CHEMICAL ENGINEERING TRANSACTIONS

Characterization by XRD and FTIR of Zeolite A and Zeolite X Obtained from Fly Ash

Nelson W. Farro ${ }^{\text {a* }}$, Wilson Reyes ${ }^{\text {a }}$, Jorge L. Mendoza ${ }^{\text {a }}$, Lucien Veleva ${ }^{\text {b }}$, Patricia Quintana ${ }^{\text {b }}$, José A. Azamar ${ }^{\text {b }}$, Daniel Aguilar ${ }^{\text {b }}$
${ }^{\text {a }}$ Dept.of Chemistry, Faculty of Chemical Engineering, National University of Trujillo. Av. Juan Pablo II s/n. Trujillo, Perú
${ }^{\text {b }}$ Applied Physics Department, Center for Research and Advanced Studies (CINVESTAV), Mérida 97310, México nfarro@unitru.edu.pe
Fly ashes from the fluidized bed boiler were used to obtain zeolites by the alkaline fusion process, followed by a hydrothermal procedure. The melting was carried out with 98% granulated NaOH , mixed with ashes in mass ratios $1.2 / 1,1.4 / 1$ and $1.6 / 1$ and using three melting temperatures, $450{ }^{\circ} \mathrm{C}, 550^{\circ} \mathrm{C}$ and $650{ }^{\circ} \mathrm{C}$. For the crystallization of the zeolites, the hydrothermal procedure at $90^{\circ} \mathrm{C}$ was used. The crystalline phases of the zeolitic materials were quantified by XRD analysis. The morphology of the crystals was identified by SEM. The FTIR spectra revealed that the transformation of sodalite mineral to zeolite A and zeolite X increased with the $\mathrm{NaOH} / \mathrm{CVT}$ ratio and the temperature.

1.Introduction

Fluidized bed boilers generate fly ash (FA), with a high percentage of unburned because of the operation process at almost $\sim 850^{\circ} \mathrm{C}$, which does not allow the complete calcination of the coal (Janowska and Kaliciak, 2021). The high content of unburned material makes the ashes unfriendly to the environment, however, their transformation into zeolites is a very useful procedure. The hydrated zeolites exhibit a regular three-dimensional crystalline aluminosilicates structures based on tetrahedrons, where silicon or aluminum cation are surrounded by four oxygen atoms at the vertices, representing [SiO4] ${ }^{4-}$ and [AIO4] ${ }^{5-}$ (Byrappa and Yoshimura, 2013). These structures form a network of pores and channels, which make any zeolite a highly microporous material, adsorbing water and cations, depending on the diameter of the pores. Due to this property, zeolites have a wide application in separation and filtration industrial processes (Chaves et al., 2019). Zeolites may be obtained from fly ash, among others, by alkaline fusion, mixing them with solid NaOH or KOH , in mass ratios $\mathrm{NaOH} / \mathrm{FA}=1 / 1$ to $2 / 1$. Melted between $500^{\circ} \mathrm{C}$ to $650^{\circ} \mathrm{C}$, and their posterior a hydrothermal stage between $60^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ helped the crystallization process, able to achieve different proportions of zeolites A and zeolites X (Shi and Chang, 2021). The identification and characterization of zeolites A and X have been done through their crystallinity percentages, by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectroscopy (FTIR) (Akbelen, 2021). The magic-angle spinning magnetic resonance (MAS-NMR) spectra suggested that the sodalite configures the formation of quadrangular and hexagonal rings of D4R and D6R, respectively, which then will build the frameworks (Shigemoto, et al., 1995). In the present research, the zeolite A and zeolite X (XRD) were achieved by alkaline fusion of fly ash at three temperatures and three $\mathrm{NaOH} / \mathrm{FA}$ ratios. Their crystallinity (XRD) and morphology (SEM) were quantified, followed by the IR spectra analysis, suggesting that structural changes occurred during the transformation of sodalite phase.

2. Material and methods

Fly ash from the fluidized bed boiler of the Trupal Cardboard Company (La Libertad, Peru) was used, which chemical composition is shown in Table 1.The samples, previously sieved at No. 80 ASTM mesh, were calcined for 3 h , at $600^{\circ} \mathrm{C}$, to eliminate the high percentage of unburned material. Part of the ashes was acid-washed with 3.5 M HCl (FATH samples), in order to promote dealumination and improve zeolitization (Hartati, et al., 2020). Both ashes, the acid-washed (FATH), and those without acid (FAT), were washed with distilled water,
and the solid parts were separated by filtration. The FATH and FAT ashes were dried at $100^{\circ} \mathrm{C}$ and after cooling they were coded for identification.

