmymams — mimymam; + mgmyms
= mimams(mi + mams) — mgmimams — mamymams + mamyms
= mgmama(mi + (m1 — (m1 —ma))(m1 — (m1 —ma)))
- mgmlmgmg - m%mlmgmg + mgmlmg
= mimoms(2m} — my(my — ma) — mi(my — ms) + (my — my)(my — ms))

2 2 2 2 2
— MyMmimams — MyMmiMaMm3s + MyMmims

v

mamams(2m? — mi(my — ma) — mi(my — ms) + 2)

— mgmlmgmg — m%mlmgmg + mgmlmg

= mimoms(mimy + myms) — mimimams — mamimam3 + mams(my + 2my)
> mims(my +mg +msg). O

LEMMA 5.25. Let B > 2 be a positive integer, and let my, mo, m3 be distinct positive
integers which are greater than B. Let

di = ged(mams —1,mq — 1),
dy = ged(myms —1,me — 1),
ds = ged(myme —1,mg — 1),
dy = ged(mams —1,my + 1),
dy = ged(myms —1,ms + 1),
and dy = ged(mimy —1,msz+ 1).
Then
dydydsd)dyly < 2B - (my — 1)2(ma — 1) (ms — 1)2.
PROOF. Let
e (m? —1)(m2 — 1)(m3 — 1) and A= (mymg — 1)(myms — 1)(mamg — 1)
drdadd, dyd, d1dadyd dyd ’
then, by Lemma 5.24, we have A’ > A. Therefore,
1 + l — ﬂ
A A

A" (mymg — 1)(mymg — 1)(mamg — 1)

A (mi —1)(m3 —1)(m3 — 1)

IN
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(m2maomsz — mymg — myms + 1)(mgomg — 1)
(mim3 —mi —m3 + 1)(m3 — 1)

m%m%m% — m%m2m3 — mlmgmg — m1m2m§

2012002 2,72 2,2 2,12 2 2 2
mimsms — miyms — mayms — miyms +mj +msz +msz — 1
mime + mims +moms — 1

2,2, 2 2,2 2,2 2,2 2 2 2
mimsms — mims — msms — miyms; +mi +ms +msz — 1

_ m2m3am3
mimam? — mim3 — m3mi — mim3
1
1 — (m3m3 4+ mami + m3im3)/ (mimams)?
1
<
-3
BQ
T B2-3
3
= 1 .
* B2 -3
Thus,
B? -3
A> .
3
Therefore,
didydydydydy < g - (my — 1)(mj — 1)(m5 — 1)
3(B+1)3
< g - (m =12 (me = 1)°(my = 1)%. O

LEMMA 5.26. Let B be a positive integer with B > 3, and let n be a product of three

distinct odd prime numbers p1,p, and ps such that all prime divisors of n are greater
than B. Then

K (n) N K (n)] < YSEHLE . o).

1B(B-1)2
PROOF. Let
di = ged(pops —1,p1 — 1),dy == ged(pips — 1,p2 — 1), ds := ged(pips — 1,p3 — 1),
dy = ged(pops —1,p1 +1),ds := ged(pips — 1,p2 + 1), ds == ged(pip2 — 1,p3 + 1),
dr = gcd(peps +1,p1 — 1),ds == ged(pips + 1, p2 — 1).
By
B*—-B? < B?®-3B+ B*-3,
(B>3)
we have
B+1
53 < G (52)
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Assume vo(py — 1) = va(p2 — 1) = va(ps — 1). Then, by Theorem 5.8, Lemma 5.17,
Lemma 5.19, and Lemma 5.25, we have

K (n) 1 K (n)
< min{[K(n)],[K(n) N K/ (n)]}
< min{|K(), [{r € (2/n2)" | () = (29) = (£29) = -1} n K'(n)]}

p1 p2 p3

S min{dldgdg, % . d4d5d6}

: 3(B+1)3p(n)?
(525) min{d; dyds, 8(32—3)(B—f)3d1d2d3}
(B+1)*p(n)?
%) min{dsdads, sttt s
V6(B+1)?
= 4B(B—1)% (n).

Assume v5(p; — 1) > va(ps — 1) and va(pa — 1) > va(ps — 1). Then
did; | p1—1, and dadg | p2 — 1. (53)
By Theorem 5.8, Lemma 5.17, and Lemma 5.19, we have
[K(n) N K'(n)]

< min{[K@)] K@) 0 K (n)]}
S min{KmL e e @/mz) ] (52) = (5 = (5 =1} 0 K'0)
S min{dldgdg, % . d6d7d8}

(5.17),(5.19)

. 1 1 !
< min{d; dyds, i )8(§12d2d3(p3 '}
(53)
2
< mln{d1d2d3a 8BQd1d2d3}
< Y2 o(n).
Combination of these two cases completes the proof of the assertion. -

LEMMA 5.27. Let B be a positive integer with B > 17, and let n be a product of four

distinct odd prime numbers py, p2, p3, and py such that all prime divisors of n are greater
than B. Then

|K(n) N K'(n)] < % - p(n).
PROOF. Let

dy = ged(papsps — 1,p1 — 1), ds := ged(p1psps — 1, p2 — 1)7
ds = ged(pipaps — 1,p3 — 1),dy := ged(pipaps — 1,ps — 1)

( ); (
( ) (
ged(pipsps — 1,p2 + 1), dg := ged(pipeps — 1, p3 + 1),
( ) (
( ),

Y

ds = )
dr = ged(pipeps — 1,p4 + 1), ds == ged(popsps + 1,p1 — 1),
dy := ged(pipsps + 1,p2 — 1), dio := ged(pipaps + 1,p3 — 1).
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We have
AB(p2 + 1)(ps + 1)(ps + 1) 5 5(pr = 1)(p2 = D (ps — 1) (pa — 1). (54)
Assume vo(p; — 1) > vo(pe — 1) = va(ps — 1) = v2(ps — 1). Then
d1d9 | P1 — 1. (55)

By Theorem 5.8, Lemma 5.17, and Lemma 5.19, we have
K (n) N K'(n))|

< min{[K(n)], [K(n) N K'(n)[}
< min{[K(n)],
(5.8) * z2 x2 z2 x2
{z € (Z/n2)y | =(55) = (55) = (57) = (557 = ~1}nE'(n)]}
S min{d1d2d3d4, 1_16 . d5d6d7d8}
(5.17),(5.19)
. 1—1 2_1 2_1 2_1
(5§5) m1n{d1d2d3d4, (p )(11266116)1212133@)(174 )}
: 5p(n)2
(5<4) m1n{d1d2d3d4, 764Bdﬁd2d3d4}
< 2 e(n).
Assume vo(p; — 1), v9(pa — 1), and v5(p3 — 1) are greater than vo(py — 1). Then
d1d8 | P1— 1,d2d9 | P2 — ]_, and d3d10 | Ps — 1 (56)

By Theorem 5.8, Lemma 5.17, and Lemma 5.19, we have
| K (n) N K'(n)|

< min{|K (n)|,|K(n) N K'(n)|}
= minK)

| o€ @2y | (52) = (55 = (55 = - (58 = 0 K ()}
< min{d;dadsds, % - drdgdgdip }

(5.17),(5.19)

< min{didadad,, PRI,
(56)
. n)?
< min{d;dydsdy, %}
< 4\/1ﬁ ’ @(n)
Combination of these two cases completes the proof of the assertion. O

THEOREM 5.28. Let n be a composite number. Then Algorithm 5.11 returns for n and
B > 79 the result true with probability less than 1—16.

PROOF. By the first step of Algorithm 5.11, we know that the least prime divisor of
n is greater than 82. Let r be the number of prime divisors of n.
First, we assume that n is not squarefree. Let [[,_, pi* be the prime factorization of
n. Then, by the third step of Algorithm 5.11, we know that n is not a perfect square.
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Hence, we can choose p; such that a; is odd. Then by Lemma 5.15, Algorithm 5.11
returns the result true with the probability

[K(n) N K'(n)] < 2-p(n)
[La(n) U Lo(n)] @asi(s1m) 83 (p(n) =2+ (=2) 1 [Timy o~ (1 = ) - B57))
- 2-¢(n)
T 83 (p(n) — 2 [T, B
_ 2-p(n)
83 (p(n) —2p1 ™" o())
B 2
83 (1—29)
2
<
T 8- (1-gp)
- 1
40°
as claimed.
Now we may assume that n is squarefree. If r = 2, then by Theorem 4.38, and
Lemma 5.23, Algorithm 5.11 returns the result true with the probability
[ K(n) N K'(n)] < 2 pn) 1

L) ULo()] (asism) () —4 2-83 82
If r = 3, then by Theorem 4.38, and Lemma 5.26, Algorithm 5.11 returns the result true
with the probability
|K(n) N K'(n)] _ 2 ‘\/é-cp(n)_(83+1)2<i
|L_1(n) U Lo(n)| (a38),5.26) (1) +8 4-83 83 —1 64
If r = 4, then by Theorem 4.38, and Lemma 5.27, Algorithm 5.11 returns the result true
with the probability
K@mnE@ 2 el _ 1
|L_1(n)U Lo(n)| 138,627 p(n)—16 8../83 16
If r > 5, then, by Theorem 5.8, we have

(%) = (%) for all 21,20 € K(n)NK'(n) and 1 < k <.

Therefore, by Lemma 5.19, we have
Km)nKm) < 20 (57)
(5.8),(5.19) 27
By Theorem 4.38, Algorithm 5.11 returns the result true with the probability
|K(n) N K'(n)| < 1 1

r— < s )
|L_1(n) U Lo(n)| @s8),67) 2r-1 + % 16

as claimed. ]
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5. Discussion

If we analyse the numerical values of Appendix B, it seems to be possible to improve
Lemma 5.23 by the following conjecture.

CONJECTURE 5.29. Let n be a product of two distinct odd prime numbers p; and ps.
Then

|K(n) N K'(n)| <min{p; — 1,py — 1}.

Unfortunatelly, this conjecture cannot be proved by the techniques described in this
dissertation. I can only verify that this upper bound is correct for all odd composite
numbers less than 107 (see Appendix B). Moreover, the following table shows that this
upper bound cannot be improved.

n [ K (n)] [K'(n)] | [K(n) N K'(n)]
1102121 = 41- 26881 | 400 = 40%/4 | 400 40
2589949 = 109 - 23761 | 2916 = 108%/4 | 2916 108
5142569 = 137 - 37537 | 4624 = 136°/4 | 4624 136
5188709 = 29 - 178921 | 196 = 28%/4 | 196 28
5639129 = 89 - 63361 | 1936 = 88%/4 | 1936 88
6548309 = 53 - 123553 | 676 = 522/4 | 676 52
7214033 = 113 - 63841 | 3136 = 1122/4 | 3136 112
7739629 = 157 - 49297 | 6084 = 1562 /4 | 6084 156

Why may a proof of Conjecture 5.29 be important?

Clearly, we do not get a better probability of error for Algorithm 5.2 if this conjecture
is true and can be proved. More interesting is that we will get

|K(n) N K'(n)] < /n,

if n is a product of two prime numbers. And that would be a base to prove, analogous
to [24], that only a partial factorization F' > /n of n — 1 would be sufficient to prove
the primality of n with Pocklington’s Theorem 3.17. This would be an improvement to
[68].
With Theorem 6.7 in the following chapter, it would also give an improvement of Miller’s
test.

How important is it to require (#) = —1 for the base a of the commutator test?

If we try to make this commutator test deterministic like Miller’s test, we will get many
counter-examples. The following table gives the number of commutator pseudoprimes
for the base 1 below a natural number z like Table 1 of [104]:
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x CP(z) | ECP(z) | SCP(x)
10 0 0 0
102 0 0 0
102 2 1 0
10* 9 4 2
10° 50 30 14
108 155 92 41
107 511 301 142
108 1460 894 399
109 4152 2567 1165
10| 11072 6928 3107

For the base 1, let CP(z), ECP(x), and SCP;(z) denote the number of commutator
pseudoprimes, Euler’s variant, and the strong variant, respectively, not exceeding x € N.
A comparison with Table 1 of [104] shows that commutator pseudoprimes are only a bit
rarer than the ordinary pseudoprimes. Also, like Miller’s test, it can be shown that, for
all odd composite numbers n below 10, the equation

¢(1,a)"9%" = I, (mod n)

(nfe)-Qd_b _

or Jdo<a<p : ¢(1,a) = —I, (mod n), where € = (“QTH), b=1w(n—e¢)

is not satisfied for any base a € {1,2,3,4,5,6}.
Nevertheless, if we choose the bases in that way, we cannot use all properties and heuris-
tic arguments of Algorithm 5.11 which are collected in this chapter.

Moreover, the probability of error less than % cannot be proven, for example not for
n=119=7-17o0orn =779 =19 - 41 etc.

Why did I choose the commutator curve in S'Ls, and not another family of matrices?

The answer is quite simple if we regard the subject from the group theory. The com-
mutators have a significant place here. Moreover, I analysed many different products of

matrices such as
1 =z 1 0
0 1 y 1
10 1y

) GG GG

for positive integers z,y. Or for example a curve like

=9 1)

with x € (Z/nZ)*, where n is a natural number greater than 2. By Corollary 4.31, the
curve 7(z) has the order distribution

(lx € By | (£54) = 1),z € By | (5) = 0}, |o € By | (£54) = ~1}))

p p
— p—3 ) p—3
(4.31) ( 2 14 )7

=}

D))

—_
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where p is a prime number greater than 3. Since that distribution is symmetric, it
would be better than the distribution of the commutator (see Theorem 4.32). Unfortu-
natelly, the most important Theorem 4.53 for the correctness of the tests based on the
commutator curves in this chapter, is not correct for the curve r(z), e.g.

r(4)? =1, (mod5) or r(7)* =1, (mod 53),

etc.

Why do I concentrate on such a compositeness test, although there are well-known good
and modern primality tests?

Indeed, we have good primality proving algorithms. However, the running time be-
tween the answer “is pseudoprime” and “is prime” is still very large. Of course, before
an algorithm rigorously proves that a number n is prime, n must successfully pass a
compositeness test, so that it is certain that n is really a pseudoprime. But the most
important argument is that, for example in the Jacobi sum test, there exists a part,
where many kinds of compositeness tests followed by a step in which a limited amount
of trial divisions is performed. No one has ever encountered an example of a number, for
which the trial division was really needed — that means, every number that has passed
the compositeness tests, actually was prime. Moreover, every improvement of Pocklin-
ton’s theorem, such as Conjecture 5.29, is an improvement of every modern primality
proving algorithm, e.g. the Jacobi sum test and the elliptic curve test. In the same sense,
a speedup of Maurer’s algorithm for generating provable primes [83] can be achieved.
And such improvements can be realized by the commutator curve test.

Finally, the following test is formulated

ALGORITHM 5.30 (Hypothetical Commutator Curve Primality Test).

Input: n €N, wheren is odd, n > 5, and n # 7 (mod 8).
Output: R € {true, false}.

(1) If n is a perfect square, terminate with the result false.
(2) Set M := 0.
(3) Choose x € (Z/nZ)* with £x & M and

€2 - -1

(4) Terminate with the result false, if
(22 +2)"1 # 1 (modn) or (z°+ 4)%1 # —1 (mod n)
% - (mod n).

or c(l,z)2
(5) Set M := M U{z} and go to step (3), if |M| < 2.
(6) Lety,z € M with y # z and terminate with the result false, if

ged(y £ z,n) > 1,

otherwise terminate with the result true.
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THEOREM 5.31. Let n > 5 be an odd natural number with n # 7 (mod 8) and n < 107.
Then Algorithm 5.30 returns the result true if and only if n is a prime number.

