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Abstract

This dissertation shows that computer-based lighting control systems can support
the lighting design process considerably better than traditional consoles. It de-
scribes the Lula Project, a new software package for lighting design and control,
that implements this level of support. Lula’s focus is on the conceptual ideas be-
hind a lighting design rather than the concrete lighting fixtures used to put it on
stage. Among the innovative aspects of the system are its model for designing static
lighting looks and its subsystem for programmable continuous animated lighting.
Lula’s application design is centered around the idea of componential lighting de-
sign that allows the user to express a lighting design as a hierarchy of components.
Lula is a result of the rigorous application of high-level software engineering tech-
niques and implementation technology from the general realm of functional pro-
gramming. The high-level structure of the application rests upon stratified design,
algebraic modelling, and domain-specific languages. Among the implementation
techniques instrumental to Lula are automatic memory management, higher-order
programming, functional data structures, data-directed programming, parametric
inheritance, and concurrent programming.

Zusammenfassung

Computer-basierte Systeme fiir Beleuchtungssteuerung sind in der Lage, den Licht-
designer weitaus besser zu unterstiitzen als es derzeit marktiibliche Steuerkonsolen
tun. Das Thema dieser Dissertation ist ein solches System, das Projekt Lula. Lula
ist eine neue Software fiir Lichtregie und Beleuchtungssteuerung, welche die Model-
lierung der konzeptuellen Elemente eines Lichtdesigns ermoglicht, unabhéngig von
der konkreten Realisierung auf der Biithne. Unter den innovativen Aspekten des
Systems ist das Modell fiir den Entwurf statischer Beleuchtungsszenen sowie das
Subsystem fiir programmierbare, stetig animierte Beleuchtung. Das iibergeord-
nete Prinzip bei Lula ist komponentenbasierte Lichtregie, die es dem Benutzer er-
laubt, ein Lichtdesign als eine Hierarchie von Komponenten auszudriicken. Lula
ist das Resultat konsequenter Anwendung von Entwurfs- und Implementierungs-
Techniken aus dem Bereich der funktionalen Programmierung. Die High-Level-
Struktur des Systems baut auf stratifiziertes Design, algebraische Modellierung
und anwendungsspezifische Programmiersprachen. Unter den Implementationstech-
niken, die entscheidend bei der Entwicklung von Lula waren, befinden sich automa-
tische Speicherverwaltung, Higher-Order-Programmierung, funktionale Datenstruk-
turen, datengesteuerte Programmierung, parametrische Vererbung und nebenléufige
Programmierung.
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Hello... Who is this?...
... Sailor Ripley... Can I talk to Lula?
—SAILOR in Wild at Heart






Chapter 1

The Lula Project

Hey, my snakeskin jacket ... Thanks,
baby ... Did I ever tell you that

this here jacket for me is a symbol

of my individuality and my belief

in personal freedom?

—SAILOR in Wild at Heart

Lula is a computer-based system for lighting design and control. Its main focus
is theatrical production, but it also eminently suitable for lighting dance, musical
concerts, and industrial presentations.

Lula is a practical result of research in software engineering. Hence, its contri-
butions fall in two groups:

e The application of advanced software engineering methods leads to good soft-
ware design. In this case, it has led to a lighting system superior to commer-
cially available consoles.

e The application of of advanced software engineering methods leads to rapid
and reliable software construction.

This introduction gives an overview of Lula, both as a lighting control system and as
a software project. The former describes Lula from a lighting designer’s perspective,
whereas the latter will take on a software engineer’s viewpoint. A short history of
the project and an overview of the dissertation follow.

1.1 Lula as a Lighting Control System

A computer-based lighting console can support effective lighting design, drastically
save time during the design process, and boost creativity. The key to maximum
effectiveness of a lighting console is how close its user interface is to the thought pro-
cess of the lighting designer: a console with good conceptual modelling capabilities
can represent the design as it emerges in the mind of the designer.

