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One of the most critical components of the chemical industry in terms of crystallisation is the pharmaceutical 

sector. Most medicine components are expensive and require complex processes for their production, so 

producing waste is highly inefficient. Another concern is the high-quality standards for most pharmaceutical 

products. Therefore, optimising the crystallisation process is critical from a quality perspective, with the main 

concerns being the product's crystal structure and particle diameter distribution. Regardless efficient control in 

batch processes such as crystallisation is a difficult task due to the inherently nonlinear behaviour of the system. 

Using a priori model of the system as the basis for nonlinear model predictive control could provide a useful tool 

for handling the crystallisation process, mitigating the effects of disturbance and noise and ensuring appropriate 

product quality. In this work, we wish to showcase the possibility of controlling a crystallisation process using 

model predictive control to enable the production of crystal products with desired particle diameter distribution 

and crystalline product average size. The method is shown using citric acid as a model substance in a case 

study of a continuous crystallisation procedure in a stirred tank reactor. The crystalliser model includes an 

energy balance, so the system's behaviour depends on the cooling rate and residence time. Accordingly, the 

control problem can be formulated as multiple inputs and multiple outputs (MIMO) system. Moreover, the two 

controlled (average particle size and crystal size dispersion) variables are not easily detached from each other. 

So, the traditional controlling strategies, for example, the decoupling controller, is challenging to apply. The MPC 

(model predictive control) as an advanced control algorithm can be a solution to this. 

1. Introduction 

Control of crystallisers is challenging because the process is influenced by many variables, for example, the 

residence time, temperature, supersaturation, or cooling rate. However, using an MPC, the cross effects 

between the variables and the controlled properties become manageable. The classical control strategies base 

problem, as the intervention effect will apply later, can be eliminated. This is especially true for the crystallization 

processes, where the manipulated variables (residence time, cooling medium temperature and flow rate has a 

complex relationship with the controlled valriables: particle size, and distribution etc. 

Yang and Nagy (2015) examined a two-stage cascade, continuous MSMPR (mixed suspension mixed product 

removal) crystalliser and the application of NMPC (nonlinear MPC) for controlling the average particle size and 

the yield of the crystalliser system. In their case, the operational variables are the antisolvent flow rates and the 

temperatures in the two equipment. Szilágyi et al. (2018) investigate an experimental implementation of PBM 

(population balance model) based nonlinear MPC to l-ascorbic acid crystallisation. The aim of that study is 

quality-based control (QbC). Shi et al. (2005) were engaged with the particle sizes distributions predictive 

control. In their implementation, the MPC was supplemented with Lyapunov-based bounded control; thus, a 

supervisor algorithm keeps the system in a stable region. Moldoványi et al. (2004) studied an MPC of continuous 

MSMPR crystallisers. They examined more operation variables based on the system's RGA (relative gain array), 

for example, inlet concentration, flow rate, and seeding. In this study, the base of the MPC is the linearised 

steady-state model of the crystalliser. Based on the literary review it can be concluded that while many new 

advancements have been made on the use of MPC the utilization of robust nonlinear first principle models as 

the basis for optimized control is still a relevant topic with many opportunities for innovation and study. 
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In our study, we first explain the mathematical model of the CMSMPR (continuous MSMPR) crystalliser and the 

assumptions we use. An essential difference between our work and previous studies, we implemented an 

energy balance to the crystalliser model, and one of the manipulating variables acts through it. Thus, the control 

dynamics and the possibility of intervention appear more realistic. After the presentation of the model, we 

examined the system’s (citric acid crystalliser) dynamic behaviour with repeating sequence stair test functions. 

Then, we present the result of the closed-loop MPC.  

2. Mathematical model for CMSMPR crystalliser 

The particle size distribution change can be described with a population balance equation similar to the general 
balance equations. The local change depends on the change along coordinates and the source terms. 
(Ramkrishna, 2000). That can be formalised the follows.  

∂𝛹

𝜕𝑡
+ ∇𝑟(𝛹 �̇�) + 𝐺 = 0  (1) 

It is assumed that the following conditions are satisfied: 

• The working volume of the crystallisation is constant; we assume ideal level control. 

• The inlet does not contain crystal seeds or any impurities.  

• The crystal growth (𝑣𝑟) is independent of the crystal size, so the growth rate (𝑘𝑔) is linear (𝛼 = 0) and 

can be formalised with a phenomenology power law equation. The 𝑘𝑔 and 𝑔 are greater than zero and 

constants in Eq (3). The supersaturation formalised the following where the 𝑐𝑓 is the concentration of 

the inside of the crystalliser and the 𝑐𝑓
∗ is the solubility (Eq 2). 

Δ𝑐 = 𝑐𝑓 − 𝑐𝑓
∗(𝑇) (2) 

The crystal growth can be formalised in the following (Eq 3). 

