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This mini-review aims at strengthening the links among textile science, physics,
and mathematics. The state-of-the-art technology for silver ions’ release from
hollow fibers is reviewed, its bottleneck problems are identified, and some open
problems are elucidated. The release oscillation opens a new era for modern
applications of hollow fibers containing silver ions.
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1 Introduction

Hollow fibers have obvious advantages in that they are low density and have good
flexibility. Natural hollow fibers have even more amazing properties, for example, polar bear
hairs have remarkable thermal properties [1, 2]. Wang et al. elucidated the biomechanism of
the hollow hair of the polar bear using the fractal calculus with great success [3], Cui et al.
designed a biomimetic textile with good thermal insulation [4], and Liu et al. found a new
phenomenon of thermal oscillation in the thermal insulation [5]. Hollow-fiber liquid-phase
microextractionare is highly efficient for extraction of heavy metals and pharmaceuticals
[6–8]. The corresponding solvent, which should be of low polarity and immiscible with
water, is immobilized in the pores in the wall of hollow fibers and serves as a supported liquid
membrane. A larger number of reports have been published on the development of hollow
fibers as a green sample preparation technique requiring only a few microliters of organic
solvent per sample. Due to the protection of the acceptor phase by the supported liquid
membrane, hollow fibers are amenable to highly complex samples such as plasma, whole
blood, urine, saliva, breast milk, tap water, surface water, pond water, seawater, and soil
slurries [9].

The physical process of hollow fiber spinning always involves four steps: solution
formulation, extrusion, coagulation, and coagulated fiber treatment [10]. Thus far, the
electrospinning technique has been considered as a versatile and efficient method for the
fabrication of membranes with highly interconnected pore structures [11]. The flexibility of
device construction for electrospinning and the diversity of the post-treatment process to
electrospun membrane leaves vast scope for researchers to tailor the membrane structures
and properties; thus, polymeric nano-scale hollow fibers via electrospinning technology have
become popular, for example, bubble electrospinning might be a good candidate for hollow
fiber fabrication [12, 13].

This paper focuses on artificial hollow fibers containing silver particles [14, 15], with an
emphasis on the release oscillation [16–18].
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2 Antibacterial mechanism

Hollow fibers containing silver ions are widely used for
antibacterial and antifouling applications [19, 20]; when the fibers
are submerged in water, silver ions are gradually released from the
inner wall into the water.

Viruses and bacteria are generally quite small [21–23]. In
particular, some deadly viruses (e.g., the COVID-19 virus) have a
complex unsmooth surface, and a small surface has high surface
energy (geometric potential) [24–26], which can easily absorb silver
nanoparticles around the surface. The absorbed nanoparticles make
viruses and bacteria inactive [24].

On the other hand, silver ions react with water when ions are
adhered to the surface of bacteria or viruses:

Ag++H2O → AgOH +H+ (1)
Bacteria and viruses will be killed due to their exsiccosis and

hydrogen ions can react with macromolecules, which is the
mechanism of the antibacterial property of the hollow fibers
containing silver ions. Of course, however, a high concentration
of silver ions will be also harmful to human cells.

3 Capillary effect and diffusion process

The inner diameter of hollow fibers greatly affects the ions
release. A smaller diameter implies a higher capillary rise [27, 28]; as
a result, more ions can dissolve in water and the diffusion process
makes the ions release into the outside of the hollow fiber. Han and
He unlocked the secret of hollow fibers’ antifouling properties using
the capillary effect [29]. Environmental temperature and saline
water will affect the ions’ diffusion process [30–33].

Though hollow fibers with thinner diameters have better
capillary effect, the corresponding fabrication needs more costs,
meanwhile, the inner wall surface area is less, so there are less
loaded ions. The effects of the temperature on the diffusion process
and viruses and bacteria’s metabolism should also be considered,
as well as additionally the nanofluid mechanics [34–37] being of
paramount importance in studying the optimal design of the
hollow fiber’s geometrical structure and its effect on its
antibacterial properties.

4 Release oscillation and frequency
property

Due to environmental perturbation, the water in hollow
fibers is vibrated periodically, the mechanism of which was first
found in [17]. The vibrating water accelerates the release process;
however, the non-linear vibrations make it difficult to predict its
frequency properties. The governing equation can be expressed
as [17].

d2u

dt2
+ a + bu

L0 − u( ) u + u0( ) � 0 (2)

with initial conditions

u 0( ) � 0, u′ 0( ) � A (3)

where u is the capillary rise, a, b, and L0 are constants. The physical
understanding represented by each physical parameter is referred to
reference [17], and A is the initial velocity.