PRrROOF. The assertion follows directly from computations and the tables of Appen-
dix B. 0

The theorem given above is also correct for n = 7 (mod 8) if we extend step (4) of
Algorithm 5.30 by the test z%(z*> + 4) # —2 (mod n). Then by Example 4.23, we
exclude all elements on the standard commutator curve which have an order equal to
eight, which are no good bases for the test. If we do not extend step (4), there exist
specific bases for a composite number n, for which Algorithm 5.30 returns the result
true. These specific bases are given in the following table

n M

198982759 = 3527 - 56417 | {9895300, 75626759}
198982759 {9895300, 81832629}
198982759 {20168848, 45562611}
198982759 {20168848, 51768481}
198982759 {45562611, 61692219}
198982759 {51768481, 61692219}
198982759 {75626759,91756367}
198982759 {81832629, 91756367}
921858631 = 7591 - 121441 | {6492010, 22514888}
921858631 {6492010, 390966882}
921858631 {22514888,273186613}
921858631 {114349119, 143356017}
921858631 {114349119, 410050620}
921858631 {143356017, 394027742}
921858631 {273186613, 390966882}
921858631 {394027742, 410050620}

The most interesting fact is that if we reach step (6) of Algorithm 5.30 for a compos-
ite number n, the order of ¢(1,y) and ¢(1, z) is always six and this is only possible for
y?> = 22 = —1 (mod n) by Corollary 4.22. Otherwise, if we do not require the condition
(z?2 +2)""!' =1 (mod n), then experiments show that Algorithm 5.30 returns the result
true for n € {3866257,4216601, 79786523,97676723} for specific bases y and z, and the
order of ¢(1,y) and ¢(1, 2) is not always six.



CHAPTER 6

Miller’s Test and the Extended Riemann Hypothesis

1. Introduction

In this chapter, we will give an upper bound for the least quadratic non-residue, which is
important for the correctness of Miller’s primality test. First, I will mention that Miller’s
idea to combine the primality test with the least non-residue!, was already presented 43
years before by M. Hall in [55]. But at Hall’s time, there was no polynomial upper
bound for the least quadratic non-residue known.

In 1918, J. M. Vinogradov has proved in [128] that the least quadratic non-residue

modulo an odd natural number m > 2 is less than mave In(m)?. This upper bound was

improved many times to the bound O(mﬁ) by D. A. Burgess in [27] at 1957; it was
extended to the least non-residue of kth power by both authors (see [129], and [28]). In
the following theorem we will give an elementary proof for a simple upper bound and we
will see that the least quadratic non-residue can only be a prime number.

THEOREM 6.1. Let m > 3 be a squarefree natural number, and
z=min{k € Ny | (£) = -1},
then x is a prime number, and

r<14++vVm-—1.

PROOF. Suppose x is composite. Then there exist two natural numbers a,b > 1 such

that x = ab. By

—1=G) =) =) G,
we have (%) or (%) equal to —1, which contradict the definition of . Hence, x is a prime
number.
Let t = —m (mod z) with ¢ > 0 and s = Y. Then ¢ > 0 since from x | m it follows
(£) € {0,1} which contradicts the definition of z.

From 1 <t <, we have () = 1. Therefore, we get

=G =En=060)=G) -G =-G)
Thus, £ > s > 2. Hence, 22 — x —m < 0. Therefore, (z — 1) < (z — 3)> < m + 1.
Since z and m are integers, we get (x — 1)? < m. Finally, since m is squarefree, we have
(=12 <m-1 O

1G. L. Miller used in [86] the least non-residue of kth powers, but H. W. Lenstra, Jr. has proved
in [76], that the quadratic non-residue is sufficient.

93
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More interesting is the improvement by N. C. Ankeny [6] in 1952, who has given the
very impressive bound O(log(m)?). Since this publication of N. C. Ankeny, many other
improvements of the bound and explicit constants for Ankeny’s theorem have been de-
veloped, see e.g. [88], [10], [11], [49], and [89]. Today, the best known explicit upper
bound for the least quadratic non-residue is 3 In(m)? — 2 In(m)+13 which will be proved
in this chapter.

However, the disadvantage of the proof of N. C. Ankeny, and all the other theorems
based on it, is that he used the Fxtended Riemann Hypothesis in his proof.

1.1. Riemann Hypothesis. The Riemann Hypothesis, which was first published
in [110]* on page 148, states that the non-trivial roots of ((s), where s is a complex
number, all lie on the citical line % + 1t, where t is a real number.

DEFINITION 6.2. Let s be a complex number with Re(s) > 0. Then, the Riemann zeta
function ((s) is an analytic function of s, which is defined by

) =3 0

for Re(s) > 1, and by analytic continuation for Re(s) < 1,s # 1. Hence, we have?

s

TE0(3)C(s) =7 T D(A5)C(L — 5).

DEFINITION 6.3. Let s be a complex number. Then we define the analytic continuation
of the zeta function by

£(s) = 5(s = D) 20 (5)¢(s).

In 1859 B. Riemann has noted in [110], that he will work with the function (1 + it),
where t is a real number, instead of &:

,,...€s ist sehr wahrscheinlich, dass alle Wurzeln reell sind. Hiervon wére
allerdings ein strenger Beweis zu wiinschen; ich habe indess die Aufsu-
chung desselben nach einigen fliichtigen vergeblichen Versuchen vorlaufig
bei Seite gelassen, da er fiir den néchsten Zweck meiner Untersuchung
entbehrlich schien.*

In our terminology, B. Riemann has assumed that all non-trivial roots of £, and conse-
quently of ¢, lie on the line % + it, where t is a real number. In this form, his note has
entered the history of mathematics as the Riemann Hypothesis.

Unfortunately, nobody knows if the assertion of this hypothesis is correct or wrong, i.e.
no counter-example was found. But for that, there exist many computational records
especially for Riemann’s zeta function to generate roots, which confirm Riemann’s Hypo-
thesis. Before we give an overview of the main records, we need a definition which order
the roots of an analytic function by increasing absolute value of their imaginary part;
roots with the same imaginary part are not ordered inside these roots.

’In: Ueber die Anzahl der Primzahlen unter einer gegebenen Grisse, Monatsberichte der Berliner
Akademie, November 1859.
3See E. Landau in [71] on pages 63-69, especially Satz 418.
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DEFINITION 6.4. Let f : C — C be an analytic function with f(5) = f(s) for all complex
numbers s. Then we define the following set of roots

N(f):={s#0]0<Re(s) <1, f(s) =0}.

Since f(5) = f(s), in many cases we need only consider roots with a positive imaginary
part. We assume that the roots z(f,n) € N(f) with a positive imaginary part are
counted according to their multiplicities and ordered so that

0 < Im(z2(f, k) <Im(z(f,k+1))
and  Re(z(f,k)) < Re(z(f,k+1)) if Im(z(f, k) =Im(2(f, k+1))

for positive integer k.
All roots p(f,n) € N(f) are counted according to their multiplicities and ordered so that

)
ot )] < (ol -+ 1)
and  Im(p(f, k) > Im(p(f.k+1)  if Tm(p(f.k)) = ~Im(p(f.k + 1))
and  Re(p(f.k)) < Re(p(f.k+1)) i [Im(p(f.k))| = [Tm(p(f,k + 1))

for positive integer k.

An overview of the main records gives the following table* [94]:

Year Author Source n H(n)
1903 J. P. Gram [50] 15 65.801
1914 R. J. Backlund [15] 79 199.649
1925 J. I. Hutchinson (58] 138 300.468
1935 E. C. Titchmarsh [125] 1041 1467.477
1953 A. M. Turing [127] 1104 1 539.742
1955 D. H. Lehmer (73] 10 000 9 878.056
1956 D. H. Lehmer (73] 15 000 14 041.137
1956 D. H. Lehmer [74] 25 000 21 942.593
1958 N. A. Meller [84] 35 337 29 750.168
1966 R. S. Lehman [72] 250 000 170 570.745
1968 J. B. Rosser, J. M. Yohe,

L. Schoenfeld [114] 3 500 000 1 893 193.452
1977 R. P. Brent [20] 40 000 000 | 18 114 537.803
1979 R. P. Brent [21] 75000 000 | 32 585 736.400
1979 R. P. Brent [21] 81 000 001 | 35018 261.243
1982 R. P. Brent, J. van de Lune,

H. J. J. te Riele, D. T. Winter [22] 200 000 001 | 81 702 130.190
1983 J. van de Lune, H. J. J. te Riele [81] 300 000 001 | 119 590 809.282
1986 J. van de Lune, H. J. J. te Riele,

D. T. Winter [82] | 1500 000 001 | 545 439 823.215

4The four values H(n) for n € {15000,25000, 35337,250000} are not in the cited literature, but
H. J. J. te Riele communicated me these values personally.
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Where the function H gives the positive upper bound for which Riemann’s Hypothesis
was known to be true

t, if Vicp<n : Re(2(( k) = 5 A Im(2(C k)| < ¢
0, if izpen : Re(=(C, k) £ 1 v [Im(=(C, K))| > 1

Of course, we can choose H(n) everywhere in the open interval

JTm(z(¢, n)), Im(=(¢,n + 1)) .

Often, the Gram points® separate the imaginary part of two consecutive non-trivial roots
of the zeta function and, then we can take H(n) equal to the (n — 1)th Gram point.

H:N—>R:nl—>{

In 1988, a faster method for simultaneous computation of large sets of roots of the zeta
function was invented by A. M. Odlyzko and A. Schonhage [96]. It has been implemented
and used to compute 175 - 10° roots near root number 10%° and 10 billion roots near root
number 10?2 (see [93], and [95]). But till now, the table above is up-to-date®.

1.2. Extended Riemann Hypothesis. The Ezxtended Riemann Hypothesis says
that all the non-trivial zeros of the Dirichlet L-function L(s,x) for a real character yx
modulo a natural number m > 2, where s is a complex number, are on the critical line.

DEFINITION 6.5. The function y : N — R is called a real character modulo a natural
number m > 2, if the function y satisfies the following four properties

(1) x(1) # 0,

(2) x(k) =0 for all k € N with ged(k,m) > 1,

(3) x(k1 - k2) = x(k1) - x(k2) for all ki, ky € N,

(4) x(k1) = x(k2) for all ki, ks € N with ky = ko (mod m).

Let s be a complex number with Re(s) > 0, and let x be a character. Then, we define
the L-function by
— x(k)
L(s,x) := E .
(> k=1 fo?

By the functional equation of the L-function, L(s,x) can also — like the zeta function —
be analytically continued to the complex numbers”.

There also exist computational records® for some special L-functions, see e.g. [121],
[115].

5The nth Gram point for n € NU{—1} is defined as the unique solution of the equation 6(t) = n -,
where 0(t) = arg(ﬂ'_lé_tF(IJFTm)) (see for example [21]).

6By the end of the year 2000, J. van de Lune had checked that the first 5 300 000 000 roots of the
zeta function lie on the critical line (unpublished).

"See H. Davenport in [36] on pages 65-72, especially page 71.

8A different study of the zeta function is to evaluate one value of ((s) for an integer s to high
precision in order, for example, to resolve some other constant or ascertain some conjecture. Since
L. Euler it is known that ((2) = %2 and ¢(4) = 79“—;. But what do we know about ((3)? R. Apéry [7]
has proved that (3) is irrational, although it is not known whether it is transcendental, but it seems
to be [133].
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By these computational proceedings, we get further informations of the Extended Rie-
mann Hypothesis, but they are not enough to prove the hypothesis.

In this chapter, our intention is to use all empirical informations about the Extended
Riemann Hypothesis with regard to Miller’s primality test. We concentrate on two
questions. First, is it possible to remove the Extended Riemann Hypothesis from Miller’s
primality test? And second, is it at least possible to find an upper bound for composite
numbers n, for which Miller’s test is reliable?

All proofs in this chapter are based primarily on methods taken from the dissertation of
E. Bach [11]. However, we concentrate on Miller’s test, and not on the least quadratic
non-residue in general like he did.

2. Miller’s Primality Test

In this chapter, we will prove the correctness of the following primality algorithm assum-
ing the Extended Riemann Hypothesis is true.

ALGORITHM 6.6 (ERH — Miller-Selfridge-Weinberger Test [137]).

Input: n € N wheren > 8.
Output: R € {true, false}.

(1) If a"T # +1 (mod n) for some a € P with a < $In(n)? — 2 In(n) + 13, then
terminate with the result false, otherwise terminate with the result true.

THEOREM 6.7 (ERH). Assume the Extended Riemann Hypothesis is correct. Let n be a
composite number with r prime divisors. Then there exists a prime number

a < $In(n)* — Bin(n) + 13
such that Miller’s Algorithm 3.11 returns the result false for the base a.

PROOF. By Theorem 2 of [76]°, we know that n may be assumed to be squarefree.
Suppose a2 = +1 (mod n) for all prime numbers less than S n(n)? — Bln(n) 4 13.
Let p, g be different prime divisors of n such that pg < v/n2. Then from Theorem 6.35
there exists a base

a1 < 2In(pg)® — ¥ In(pg) + 13 < S 1n(n)* — L In(n) + 13

such that a; is the least quadratic non-residue modulo pg. Therefore, by Theorem 6.1,
the base a; is prime.
Suppose without loss of generality that (%) = —1 and (%1) = 1. By Lemma 5.7, we have

vo(q—1) > va(n —1). (58)
Similarly, also by Theorem 6.35, there exists a base
az < 31In(q)* — 2 1n(q) + 13 < S In(n)> — £ 1n(n) + 13

such that a; € P is the least quadratic non-residue modulo ¢q. But by Lemma 5.7, we
get vo(q — 1) = vp(n — 1) which contradicts equation (58). O

9S. Pajunen has shown in [98] an improvement of this theorem.
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COROLLARY 6.8 (ERH). Let n > 8 be a natural number and assume that the Extended
Riemann Hypothesis is true. Then the Algorithm 6.6 is correct.

PRrROOF. This can be concluded from Theorem 6.7. O

THEOREM 6.9. Let n be a natural number less than 6 - 109, Then the Algorithm 6.6 is
correct without the requirement of the Extended Riemann Hypothesis.

PRrROOF. The proof of the assertion is analogous to Theorem 6.7. Instead of Theo-
rem 6.35, we use the table of pseudosquares (Appendix A) to get an upper bound for
the least quadratic non-residue.

U

H. Cohen and H. W. Lenstra, Jr. have said in [31] that “for a typical 100-digit number
this method is approximately 500 times as slow as the algorithm described in this paper,
although it is faster.”

In fact, their Jacobi sum algorithm was a great improvement. However, for a comparison
with Miller’s test, they have used all bases less than 701In(n)?. If we use, like in Algo-
rithm 6.6, the constant % instead of 70, then this Miller’s algorithm runs 46 times faster
than Miller’s test which was described in [31]. And so, the improvement of H. Cohen
and H. W. Lenstra, Jr. ([31]) is now not more than about 11 times, which implies that
prejudices against Miller’s test are no longer valid®’.

3. Hierarchy of the Proof

The proof of Theorem 6.35, that gives the upper bound
z < $In(m)*> — % In(m) + 13.

for the least quadratic non-residue modulo a natural number m which is greater than 1,
is split in the following six steps:

(1) First, in Section 4, we will define some necessary basic functions for the proof
of the theorem.

(2) In addition, in Section 5, we will collect some required elementary properties
of the defined functions. To complete the picture, we will prove the properties
which are not well known.

(3) Section 6 contains some fundamental lemmata about the roots of the zeta func-
tion and L-function. Since the proof of the first lemma are too extensive for
this thesis, we will just refer to the corresponding literature; the main idea of
these proofs are based essentially on Hadamards’ theory of entire functions and
the Weierstrassian product theorem.

(4) The real work of the proof is in Section 7. This more technical section is based
partly on the dissertation of E. Bach [11], with concentration on Miller’s test
and the possibility of removing the Extended Riemann Hypothesis.

