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Due to the climate change, extreme weather phenomena are becoming increasingly intense and occur with 

higher frequencies, even in unusual areas. Nevertheless, historical data showed as Natech accidents can be 

triggered not only by natural disasters, like earthquakes or tornadoes, but even by natural phenomena that are 

considered of minor importance, such as rain and lightning. Only recently, the Natech issue has gained a 

great deal of attention, but there is still a lack of consolidated Natech risk-analysis methodologies and tools. 

The focus of this work is to include natural hazards into a dynamic risk assessment system beside the typical 

parameters of process risks. In Italy, rainfall represents the most common triggering factor for landslides. 

Generally, the determination of trigger and propagation can rely on physically-based approaches, which 

require the calibration of many parameters and are often difficult to apply, or on empirical correlations between 

rainfall and landslide built from historical data. On the other hand, by using a data driven approach, available 

data can be exploited to define the system state over time, anticipate the systems outcome, support decision-

making, and adopt the most appropriate adjustments, allowing to enhance system resilience and knowledge. 

The actual capability of the proposed approach was evaluated on a simple case-study represented by an LPG 

storage facility located in landslides sensitive zone of Liguria Region.  

1. Introduction 

Rainfall-induced shallow landslides, also known as soil slips or shallow landslides, occur when the soil 

becomes unstable after intense or prolonged rainfall due to its saturation with water. These phenomena are 

generally dependent on a variety of factors, including the intensity and duration of the rainfall, the type of soil, 

the slope of the land, and the presence of vegetation (Park et al., 2013). Shallow landslides can significantly 

impact the communities and the environment, potentially leading to erosion, damages to infrastructures, and 

loss of life. They are particularly dangerous due to their sudden occurrence, often with little warning, and rapid 

spread (Petley, 2012). Therefore, it is important to understand how the main factors, such as geological 

conditions, weather patterns, and human activities, contribute to their occurrence and to develop strategies for 

mitigating the related risks and reducing the impacts. Several methods predicting landslides are currently 

discussed in literature. They usually rely on assessing geological data about the characteristics of the land or 

they triconcern the analysis of data about weather patterns and other triggering events, such as the intensity 

and duration of rainfall (Baum et al., 2010). Physically-based models are one of the most effective ways to 

predict landslides and their evolution over time under different conditions. However, these models are difficult 

to calibrate and validate, require a large amount of data and computational resources to run accurately, and 

are often used in conjunction with statistical, or empirical models to improve the accuracy of the predictions. 

Berti et al. (2012) proposed a method for evaluating rainfall thresholds based on Bayesian probability, 

returning a value of landslide probability for each combination of the selected rainfall variables. This work 

focuses on Natech risk assessment to evaluate the likelihood, the potential impacts, and the actions for risk 

reduction associated to natural hazards triggering technological scenarios involving hazardous materials, 
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which is explicitly included in the last update of the so-called Seveso Directive on the control of major-accident 

hazards (Laurent et al., 2021). The growing severity of extreme natural phenomena, under the driving action 

of climate change, it is expected to increase the vulnerability to Natech risk. This multi-hazard risk involves 

different domains, including risk governance challenges, socio-economic context (Krausman et al., 2019), and 

implications from political/war instabilities. Recently, novel approaches have been proposed for multi-hazard 

natural disasters, potentially causing destructive damage to the process equipment (Huang et al., 2022). In 

this regard, machine learning techniques can be used to analyse data about past landslides and other 

accidents and to identify patterns or trends that can inform about disaster response and recovery efforts. The 

remainder of this paper outlines a novel framework, based on a Gradient Boosting algorithm to predict shallow 

landslides, integrated into a dynamic risk assessment system for early warning in major accident hazard 

facilities located in areas susceptible to landslides. A dedicated bow-tie approach is then adopted and the 

methodology is applied to a test case demonstrating current capabilities and future challenges. 

2. Theoretical 

2.1 Physically-based models 

Physically-based models for predicting landslides are mainly based on the Richards equation, which derives 

from the principles of mass conservation and Darcy's law and describes the movement of water through the 

soil and other porous media. The behavior of landslides is simulated under different conditions and it’s 

possible to forecast how landslides are likely to evolve over time (Mercurio, 2008). The use of physically-

based approaches requires knowledge about saturation conditions and pore water pressure, as well as the 

calibration of many parameters, such as hydraulic and mechanical properties of soil, the effect of vegetation, 

and local rainfall variation in space and time, which makes their use over large territories difficult to apply. 