Solving Eq. 2 effectively is still an open problem. The possible
methods to solve Eq. 2 with the initial conditions of Eq. 3 include
mainly the homotopy perturbation method [38, 39], the Li-He
method [40–42], frequency-amplitude formulation [43], and the
variational principle [44].

For u, Eq. 2 can be approximately expressed as

d2u

dt2
+ a + bu

u0L0
1 + u

L0
( ) 1 − u

u0
( ) � 0 (4)

or

d2u

dt2
+ a

u0L0
+ 1
u0L0

a

L0
− a

u0
+ b( )u + 1

u0L0
− a

u0L0
+ b

L0
− b

u0
( )u2

− b

u0L0( )2u
3 � 0

(5)
This equation was studied in [45]; the quadratic non-linearity

will gradually consume the vibrating energy, and finally the vibrating
motion will stop (see the discussion in [46]).

5 Fractal-fractional model for ions
release

The unsmooth surface of the inner wall of the hollow fiber is
another important factor affecting the release process. Because any
physical laws are scale-dependent, the same phenomenon may lead
to debating theories if observed using different scales [47]. Capillary
effect plays an important role in the heat transmission of porous
media and capillary vibration significantly affects the capillary rise
or capillary pressure; therefore, the mass transfer or heat transfer will
be greatly affected [48]. Most capillary vibrations in the literatures
have assumed that the capillary tube is small and uniform; however,
capillary tubes are non-uniform in most porous media [24, 48]. The
capillary fluid moves extremely slowly, and its vibrations near its
equilibrium have an extremely low frequency [48]. Owing to two
types of capillary pressures (positive capillary pressure and negative
capillary pressure), the capillary pressure from porous media should
be taken into consideration [11]. Furthermore, capillary pressure is
affected by pore size, capillary pressure with different pore sizes has
been analyzed for the hydrophobic-hydrophilic interface in detail,
such as electrospun hollow nanofibers used in oil/water
separation [11].

The capillary effect has wide applications for
microelectromechanical systems and microfluidics devices, in
which the capillary vibration significantly affects its mass
transmission [48]. Nanofluid mechanics can be directly used for
describing the releasing process for the smooth boundary, so the
unsmooth boundary makes the release more difficult, but it is
amazing Wolfgang Pauli (1900–1958) once said that “God made
the bulk, the surface was invented by the devil”. The unsmooth
surface determines the release process and it can be modeled by the
two-scale fractal dimension [49] with ease. In the fractal space, Liu
et al. established a fractional model for the silver ions’ release
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oscillation [50]. The fractal-fractional model offers a new window
for studying the effect of the unsmooth boundary on the release
process. Fan et al. concluded that the fractal calculus plays an
important role in unlocking the mechanisms of natural fibers
[51]. Lu et al. provided two numerical approaches for finding the
approximated solutions of the time fractional Boussinesq-Burgers
equations without any linearization or complicated computation,
including the homotopy perturbation transform method and the
method based on the fractional complex transform and homotopy
perturbation method [52]. Afterwards, a numerical approach was
proposed for finding the approximated solutions of a fractal
modification of the Yao-Cheng oscillator based on the two-scale
fractal transformation and the global residue harmonic balance
method with He’s fractal derivative as well [53]. They also
proposed a combined technique for solving the fractional
modification of the non-linear oscillator with coordinate-
dependent mass [54]. Meanwhile, the numerical sensitive analysis
of the approximations were further considered with respect to
different amplitudes and parameters, confirming their high
efficiency and stability [53, 54]. Considering that two-scale
thermodynamics observes the same phenomenon using two
different scales, fractal calculus is adopted to establish governing
equations, and fractal variational principles are discussed for 1-D
fluid mechanics [47], modeling the ions’ release process from an
unsmooth boundary of the inner wall of the hollow fibers might be
possible.

6 Conclusion

Hollow fibers are now a research Frontier in textile engineering,
nanofluid mechanics, material science, non-linear science, physics,
and mathematics. This mini-review article provides a panoramic
view of the recent studies in this meaningful direction. It is still an
open problem to model the ions’ release process from an unsmooth

boundary of the inner wall of the hollow fibers; a mathematical
model for the fractal release oscillation might be more attractive and
promising. There is much opportunity and challenge, so this article
should be the beginning of future research, not only a review.
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