0Certainly, since 1984, the Jacobi sum test (see for example [85]) has been improved.
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(5) Section 8 combines all lemmata of Section 7 in one key lemma. In our discussion
in Section 10, we will see that it is possible to prove all lemmata, inclusive the
key lemma, without the necessity of the Extended Riemann Hypothesis.

(6) Finally, Section 9 contains the proof of the theorem about an upper bound for
the least quadratic non-residue.

The following diagram gives an overview of the structure of the proof.

Theorem { (6.35)
Key ‘
Lemma { 6'34)
(6.30)
/
Lemmata (6. 32 (6.33)  (6.24) /(6. 26 (6.22) (623) (629) (405
/
(6.31) ‘ 6 21) (6.27)
(6. 19 6 (6.20)
Fundamental ©. 18
Lemmata
(6. 17
(6.16)
Elementary \(6 13)
Properties '
(6.15) (6.14)
Definitions { (6.11) (6.2) (6.5) (6.3) (6.10) (6.4) (6.12)

This hierarchical diagram is read from bottom to up in such a way, that one item is
dependent on the items beneath. The direct dependencies are marked with lines.

4. Definitions

Additionally to the previous definitions of this chapter, we will use the following defini-
tions throughout this chapter.

DEFINITION 6.10. Let s be a complex number. Then we define the gamma function™

by the equation
1 ~ S s
— = se”7 1 —) Tk,
O g( e

1See for example [36] on page 73.
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DEFINITION 6.11. The A-function'? introduced by von Mangoldt is defined by

h’l(p), ifn:pka p€P7k€N>O

A:N—>]R:nl—>{ 0. else.

Additionally, we will need the following function

Nz = Rin— Y Ak).
k=1
DEFINITION 6.12. Let s be a complex number, m > 2 be a natural number, x a character

modulo m, and
5— 0, if x(=1) =1
S 1, i x(—=1) = —1.
Then we define the analytic continuation of the L-function by

€(s,x) = (&) = T(5)L(s,x).

s+6
2

5. Elementary Properties

THEOREM 6.13. Let s be a complex number with |s| < 1. Then

o0

Z(—D’“H% —In(1+s).

k=1

PRrROOF. This theorem is a well known Taylor serie in Analysis; for a proof we refer
for example to [107] on page 149.

O
LEMMA 6.14. Let s be a complex number. Then

, 1 /1 1
Do) — = L
w(s) g s+;<k k:—l—s)'

PRrROOF. By Definition 6.10, it follows for the first derivative of the gamma function

e 5

[e.9] 1 . o0 -1 .
I'(s) 61 2 H (1 + %) ek + s (=)™ H (1 + 2) ek

+ s e 7
1 =5 s\~L o | d((14 %) er)
B sesY ; H<1+7> 6l) d];
14k
0o 1 . 1
—kzl(”z) ¢t (”;>

12See for example [36] on pages 55-60.
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T'(s)

(6.10)

The proof of the assertion is complete by the multiplication with the inverse of the
gamma function (Definition 6.10). O

THEOREM 6.15. Let s be a complex number with Re(s) > 1, and let x be a character.
Then Fuler’s identity is

)= — (59)

peP 1= p_s
and we have the analog of Euler’s identity

L(57X>:H1_ !

S L= X (60)

ProoOF. This theorem is well known in Multiplicative Number Theory; for a proof
we refer for example to [36] on pages 1-3. O

THEOREM 6.16. Let s be a complex number with Re(s) > 1, and let x be a character.
Then we have

S(s) = —ZA]{(?, (61)
Vo) = -3 200 (62)

PrROOF. We will give only a proof of equation (62), because the proof of the other
equation is analogous. Equation (62) follows by Theorem 6.15, Theorem 6.13, and
Definition 6.11

dIn(L(s, x))
ds
d <Zp€ﬂ” In( l—x(;)p*S )>
(60) ds
@ (e T (G45))

(6.13) ds

Lis,x) =
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d(%e—k’ ln(p)s)

- eyt

peP k=1
- i In(p)x(p*)
ks
peP k=1 p

[e.9]

A(k)x(k
- _’;7( ;{X( ). o

(6.11)

6. Fundamental Lemmata

LEMMA 6.17. Let s be a complex number, and let x be a primitive character. Moreover,
define A := —3 =141 In(4n), and B(x) := %(0, X). Then we have the following relation
between the non-trivial roots of the zeta/L-function and the function £

- S -1
E(s) = Llet (1 — ) PR 63
00 s -
s = €0 ] (1 o k)) S (64)
el PUL,
PRrROOF. We refer to [36] on pages 79-83 for a proof. O

LEMMA 6.18. Let s be a complex number, and let x be a primitive character.
Moreover define B(x) := %(O,X). Then we have

: - 1 1
£(s) = —2—14LInM4n)+ ( + ) 65
() = ALl (e T e %)
0 = B0+ (s o) (66
¢ =1 S_p(L7k) ,O(L,k’)
ProOOF. We have the elementary equation
s r—S r+s—x S 1 1
~2 = : -(1-2) ). 67
x? x (s —x)x ( x (s—x+x) (67)
Let A:= —2 — 1+ 1In(4n). Then, by Lemma 6.17, we have for the first derivative of
the function ¢ the following equation
€'(s)
— L peAs (1 __ 3 ) esP(CR) !
(63) ? kl;[l p(¢. k)

1 As G - _L sp(¢.k)~1 1 < _ S )_ 1 ) sp(¢m)~1
taet H<1 p(@k))e <p<<,n> Yom) e

k#n s
(65)  P(¢m)2
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- 1 s T __ s sp(CR)™H [ 4 Oo( 1
o 2° ,E(l p<<,k>)e ( 2 e

103

))

The proof of equation (65) is complete by the multiplication with the inverse of the

function £, and Lemma 6.17.

Using Lemma 6.17, the proof of second equation (66) is analogous.

LEMMA 6.19. Let s be a complex number. Then we have

L) =t =1+ m2n) — 33 (- 220) + 3 (e

k=1 k=1

OJ

PrOOF. By Definition 6.3, we have the following equation for the first derivative of

the function &

,_.
|

g(s) = FraET(5)C(s)+5 a2 T(5)¢(s)

tQ|

(6.3)
+3(s = (=g In(m)7 )0 (5)¢(s)
+35(s = Da 2 T(5)C(s) + 5(s = a2 T(3)¢ (). (68)

Transforming equation (68) to ¢’(s), and Definition 6.3 to ((s), and from Lemma 6.18,

and Lemma 6.14, we get
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LEMMA 6.20. Let s be a complex number, m a natural number greater than 1, x a

o 0, difx(-1) =1
primitive character modulo m, and 6 = { 1 ifx(=1) = =1 ° Then

o2
|
O
gk
—
-
)

Lf(SyX) = B(X)*'S%(s"‘%ln(%)"" E_2k+6+s)

1 1
+ (s—p(L,k) T p(LJe)) )
k=1

where B(x) 1= %(O,X).

PROOF. By Definition 6.12, we have

/ 1 s s _s4d s+0 T _st9 /(s+6\1
§'(s,x) 61 —sIn(7) - (7)" 2 T2 L(s,x) + () 2 I'(%5%)3L(s, x)
_s46 P
+ ()2 T2 L (s,0)- (69)
Transforming equation (69) to L(s, x) and using Lemma 6.18, and Lemma 6.14, we have
_sk8
U o sx) FgIn(E) (&) 2 T(52)L(s,X)
f(S7X) N
(6.12),(69) 5(3, X)
TR
(57T )L )
£(s,X)
= B+ Y (R ) ) — e
(6.12),(66) =t s—p(L k) p(L, k) 27 \m 2 T\ 2
1 2 = [1 2
= B 1] —— =7 - ——
(6.14) () + 3 () 2( 7 s+5+;<k 2k:—|—5+s)>
= 1 1
+ + . g

7. Lemmata

LEMMA 6.21. Let s be a complex number with Re(s) > 0, k a natural number, 6 € {0, 1},
p a complex number with 0 < Re(p) < 1, x a positive real number, and a € ]0,1[. Then

24io0 0, f0<x<1
1 T o ) ~
L o | Glapds - {%?,Ux>1

2—i00

2hicc 0, if0<ax<l1

1
2. 55 f (SM;(PS) ds In(z) if x > 1

= x 1
2—i00 { " (at1)2 + x%(a+1)2 + z(a+1)
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P z° 0, if0<zx<1
o (5t a)2(2k+o+s) ds = In(z) 1 + 1 ifx>1
2—i00 29 (2k+d6—a) x%(2k+86—a)? 22k +8(2k+5—a)?
24ico . 0, if0<x <1
w | e ds = { N 1C) N— if x> 1
2—ioo (at+p)?  z%(atp)?  z%(atp)?’ :

PROOF. The proof of the first integral formula is split in the following three steps:

(1) residue calculation,
(2) consideration of the convergence, and
(3) using Cauchy’s integral theorem.

(1) Residue calculation.

Let w be a real number. Then the rational function

fi(s) = (S(iria)Q
has a pole of second order at s = —a, and is else regular, since the analytic
continuation of (s + a)?fi(s) is
g1(s) == e*".
By residue calculation'®, we have
Res_of1 = 1 g§271)(—a) = we ™. (70)

(2-1)!
(2) Consideration of the convergence.
We have the following equation

dt
/T i L. arctan(%), (71)
then the convergence of the first integral follows by

2+1T 5w T 6(2—‘,—1‘1€)w
lim / — s — _|dt
T—c0 Jo i (s+a)? (2 + it + a)?

< |i] Tlim
—oo J_p

—s=2

(i)
K2
ds=idt

= dt
oo | 2 (2+atit)2+a—it)
B _ T dt
= e hm ﬁ
€2w . o

(i) 2+a Tlglgo (arctan(m) - arctan(m))

262w )

= lim arctan(;=)
24+ a T—oo 2+a
7T€2w

24a

T €2w

13See for example [107] on page 304.
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(3) Cauchy’s integral theorem.
We split the integral up into the following two regions to calculate the integral:
(a) Let w < 0 for the first region. Therefore, we use a closed curve consisting
of a line segment ¢y and a semicircle ¢;,
(i) co: [-T,T] = C:y—2+iy
(ii) and ¢; : [5,35] = C:pr—>2—Te %,

y
(2,T)

Co

T

2,-T)

o
-

A

The arc length of ¢; is

33
|1 | :/ T+/|ie|>dp = 7T. (72)
s T

2

Hence

21T esw esw
0<|lim ds = lim ——ds
T—o0 /QiT (s +a)? T—o0 /q (s +a)? ‘
= LGl
< lim |cq| e
(slevizTzsT) T—00 (T +a)?
= lim 77rT62“’
(72) T—oo (T + a)?
- 0. (73)

(b) Let w > 0 for the second region. Therefore, we use a closed curve consisting
a line segment ¢y and a semicircle ¢y,
(i) co: [-T,T] = C:y—2+iy

(i) and ¢y : [£,%5] — C: o — 2+ Te'.



0<

T T Joir (s +a)?
. esw
= e
S lim |C2‘627w
(si>m) T=oe (T +a)?
= lim 77TT621U
(14)  T—oo (T +a)?
= 0.
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N

(2,0)

(2,-T)

y

The arc length of ¢, is calculated analogous to (72) and is

|CQ| =uT.

107

(74)

In this region, there is the pole s = —a with the residue we=*" by (70).

Thus, we have by the theorem of residues

24+4T esw
lim / ——ds — 27 - we™ "
2

esw
li —d
Tl—rgo /CQ (s+a)? °

(75)

By (73), (75), and the definition z := e", it follows that the value of the first integral is

1 [ g { 0,if0<z<1
¢ —

210 Jy ine (5 +a)? llgf), if z > 1.

We will only do the residue calculation for the other three integrals since the consideration
of the convergence and using Cauchy’s integral theorem is analogous to the calculation
of the first integral. Then we consider the following three functions

Fls) = (s + ae)2(1 —s)’ Fs) = ;;_8, i(s) = 111}6— s (16— s)*’
esw

fals) = (s+a)2(2k+ 6 +s)’

. s gy we™ e

fa(s) = DY f3(s) = 2% +o+s (2k+o+s)?

fa(s) = i , fa(s) = - , fi(s) = wer

(s +a)?(s — p) s—p s—p (s—p)?*
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These three functions f, f3 and f; have the following residues

L ze- we " e ™
Res_ofs = m—fs’ (—a)= ,
s-ofe = ol GO T Y arae
‘ . esw Gw
Resify = lim(s = 1)fo(s) :}91—1’}%_(8“"@)2 BCE R
1 7(2—1) we*aw efaw
R —a — — — - 9
S-ofs = G YT . T @ —a)

Res_op—sf3s = il_f)f%@k + 04 5)f3(s) = s—>1lr2%—§ (s +a)? - (2k+06 —a)?

1 (2-1) we W e~ aw
Res_, = ( —q) = — _ :
J1 (2—1)!"34 (=a) atp (a+p)?

Respfs = lim(s — p)fals) = lim —— — "
es = lim(s — s) = lim = ]
prd s—p P4 s—p (s+a)2 (a4 p)?

By these residue calculations, we get the value of the following three integrals

1 [2iee 0, ifw<0
27 S5 ino fals)ds = { — Gt T e T e else
1 2+ic0 0, ifw<0
20 J3ioe fol)ds = { (82;;(;:(;)2 + 5k (le;;iua)Q , else
1 2ioo 0, ifw<o0
27 Jy i fuls)ds = { G~ er T o e
By the substitution of x = e, the proof of the assertion is complete. O

LEMMA 6.22. Let x be a positive real number, and a € ]0,1[. Then

1 24ioo x?® /
— C(s)d
omi o srap ce)ds
x = 2P (CF) ’ In(z) 1 /0 N
- _ v S — (<) (=
(a+1)2 +;(p(g, ) +a)? +¢l=a) v e <<> ( a>+;(2k‘—a)2
ProOOF. By Lemma 6.19, we have
N 1 - 1 S 1
<Y (— = — S -
(<> (=a) 6.19) (14 a)? Z (2k — a)? Z (p(¢, k) +a)? (76)

Using Lemma 6.19, Lemma 6.21, and equation (76), we complete the proof of the asser-
tion as follows

1 24100 ./L'S

270 Jo_ine (s +a)?

~

(s)ds
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. o] . fe'e) . 1 2+i00 ZL’S
= m2r)—1-+3"1 L A
1 2+i00 s ) 00
+%/2_ioo (5_|_a)2 (1_+;2k+5+25 o(C
(6.21) 22k T 2R | g
x 1 In(x
L @)

> In(z) 1 1
* ; (ma(% — ) 2k —aR k= a)2)
0 2P(CR) B In(x) _ 1
"2 (o F ™ T T ST ATHT)

/ In(z) In(z) = 1 In(7) 1 x
— (i _ _
(76),(6.19)  © (=a) xe xe Z 2k —a * xe Z p(C,k)+a (1+a)?

1 A/ > ) 111(.73) : 1
+ o (%) (—a) + ; 22k —a) a2k — a) )
% R In(z)
;(mm(cw xa<a+p<<vk>>)
B . o 2P(Ck) . In(z) 1 7oy
= _(a—i— 02 + Z (p(C. k) + a)? %( a) 20 + 20 (%) (—a)

LEMMA 6.23. Let x be a positive real number, a € ]0,1[, and let x a character. Let

[0, ifx(-1) =1
5—{ 1 iy (—1) = —1 ° Then

1 24100 s

_ L
277'@ 2—ioo (8 + a/)2 L (87 X) ds
> P Lok) 1 In(z) 1 . > x 2k
N P (p(L, k) + a)? +E(=ax) e + 70 (f) (—a.x) + ; 2k +06 —a)?