Table 1. Chemical composition of ash batch 10375 (YURA Cement Laboratory, Arequipa).

Component	SiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{~K}_{2} \mathrm{O}$	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	TiO_{2}	Other oxides	LOI	Amorphous phases
$\%$	44.50	27.38	1.87	1.63	1.44	2.35	20.82	42.7

2.1. Synthesis of zeolites

The alkaline fusion method was used, followed by a hydrothermal process. Mixtures of $98 \% \mathrm{NaOH}$ and FAT ashes, in $\mathrm{NaOH} /$ FAT mass ratios $=1.2 / 1.0 ; 1.4 / 1.0$ and $1.6 / 1.0$, were placed in three nickel crucibles. They were subjected to fusion, in a muffle, at a constant temperature of $450^{\circ} \mathrm{C}$, for 1 h . The procedure was repeated with other samples at $550^{\circ} \mathrm{C}$ and $650^{\circ} \mathrm{C}$. For the samples of acid-ashes (FATH), the ratio $\mathrm{NaOH} / \mathrm{FATH}=1.6$ was used, at a melting temperature of $550^{\circ} \mathrm{C}$. The fusion product was cooled, ground, and washed to remove residual NaOH . Then, the mixtures are brought to crystallization at $90^{\circ} \mathrm{C}$, leaving them to rest for 6 hours. The obtained zeolitic material (ZM) was filtered, washed, and neutralized with $1 \% \mathrm{HCl}$. The solids were separated by filtration and dried in an oven at $105^{\circ} \mathrm{C}$. They were cooled and placed in hermetic bags for analysis.

2.2. Characterization and identification of zeolites

For X-ray diffraction analysis, Bruker D8-Advance Diffractometer with 1 s step time, 2θ of 0.02 degrees, at 40 $\mathrm{kV}, 30 \mathrm{~mA}, \mathrm{CuK} \alpha$ radiation ($\lambda=1.5418 \AA$) was used. For crystal morphology, a scanning microscope (SEM) coupled with energy dispersive spectroscope for an elemental analysis by (EDS), JEOL JMS-7600F, was used. For the IR spectra, Thermo Nexus 670-FTIR Spectrometer was used, with near, medium and far infrared, with KBr pellet method.

3. Results and discussion

The XRD analysis of the zeolitic materials ZMs identified and quantified the crystalline phases, based on the relative intensities of the characteristic peaks of the spectra (Tables 2,3 and 4).

Table 2. Composition of zeolitic materials $Z M$ s, obtained at $450^{\circ} \mathrm{C}$, according to the XRD spectra

Ratio $\mathrm{NaOH} / \mathrm{FAT}$	Sodalite (\%) $\left({\left.\mathrm{Na}, \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}\right)}\right.$	Hydroxy-sodalite $(\%)$	Zeolite X (\%)	Zeolite A (\%)	Code ZM
$1.2 / 1$	51.2	37.2	11.7		ZM - 01
$1.4 / 1$	65.9		26.9	7.2	ZM - 02
$1.6 / 1$	24.0	39.9	36.1	ZM - 03	

Table 3. Composition of zeolitic materials $Z M s$, obtained at $550^{\circ} \mathrm{C}$, according to $X R D$ spectra

Ratio $\mathrm{NaOH} / \mathrm{FAT}$	Sodalite (\%) $\left(\mathrm{Na}, \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}\right)$	Thaumasite (\%)	Zeolite-X (\%)	Zeolite-A (\%)	Code ZM
$1.2 / 1$	40.2	12.6	34.1	13.1	ZM -04
$1.4 / 1$	59.5		29.8	10.7	ZM -05
$1.6 / 1$	51.0	-	22.9	26.2	ZM -06
(FATH) $6 / 1$		7.0	93.0	ZM -07^{*}	