𝑣𝑟 = 𝑘𝑔𝛥𝑐𝑔(1 + 𝛼𝑟 ) (3) 

• Nucleation (𝐵) consists of primary (𝐵𝑝) and secondary (𝐵𝑠) nucleation and both phenomena can be 

formalised with a phenomenology power law equation. In the case of primary nucleation, the nucleation 

rate depends only on supersaturation (Δ𝑐). In contrast, in the case of secondary nucleation, the volume 

of the solid crystals (𝑉𝑠) influences the rate of nucleation. The 𝑘𝑝, 𝑝, 𝑘𝑠 and 𝑠 are greater than zero and 

constants. The crystal grown can be formalised in the following (Eq 4). 

𝐵 =  𝐵𝑝 + 𝐵𝑠 = 𝑘𝑝 Δ𝑐𝑝+ 𝑘𝑠Δ𝑐𝑠𝑉𝑆
𝜔   (4) 

• The suspension inside the crystalliser is perfectly mixed. Therefore, the outlet stream has the same 

composition as the one inside the equipment. 

• For easy manageability, we introduce the crystal volume fraction, which denotes the epsilon (Eq 5). 

𝜖 =
𝑉𝑠

𝑉𝑠 + 𝑉𝑓  
 (5) 

Considering these assumptions, Eq (1) takes the following form (Eq 6) 

𝜕𝛹(𝑟, 𝑡)

𝜕𝑡
+ 𝑣𝑟

𝜕𝛹(𝑟, 𝑡)

𝜕𝑟
=  

𝑞 𝛹(𝑟, 𝑡)

𝑉
+ 𝐵 [1 − 𝜖(𝑡)]𝛿(𝑟 − 𝐿0)   (6) 

We want to design a model predictive control for the equipment, so we need a relatively fast solver method; 

therefore, we chose the moments method. To describe the present system, we need the first 3 moments. The 

definition of the mth moments can be formalised the follows (Eq 7). 

𝜇𝑚 = ∫ 𝑟𝑚𝛹(𝑟, 𝑡) 𝑑𝑟
∞ 

0
where 𝑚 = 0, 1, … , 3   (7) 

After the moments transformation, we get an ordinary differential equation system, the general form of which is 

as follows (Eq. 8).  

𝑑𝜇𝑚

𝑑𝑡 
= 𝑚 𝑣𝑟 𝜇𝑚−1 −

𝑞

𝑉
𝜇𝑚 + 𝐵 𝜖 𝐿0

𝑚 where 𝑚 = 0, 1, … , 3 (8) 

The size of 𝐿0 is difficult to measure, and a small quantity and the powers of that are even smaller in the case 

of 𝑚 > 0 is negligible. The change in the macroscopic properties (𝑐𝑓 , 𝑐𝑤 , 𝑉𝑓 , 𝑉𝑠, 𝑇𝑟 , 𝑇𝑗) of the crystalliser can be 

formalised in the following equation system (Eq 9, 10, 11, 12, 13, 14). 
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𝑑(𝑐𝑓𝑉𝑓)

𝑑𝑡
= 𝑞𝑐𝑓,𝑖𝑛 − (1 − 𝜖)𝑞𝑐𝑓 − 𝑣𝑟𝜙3𝜇2𝑉𝜌𝑠 (9) 

𝑑(𝑐𝑤𝑉𝑓)

𝑑𝑡
= 𝑞𝑐𝑤,𝑖𝑛 − (1 − 𝜖)𝑞𝑐𝑤 (10) 

𝑑𝑉𝑓

𝑑𝑡
= 𝑞 − (1 − 𝜖)𝑞 − 𝑣𝑟𝜙3𝜇2𝑉 (11) 

𝑑𝑉𝑠

𝑑𝑡
=  −𝜖𝑞 + 𝑣𝑟𝜙3𝜇2𝑉 (12) 

𝑑𝑇𝑟(𝑉𝑠𝜌𝑠 + 𝑉𝑓𝑐𝑓𝑐𝑝𝑐 + 𝑉𝑓𝑐𝑤𝑐𝑝,𝑤)

𝑑𝑡
= 𝑞𝑇𝑟,𝑖𝑛(𝑐𝑤,𝑖𝑛𝑐𝑝,𝑤 + 𝑐𝑓,𝑖𝑛𝑐𝑝𝑐) − 𝑞(1 − 𝜖)𝑇𝑟(𝑐𝑤𝑐𝑝,𝑤 +  𝑐𝑓𝑐𝑝𝑐) 

−𝑞𝜖𝑇𝑟𝜌𝑠𝑐𝑝,𝑠  − 𝑈𝐹(𝑇𝑟 − 𝑇𝑗) + Δ𝐻𝑘𝑟𝑖𝑠𝑡𝑅𝑉𝑠
𝑉   

(13) 