Proor. By Lemma 6.20, we have

N R 1 R 1
(f) (—=ax) 6200 (6 — a)? kz:; (2k + 6 — a)? Z (p(L, k) +a)? (77)
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Define B(x) := %(0, X). Using Lemma 6.20, Lemma 6.21, and equation (77), we complete
the proof of the assertion as follows

1 24100 xs

2t Sy (s LX)
— B() ll(ﬂ)‘i_l_lil—%i 1 L/QJrzoo s p
(6.20) X ! 22k = p(Lyk) | 2miJy e (s+a)? ’
1 e g 1 > 1 > 1
— 4+ ——)d
+2m’ 9—ice (8+a)? (3+5+;2k+6+3+;s—p(&k)> s
1l = 1 In(x)
= Lip(z= y_ 1 —
(6.21) (B(X)+2ln< )+3 2;k+;p(L,k‘)) xe
N In(z) 1 N 1
xa(é —a) x“(é —a)? 290 —a)?
1 1
+Z (x“ 2k+5—a) 292k 46 —a)? * x2k+5(2k+(5—a)2)
+§: ( wP(Ek) B In(z) B 1 )
p (a+ p(L,k))?  x%(a+p(L, k)2  z%(a+ p(L,k))?
/ In(z) In(z) & 1 In(r) 1
_ L(_ _
(77),(6.20) AERY x® x® 22/{—1-5—61 Zka
k=1
]. 1 )% !/
+ x5(5 —a)2 + E (%) (=a.x)

1
+Z (x“ 2k+5—a) * x2k+5(2k+5—a)2>

> P Lok) B In(x)
t2 (<a+p<L WY w(a+ oL, k)))

k=1
p(L:k) / In(z) 1 ..\
p L k‘ +CL +Lf(_a7X) 24 +— (Lf) (—CL,X)

I
HM8

—2k 0

* Z 2k +d —a)?*

=0

LEMMA 6.24. Let x be a positive real number, a € 10,1[, and x a character. Then

1 24100 s z—1

E(s)ds ==Y A(k)(E)*In(). (78)

270 Jo_ine (s+a)

)
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; r—1
1 2+i00 s

Y(s.x)ds = — Y AR (R)(5) In(2). (79)

k=1

270 Joine (s +a)?

PrOOF. We will give only a proof of equation (79) since the proof of equation (78)
is analogous. Using Theorem 6.16, and Lemma 6.21, equation (79) is proved as follows

1 2+1i00 s o 1 2+1i00 s o A(k‘)X(k‘)
- L ds = — (N A g
ot Jo Gra EONE S ) GraP kz‘: ke i
1 00 24100 z\s
- L A@(M/) S
2mi £~ 9—ice (st a)?

= - AK)x(B) (B In(2). O
G~ AR )
LEMMA 6.25. Let o be a positive integer such that Re(p(¢, k)) = 3 for all positive integers
k with |[Im(p(¢, k))| < a. Let B be a positive real number such that

[{k € Noo | Re(p(C, k) = 3}
[{k € Nso [0 < Re(p(¢, k) < 1}

p<

Let © > 1 be a real number, a € 10,1, and C(«) ::Z( Lo 1 > Then

1P(Ck)

21 ((, k) + a)?

Proor. By Lemma 6.19, we have the following three equations

<Va(y+2=In(m) + (1 = B)(5 — Vo)(y + 2 - In(4r) — C(a)).

, = 1
Re($(0)) = 1+2iIn(n)+2—
((0) (6.19) an(m) +3 ;p(@k)
= 1
= 1+iln(r)+72-
(6.19) 2 n(m) +3 ;;MQ@
= In(2n).
(6.19) n(27)

Therefore, we have

= v+ 2+In(x) — 2In(27)
:1( (C k) (Ca k)) _ ,7_{_24_111(#)

= v+ 2—In(4n). (80)
Let o, and t be real numbers with ¢ > 0. Then we have the following estimate

S S
o+it o—it o242

> 0. (81)
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Thus, we have

C(a) (80)§8l) v+ 2 — In(4n). (82)

Hence, the proof of the assertion follows by

o Re(p(Ch))

< -
= p(C k) +al?

3 ixRe(p(@k))
— [p(¢. k)P

2P(CR)

Zl (C, k) + a)?

LRe(p(Ck))

. pRe(p(¢k) 1 1
< Vz(y+2—1In(4m))

¥ Z (2Re s ) Gen  7em)

< \/5(7 +2 — In(4m))

= . 1 1
+ 2, BVET =05 - V) (em *5em)
V(7 +2 — In(4r))
+ (1 =8)(5 —Vr)(y +2—In{dn) - C(a)). O
COROLLARY 6.26. Let x > 1 be a real number, and a € 10,1[. Then
s 2P(CK) \/’
2 (oG k) +ap| = 21

+18-1071%%.

PRroOF. This corollary is an easy conclusion of an easy estimate; see for example
articles [82], and [34], and Lemma 6.25.

(1) First, we have the following upper bound
v+ 2 —In(4r) < . (83)

(2) J. van de Lune et al. have shown, by extensive computations [82], that Rie-
mann’s Hypothesis is true for all non-trivial roots of the zeta function with an
absolute value less than 545439 823. A simple summation of the evaluated roots
shows

y+2—In(4r) —C(3-10°) <6-1077, (84)

(3) Moreover, J. B. Conrey has proved in [34], that at least 40% of all non-trivial

roots of the zeta function lie on the critical line % + it where t is a real number.
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By these three items, and Lemma 6.25, we get
2P(CFR)

N VI 3z /)6 10"
2 b+ o a(E—ve) 6107

<
(6.25),(83),(84)

< Y 418-1070%. O
_ 0 ifx(-1)=1
LEMMA 6.27. Let s, t be complex numbers, x a character, and § = { 1 if (1) = —1.

Then

L' L' _ 1 1T/ s+542 1TV rt+6 1 1
TEX)—Tx) =55 — s 7(50) + 57 (50) + Z <s—p(L,k) - t—p(L,k)) :
k=1

Proor. By Lemma 6.20, and Lemma 6.14, the proof of the assertion follows by

L L 1 1 1 2 1 1 1 2
Tl —12tx) = w332 G~ mmem) —ms 3 T3 20 (6~ )
k=1 k=1
1
+ (s—p(L DR k))
k=1
_ 1 1 2 1 2
= S 2 ( Y ez T Z (5 — 2k+s+6+2)>
k=1
1 2 1 2
T3 (‘7 st G- 2k+t+6)>
k=1
1 1
+ <s—p(L D=2 k))
k=1
_ 1 1T/ (54642 1T (t+6 1 1
61y T P () 4 1D 1) <s—p(L,k) - t—p(L,k)) .
k=1
LEMMA 6.28. Let s be a complex number, x a character, and § = { 1, if x(=1) = —1.

Then
LY (s _ 1 F_"M_E:;
(L)(’X) (s +0)2 4(r)( ) (p(L, k) — 5)2

00
k=1

Proor. By Lemma 6.27, it follows
: : 1 : - 1 1
L _ L 1T 54642\ 1T (246
= = =(2 —sx () 4= (52— — .
AR (6.27) rZt e (e ) tar () 2 (p(L,k‘)—S p(L,k)—Q)
Taking derivatives, we get

L'y _ 1 1 (I (54542
(%) (s:x) = iR 2 (F) (552)
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LEMMA 6.29 (ERH). Assume the Extended Riemann Hypothesis is correct. Let m be
a natural number greater than 1, a € ]0,1[, x a quadratic character modulo m, and

5—{ 1 i x(=1) = —1 ° Then

, 1 o0
L ¢ —
F(—ax) > S+ 1)+ s——In(2) - (2a+1 ;; +a’2

PROOF. Let t be a real number, and o = % Then we have
(a+o)a+1—0)=(a+1-0) (85)

Therefore, we have

1 1
(atoti)ati—o—it) (ato—i)atl—o+il)
2(a+o)(a+1—o0)+ 2t
la+o+it]?-ja+1—0—it]?
2((a+1—0)*+1t?)

5 Jato+it]?-((a+1—o)2+t2)

1 1
la + o + it]? * la +o0 —it]?” (86)

Let n be a positive integer. Then, by the relation 4n? + 8n +4 > 4n? + 8n + 3, we get

L S (1 SRR SUNR S
2n+1 2n+3 (2n+1)2n+3)  n+1 2n+2 2n+2°

Hence,

1 1 1 1
- > - . 87
n+3 Mm+2° 2n+2 2n-+1 (87)

By Lemma 6.14, and Lemma 6.27, we complete the proof of the assertion as follows

(637) d—a
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1

—Qa
2 = /1 2
B O R S s
2<7 5+2—a+z<kz 2k‘+5—|—2—a)>

k=1
_|_l __L_’_
2\ 77 d+a+1

-~ Fla+1.x) + 5

WK

l_ 2
- k 2k+d04+a+1
_53( 1 N 1 )
“~\a+p(L,k) a+1-p(Lk)

= Ea+1,y) ! 1 _ 1
a L X TS Pt Q%k+06+2—a 2k+d5+a—+1

i

- 1
(2a+1) ; (@t (L. 0) (a+1=p(L.F)

N V(115 + 1 = 1
(ERH),(86),87) T TS —~ 2k+1 2k+2

=

k=1 k=1 k=1
= A(k) 1 = 1
— In(2 2 1
(6?3) ; ketl — §—a n(2) = (2a+ ); lp(L, k) + al?
C 1
= & —1n(2) — (2a + 1
(6.16) C(a+1)+5—a In(2) - (2a + );]p([/ k) + al?

LEMMA 6.30. Let m be a natural number greater than 1, a € ]0,1[, x a quadratic char-

acter modulo m, and § = { 1 if (=) = —1 ° Then

> b
+§:W +aP .

PRrOOF. By Lemma 6.28, and Lemma 6.14, we have

1 > 1
e R DY g

k=1 ’
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4 - 4
N O
(6.14) 4((5+2—a2+z 2k+6+2—a)>

1

k=1
— _rn _5
- s~ "a-

Therefore, we complete the proof of the assertion by the estimate
o0

> G| < ST

LEMMA 6.31. Let x be a positive integer, a € |10,1[, and x a real character with x (k) =1
forke{leN|1<l<z} and x(z) # 1. Then

2In(z)  52(a+1)
xatl 25 - azrs

() o) - i<

%(a—l—l,x)<%(a+1)—

PROOF. By a result due to J. B. Rosser and L. Schoenfeld** ([112] on page 71), we
get an upper bound for the function 1 (see Definition 6.11)

Y(x) < 1.03883z  for positive integers . (88)
By this estimate (88), and Theorem 6.16, we get

A Y I S
(61) %a+1 +Zka+1 g: a+1
< Sy 3
k=x
o Cla+1) +22w k:ﬁ(l —1)
ot Slat1)+2 Z vik k:ﬁ(l )

k=z+1
- o U(k)
- ?a+1 +2<Zka+1_xa+1_2(k+1)a+l
k=x

141, Schoenfeld has shown in [116] a sharper upper bound v (z) < 1.001102z + 1.001102\/z + 3¢/z
for positive integers x, but this bound is only useful for larger values (x > 2339).
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(6%) Cla+1) - 211;1 QZw (kaJrl Tk +11)a+1>
_ %< +1) - 2111 QZw /kk+1 tj;

< Cf(a +1)— 2;1(:16) +2(a+1) g o lﬁfﬂ) dt

5 fle+- 2;“@ +2(a+1) - 1.03883 /;O %

= Yla+1)- 2;“@ +2(a+1)-1.03883 - (0+ L)

< farn- TP

LEMMA 6.32. Let x > 1 be a real number, a € |0,1[, m > 2 be a positive integer, and let
X be a quadratic character modulo m. Let o’ be a real number such that Re(p(L,k)) < o’
for all positive integers k. Let d < a+o be a real non-negative number such that there do
not exists a non-trivial root of the L-function which imaginary part is inside the interval

}a—l—a—dﬂ,a%—a—i—d\/i[. Then

<Z]ka ) +al Z]ka —l—aP) _Z( (L, k) +a)?’

PROOF. Let p be a non-trivial root of the L-function and define p := o + ¢t. Then
we have

(a+0)—t)*>2d* and (a+0)*+t* >t — (a+o0)*+2d°

Hence, by o < ¢/, we get the two estimates

27 ((a+0)? +1t?) > 2a+o)t+ 2d
and 27 %((a+0)2+1?) > t*—(a+0)*+2d% (89)
Therefore,
=27 |p +af* =27 |p + af?
= 27 ((a+0)* +1?)
(%) 227 (((a + 0)? — t*) cos(tIn(z)) + 2(a + o)tsin(tIn(z)) — 2d?)

= 2%(cos(tIn(z)) + isin(tIn(z))((a + 0)* — t* — 2i(a + o)t)

+ 27 (cos(tIn(x)) —isin(tIn(z)))((a + 0)? — t* + 2i(a + o)t) — 4d*z°
27 (a+0)? —t* = 2i(a+0o)t) + 27 ((a+ 0)* — t* + 2i(a + o)t) — 4d*2°
= af(a+o—it)? +2”(a+ o +it)* — 4d*z°

2(p+a)® + 27 (p + a)* — 4d°z” .

IN
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Thus,
z7 27 < 2”(p+ a)? + 2°(p + a)? — 4d%z”’
pralf  praE = (@t oP+Bp
xP xP 2d%z’ 2d%x”
= +

(p+a?  (p+a)? |p+a* [p+alt

The proof of the assertion is complete by adding the summands of the right sum and of
the left sum of the assertion since y is a quadratic character and we have two important
properties for the non-trivial roots of the L-function

X=x"'=x

(2) L(p,x) = L(p,x) = L(p, x) for p € C with 0 < Re(p) < 1 and L(p, x) = 0.

0

LEMMA 6.33 (ERH). Assume the Extended Riemann Hypothesis is correct. Let x, and
m > 2 be positive integers, a € 10,1[, x a primitive quadratic character modulo m with

x(k)=1forke{leN|1<I<za}andx(z)#1, and § = { (1) %E:Rz;
Then

e 1 . " ¢ Aln(z) | 104(a+1) | I’ /at1+6
Z |a—|— p(L k)|2 < Zar1 (hl(?) +2- ?(a + 1) — it t opgme T T( +2+ >) :
k=1 ’

Proor. We define the functions o and ¢ as follows
o(L,k)+it(L, k) := p(L, k) for positive integers k.

By Lemma 6.20, Lemma 6.31, and Lemma 6.14, we complete the proof of the assertion
as follows

- 1 1 1
B Zz(m% (a+1—l—it(L,k)+a+1—%+z’t(L,k))
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1 , ,
= In(™ L 1 L 1+
(6.20) 2a+1(n(ﬂ)+L(a+ 7X)+L(a—|— ,X))
1 2 < /1 9
- + 7 - S
2 +1 \a+1+6 p k 2k+d06+a-+1
1

(n(Z) +2- S+ 1) - L2 4 198 4 R(espia)) - O

<
(6.14),(6.31) 2a + 1

8. Key Lemma

LEMMA 6.34 (ERH). Assume the Extended Riemann Hypothesis is correct. Let x, and
m > 2 be positive integers, let a > 2 be a real number, x a quadratic character modulo

. 0, if \(=1) =1
m with x(k) =1 forke {le N|1<Il<a}, andéz{ . i;;g—lgz—l.