2.2 Empirical models 

Empirical models, based on the observed data, are used when mathematical models are not able to 

accurately represent complex systems, or phenomena. As stated by Berti et al. (2012), an empirical model 

based on a probabilistic analysis can associate a reliability to a given landslide threshold, giving a probability 

distribution of the forecast. In particular, probabilistic Bayesian approaches can be useful tools for providing 

effective weather forecasting (Vairo et al., 2019) and develop a natural risk index (Ancione and Milazzo, 

2021). However, if the data used to build the model are biased, incomplete, or contain uncertainties, the 

results may be unreliable. These potential drawbacks can be addressed by using regression models, such as 

gradient boosted decision trees (GBDTs), to build up statistical models of the relationships between different 

variables. GBDTs are a type of machine learning algorithm that can be used to construct models of complex 

relationships between variables by combining the predictions of many simpler models. They are effective in 

handling large and complex datasets, even in presence of missing or incomplete data, without requiring 

preventive data cleaning or imputation. GBDTs can also be trained to handle noisy or unbalanced datasets, 

commonly encountered dealing with landslides. In this work, the open library LightGBM (Ke et al., 2017) was 

preliminarily tested and then applied for the developed approach.  

3. Assessing Natech risk by a dynamic perspective 

Climate change (with expected frequency increase) and energy transition (with possible novel hazards) 

evidence the need of advanced approaches to contain the Natech risk and correct land-use planning and 

management. As widely reported, Natech risk assessment (RA) is the process of evaluating the likelihood and 

potential impacts of natural hazards and technological disasters, such as earthquakes, landslides, and 

industrial accidents. The focus of risk assessment is to identify areas exposed to high risk for these types of 

events and to develop mitigation strategies This study aims to contribute to this challenge in relation with 

dynamic Natech RA of an LPG storage facility located in landslide sensitive area of located in Liguria (Italy).  

3.1 The predictive model 

The predictive model is built adopting as predictors five features, namely: the soil moisture of the area; 

accumulated rain over 3, 6,12, 24 hours in the area; peak rain over 3 and 24 hours in the area; day of the 

year. The soil moisture is identified as the relevant predisposing factor, while the accumulated and peak 

rainfalls represent the triggering factor. Since a precise knowledge of the exact time of the landslide 

occurrence is not available, the accumulated and peak rain data are calculated from 00 UTC and over the 

whole day. The dataset used for the model training and validation, was provided by the Ligurian Regional 

Environmental Protection Agency (ARPAL). An example of a soil moisture map obtained at 00:00 UTC 

together with the location of the rain gauges in the explored pilot area is shown in Figure 1. 
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Figure 1: Example of a soil moisture map and location of rain gauges in the investigated West area of Liguria 

region, Italy. (https://omirl.regione.liguria.it/). 

 

The whole province of Imperia was considered for the training and test of the model, to increase the number of 

observations. In fact, albeit the used dataset covered 6 years, from 2014 to 2019, occurrence of landslides 

was observed in 365 days only. Preliminary Data Analysis (PDA) shows that the landslides dataset is heavily 

unbalanced, since on most of the days no landslide events occurred, therefore, the number of events was 

classified for obtaining homogeneous classes, as shown in Table 1. The classified data are shown in Figure 2. 

Table 1: classification of landslide events 

Class (Label) Description Hazard level Nr events 

1 Few shallow landslides Moderate hazard 0-1 

2 Shallow landslides and rapid mud flows of limited size Medium hazard 2-3 

3 Slope instability High hazard 3+ 

 

During training and validation, the performance of the model on different datasets is measured, exhibiting a 

good accuracy, as shown in Figure 2 left-hand side. The metric is calculated based on the predictions made 

by the model and the true values of the target variable. It is used to measure the accuracy of the model as it is 

being trained and to guide the training process. The performance of the model on the validation set can be 

used to tune the model's hyperparameters and to assess the model's generalization ability, or its ability to 

make accurate predictions on unseen data.  

 

Figure 2: Classification of landslides events in the training and test set. 
 

The most appropriate metric for the purpose of the implemented model is multi log-loss. Multi log-loss is used 

to evaluate the performance of a classification model. It is based on the concept of cross-entropy loss, which 

is a measure of the difference between the predicted probability distribution and the true probability distribution 

for a given set of data. Multi log-loss is used to compare the predicted probability distribution for each class 

with the true probability distribution, which is represented by a binary indicator variable that takes on a value of 

1 for the true class and 0 for all other classes. As presented in result section, the prediction accuracy is 

represented by a confusion matrix presenting information about the true positive, true negative, false positive, 

and false negative predictions obtained by the model. The true positive rate (TPR) and false positive rate 

(FPR) can be calculated from the confusion matrix and are used to evaluate the model's performance. The 

consistency of the predictive model is evident by the calculation of the feature importance, which refers to the 

relative contribution of each feature (also known as a predictor, or input variable) to the model predictions 

(Vairo et al., 2023a). Features that are more important exert a larger impact on the model predictions and are 
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more relevant to the problem-solving item. As reported in Figure 3, the feature importance is measured by the 

coverage, i.e., the number of times that the feature is used to split the data into the model's decision trees, 

providing in this way a clear assessment of the model explainability. 