𝑑𝑇𝑗𝑉𝑗𝜌𝑗𝑐𝑝,𝑗

𝑑𝑡
= 𝑞𝑗𝜌𝑗𝑐𝑝,𝑗𝑇𝑗,𝑖𝑛 − 𝑞𝜌𝑗𝑐𝑝,𝑗𝑇𝑗 + 𝑈𝐹(𝑇𝑟 − 𝑇𝑗)  (14) 

The temperature dependence of thermodynamic properties and solubility was calculated based on Apelblat 

2014, with fitted polynoms. The heat of crystallisation was neglected. The operating parameters of the 

equipment were chosen arbitrarily, except for the 𝑐𝑓,𝑖𝑛 because this was calculated from the solubility curve. The 

parameters of the model can be found in Table 1. 

Table 1: Kinetic and operating parameters of the case study of the crystalliser model 

Parameter Value Unit Reference Parameter Value Unit 

𝑘𝑝 2.869 ⋅ 103 [
#

𝑚3𝑠
] 

Nemdili et al. (2016) 
𝑉 1.0 [𝑚3] 

𝑝 1.585 [−] 𝑉𝑗 0.235 [𝑚3] 

𝑘𝑠 1.72 ⋅ 108 [
#

𝑚3𝑠
] 

Févotte and Févotte (2009) 

𝐹 4.2 [𝑚2] 

𝑠 0.47 [−] 𝑈 1500 [
𝑊

𝑚2𝐾
] 

𝜔 1.14 [−] 𝑇𝑡,𝑖𝑛 50  [°𝐶] 

𝑘𝑔 7.18 ⋅ 10−6 [
𝑚

𝑠
] 

Févotte and Févotte (2009) 
𝑇𝑗,𝑖𝑛 -10 [°𝐶] 

𝑔 1.58 [−] 
𝑐𝑓,𝑖𝑛 774.066 [

𝑘𝑔

𝑚3] 
𝜙 

𝜋

6
 [−] Caillet et al. 2007 

3. Model predictive control design 

In the MPC structure, the control algorithm is a model of the controlled object supplemented with an optimiser 

(Szilágyi et al. 2018). The MPC can be formulated as a multivariable, conditional optimisation problem. In our 

case, the controller model and the controlled object are the same a priori model. Another approximation 

compared to the real case is that the controller model gets all variable from the controlled model and use them 

as an initial condition. The structure of MPC can be seen in Figure 1.  

 

Figure 1: Structure of MPC 

For the control, the flow rate to the inside of the crystalliser (𝑞) and to the jacket (𝑞𝑗) was chosen as an 

manipulated variable, and the controlled variables are the average particle size (𝐸), the variance of the crystals 
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(𝜎) and the volume of the crystalline product (𝑉𝑠) because these properties are the most important industrially 

(Moldoványi 2005). So, the control (𝑦) and the manipulated variables (𝑢) are formalised as follows (Eq 15).  

𝑦1 =  𝐸 =
𝜇1

𝜇0
 𝑦2 = 𝜎 =

𝜇2

𝜇0
− (

𝜇1

𝜇0
)

2
  𝑦3 = 𝑉𝑠     𝑢1,2 = [𝑞;  𝑞𝑗]   (15) 

The optimisation problem is formalised as the following (Eq 16):  

min
𝑢𝑖(𝑡𝑀,0),𝑢𝑖(𝑡𝑀,0+𝜒),… ,𝑢𝑖(𝑡𝑀,0+𝑡𝑀) 

∑ 𝜁𝑗 ∫ (𝑦𝑗 − 𝑦𝑗
ref)

2
𝑡𝑃

𝑡𝑃,0

𝑑𝑡,

𝑛

𝑗

 𝑖 = 1,2    𝑗 = 1,2,3 (16) 

The model length of the horizon is 𝑡𝑀,0 to 𝑡𝑀 and the length of time steps is 𝜒, while the prediction horizon is 𝑡𝑃,0 

to 𝑡𝑃, and the 𝜁 is a weight factor. The optimisation problem is solved online parallel with the model at certain 

intervals, and the length of this interval (𝜏) is also a parameter in the MPC algorithm. The solution is made in 

MATLAB/Simulink environment with fmincon function. The fmincon function was chosen because the method 

can be parallelised, fast, and easily parametrised. The constraints of the minimum search for both variables is 

the same, the minimum is 0.001 and the maximum is 0.1 m3/s. Table 2 shows the parameters of the optimisation 

problem.  