Let o be a real number such that Re(p(L, k)) < o for all positive integers k. Then

i @ < gt (n(m) + t(@) (@ + () + s(),

where
_ (a+D)In(z)+1
T(l’) - \/5 )
In(x ! "ra a
s(z) = B2 (-1 + S +m@) - )
/
1 ¢ 1 a? 5
T ((?) (=a) + (a6—1)2 +4>
£ ~10 —& Zf5 =0
and t(x) = 2- %(“Tl) - 4xlfff) + 10245(%1) + F(%) — In(7).
PROOF. Let n be a positive integer. Then we have
(2n—1)2 < (2n—1p (90)

(a>2)
By the estimate
(2n)*(2n + 3)*((2n +1)* + 271 (2n + 3)?)
= (16n* +40n® + 25n*)(4n” + dn+ 1+ 27" (4n” + 6n + 2))
< (16n* 4+ 40n® 4 37n* + 15n + 9)(4n” + 10n + 2 + 4n’z~")
= (4n*+6n+ 9)(4n®* + 4n + 1)(4n® + 10n + £ + 4n’z7")
= (2n+3)’2n+1)*((2n+ 2)* +27'(2n)?),
we get
1 ! _ 1 !
2n+3)2 (2n+32)2 " (2n)2  (2n+1)2

(91)
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Therefore, we have an upper bound for the following sum

i 1;7214 i m72k71 (92)
2k — 12 = (2k+ i)
o 1.721@ o x72k71
< S — S
(90) ; (2k — 1)? kZ; (2k +1)2
4 1 > x~! ok
o2 EJFZ;(QJH (2/~<;+1)2):'j
1 & 1 !
oy 322 ;m ((%)2 2k 1 1)2)
B i_l+i4k2+4k+l—x‘l4k2 o
9 @ &= (2k)P(2k+1)°
4 1 N8k — a8k 4 4K + 4k 4 2k — 24k,
< ammatY o -z
@<y 927 @ (2k)2(2k + 1)
4 1+ — (2k +1 — a7 '2k) (4K + 2k)
922 x (2k)2(2k + 1)?
4 1 S2k+1-ax'28
) .z
2
92 x  =  2k(2k+1)
4 1 K1 r! o
B 9?_§+;(2k 2k+1) o
4 > xk
AR S
k=1
4 1

Using Lemma 6.22, Lemma 6.23, Lemma 6.24, Lemma 6.29, and Lemma 6.30 of the
previous section, we conclude

@ - 2P (GF) ¢ 1y n(z)
RN AP v e R
1 ¢ / 1 x_2k
7z (£) (‘5”;(%— )2
_ L 24100 s C’(S> s

(6.22) 210 Joine (s+2)? <
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o g 2k=6
* kZ:O 2k +0 1)
> P(L:k) o0 p—2k—6
> N
(6:29)(0.:0) ; ((L. ) + 12 ,;0 @kt o1
=+1 —1In(2) — (2 1
: %¥<<“+)+ﬁ—% S P VAR

Therefore, by Lemma 6.32, we have

a? i z° i x—?k i m—2k—5
—s T — — 15 — — 15 T VT BNV
(a+ 12" & p(Lk)+ 1P &= (@k-1)? & (2k+5-1)
< z i 2P (LK) - © 2k i p—2k=0
632 (3+1)2 = (p(Lk)+3)? = (2k—3)? = (2k+6—,)
= 2P (GF) In(z) 1 Y
q 1 ¢ 1
< L (—=2) 4 . Y
(w<lyl) kz_; (p(C, k) + +)? Jx £(=2) N (C) (=2)
In(z) (o 4 oo 1
- S(E41 —1In(2) — (2a + 1
vz<<%+)+®—é M) L I
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1 N/
<_> 1 15
+\‘7§<<< (=a)+ a(5—1 Z|ka 12 4>'
Using Corollary 6.26, and Lemma 6.33, we can complete the proof of the assertion as
follows

a

(a+1)2
_ = 1 (2a + 1) In(z) + 1)
vz 10 o
< YZ118-107Yx + T
(6.26) 7! ,;Ip(L,kH \2( V'

() (o 1\ ¢ am1 a
- S(—1)y + Sty 4 n(2

i (feh g ime - ot

) _

(6.33)
a m "ra 41n(z 104(a+1 " ra a 2a+1) In(z)+1
7o (In(2) 42 § () — tnle) 4 1Mert) | B (atitad)) (g 4 Corlialin)
(@) (o 1y, ¢ ian a
+ (f(—g)Jrf( o) T In(2) - ——

N a2 . o0 - © 2k
+g/§(<%>(_5)+m+z)+z(2k—— 222k+6——)

w5 TRnm) F @)@ (@) + s(x). O

9. The Least Quadratic Non-Residue

THEOREM 6.35 (ERH). Assume the Extended Riemann Hypothesis is correct. Let m be
an odd positive integer greater than 1 such that m is not a perfect square, and

z = min{k € N5o | (£) # 1}.

Then
z < $In(m)* — ¥ In(m) + 13.

PRrROOF. First, we define the following three functions

7”‘(37) - (2a+1)%}1%(x)+1 7
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In(x / " ra a
s(z) = %55) (%(_i) + %(Tl) +1n(2) — a5—1>

N\’ a?
+ <<%> (—%)erJrg)

2 .
ﬁ ) ~10 —a”, ifd=0
and t(z) = 2- %(%) — 4;3@ + 10;(%1) + Dttty In(r).

By the table of pseudosquares (Appendix A), we can assume that m > 6 - 10 and
x > 277. We consider the following diagram to decide a value for a:

1.22454 , ,

I 1
(a+1)2 25
1.22452 a@ray (L + a6 - 7(277)) —— |

1.2245
1.22448
1.22446
1.22444
1.22442

1.2244

1.22438 ' '
1.64 1.65 1.66 1.67 1.68 1.69

Let a = 7. Then we have the following three estimates

100"
r(z) < 0.876,
s(x) < max{BE(1.757 — 1189 + 0.7 + 1.67) + 5 (—0.27 + 2.79 + 3) + L&

+18-107 9% — 2.788,
B (1757 — 1189 + 0.7 — 2.49) + 5 (—0.27 4+ 6.22 + 2) + L
+18-107'% + 0.01}
< YT 118-1071,
t(r) < —2.378+0.383 —0.169 — 1.1447 < —3.3.

Assume the Extended Riemann Hypothesis is correct. Then, by Lemma 6.34, we get

27889 _ a?
289 Y T Gz

sa(In(m) +4(2)) (27 + r(2)) + s()

(6.34)

167 vz —10
(EEH) s (In(m) — 3.3)(vVx 4 0.876) + ¥F + 18- 107
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< T /rIn(m) + 0.3987In(m) — 1.45¢/x + 18 - 1072 — 1.31.

367
Therefore,
\/E(l — 47 - 10_10) < % ln(m) + % ln(m) s %
306103 37
(\/Efﬁ) 50000 (M) — 15
5

Thus, we get
z < 2In(m)’> — P In(m)+13. O

10. Necessity of the Extended Riemann Hypothesis

Our intention in this chapter was to use all empirical information about the Extended
Riemann Hypothesis, with regard to Miller’s primality test. We have seen that only
Lemma 6.29, and Lemma 6.33 require the Extended Riemann Hypothesis. However, we
can replace these lemmata by the following weaker estimates.

LEMMA 6.36. Let m be a natural number greater than 1, a € |0,1[, x a quadratic
0, ifX(_l) =1 Then,

character modulo m, and § = { 1 ifx(=1) = —1 °

: / 1 S 1
L a4 2 “2aln(2) 2@+ 1)y —
L( a;X>> C((I‘i‘ )+5—a CLH<> (a‘|— >;|p(L,l€)—|—CL|2

PrOOF. The proof of this lemma is analogous to the proof of Lemma 6.29 using
L'(a+2,x) instead of £ (a +1, ). O

LEMMA 6.37. Let x, and m > 2 be positive integers, a € 0,1, x a primitive real
character modulo m with x(k) =1 for k € {l e N| 1 <1 <z}, x(z) # 1, and let

5—{ i y(=1) = —1 ° Then

0o 1 )

m ¢ 41n(z) 104(a+1) I’ ra+1+43
S i <) 2 ) - e e
k=1 ’

PRrOOF. The proof of this lemma is analogous to the proof of Lemma 6.33 using the
estimate
i": 1
— |a+p(L, k)
1
(@t o (LK) + 1L 1)

1
(@t 1—o(L,k)?+ L, k)

I
NER

b
Il
—

WE

b
Il
—

[
hE

1 1 1
2a+1—o(L,k) (a+ I —o(L k) —it(L. k) " a+i—o(L.k) Ll k)) '

b
Il
—
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O

And with these two lemmata it is also possible and easy to replace the key Lemma 6.34
by the following lemma, which does not require the validity of the Extended Riemann
Hypothesis.

LEMMA 6.38. Let x, and m > 2 be positive integers, a > 2 be a real number, x a
quadratic character modulo m with x(k) = 1 for k € {l € N | 1 <1 < x}, and let
d = { 1 if (1) = —1 - Let o be a real number such that Re(p(L,k)) < o for all
positive integers k. Then

air e < (In(m) + 1) (27 + r(x)) + s(x)

with the same definitions as in Lemma 6.53/.

PRrROOF. The proof of this lemma is analogous to the proof of Lemma 6.34 using
Lemma 6.36 instead of Lemma 6.29, and using Lemma 6.37 instead of Lemma 6.33. [

Hence, Theorem 6.35 is the only one where the Extended Riemann Hypothesis is re-
quired for Miller’s test. Thus, the result of this chapter is — beside the improvement of
the constant g for the upper bound for the least quadratic non-residue — that we need
the Extended Riemann Hypothesis only in the last step of the proof instead generally in
the whole one.

Last, if we want to formulate Theorem 6.35 without the Extended Riemann Hypothesis,
we can do it in the following way:

We will consider the real number o of Lemma 6.38. By Definition 6.4, ¢ is less than 1.
However, let o equal to 1, then the estimate in Lemma 6.38 is always true and we cannot
derive an estimate for the modulus m. The sharpest known estimate for ¢ is given by
A. A. Karatsuba and S. M. Voronin in [64]:

C
o< 1-im

for a suitable constant C' and T' — oo. But this estimate is not useful, if also the modulus
m is very large.

Finally, we can say that a sharp estimate of the real number ¢ of Lemma 6.38, for example
using empirical results, gives a good estimate for the least quadratic non-residue, so that
a fast Miller test (Theorem 6.7) will be the result.

THEOREM 6.39. If there exists a constant C such that 0 < 1—C', then Miller’s primality
test can be performed in deterministic polynomial running time by testing O(ln(n)%)
bases.

PRrRooF. This can be concluded from Lemma 6.37. O
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11. Discussion

Do we have a similar improvement for other than quadratic characters?

The proof uses the properties of quadratic characters, e.g. in Lemma 6.32. Therefore, it
is not possible to transfer this result for other characters. It may be possible to formulate
this proof without that restriction, but that is not the subject of this thesis.

Can be the estimate of Theorem 6.35 further improved?

Using the table of pseudosquares (Appendix A) for a comparison of Theorem 6.35 with
empirical results, we can see that the least quadratic non-residue modulo m is for large m
not much greater than %ln(m)Q. Moreover, if we are only interested in Miller’s test, we
can see by Chapter 3.2 ([104], [62]) that the bound is not much greater than & In(m)?.
Now we recapitulate the proof and consider every estimate which could be the reason for
the factor between the estimate of Theorem 6.35 and empirical results. It is easy to see
that Corollary 6.26, Lemma 6.29, and Lemma 6.30 cannot be the reasons. The difference
to empirical results in Lemma 6.31 is a little bit larger and so it grows in Lemma 6.33.
But we have seen in the proof of Lemma 6.34 that this difference changes only the ad-
dition part 13 in the proof of Theorem 6.35 and this plays definitely a minor role in the
estimate. Thus, Lemma 6.32 remains, and this affects the factor in front of In(m)?. If
we know more about the position of the non-trivial roots of the L-function, then we can
choose d > 0 in Lemma 6.32 to achieve a better approximation. But we cannot suppose
in general for example that all non-trivial roots have an absolute value of the imaginary
part that is greater than 1. On the other hand, we nearly have a factor 10 between
empirical results of the least quadratic non-residue and Miller’s test. In Theorem 6.7,
we have obtained a factor of % where 7 is the number of prime divisors of n, and this
factor is at least 1. Thus, the difference between the prime divisors cannot be too large,
at least if » = 2, because the estimate in the proof of Theorem 6.7 can be constructed
using the largest prime divisor of n, if r is even.

Does there exist another way to prove the correctness of Miller’s test without using the
Extended Riemann Hypothesis?

For example, we can find two bases ay,ay € (Z/nZ)* such that

-1 (modn), a1 Zay (modn) and (%)=—(%2)=-1

p P
for a prime divisor p of the composite number n. Then it is easy to see by Lemma 5.7
that Algorithm 3.11 returns for these two bases the result false. But a strategy without
using the least quadratic non-residue, appears hopeless.



APPENDIX A

Pseudosquares

DEFINITION A.1. Let p be a prime number. We denote by M, the smallest number such
that the Jacobi symbol over p is always equal to 1 for all prime numbers less than or
equal to p
M, :=min{m e N| (L) =1 forall 2 <q<p}.

In the literature, this definition is split in the definition of pseudosquares and negative
pseudosquares if M, = 1 (mod 8) or M, = —1 (mod 8), respectively, see [75]. Thus,
the pseudosquares behave locally like a perfect square modulo all primes less than or
equal to p, but are nevertheless not a perfect square.
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128 A. PSEUDOSQUARES
peP M, \_Al(();) In(M,)?]/10* | Source
2 7 1.2621 [75] (1970)
3 23 1.9662
5 71 2.5957
7 311 2.9950
11 479 2.9299
13 1559 3.1793
17 5771 3.9381
19 10 559 3.7319
23 18 191 3.3175
29 31 391 3.4584
31 118 271 3.6875
37,41 366 791 3.8177
43,47,53 2155919 3.6048
59,61 6077 111 3.6415
67 98 538 359 4.7715
71 120 293 879 4.7419
73,79 131 486 759 4.2106
83 508 095 719 4.5151
89,97,101,
103,107,109 2570 169 839 4.1545
113,127 196 265 095 099 5.1613
131 513 928 659 191 5.3075
137 844 276 851 239 5.4255 [122] (1989)
139 1043 702 750 999 5.1398
149 4 306 732 833 311 5.6046
151 8 402 847 753 431 5.6409
157 47 375 970 146 951 6.0832
163 52 717 232 543 951 5.9778
167 100 535 431 791 791 6.0087
173,179 178 936 222 537 081 5.9504
181,191 493 092 541 684 679 5.9304
193,197,
199,211 1 088 144 332 169 831 5.3756
223 11 641 399 247 947 921 6.0286
227 88 163 809 868 323 439 6.6480 25] (1991)
229 196 640 248 121 928 601 6.8053 80] (1991)
233 423 414 931 359 807 911 6.8925 80] (1994)
239 695 681 268 077 667 119 7.0036
241,251 | 1116 971 853 972 029 831 6.7198
257,263,269 | 3 546 374 752 298 322 551 6.7319
271 | 10 198 100 582 046 287 689 6.9158
277 | 69 848 288 320 900 186 969 7.4300 [138] (1998)
where

A:P—P:p—min{qgeP|q>p}.



APPENDIX B

Counter-Examples for Algorithm 5.2

DEFINITION B.1. Let n be a natural number. We denote by K(n) the set of bases a for
which n is a commutator pseudoprime

K(n) :={x € (Z/nZ)* | (x* +4)

n+1

=—1 (modn), ¢(l,z) 2 =—I (modn)}.

n—1
2

Furthermore, in the following tables' we will list only the smallest set K'(n) C K(n)
such that K(n) = {a € (Z/nZ)* | £a € K'(n)}. Additionally, we will consider the set

K'(n)={ae K'(n)|(a®>+2)"'=1 (modn)}.