Table 4. Composition of zeolitic materials ZMs, obtained at $550^{\circ} \mathrm{C}$, according to XRD spectra

| Ratio
 $\mathrm{NaOH} / \mathrm{FAT}$ | Sodalite (\%)
 $\left(\mathrm{Na}, \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}\right)$ | Hydroxy-sodalite
 $(\%)$ | Zeolite-X (\%) |
| :--- | :--- | :--- | :--- | :--- | :--- | Zeolite- A (\%) | Code ZM |
| :--- |
| $1.2 / 1$ |

3.1 Effect of $\mathrm{NaOH} / F A T$ ratio and temperature on the composition of the zeolitic materials

The main identified phases (Tables 2, 3 and 4) were sodalite, hydroxy-sodalite, zeolite X and zeolite A, which appeared at all melting temperatures, except the thaumasite phase only at $550^{\circ} \mathrm{C}$ and at the lowest $\mathrm{NaOH} / \mathrm{FAT}$ mass ratio $=1.2 / 1$. The majority amount corresponds to both sodalite phases, at lower temperature and lower $\mathrm{NaOH} / \mathrm{FAT}$ ratio. At $650^{\circ} \mathrm{C}$, the sodalite phases disappeared, leaving only zeolite A and zeolite X , which were
formed at any $\mathrm{NaOH} /$ FAT ratio, at all three temperatures. According to Table 2, at $450{ }^{\circ} \mathrm{C}$ the formation rate of zeolite X is much higher than that of A . However, this relationship is inverted as the melting temperature and the $\mathrm{NaOH} / \mathrm{FAT}$ ratio increased: at $650^{\circ} \mathrm{C}$ and $\mathrm{NaOH} / \mathrm{FAT}=1.6 / 1$ the majority phase was zeolite $\mathrm{A}(82 \%)$. The high thermal stability of zeolite A (Ma and Liu, 2022) is an important factor, according to which zeolite A forms in greater quantities after reaching $650^{\circ} \mathrm{C}$. At $90^{\circ} \mathrm{C}$, zeolite A crystallization is favored, but not that of zeolite X , which is a metastable and its crystallization is favored between $35^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$ (Belviso, et al., 2010). On the other hand, Table 3 indicates that ZM-07, obtained from FATH, crystallized in 93% of zeolite A, and without the existence of sodalite. These results agree with the research of Duan et al. (2011), suggesting that the high $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ ratios may be obtained by a pretreatment of aluminosilicates with HCl acid, improving the crystallization of zeolites, by the removal of $\mathrm{OH}^{-}, \mathrm{Al}^{13+}$ ions and iron impurities.

3.2. Zeolite morphology: scanning electron microscopy (SEM)

Figures 1 and 2 belong to SEM micrographs of ZM-03 and ZM-05, obtained at two different temperatures, but of equal $\mathrm{NaOH} / \mathrm{FAT}$ ratio. The ZMs present cubic and octahedral crystals, surrounded by coalescing spheroidal grains, typical of sodalite phase (Pengcheng Lv, et al., 2021). Comparing the formation conditions of ZM-03 and ZM-05, the increased melting temperature from $450^{\circ} \mathrm{C}$ to $550^{\circ} \mathrm{C}$ favored the formation of zeolite A and zeolite X, at the expense of the decreased sodalite phase.

Figure 1. SEM micrograph (x2000) of ZM-03.

Figure 2. SEM micrograph (x7500) of ZM-05.