 

 
Figure 3: Model explainability assessment based on feature importance. 

4. Results and discussion 

Figure 4(a) presents the performance results of the training phase of the model. Figure 4(b), shows a 

graphical representation of the prediction accuracy by the confusion matrix. TPR, also known as sensitivity or 

recall, is the number of true positive predictions made by the model divided by the total number of positive 

cases in the data. FPR is the number of false positive predictions by the model divided by the total number of 

negative cases in the data. The landslide predictive model has a fairly good accuracy, even though a slight 

underestimation in identifying class 2 events is evident in the confusion matrix. As a refinement, an enlarged 

dataset is currently under testing, adopting different models and a wider and more detailed dataset, as long as 

new processed data are available. 

 

 
 

Figure 4: (a) left-hand side: metric during the model training. (b) right-hand side: confusion matrix. 
 

For assessing the Natech risk for an LPG storage facility in a landslide sensitive zone, starting from the 

framework outlined in Vairo et al. (2023b), the following interdependencies need to be thoroughly evaluated. 

1. How the Adversity affects the System. 

2. How the System, when subjected to the Adversity, delivers the Capability of interest. 

3. What is the quality of the Delivered Capability gaged against the Required Capability. 

In the analyzed case study, the Adversity is a landslide, the System is an LPG storage facility, and the 

Capability of interest is the system safety. Natech risk reduction implies reducing both likelihood and severity, 

in particular by implementing the efficiency of safety barriers and emergency response measures. The Natech 

hazard identification, showing the interaction between the landslide and the given technological installation 

including final outcomes, is schematized in Table 2 according to the form of unconditional event tree.  Here 

the role of personnel and management should be properly expanded to cover a number of relevant items e.g., 

procedures, education, accountability and motivation (Fabiano et al., 2022). 
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Table 2: Landslide triggered events on an LPG storage facility. 

Off-site  

event 

Operator error Abnormal load Failures Management Loss of service Triggered 

initiating event 

Consequences 

Landslide Containment 

degraded 

 

Failure to 

respond  

correctly to an 

alarm 

Internal 

temperature or 

pressure 

outside design 

limit 

 

Pressurization / 

under pressure 

Safety system 

degraded. 

 

Control system 

degraded. 

 

Containment 

system 

degraded 

Inadequate 

materials or 

specification 

 

Hidden defect 

in containment 

system 

 

Failure to 

detect 

dangerous 

situation. 

 

Failure of 

process 

controls. 

Loss of cooling 

water / 

nitrogen 

 

Loss of 

compressed 

air 

Rupture of 

pipe on a 

pressurized 

storage system 

 

Sudden 

catastrophic 

failure of 

vessels 

 

Failure of an 

excess flow 

control valve 

on demand  

 

Failure of an 

automatic 

shutoff valve  

closure 

 

Failure of a 

level / flow 

sensor 

Catastrophic 

failure - fireball 

and flash fire 

or pool fire 

 

Localised 

failure of a 

pressure 

vessel – jet 

flame and flash 

fire and 

possible 

explosion  

 

Pipe failures 

 

BLEVE of 

vessels  

 

Vaporiser leak 

jet fire, flash 

fire, and 

explosion. 

 

Leak inside 

cylinder filling 

plant - 

confined 

explosion 

 

The landslide initiating events presented in Table 1 are used to determine the landslide triggered events, by 

the means of a Bow-Tie centered on the pivotal event as depicted in Figure 5. Based on the bow-tie approach, 

it is possible to determine the initiating causes of an accidental event and the failure or operational disruptions 

possibly leading final damage outcomes.  

 

 

Figure 5: Simplified  Bow-Tie centred on landslide event. 

Table 3: Bow-Tie elements – landslide consequences / initiating events. 

Cause  Expected pdf value 

Rupture of pressurized pipe 1E-6 

Catastrophic failure 1E-9 

Failure of flow control valve 1E-5 

Failure of ESD valve 1E-6 

Failure of level / flow sensors 1E-3 
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As summarized in Table 3, the probabilities are evaluated by a MCMC sampling from the probability 

distribution determined from the predictive model. Each element is updated at new observation of the 

identified precursors i.e., Rain-cumulated, Soil moisture, and Rain-peak.  

5. Conclusions 

The landslide predictive model provided in general, a good accuracy, even if an underestimation is verified in 

identifying class 2 events, due to incomplete raw data. It was shown that of landslide event prediction has a 

considerable impact on the top events probabilities and the dynamically update of the risk precursors 

represents a relevant safety parameter allowing an early detection of a potential threat. As a refinement of the 

method, further investigation of the tuning parameters of the predictive model is underway, with a thorough 

sensitivity analysis covering a wider range of situations/configurations for improving the early warning ability. 
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