REMARK B.2. All computations till n = 12 671 501 are complete. Additionally, all
ordinary pseudoprimes for the base 2 (see [99]) less than 2 449 977 757 are tested.

n K"(n)

3281 {81, 1432}
432821 (195212, 203820}
973241 {7897,37136,83997, 195862, 208393, 367119, 396358, 484989}
1551941 (203808, 767873}
9202257 {1484, 1089900}
2545181 (177437, 823394}
3020093 {1326902, 1392871}
3028133 {495849, 540877}
4561481 (475513, 1458782}
4923521 (1362920, 1577988}
5173601 {310891, 1658589}
5193161 (322254, 2024833}
5774801 {57724,2433649}
6710177 {1433138, 3048903}
9846401 {188300, 1301717}
11107121 (889347, 3770584}
16070429 {5490182, 7463399}
46256489 {3885213,5151145}
54029741 {16143305, 23669724}
76923461 {3856373, 30040645}

102690677 {202926, 27699608 }

198982759 | {9895300, 20168848, 45562611, 51768481, 61692219, 75626759, 81832629, 91756367}
242131889 {30673676,93384139}

390612221 {181985494, 183405638}

545220869 {93330047, 188574250}

717653129 {21996305, 356154466}

741470549 {83047998, 254905701 }

IThe computations have been done by using the arithmetic of [130]; the program is only a few
hundred lines long.
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130 B. COUNTER-EXAMPLES FOR Algorithm 5.2

n | K" (n)
921858631 | {6492010, 22514888, 114349119, 143356017, 273186613, 390966882, 394027742, 410050620}
1536112001 {703276597, 728044855}
1860373241 {169168150, 266845273}
n K'(n)
3281 (81,1432}
5983 (395, 1728}
27403 {1560, 4575, 11376, 13012}
41369 {7740,8749,10422,10767,11431,11776}
43289 {8118, 13455, 15234, 20571}
47783 {1381, 4073, 11476, 14168}
60551 {18380, 22390}
70531 {12885, 16901}
100127 (37443, 43729}
137461 {7233, 7738, 24926, 25431}
161027 {9513, 56491}
231703 {49472,109380}
334109 {53205, 85047, 94231, 101626}
345421 {6701, 34496}
369271 {11493, 16694, 88812, 94013, 116999, 122200, 141565, 146766 }
430127 {12751, 144669}
432821 (195212, 203820}
476971 {83999, 122064, 132806, 138102}

501227 {25796, 41533, 48239, 56495, 86419, 115568, 116343, 130530,
160454, 190378, 191153, 198634, 228558, 236039}

509233 {70641, 72754}

528019 {35507, 159434}

624293 {227805, 237312}

626459 {81971, 114630, 125859, 158518, 227452, 271340}

635627 {14150, 42300}

754291 {321046, 355306}

824261 {263243, 271404, 283544, 291705, 344853, 353014,
365154, 369336, 373315, 377497, 389637, 397798}

851927 {169897, 401600}

864499 {79229, 190998}

877099 {10637, 95072, 343631, 427759}

879829 {15829, 368769}

893173 {102099, 444045}

913891 {112615, 136628, 271164, 393484}

973241 | {7897,37136,83997, 195862, 208393, 367119, 396358, 484989}

1054747 {26461, 207201, 292416, 526078}

1056551 {17173,30113,61761, 76050, 107698, 109047, 167924, 199572,
200921, 212512, 213861, 245509, 246858, 304386, 305735, 337383,
338732, 384669, 396260, 397609, 429257, 442197, 476543, 522480}
1102121 {46970, 60554, 73851,100732, 114316, 127613, 141197, 181375,
208256, 248721, 302483, 342661, 369542, 410007, 423304, 436888,
450185, 477066, 490650, 503947}
1102759 {23080, 33263, 50634, 60817, 96720, 106903, 124274, 134457,
180617, 190800, 218354, 254257, 264440, 291994, 348337, 421977}

1106327 {56073, 289375}
1209911 {121561, 185177}
1250731 {268115, 613183}
1253311 {142843, 431093}

1300399 {366530, 395210}
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n K'(n)
1302451 {22422, 255084}
1325843 {113206, 540983}
1388903 {84714,533599}
1397419 {89358,131072}
1441091 {120932, 253828, 427264, 493712, 572619, 639067}
1447513 (385266, 566724}
1474511 {67941,171463, 193084, 296606 }
1507963 {516751,567243}
1509709 {90497, 126839, 483891, 701227}
1530787 {449682, 606289}
1551941 (203808, 767873}
1643533 {113061, 672867}
1697183 {632566, 773293}
1708901 {238830, 268868}
1728619 {471115,605281}
1729331 {94333, 108455, 115962, 318750, 485590, 688378, 710007, 816536 }
1766927 {182685, 485798}
1803013 {324888, 459239}
1840409 {291896, 440215}
1860839 {3085, 337632, 521095, 579683, 756976, 920400 }
1893943 {158251, 271032, 409543, 522324}
1895791 {30793,919380}
1897811 {146808, 193437,601731, 941976}
1907851 {55129, 355325, 638635, 858762}
1911059 {35202, 293190, 514107, 842499}
2004403 {485873, 963565}
2085245 {64107,115838, 117032, 162412, 186163, 197478, 254637, 300017
335083, 352942, 366108, 381193, 388008, 419033, 532887, 556638,
561138, 567953, 603212, 614063, 614527, 751668, 752132, 783157
798242, 805057, 836082, 916528, 973687, 978187, 985002, 1031112}
2149519 {147021, 176306, 239541, 321539, 380109, 562868, 644866, 703436 }
2164427 (74383, 419981}
2172059 | {84780,117272,236319, 268811, 387858, 420350, 571889, 773941, 925480, 1077019}
2176217 {310929, 335991, 336506, 386115,411177,1058612}
9202257 {1484, 1089900}
2236387 {544733, 908796}
2236811 {86098, 253134, 412149, 658552, 751381, 912976}
2263127 {191723,402494}
2435423 (4935, 223458}
2545181 (177437, 823394}
2589949 {6598, 30359, 64685, 77881, 88446, 101642, 135968, 149164,
172925,207251, 231012, 244208, 267969, 315491, 326056, 349817
373578,386774,397339,410535, 444861, 492383, 505579, 529340,
553101, 563666, 576862, 624384, 671906, 682471, 729993, 743189,
825037, 848798, 861994, 872559, 909516, 920081, 991364, 1004560,
1015125, 1028321, 1038886, 1052082, 1062647, 1099604, 1133930,
1157691, 1170887, 1194648, 1218409, 1242170, 1252735, 1276496 }
2687719 {254173, 357689, 435326, 481724, 585240, 662877, 886360, 963997,
1067513,1113911, 1191548, 1295064 }

2740561 {624247,1146158}

2799653 {171623, 396567, 408713, 441507, 478188, 858115, 870261, 1009697,
1021843,1091318, 1316262, 1328408}

2895017 (293105, 1441015}
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K'(n)

2944369

3011479
3020093
3028133
3090091
3116107
3132949
3175883
3307079
3337849
3387547
3391249
3399527
3422959
3452147
3538417
3546629
3574999
3767233
3866257

3871979
3884165
3999137
4060519
4095439
4109363
4109741
4216601

4366459
4403027
4561481
4593653
4615207
4839217
4870847
4923521
5073799
5141239

{94176, 137861, 316463, 377622, 604784, 630995, 714503, 858157,
919316, 994087, 1329955, 1373640}
{1098655, 1159246}
{1326902, 1392871}
{495849, 540877}
{333170, 1505474}
{49490, 148302}
{449913, 956110, 1123402, 1503350}

{574185, 1228541}
{124873,169041, 1476217, 1520385}
{1069986, 1184240, 1518841, 1633095}

{492001, 788568}

{245162, 1626533}

{1521853,1610559}

{246109, 253502, 264008, 719261, 726654, 1121596, 1236771, 1328600}
{373762, 1655183}

{1216954, 1304777}

{865666, 1180901}

{199497, 421317}

{1184690, 1472613}

{98695, 232630, 276225, 339876, 410160, 455855, 473811, 517406,
571932, 633385, 651341, 697036, 749462, 813113, 874566, 990643 }
{134265, 244616, 393013, 568592, 827340, 928450, 1206221, 1890055}
{60602, 186413, 1367253, 1614268}

{1075879, 1109866, 1303211, 1337198, 1404420, 1631752}
{1050951, 1060346}

{169652, 480698, 584380, 895426, 1128159, 1439205, 1542887, 1853933}
{856991, 1215082}

{993438, 1504620}

{14100, 22094, 50294, 64713, 80063, 86488, 104585, 209489,
224839, 279130, 347840, 376040, 384034, 474519, 480944, 496294,
499041, 520816, 535235, 550585, 565004, 571429, 607623, 665592,
695361, 810368, 836459, 840137, 864659, 926944, 933369, 963138,
969563, 984913, 1060048, 1081823, 1089817, 1107914, 1136114, 1150533,
1162205, 1180302, 1256368, 1274465, 1280890, 1306981, 1310659, 1343175,
1346853, 1383047, 1421988, 1425666, 1433660, 1512473, 1548667, 1570442,
1675346, 1693443, 1705115, 1708793, 1744987, 1747734, 1765831, 1795600,
1835472, 1841897, 1859994, 1886085, 1892510, 1896188, 1922279, 1925957,
1928704, 1932382, 1968576, 2019189}

{633977, 1485969, 1544136, 1970331}

{886570, 1409114}

{475513, 1458782}

{135385, 539574, 1529077, 2204036}
{1257937, 1510249, 2169301, 2193594}

{1279361, 1941480}

{681995, 1860498}

{1362920, 1577988}

{364256, 1341733, 1352775, 2015035}

{626140, 683424, 791639, 848923, 855276, 955523, 984165, 1020775,
1121022, 1149664, 1743178, 1757499, 1908677, 1922998, 2172808, 2258734,
2338307, 2373302, 2424233, 2538801}
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n K'(n)
5142569 {35876, 73413, 76735, 226883, 264420, 301957, 336172, 373709,
377031, 414568, 448783, 452105, 486320, 489642, 523857, 527179,
598931, 602253, 677327, 711542, 749079, 752401, 789938, 827475,
861690, 865012, 899227, 902549, 936764, 977623, 1015160, 1049375,
1052697, 1124449, 1161986, 1202845, 1315456, 1352993, 1387208, 1499819,
1537356, 1612430, 1615752, 1649967, 1653289, 1687504, 1728363, 1762578,
1765900, 1803437, 1837652, 1878511, 1991122, 2025337, 2028659, 2100411,
2141270, 2175485,2178807, 2213022, 2216344, 2250559, 2325633, 2328955,
2363170, 2404029, 2441566, 2475781}
5173601 {310891, 1658589}
5188709 {51721,127200, 485042, 663963, 946326, 1021805, 1200726, 1304168,
1558568, 1662010, 1737489, 2019852, 2095331, 2274252}
5193161 {322254, 2024833}
5256091 {304340, 2301022}
5340581 {536124, 2388153}
5344373 {834195, 939534, 1379066, 2191578}
5639129 {13073, 50288, 76434, 139795, 203156, 240371, 266517, 303732,
393239, 430454, 456600, 557176, 583322, 683898, 747259, 773405,
836766, 1064064,1153571,1190786, 1254147, 1280293, 1317508, 1380869,
1507591, 1787181, 1824396, 1887757, 1913903, 2014479, 2141201, 2230708,
2267923, 2294069, 2331284, 2484152, 2521367, 2584728, 2610874, 2648089,
2674235, 2711450, 2774811, 2800957}
5730859 | {156980, 583949, 765401, 1022458, 1260813, 1608596, 1838992, 2096049
2277501, 2712429}
5754739 {31614, 356248, 637376, 687456, 811659, 859634, 962010, 1142867,
1149441,1293218,1417421, 1465396, 1748629, 1755203, 1894659, 2136491
2184466, 2500421, 2742253, 2790228}
5774801 {57724, 2433649}
5828549 {1956745, 2226293, 2660544, 2898457}
5888251 {1202969, 1462946}
5919187 (1837345, 2127142}
5934499 {1227901, 1514765}
5942627 {563152, 799203}
5989213 {366963, 980193, 1206994, 1820224, 1920479, 2760510}
6003923 (1992859, 2688614}
6060647 | {228026, 746133,938917, 1457024, 1651618, 2109480, 2133578, 2145627
2229970, 2242019, 2266117, 2723979}
6063991 {74215,120329, 143386, 189500, 327842, 443127, 479153, 525267
604526, 617495, 801951, 950381, 1032521, 1101692, 1193920, 1204008,
1216977,1227065, 1240034, 1273179, 1447547, 1549863, 1585889, 1595977,
1619034, 1655060, 1793402, 1872661, 2000915, 2023972, 2047029, 2139257,
2208428, 2218516, 2379915, 2438998, 2495200, 2623454, 2633542, 2679656,
2702713, 2715682, 2748827, 2761796}
6209113 {182314, 2268075}
6385861 {1490990, 2408296, 2584701, 2601606, 2690544, 2866949 }
6537529 {184802, 639460, 1825245, 2279903 }
6548309 {51132,72421, 195974, 319527, 566633, 668897, 690186, 813739,
916003, 937292, 1039556, 1163109, 1410215, 1533768, 1555057, 1657321
1780874, 1802163, 1925716, 2049269, 2151533, 2296375, 2419928, 2543481,
2667034, 3037693}
6577771 (832713, 1524448}
6591551 {1424075, 2374047}
6698249 {345437,521321, 1838456, 2014340}
6710177 {1433138, 3048903}
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n K'(n)

6776909 {118843, 644952, 2178326, 2704435}

6871633 {1416867,1719563}

6897089 {149742, 649030}

6967199 {2186113, 3463476}

7037869 {105102, 1260843, 1429960, 1640164, 3006109, 3175226}

7099861 {1130508, 1610870, 2069969, 2550331}

7166039 {466457,1849938}

7207261 {909390, 1401266}

7214033 {30445, 94286, 97237,161078, 288760, 349650, 352601, 416442,

477332, 480283, 541173, 544124, 605014, 668855, 732696, 735647,
860378,924219, 927170, 988060, 991011, 1051901, 1115742, 1182534,
1243424,1246375, 1437898, 1498788, 1562629, 1690311, 1693262, 1754152,
1757103, 1820944, 1881834, 1945675, 2009516, 2073357, 2076308, 2137198,
2140149, 2203990, 2328721, 2520244, 2584085, 2714718, 2775608, 2839449,
2906241, 3030972, 3286336, 3350177, 3414018, 3416969, 3480810, 3544651}

7227599 {30063, 484034, 604998, 1149336, 1270300, 1814638, 1935602, 2449699}

7361351 {1659616, 2800107}

7433243 {520397, 2864447}

7537771 {23555,539168, 565717, 846937, 1081330, 1362550, 1559257, 1951822,

2467435, 2664142, 2945362, 3487524}
7612721 (732364, 1989551}
7739629 {86426, 135723, 160059, 185020, 209356, 234317, 258653, 283614,
307950, 332911, 357247, 406544, 431505, 505138, 530099, 603732,
677990, 751623, 776584, 825881, 850217, 875178, 899514, 948811,
1170960, 1244593, 1368148, 1417445, 1441781, 1491078, 1516039, 1565336,
1589672, 1638969, 1762524, 1836157, 1861118, 1910415, 1934751, 1984048,
2156900, 2206197, 2230533, 2279830, 2304791, 2354088, 2378424, 2403385,
2427721,2477018, 2699167, 2772800, 2797761, 2871394, 2994949, 3044246,
3068582, 3093543, 3117879, 3142840, 3167176, 3216473, 3290731, 3340028,
3364364, 3389325, 3413661, 3462958, 3487919, 3561552, 3586513, 3635810,
3660146, 3709443, 3734404, 3783701, 3808037, 3857334 }

7743539 | {718770,792694,811175,1110849, 1905532, 3735151, 3809075, 3827556 }

7827203 {1091834, 3278717}

7883731 {1196010, 2050804 }

8286151 {594619, 3284997}

8510347 {49660, 188265, 259648, 398253, 627424, 837412, 849192, 932355,
1059180, 1075337, 1142343, 1237286, 1285325, 1297105, 1375891, 1380268,
1447274,1507093, 1585879, 1590256, 1685199, 1823804, 1895187, 2033792}