3.3. FTIR analysis of zeolitic materials

3.3.1. Zeolites ZM-01, ZM-02 and ZM-03

Figure 3 shows the IR spectra of the materials ZM-01, ZM-02 and ZM-03, produced according to the conditions given in Table 2. Since hydroxy-sodalite and sodalite have very similar crystalline structures (Hermeler, et al., 1991), the frequencies of the IR spectra are considered the same for both zeolites. According to Table 2, sodalite is present in all three zeolitic mixtures, which intense asymmetric stretching band at $989 \mathrm{~cm}^{-1}$ is typical of sodalite (Table 5). Likewise, the middle band of $699 \mathrm{~cm}^{-1}$ and the T-O bending band of $461 \mathrm{~cm}^{-1}$ of sodalite, are present in all three IR spectra (Figure 3). On the other hand, the zeolite X is detected with the symmetrical stretches corresponding to frequencies of $753 \mathrm{~cm}^{-1}$ and $699 \mathrm{~cm}^{-1}$ and especially with that of $565 \mathrm{~cm}^{-1}$, which corresponds to the vibration of the double ring D6R of faujasite high silica zeolite (Zhan, et al., 2002) and it was detected in the spectra of the three samples (Figure 3). In the spectrum of ZM-02 at the frequency of $553 \mathrm{~cm}^{-1}$ was observed the double ring of D4R of zeolite (Loiola, et al., 2012). This frequency disappeared in the spectra of ZM-03, where the broad asymmetric stretching bands at $992 \mathrm{~cm}^{-1}$ and at $1051 \mathrm{~cm}^{-1}$ indicated the presence of zeolite A, as well as that at $464 \mathrm{~cm}^{-1}$, characteristic for the T-O bending in ZM-03 zeolite. It has been reported that the at $\sim 870 \mathrm{~cm}^{-1}$ the shoulder band, which appears in the spectra of the three mixtures, is attributed to the vibration of $\mathrm{T}-\mathrm{OH}$ bonds of the amorphous precursor, during the formation of zeolite A and zeolite X (Shigemoto, et al., 1995). The frequencies of the bands presented in Figure 3 confirmed the results of Table 2, which suggested that the presence of sodalite decreases, because it is transformed into zeolite A , as the $\mathrm{NaOH} / \mathrm{FAT}$ ratio raises.

Table 5. IR spectra data for some synthetic zeolites (Flanigen and Khatami, 1974)

Sample	Asymmetric stretching (*)$\rightarrow \mathrm{Si}-\mathrm{O}-\mathrm{T} \rightarrow$			Symmetric stretching$\leftarrow \mathrm{Si}-\mathrm{O}-\mathrm{T} \rightarrow$			Double ring	Bending T-O
Zeolite-A	1090vwsh	1050vwsh	995s			660 vw	550 ms	$464 m$
Zeolite-X		1060msh	971s	746m	690 wsh	668m	560 m	458ms
Hydroxy sodalite	1096vwsh		986s	729m	701 mw	660m		461 ms

${ }^{(*)}$ T: Si or Al. s: strong; m: medium; ms: medium-strong; w: weak; mw: medium-weak; vw: very weak; sh: shoulder:

Figure 3. IR spectra of ZM-01, ZM-02 and ZM-03, obtained at $450^{\circ} \mathrm{C}$ and at three increasing $\mathrm{NaOH} / F A T$ ratios.

3.3.2 Zeolites MZ-04, MZ-05 and MZ-06

Figure 4 presents the IR spectra of the zeolite samples ZM-04, ZM-05 and ZM-06, obtained at $550{ }^{\circ} \mathrm{C}$, with an increasing $\mathrm{NaOH} / \mathrm{FAT}$ mass ratios $=1.2 / 1.0,1.4 / 1.0$ and $1.6 / 1.0$, respectively.

Figure 4. IR spectra of $Z M-04, Z M-05$ and $Z M-06$, obtained at $550{ }^{\circ} \mathrm{C}$ and at three increasing $\mathrm{NaOH} / F A T$ ratios.
According to Table 3, as the $\mathrm{NaOH} / \mathrm{FAT}$ ratio increases, the content of zeolite A also increases, from 13.1% (ZM-04) to 26.3% (ZM-06). Simultaneously, zeolite X decreases from 34.1% to 22.9%, respectively, in those samples. This behavior is reflected in the respective IR spectra of Figure 4, when the T-O bending band at 459 cm^{-1}, corresponding to zeolite $\mathrm{X}(\mathrm{ZM}-04)$, was transformed into a bending band of $464 \mathrm{~cm}^{-1}$ typical of zeolite A, (ZM-06). Likewise, in sample ZM-04 the broad asymmetric stretching band of sodalite changed from $980 \mathrm{~cm}^{-1}$ to $996 \mathrm{~cm}^{-1}$, which is the characteristic frequency of zeolite A, being concordant with the remarkable increase of this crystalline phase, as the $\mathrm{NaOH} / \mathrm{FAT}$ ratio increased (Table 3). In addition, the weak shoulder band of symmetric stretching at $690 \mathrm{~cm}^{-1}$ in the spectra of zeolite X (ZM-04 and ZM-06) disappeared, indicating the decrease of this crystalline phase with the increase of the $\mathrm{NaOH} / \mathrm{FAT}$ ratio. It was also observed that the medium band of symmetric stretching at $670 \mathrm{~cm}^{-1}$, and the medium band at $560 \mathrm{~cm}^{-1}$ for the double ring D6R, both corresponding to zeolite X, are practically maintained in the three spectra of samples, despite the decrease of this phase and with the increase of the $\mathrm{NaOH} / \mathrm{FAT}$ ratio. The symmetric stretching bands at $753 \mathrm{~cm}^{-1}$ and 670 cm^{-1} which appeared in the three spectra (Figure 4), correspond to the presence of zeolite X (Ojha, et al., 2004).