Table 2: Parameters of the MPC 

Parameter  Value Parameter  Value Parameter  Value 

𝑡𝑀,0 0 s 𝑡𝑃,0 500 s 𝜏 100 s 

𝑡𝑀 3000 s 𝑡𝑃 3000 s 𝜒 0.001 s 

𝜁1 0.5 𝜁2 0 𝜁3 0.5 

The control of average crystal size and the size dispersion simultaneously by the supersaturation and the 

residence time would be challenging (Moldoványi 2005). So, in this study, we consider only the crystalline 

product's average crystal size and volume. Another manipulating variable should be examined in further work, 

for example, seeding. Along the tests, at first, the dynamic behaviour of the system was examined 

3.1 System dynamic analysis 

For the dynamic analysis, the response of the system was examined with different flowrates (𝑞) with permanent 

coolant flow rates (𝑞𝑗), and inversely. The results can be seen in Figure 2.  

a) b) 

  

Figure 2: Dynamic behaviour of the crystallisation 

In Figure 2a can be seen that if the flow rate is decreasing, the examined parameters are increased, but the 
rate of change is different in the case of solid volume and expected value of crystal size. This can be explained 
by the resident time of the crystals being higher if the flow rate is lower because the crystals have more time to 
grow. Figure 2b shows the opposite trends for the intervention; this is caused by the higher coolant flow rate 
cooling it down more the inside space and pushing away the supersaturation. In comparing the two cases, the 
system's dynamic behaviour is faster for volume flow change because the inlet flow rate directly affects the 
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change of moments, while the coolant flow rate is indirectly through the energy balance. The behaviour of the 
model is as expected, which shows the same trends as in Yang and Nagy (2015). 

3.2 Nonlinear model predictive control evaluation 

For the tests, we examined objects with closed-loop MPC. The set points change every 1000 s (to allow the 

system to reach a stationary state), and the system response was investigated. In Figure 3. we indicated the 

set points, the predicted output (at the end of the prediction horizon) and the response of the system, as well as 

the two manipulated variable values.  

Figure 3 shows that the two controlled variables follow the set points; the predicted output and the system 

response coincide with a good approximation. The first time, the system starts from an initial state, which causes 

the deviation from the set point, but the predicted output in the present points also shows the same values as 

the set point. The swings at 3000 to 4000 seconds (and in approximately 6000 and 7000 s) are likely the extreme 

value search algorithm’s mistakes. Figure 4 shows the temperature changes during the tests, which also follow 

the flow rate change.  

 

 

 

Figure 3: Operation of the MPC 

 

Figure 4: The temperature changes during the tests. 
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4. Conclusions 

The results show that the crystalline product volume and the expected volume of the crystal are independently 

adjustable quantities. However, it should be noted that only in a narrow environment. In our method, the energy 

balance was implemented, and the one manipulating variables acts through the energy balance, and the 

algorithm can adjust the controlled system to the setpoint.  

During further investigations, we will develop the appropriate manipulating variables based on the system's RGA 

(relative gain array), and we will develop state estimation procedures; thus, based on the controlled object 

measurable variables, we can operate the MPC. Moreover finally, we will examine the effects of tuning 

parameters. 

Nomenclature

t – time, s 

tM0, tM – times of model horizon, s 

tP0, tP – times of prediction horizon, s 

r – crystal size, m 

vr – grow rate, m/s 

�̇� – Vector of the rate of change along internal 

crystal properties 

G – general source term 

RVs – volume source term, m3/s 

cf – concentration of fluid phase, kg/kg solvent 

cf,in – inlet concentration of fluid phase, kg/kg 

solvent 

cf
* – solubility concentration, kg/kg solvent 

Δc – driving force, kg/kg solvent 

cw – solvent concentration  

cw,in – inlet solvent concentration 

cp,j, cp,w, cp,s  – specific heat capacity, J/kgK 

ρj, ρw, ρs – density, kg/m3 

Bp – primary nucleation, #/m3s 

Bs – secondary nucleation, #/m3s 

kg, g, α – parameters of growing function 

kp, p – parameters of primary nucleation 

ks, s, ω – parameters of secondary nucleation 

𝜖 – crystal fraction factor 

Vf – volume of fluid phase, m3 

Vs – volume of solid phase, m3 

V – volume of crystalliser, m3 

F – heat transfer surface, m2 

U – Overall heat transfer coefficient, W/m2K 

m – order of the moments 

q – inlet volume flow rate, m3/s 

qj – coolant volume flow rate, m3/s 

Tr – temperature of inside, °C 

Tj – temperature of jacket, °C  

ΔHr – heat of crystallization 

u – manipulating variable  

y – controlled variables 

E – expected value of crystals size, m 

𝜎 – variance of crystals size, m2 

L0 – smallest crystal size, m 

𝜁 – weight factor  

𝜒 – simulation step time, s 

𝜏 – MPC call time frequency, s 

Φ – crystal shape factor 

μm – moments, #/m4-m-1 

δ – Dirac delta function  

Ψ – size distribution density function, #/m4 
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