8518127 {199875, 3688880}

8683849 | {280640, 1077566, 1768887,2043418, 2274602, 2565813, 2840344, 3071528}

8759599 {209333, 899477, 3535763, 4225907 }

8881361 {169231, 310365, 734501, 875635, 902772, 1043906, 1256934, 1398068,
1779367, 1920501, 1947638, 2088772, 2470071, 2611205, 2613125, 2754259,
2824233, 2965367, 2992504, 3133638, 3346666, 3487800, 3657991, 3799125,
3826262, 3869099, 3967396, 4010233, 4037370, 4178504, 4180424, 4321558}

8896271 {214795, 256077, 276718, 404435, 445717, 466358, 535908, 785116,

845523, 969369, 1299625, 1464753, 1535819, 1650522, 1691804, 1725459,
2001419,2044217,2063342, 2064858, 2106140, 2372957, 2414239, 2600008,
2725370,2765136, 2766652, 2787293, 2856843, 3046483, 3095392, 3166458,
3219238, 3290304, 3356098, 3479944, 3528853, 3620560, 3785688, 3810200,
3971457,3975328, 4012739, 4046394, 4161097, 4202379, 4322354, 4384277}

8944981 {1203900, 1590859, 1606906, 1993865, 2474245, 2861204}

8993239 {107813, 1114569, 2598890, 3821272}
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n K'(n)

9033781 {437229, 584599, 1375422, 1552266, 3364917, 3512287}

9348709 {512341, 4180387}

9366751 {1045693, 3673690}

9371251 {1611977,2189164}

9693949 {787781, 4483727}

9713027 {673425,2710383}

9752227 {1916244, 2045953, 2722307, 2852016, 2926661, 3056370}

9846401 {188300, 1301717}

9880751 {680679, 2202747, 3347584, 3649741}

9980983 | {202232,243419, 2035595, 2481246, 4465628, 4726479, 4808853,4911279}

10054043 {1226604, 2863906 }

10137509 {253903, 1048223, 3737555, 4531875}

10610063 {1129452, 4207318}

10621799 {643542,2006153, 2416578, 2574190, 3936801, 4347226 }

10727261 {3451203, 4051982}

10824919 {316961, 321899, 704035, 708973, 837444, 1224518, 1229456, 1863378,
2250452, 2255390, 2383861, 2770935, 3409795, 3796869, 4317352, 5343286}

10829647 {1511635, 4054167}

10931029 {294167, 983229, 1296439, 1985501 }

10961017 {81725, 2628842, 2909034, 5456151}

11107121 {889347,3770584}

11150939 {1189488, 1771687, 2340116, 5301291}

11293981 {1741695, 4484891}

11012021 (231108, 5002291}

11081459 {2830024, 2832748, 2878841, 2881565, 5368508, 5371232}

11541307 {680180, 4387398}

11559211 | {36549, 1383634, 1744364, 2157835, 2858938, 2912869, 3091449, 3504920,

4206023, 4259954, 4386983, 4530799, 5681327, 5734068}

11637583 {2211694, 3777569}

11703119 {4588913, 5121209}

11797127 {1387489, 4339164}

12042727 {1168724, 5632350}

12123113 {1045817,2915804}

12263131 {113661, 552170, 1912553, 2578384, 2955902, 3621733}

12411827 {111343, 263502, 345134, 584241, 1105929, 1806829, 1915514, 2698046,
2741520, 2893679, 2937153, 3170944, 3192681, 3583947, 3605684, 3719685,

3828370, 5371697, 5523856, 5670699, 5980333, 6192387}

12511589 | {403642, 1431824, 2268523, 3666834, 4103989, 4337124, 5502300, 6172590}

12580409 {81056, 3376882, 3497461, 4180742, 4301321, 4983262}

13057787 {396142,619830, 1197635, 3611657, 3835345, 5429122}

13338371 {4972804, 6005969}

14970499 {2400614, 3092727, 3210641, 3902754}

15976747 {2349318,4192645}

16070429 {5490182, 7463399}

17134043 {4719826, 6297345}

18740971 {957041, 3816949}

19404139 {2764236,5398413}

20261251 {463279, 8852756}

21623659 {1171693, 1784594}

22075579 {4396943, 8604625}

24214051 {262144,5338971}

30894307 {8340098, 15395384}

31166803 {11765444, 12666383}

31436123 {7461514,8441009, 8859538, 9839033, 13830290, 14809785}
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n K'(n)
37109467 {145311, 2828162}
38010307 {13000875, 13457159}
38118763 {2072878,3113712}
38210323 {6850614, 14425413}
39465091 {15388, 9460884}
44314129 {3286365, 14595545, 14927367, 18077582}
46256489 {3885213,5151145}
54029741 {16143305, 23669724}
59631211 {596056, 17870782}
61219789 {11458684, 17327901, 21097909, 26967126 }
68512867 {11973934, 32681737}
70593931 {302706, 1978350}
72543547 {1458764, 22080842}
74411131 {6852398, 28841210}
76725091 {12302248, 35790166 }
76923461 {3856373, 30040645}
77533123 {618693,19891071}
77817979 {529434, 1235066}
79786523 {78003, 4007133, 4948468, 8553420, 12638556, 13118740, 13579891, 14060075,

17587024, 18145211, 21672160, 21750163, 22613495, 22691498, 26776634, 30783767,
31725102, 35810238}

80375707 {8149930, 32981595}

87499651 {13205712, 40700657}

89308771 {218995, 27764454}

91659283 {11205234, 17291447, 41534660, 44038410}

97676723 {4345461,16120790, 16394586, 18538374, 18812170, 19609588, 22394128, 22667924,
39278421, 40075839, 40349635, 43134175}

100463443 {594838, 2132882}

101270251 {5512840, 19014340}
101276579 {4058637, 50514728}
102690677 {202926, 27699608}
105305443 {20687394, 40458901}
110139499 {40106497, 50582507}
119558011 {8492203, 53706142}
122166307 {47801130, 58991068}
127050067 {10424892, 43547726}
140197051 {23711218, 38081795}
154287451 {35577203, 57427501}
180703451 {48946570, 85920666}
194556451 {9130428, 90586146}

198982759 | {9895300, 20168848, 45562611, 51768481, 61692219, 75626759, 81832629, 91756367 }
208969223 | {30346704, 39658701, 41145402, 47253271, 49070827, 52274955, 53661527, 55779470,
58983598, 59769396, 68395724, 77707721}

215878531 {1703732, 9610510, 35035613, 51776750, 63090992, 65975176, 88516095, 96422873 }

217875571 {8664075,16998416 }

223625851 {11117273,50710831}

226359547 {16305671,83103251}

235426913 | {15645107, 18964646, 44674801, 68302108, 83029817, 86349356, 99740095, 112059511}
242131889 {30673676,93384139}

258172333 {22248217, 30882408, 36019675, 44653866, 64072645, 72706836 }
259765747 {78709311, 102078236}

271763467 {31077534, 118799540}

282769771 {104322155, 116496614}

284736091 {119364604, 121503637}
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n K'(n)

284834299 {42841740,139333186}

287449091 {61475550, 93914639}

305897131 {7053490, 55768977, 87552735, 136268222}

307694323 {2214016, 5326231, 36033419, 42186918, 53183411, 60308696, 60516177, 80849315,
81056796, 105332073, 113145420, 124141913, 136039261, 139151476}

310978027 {114261304, 152859348}

313748611 {31793468, 34385860, 88838670, 91431062}

317641171 {33996423, 75044576, 100353317, 108246855}

320326003 {18908403, 102314887}

326266051 {42178784, 47393034}

330198331 {17828327, 52256589 }

341994131 {80156938, 146092541}

352802803 {4589448,156575145}

356836819 {55795101, 111328135}

357872971 {89390964, 94066436 }

360787771 {52942421, 99211202}

390612221 {181985494, 183405638}

418044563 {81552584, 87832578}

426783811 {9008398,119849779}

435016187 {12743789,196199762}

442181291 {66810496, 126153260}

453967739 {10689805, 86410067, 94902059, 123412902, 199133164, 207625156 }

455198563 {44715303, 112257698}

461272267 {101933411, 221987046}

478614067 {6555623, 98786947}

480668347 {59116847,165038571}

488169289 {168260976, 183690401, 206117653, 221547078, 231906481, 240833383}

498706651 {16489129, 119275996, 120495007, 223281874}

508606771 {80920580, 142142971}

535252867 {125374337,131202519}

536342419 | {17049582, 46640433, 78150572,99277016, 103315895, 113437278, 177127293, 238228283,

259354727, 263393606 }

545220869 {93330047, 188574250}

554599051 {5576561, 5950364, 7943980, 19966644, 20340447, 22334063, 41960053, 46819492,
56350136, 61209575, 111362810, 125752893, 269481479, 270727489}

576724219 {269177218, 281423423}

592467451 {35100481, 44543537}

628868467 {94494918, 128398346}

635155291 {48893951, 56640037}

640650931 {42076743, 267420659}

673778827 {105443043, 162443517}

696998251 {125131920, 249975121}

714663139 {9729153, 175929883, 261387513, 287074896}

717653129 {21996305, 356154466}

717831211 {253234022, 317675793}

724160251 (35555792, 35826658}

741470549 {83047998, 254905701}

750616739 {8520438, 58673186}

758581651 {97138116, 373923615}

764240611 {211144230, 320823068}

770909107 {2042964,82115782}

770937931 {47037196, 368751142}

771337891 {62703575, 265008679}
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n K'(n)

791118043 {181008148, 185764347}

796072003 {132112592, 220613597}

801093011 {166359289, 229693775, 238255918, 301263705, 301590404, 373160334 }

811730923 {59555792, 330941941}

818391211 {83478937, 142818481, 232277339, 291616883}

826004467 {80290494, 270373053}

830664451 {260209573, 395341520}

839268139 {34884674, 127698947}

839280691 {123105999, 224798503 }

867022747 {61869130, 182944914}

893692819 {251018376, 349967711}

900736411 {87601732, 163565682}

903390643 {36468356, 209376662}

914906539 {37025884, 125587533}

921858631 {6492010, 22514888, 114349119, 143356017, 273186613, 390966882, 394027742, 410050620}

967266451 {274858977, 292213704}

974471243 {10995878, 47990028, 420887735, 450380688, 457881885, 487096405 }

980056507 {23198842, 263786958}

1005833971 {274176142,492593571}

1022336611 {30504234, 282811570}

1057426651 {21751812, 396162386}

1070941987 {284095346, 388851272}

1087190371 {114776100, 135386344, 471417584, 492027828}

1098743563 {34450014, 334496181}

1110582947 {35245918, 96496025, 238490923, 273621190, 405363133, 501974809 }

1112671603 {328536961, 535364714}

1117890019 {30136535, 218429669}

1163227759 | {37998117,216431553, 244930741, 244942706, 251627139, 280138292, 421727173, 458571728}

1181566219 {105460468, 194468208, 438731932, 527739672}

1192903531 {142399930, 585752945}

1205772499 {426679602, 478030692}

1229751667 {307505257, 602843599 }

1267154071 {201190472, 289302030, 552347761, 626694752}

1272558739 {2417615,12749621, 60841167, 128454461, 143621697, 163018963, 293891039, 304223045,
352314591, 367481827, 435095121, 613603488}

1312573123 {632802142, 650906671}

1318717531 {401939115, 418541973}

1378646179 {431566434, 584113973}

1397357851 {229569505, 370910847}

1409372779 {165165665, 490769046 }

1414154827 {16019042, 431548767}

1426319563 {264499272, 320820726 }

1440922891 {574021197, 614388673}

1441678411 {354604860, 720806323 }

1446818651 {590028629, 607422676}

1468824787 {51677347,706917806 }

1470650851 {155358394, 318834311}

1495190699 {31099815, 71633234, 174597816, 255664654, 461362285, 501895704 }

1510474841 | {75621394, 120422115, 209175004, 247050723, 452987092, 579615700, 601262022, 734815632}

1517039371 {456909809, 562794459}

1518290707 {75617868, 710841600}

1526732803 {257443804, 623983641}

1529819971 {31351824, 251549938}
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n K'(n)

1532419099 {473655069, 680943729}

1536112001 {703276597, 728044855}

1537433899 {61052985, 673956349 }

1537641691 {371945158, 400992498 }

1589307919 | {1977949, 122079597, 163986261, 180919230, 567442998, 626282631, 676959430, 750340177}

1609916491 {283262983, 658732434}

1614508267 {86733609, 645916386}

1617921667 {511188341, 562365339}

1644637051 {327648032, 353114845}

1671603667 {222718019, 238786217}

1672125131 {348568153, 553739162}

1725675451 {93482600, 331393634, 518410289, 782388928}

1734059291 {3523879, 18689158, 132350672, 544013059, 657674573, 679887610}

1785843547 {440071674,573905143}

1791426787 {439415097, 875526745}

1803768091 {73921458, 840574009}

1860373241 {169168150, 266845273}

1905958891 {439345202, 741694959}

1911197947 {383295232, 884373755}

1922687293 | {139767381, 186657177, 500489759, 562392516, 564243429, 719103150, 720954063, 779108095

782856820, 825997891}
1928903971 {338280613, 737615354}
2058874201 | {54084184, 243867206, 468808442, 493788205, 654802340, 658591464, 683571227, 778497311
844585362, 968280333 }

2116483027 {155982888, 577420851}

2139155051 {12190301, 14242754, 38884478, 106561837, 132994892, 155584163, 180225887, 182278340,
206658942, 208711395, 307017169, 350052804, 376746981, 403180036, 427821760, 470857395,
495499119, 521932174, 544521445, 569163169, 595596224, 644879672, 671312727, 689967760,
695954451, 716400815, 765684263, 792117318, 859794677, 884436401, 890423092, 910869456,

933458727, 1033816954, 1054263318, 1060250009}

2155416251 {30853345, 67318400, 170698959, 470423008, 506888063, 708440367 }

2172155819 {542359256, 723042015}

2222229767 | {48595615, 65252382, 226440824, 249272916, 432429492, 471918351, 706743265, 794295235

833784094, 907420566, 1021268563 }

2246762899 {17568027, 856976238}

2269307587 {417213141, 1125066183}

2302024969 {85249937, 294308472, 323059646, 702618055 }

2321591371 | {63395819, 147657942, 485539590, 696593351, 716190010, 761150068, 927243771, 972203829}

2352371251 (921151697}

2372976563 {86080207, 712599344}

2437907779 {185666660, 921089378}






APPENDIX C

The Commutator Curve Primality Test in C++

I give in this appendix an implementation of Algorithm 5.30 in C++ using the arithmetic
P1OoLOGIE V 1.3 [130] and Strassen’s fast matrix computation [123], [131].

ALGORITHM C.1 (Hypothetical Commutator Curve Primality Test).

Input: n €N, wheren is odd, n > 5, and n # 7 (mod 8).
Output: R € {true, false}.

(1) If \/n € Z, terminate with the result false.

(2) Set M := 0.

(3) Choose x € (Z/nZ)* with +x ¢ M and
(M) = —1.

n

(4) Terminate with the result false, if

(2 +2)"' £ 1 (modn) or (x2+4)n7_1;7é—1 (mod n)
T A (mod n).

or c(l,z)2

(5) Set M := M U{z} and go to step (4), if |M| < 2.
(6) Lety,z € M with y # z and terminate with the result false, if

ged(y £ z,n) > 1,

otherwise terminate with the result true.

1. Running Times

There exist four ways to implement step (4) of Algorithm 5.30:
(1) By matrix in SLy(n)
(22 +2)"' £ 1 (modn) or (2*+ 4)%1 #Z -1 (mod n)
or c(l,:n)nTH #% —I, (mod n).
(2) By minimal polynomial in (Z/nZ)]t]
(242"t # 1 (modn) or (z*+ él)nT_1 # —1 (mod n)
T2 —1 (mod (n,£2— (2 +2)t+1)).