3.3.3 Zeolites MZ-07, MZ-08, MZ-09 and MZ-10

Figure 5 shows the IR spectra of sample ZM-07 (with FATH and melted at $550{ }^{\circ} \mathrm{C}$) and of samples ZM-08, ZM09 and $\mathrm{ZM}-10$ (obtained at $650{ }^{\circ} \mathrm{C}$, and with increasing ratios. of $\mathrm{NaOH} / \mathrm{FAT}$). These four samples are made up exclusively of zeolite A and zeolite X (Table 4), although as noted above, ZM-07 also has two different variants of production. Table 6 summarizes the values of the most relevant IR frequencies of the four zeolites samples, with the referential frequencies of Table 5. The data of Table 6 reveal that sample ZM-08 presents the structural characteristics of zeolites A and X, however, as the $\mathrm{NaOH} / \mathrm{FAT}$ ratio increases, some of the zeolite X frequencies are attenuated: the flexion at $451 \mathrm{~cm}^{-1}$ and the stretching at $668 \mathrm{~cm}^{-1}$.

Figure 5. IR spectra of zeolitic sample ZM-07, ZM-08, ZM-09 and ZM-10.
Table 6. Peaks of IR spectral frequencies of Figure 5, which identify zeolite A and zeolite X

	ZEOLITE - A				ZEOLITE - X		Double	
$\begin{gathered} \text { Sample } \\ (\mathrm{NaOH} / \mathrm{CVT}) \end{gathered}$	Stretching asymmetrical		Double ring	$\begin{aligned} & \text { 3ending T- } \\ & 0 \end{aligned}$	asymmetri			$\begin{aligned} & \text { Bending } \\ & \mathrm{T}-0 \end{aligned}$
ZM-07 (1.6/1)*	1079 vwsh	1002s	--	--	--	$672 m$	566m	459 ms
ZM-08 (1.2/1)	--	$993 s$	--	--	1063 msh	669 m	565m	451 ms
ZM-09 (1.4/1)	--	997s	--	$464 m$	--	668 m	567 m	--
ZM-10 (1.6/1)	--	998 s	--	463 m	--	--	$562 m$	451 ms

* : zeolitic mixture from acid-fly ashes (FATH) and alkaline fusion at $550{ }^{\circ} \mathrm{C}$.

On the other hand, the strong band at $998 \mathrm{~cm}^{-1}$ and the bending at $464 \mathrm{~cm}^{-1}$ confirmed the presence of zeolite A, while the double ring band at $562 \mathrm{~cm}^{-1}$ indicated the presence of zeolite X , although the disappearance of zeolite band at $668 \mathrm{~cm}^{-1}$. The increase in $\mathrm{NaOH} /$ FAT increases zeolite A and decreases zeolite X.

4. Conclusions

Fly ash with a high percentage of unburned may be used as a raw material to obtain a zeolitic material, which is mostly formed by sodalite phase, or by a mixture of zeolite A and zeolite X. At a lower melting temperature and at lower $\mathrm{NaOH} / \mathrm{CVT}$ ratio, sodalite is formed as the majority phase. However, increasing the melting temperature, a mixture of zeolite A and zeolite X may be obtained. At higher temperatures, zeolite A increases with the rise of the $\mathrm{NaOH} / \mathrm{FAT}$ ratio. A follow-up on the frequency changes of the IR spectra can confirm that the sodalite, zeolite A and zeolite X, come from the same polyhedral unit, and where the operating conditions that increase the amount of the last two, implies the decrease and disappearance of sodalite.

Acknowledgments

The authors gratefully thank the Peruvian Canon Minero support by the Project 098314042. The authors acknowledge the National Laboratory of Nano- and Biomaterials (LANNBIO-CINVESTAV), for allowing the use of SEM-EDS facilities; thanks also go to Biol. Ana R. Cristóbal R. and M.Sc. Dora A. Huerta Q., for their support in SEM-EDS data acquisition.

References

Akbelen M., 2021, Investigation of Natural Analcime-rich Zeolite Tuff from Turkey: A Combined XRD, XRF, FTIR and SEM Study. Eskişehir Technical Univ. J. of Sci. and Tech. B - Theo. Sci., 9, 36-41.
Belviso C., Cavalcante F., Fiore S., 2010, Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using seawater instead of distilled water. Waste Management, 30, 839-847.
Byrappa K. and Yoshimura M., 2013, Handbook and Hydrothermal Technology; Second Edition, Elsevier Inc. United States of America. Chapter 6. Hydrothermal Synthesis and Growth of Zeolites. 269-347.
Byrappa K. and Yoshimura M., 2013, Handbook and Hydrotermal Technology; Second Edition, Elsevier Inc. United States of America. Chapter 6. Hydrothermal Synthesis and Growth of Zeolites. 269-347.
Chaves Lima R, Bieseki L, Vinaches Melguizo P., Castellã Pergher S.B, 2019, Environmentally Friendly. Zeolites. Synthesis and Source Materials. ©Springer Nature Switzerland AG 2019.
Duan A., Wan G., Zhang Y., Zhao Z., Jiang G., Liu J., 2011, Optimal synthesis of micro/mesoporous beta zeolite from kaolin clay and catalytic performance for hydrodesulfurization of diesel,Catalysis Today,175, 485-493
Flanigen E.M. and Khatami H., SzymanskI Herman A. (1974) Infrared Structural Studies of Zeolite Frameworks. Molecular Sieve Zeolites-I. Advances in Chemistry; American Chemical Society. Pags: 201-229
Hartati, Prasetyoko D., Santoso M., Qoniah I., Leaw W.L., Firda P.B. D, Nur H (2020). A review on synthesis of kaolin-based zeolite and the effect of impurities. J. of The Chinese Chemical Society, 67, 6;1-26 (911-936).
Hermeler, G, Buhl J.CH., and Hoffmann W.,1991, The Influence of Carbonate on The Synthesis of an Intermediate Phase Between Sodalite and Cancrinite. Catalysis Today. 8, 415-426.
Janowska-Renkas E. and Kaliciak A.,2021, Impact of Fly Ashes from Combustion in Fluidized Bed Boilers and Siliceous Fly Ashes on Durability of Mortars Exposed to Seawater and Carbonation Process. Materials,14, 2345.

Loiola A.R, Andrade J.C.R.A, Sasaki J.M, Da Silva L.R.D, 2012, Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener. Journal of Colloid and Interface Science, 36, 34-39
Ma S., Liu Z-P., 2022, The Role of Zeolite Framework in Zeolite Stability and Catalysis from Recent Atomic Simulation. Topics in Catalysis, 65, 59-68
Ojha Keka, Pradhan Narayan C and Samanta Amar Nath, 2004, Zeolite from fly ash: synthesis and characterization. Bulletin of Materials Science. 27, pp. 555-564.
Pengcheng Lv, Meng R., Mao Z. and Deng M., 2021, Hydrothermal Synthesis of Sodalite-Type N-A-S-H from Fly Ash to Remove Ammonium and Phosphorus from Water. Materials, 14, 2741.
Shi B. and Chang Q., 2021, Green synthesis of fly ash-based zeolite Y by mixed alkali fusion method. Micro Nano Lett, 16, 540-545.
Shigemoto N., Sugiyama S., Hayashi H. and Miyaura K., 1995, Characterization of $\mathrm{Na}-\mathrm{X}, \mathrm{Na}-\mathrm{A}$, and coal fly ash zeolites and their amorphous precursors by IR, MAS NMR and XPS. J. of Mat. Sci. 30, 5777 - 5783
Zhan, Bi-Zeng, White M.A., Lumsden M., Mueller-Neuhaus J., Robertson, K. N, Cameron T.S., and Gharghouri M., 2002, Control of Particle Size and Surface Properties of Crystals of NaX Zeolite. Chemistry of Materials, 14, 3636-3642.