141

or I



142 C. THE COMMUTATOR CURVE PRIMALITY TEST IN C++

(3) By recurrence relation
(2 +2)"' £ 1 (modn) or (2*+ él)nT_1 #% —1 (mod n)
or WnTH(x) #Z 0 (modn) or QJGnT-H(Z') # —2 (mod n),
where w,,(z) and 6,,(z) are defined in Section 4 of Chapter 4 on page 60.
(4) By Lucas sequence U, (z, —1)
(242" # 1 (modn) or (2*+ 4)an1 #% —1 (mod n)
or Upyi(xz,—1) # 0 (modn) or U,(z,—1)# —1 (mod n).
In the following table we give running times to certify large prime numbers for the

different implementations using the arithmetic PIOLOGIE V 1.3 on a Pentium II with
300 MHz, Microsoft Windows NT 4.0 and Microsoft Visual C++ 6.0.

pelP Algorithm 1 Algorithm 1 Algorithm 2 | Algorithm 3 | Algorithm 4
in SLy(p) in SLa(p) | in F,[t]/f(t)F, using using

using Strassen’s recurrence Lucas

matrix comp. relation sequence

21279 _ 7 5.39 s 5.39 s 5.18 s 412's 4.07 s
22203 _ 1 21.66 s 21.67 s 20.87 s 16.57 s 16.45 s
22281 _q 25.67 s 25.68 s 24.54 s 19.50 s 19.34 s
23217 _q 63.74 s 63.96 s 61.28 s 48.15 s 48.16 s
3.22208 1 18.83 s 18.86 s 18.01 s 12.96 s 12.82 s
3.2%3912 1 91.71 s 91.91 s 87.60 s 62.54 s 62.25 s
320! + 1 27.21 s 26.96 s 25.44 s 16.53 s 15.07 s
324! — 1 26.31 s 26.10 s 24.55 s 16.40 s 15.04 s
469! — 1 101.13 s 99.87 s 94.34 s 61.58 s 56.68 s

From this table it is easy to see that Algorithm 4 is the fastest implementation of the
Hypothetical Commutator Curve Primality Test. This was also the theoretical result of
Section 8 of Chapter 4 on page 143.

2. Commutator Curve Primality Test Based on Polynomials

bool isprime(const Natural& n)

{
if ((n&1) == 0) return (n == 2);

Natural x,x2;
sqrt(n, x, x2);

if (x2 == 0) return false;
Natural m = n-1;
Natural 1 = n >> 1;

Natural k = 1;
polynomial<Natural> a,b;
x = 4; x2 = 0;

a.m = n;



3. COMMUTATOR CURVE PRIMALITY TEST BASED ON MATRICES

while (true) {
while (true) {
x += k; k += 2;

if (x >=n) x -= n;
const int i = jacobi(x, n);
if (i == -1) break;
if (i == 0) return false;
}
if (pow(x, 1, n) != m) return false;
X —= 2; ++1;
if (pow(x, m, n) != 1) return false;

a.pl1l] = n-x; a.pl[0] = 1;
b.p[1] = 1; b.p[0] = 0;
if (pow(b, 1, a) != m) return false;
if (x2 '= 0) break;
X += 2; --1; x2 =k > 1;
}
k >>= 1;
return (gcd(x2+k, n) == 1 && gcd(abs(x2, k), n) == 1);
}

3. Commutator Curve Primality Test Based on Matrices

void commutator(const Natural& y, matrix<Integer>& a)
{

a.pl2] = yxy; a.pl2] %= a.m;

a.pl0] = y+1; a.p[0] += a.p[2];

if (a.pl0] >= a.m) a.p[0] -= a.m;

a.pll] = y; a.pl3] = y-1;

if (a.p[2] '= 0) a.pl2]

if (a.pl[3] !'= 0) a.pl3]
}

a.m-a.pl2];
a.m-a.pl3];

bool isprime(const Natural& n)

{
if ((n&1) == 0) return (n == 2);

Natural x,x2;
sqrt(n, x, x2);
if (x2 == 0) return false;

Integer m = n-1;
Integer 1 = n >> 1;
Natural k 1;
matrix<Integer> a(n);
x = 4; x2 = 0;
while (true) {

while (true)
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x += k; k += 2;

if (x >=n) x -= n;

const int i = jacobi(x, n);

if (i == -1) break;

if (i == 0) return false;
}
if (pow(x, abs(1l), n) !'= abs(m)) return false;
X —= 2; ++1;
if (pow(x, abs(m), n) != 1) return false;
commutator(k >> 1, a);
if (pow(a, 1) != m) return false;

if (x2 '= 0) break;
x += 2; --1; x2 =k > 1;
}
k >>= 1;
return (gcd(x2+k, n) == 1 && gcd(abs(x2, k), n) == 1);
}

4. Commutator Curve Primality Test Based on Recurrence Relations

bool isprime(const Natural& n)

{
if ((n&1) == 0) return (n == 2);

Natural x,x2;
sqrt(n, x, x2);

if (x2 == 0) return false;
Natural m = n-1;

Natural 1 = n >> 1;
Natural k = 1;

X2 = 4;

Natural x3 = Digit(0);
while (true) {
while (true) {
x2 += k; k += 2;

if (x2 >= n) x2 -= n;
const int i = jacobi(x2, n);
if (i == -1) break;
if (i == 0) return false;
}
if (pow(x2, abs(l), n) != abs(m)) return false;
X2 —-= 2;
if (pow(x2, abs(m), n) != 1) return false;
X2 += 2; // X2 == x*xx+4
x =k > 1;
Natural zl = x*x; // z1 == xx*x (mod n)

z1l %= n;



4. COMMUTATOR CURVE PRIMALITY TEST BASED ON RECURRENCE RELATIONS

Natural z2 = x+2;

z2 x= x; 22 %= n; // z2 == x(x+2) (mod n)
Natural z3 = x-1;

if (23 '= 0) z3 = n-z3; // 23 == 1-x (mod n)
Natural z4 = zl+x;

++z4 ;

if (z4 >= n) z4 -= n; // z4 == x*x+x+1 (mod n)
Natural w = 1; // w_l :=1

Natural t = x+1; // t_1 := x+1

if (¢t >=n) t -= n;
Digit m2 = log2(++1)-1;
do {
Natural hl = w*w;
// w_{2m} = (2 + 2xt_m - (x"2+2x)w_m)w_m
Natural h2 = x*t;
++h2; h2 <<= 1;
Natural h3 = z2x*w;
if (h2 < h3) {
h3 -= h2; w *= h3; w %= n;
if (w !'= 0) w = n-w;
} else { h2 -= h3; w *= h2; w %=n; }
// t_{2m} = xt_m"2 + 2t_m - x"2w_m"2
hl *x= z1; h2 = t*t;
h2 *= x; t <<= 1; t += h2;
if (t < h1) {
hi -= t; hl %= n;
if (bl != 0) t = n-hi;
else t = 0;
}else {t -=hl; t %=n; }
if (1.testbit(m2)) {
// w_{2m+1} = 1 + xt_{2m} + (1-x)w_{2m}
hl = z3xw; h2 = xxt; ++hl; hl += h2;
// t_{2m+1} =1 + x + (I+x+x"2)t_{2m} - x"2w_{2m}
h2 = wxzl; t x= z4,; ++t; t += x;
if (¢t < h2) {
h2 -= t; h2 %= n;
if (h2 '= 0) t = n-h2;

else t = 0;
} else { t == h2; t %= n; }
w = hilYn;
}
} while (m2-- > 0);
if (w '= 0) return false;

t *=x; t += 2; t %= n;
if (t '= 0) return false;

if (x3 '= 0) break;
x3 = x; --1;
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}
k >>= 1;
return (gcd(x3+k, n) == 1 && gcd(abs(x3, k), n) == 1);

}

5. Commutator Curve Primality Test Based on Lucas Sequence U, (z, —1)

bool isprime(const Natural& n)

{
if ((n&1) == 0) return (n == 2);
Natural x,x2;
sqrt(n, x, x2);
if (x2 == 0) return false;
Natural m = n-1;
Natural 1 = n >> 1;
Natural 12 = n+1;
Natural k = 1;
x2 = 4;

Natural x3 = Digit(0);
while (true) {
while (true) {
x2 += k; k += 2;

if (x2 >= n) x2 -= n;

const int i = jacobi(x2, n);

if (i == -1) break;

if (i == 0) return false;
}
if (pow(x2, abs(l), n) !'= abs(m)) return false;
X2 -= 2;
if (pow(x2, abs(m), n) !'= 1) return false;
X2 += 2;
x =k > 1;
Natural u0 = 0; // U_0(x, -1) =0
Natural ul = 1; // U_1(x, -1) =1

Digit m2 = log2(12)-1;

do {
// U_{2m-1}(x, -1) = U_m(x, -1)"2 + U_{m-1}(x, -1)"2
// U_{2m}(x, -1) = xU_m(x, -1)"2 + 2U_m(x, -1)U_{m-1}(x, -1)
Natural hO = uO*u0;
Natural hl = ul*ul;
Natural h3 = uOx*ul;
h3 <<= 1;
u0 = hO+hl; u0 %= n;
hl *x= x;
ul = hi1+h3; ul %= n;
if (12.testbit(m2)) {
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// U_{m+2}(x, -1) = xU_{m+1}(x, -1) + U_m(x, -1)
hO = x*ul; hO += u0;

u0 = ul;
ul = hO%n;
}
} while (m2-- > 0);
if (ul '= 0 || w0 !'= m) return false;

if (x3 !'= 0) break;

x3 = X;
}
k >>= 1;
return (gcd(x3+k, n) == 1 && gcd(abs(x3, k), n) == 1);

¥

6. Simple Polynomial Class

template<class T>

struct polynomial {
// pl1l*x + p[0], where p[1],p[0] in Z/mZ.
T pl2];
static T m;

polynomial() {}
polynomial (const T& a) { p[0] = alm; }
polynomial (const polynomial& a) { *this = a; }

polynomial& operator=(const polynomial& a) {
pl0] = a.pl[0]; pl[1] = a.pl[1];
return *this;

}

void mulmod(const polynomial& a, const polynomial& b);

};

template<class T>
T polynomial<T>::m = T();

template<class T>
inline bool operator!=(const polynomial<T>& a, const T& b)
{
return (a.pl[1] !'= 0 || a.p[0] !'= b);
}

template<class T>
void polynomial<T>::mulmod(const polynomial<T>& a, const polynomial<T>& b)
// Algorithm: c.mulmod(a, b)
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// Input: a,b,c in polynomial<T> where b = x"2 + b.p[1]*x + b.p[0].
// Output: ¢ in polynomial<T> such that c := c*a (mod b) ||
{

if (this == &b) { pl[0] = p[1] = O; return; }

T x[3];

if (this == &a) {
// pl11°2*x~2 + 2xp[0]*p[1]*x + p[0]~2
x[1] = plOlx*p[1]; x[1] <<= 1;
} else {
// plil*a.p[1]1*x"2 + (p[0]*a.p[1]l+p[1]l*a.p[0])*x + p[0]*a.p[0O]
x[1] = plO]*a.pl[1]; x[1] += p[1]l*a.p[0];

}

x[0] = pl[0]*a.p[0]; x[2] = pl[1l*a.pl[1];
pl0] = x[0]%m; pl[1] = x[11%m; x[2] %= m;
x[0] = b.pl0]*x[2]; x[0] %= m;

x[1] = b.p[1]1*x[2]; x[1] %= m;

if (pl0] < x[0]) p[0] += m; pl[0] -= x[0];
if (pl1] < x[1]) pl1] += m; pl[1] -= x[1];

template<class T>
polynomial<T> pow(polynomial<T> a, T b, const polynomial<T>& c)
// Algorithm: d := pow(a, b, c)

// Input: a,c in polynomial<T> and b in T.
// Output: d in polynomial<T> such that d = a"b (mod c) ||
{

if (b == 1) return a;

else if (b == 0) return T(1);
while ((b&1) == 0) { a.mulmod(a, c); b >>=1; }

polynomial<T> z = a;

while (--b != 0) {
while ((b&1) == 0) { a.mulmod(a, c); b >>=1; }
z.mulmod(a, c);

}

return z;

7. Simple Matrix Class

template<class T>
struct matrix {

T pl4];

T m;

matrix& mod() { pl0] %= m; pl[1] %= m; p[2] %= m; p[3] %= m; return *this; }
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matrix(const T& a) { p[0] = p[1] = p[2] = p[3] = 0; m

matrix(const matrix& a) { *this = a;

matrix& operator=(const matrix& a) {

pl0] = a.pl0]; pl[1] = a.p[1]l; pl2]
mod () ;
return *this;

3

matrix& operator*=(const matrix& a);

};

template <class T>
matrix<T>& matrix<T>::operator*=(const
{
if (this == &a) {
// T commutative:

const T t = p[0]+p[3];
pl0] *= p[0];
const T s = p[1]*p[2];
pl0] += s;
pl1] *= t; p[2] *= t;
pl3] *= p[3];
pl3] += s;
} else {
#ifdef STRASSEN_MUL
pl2] = plo] - pl2];
T h4 = a.p[3] - a.p[1];
T h5 = p[2] * h4;
pl2] = pl[3] - pl2];
h4 += a.p[0];
T h = p[2] + pl[0];
T h2 = a.p[3] - h4;
T h3 = h * h2;
h2 = p[2] * h4;
h4 -= a.p[2];
h = p[3] * h4;
pl2] = pl1] - pl2];
pl3] = p[2] * a.p[3];
pl2] = pl0] * a.p[0];
plo] = pl1] * a.p[2];
pl0] += pl[2];
pl2] += h2;
h3 += p[2];
pl[2] += h5;
pl1] = p[3] + h3;
pl3] = h5 + h3;

pl2] -= h;

}

a.pl2]; pl3]

matrix<T>& a)

= a; }

a.pl3]; m = a.m;

149



150 C. THE COMMUTATOR CURVE PRIMALITY TEST IN C++

#else
T u = pl0];
T s = p[0]*a.p[0];
T t = plil*a.pl[2];
pl0] = s+t;
s = u*xa.pl[1];
t = p[1]l*a.p[3];
pl1] = s+t;
u = pl[2];
s = p[2]*a.p[0];
t = p[3]*a.pl2];
pl2] = s+t;
s = u*xa.pl[1];
t = p[3]*a.pl3];
pl3] = s+t;
#endif
}
mod () ;
return *this;
}

template <class T>

inline bool operator!=(const matrix<T>& a, const T& b)

{
return (a.pl0] !'= b || a.pl1] '= 0 || a.pl[2]
}
template<class T>
matrix<T> pow(matrix<T> a, T b)
// Algorithm: d := pow(a, b)
// Input: a,b in T.
// Output: d in T such that d = a"b ||
{
if (b == 1) return a;

else if (b == 0) return T(1);

while ((b&1) == 0) { a *= a; b >>=1; }

matrix<T> z = a;

while (--b !'= 0) {
while ((b&1) == 0) { a *= a;
Z *= a;

}

return z;

=0 || a.p[3]

= b);
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Wissenschaftlicher Mitarbeiter im Fachbereich Praktische Informatik
Forschungsaufenthalt am Rensselaer Polytechnic Institute, USA
Selbstandige Informatiktatigkeiten und Projekte in den
Bereichen/Branchen Werkzeugmaschinenbau, Baugewerbe,
Automobilindustrie, Arithmetik und Kryptologie

Angestellter der IBM im Bereich ADS Banking Projects

Weltrekord bei der Berechnung der Riemannschen Zetafunktion ((3)
Weltrekord bei der Berechnung der Eulerschen Zahl e
Patentanmeldung ,, Anzeige von Meldungen mehrerer parallel
ablaufender Prozesse“

Promotion an der Mathematischen Fakultdt der Universitat
Tiibingen iiber das Thema ,,Primality Tests on Commutator Curves*
Patentanmeldung ,,Delayed Frame in Java for a Waiting Information“