Unfortunately, the conceptual modelling capabilities of existing consoles, even
extensively engineered high-end models, are not very well developed. Instead, these
consoles still view a lighting installation as a flat collection of fixture[] parameter
settings. As the operator of a lighting console creates the programming for a show,
she frequently needs to deal with low-level details which have no bearing on the

LA fizture is a general term for a source of light on stage. Chapter P contains an extensive
discussion of fixtures.
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lighting itself—the specific cabling path used to connect a fixture to the console,
channel assignments on multi-function lights, and how all of this relates to console
controls. In fact, modern computer-backed consoles still fundamentally operate at
the same level as the manual consoles of the 1970s.

Lula is a computer-based lighting system with a special focus on the design
process rather than the implementation details of a particular lighting installation.
It is substantially more effective than other consoles available on the market today.
Here are some of Lula’s technological highlights:

e Lula runs on ordinary computers, most notably PCs. This makes the system
easily implementable and extensible. Lula can cooperate with a wide range
of interfaces to connect to the electrical lighting systems of modern stages.
Specifically, it has full support for the ubiquitous digital protocol for control-
ling lighting, DMX512 [DMX512-1990, 1990, DINDMX. 1997.

e Lula operates at the conceptual level of a lighting design. The central idea
and chief innovation of Lula is componential lighting design which views a
lighting installation as a hierarchy of interdependent components. Compo-
nential lighting design reduces the complexity of operating the user interface
by and order of magnitude, and significantly eases creating a design as well
as making changes to it at a later time.

e A corollary to componential lighting design is the separation between the
concepts of a design and its actual implementation on a concrete stage. This
capability, called venue independence, allows touring productions to preserve
most of their light programming as they move from one stage to the next. As
time is usually very limited for setting up a stage, this is actually an enabling
technology: many designs are sufficiently complicated that conventional con-
soles will simply not allow finishing the programming in the time available.

e Lula has extensive support for animated light. Rather than treating animated
light as mere effects, Lula sees animated light as a continuous phenomenon.
This makes Lula suitable for creating light choreography, a feat extraordinarily
difficult with conventional consoles.

e Lula’s playback capabilities are based on a script, rather than the “cue lists”
of conventional consoles which are just numbered sequences of action. A
Lula script is actually a multimedia document, and besides offering advanced
capabilities for sequential and parallel playback, it allows storing all playback
information associated with a show; the operator need not refer to external
“track sheets” on paper.

As a result of Lula’s high-level modelling capabilities, the lighting designer can use
it during most of the design process, implementing ideas as they evolve, rather than
after the fact as is mostly the case with conventional consoles.

1.2 Lula as a Software Project

The application of advanced software engineering methods and of functional pro-
gramming language technology yields reliable and maintainable software an order
of magnitude more quickly than the methods currently common in industry.

As a software project, the implementation of a lighting control system poses a
number of challenges to software designers and implementors:

e Designing the lighting for any full-length production is a complex process. The
software must present a user interface which helps manage that complexity.
Internally, it must be able to represent the complexity of the design.
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e During the show itself, the lighting console functions live and in real time.
Moreover, as shows sometimes do not go quite as planned, the console must
offer extensive controls for live intervention.

e Light on the stage is one of the indispensable prerequisites for almost any
show (one person on stage and one in the audience being the others). Hence,
the software must function reliably.

In the particular case of Lula, it also had to be done very quickly. At the time
of writing, about six man-months have been available for the Lula project, one of
which was spent on hardware design and construction.

The techniques and technologies which were instrumental in bringing Lula to
life address two levels of the development process: structural modelling and imple-
mentation. Three important foundations for the modelling part were the following:

Algebraic modelling Algebraic modelling uses algebraic techniques like equa-
tional reasoning and abstract data types to define a semantic foundation for
the data the program deals with. Lula’s model for the design of static lighting
looks is based on careful algebraic design which has a well-defined semantics.

Domain-specific languages Domain-specific languages help structure large ap-
plications into a language capable of handling the problem domain concep-
tually, and programs in that language that solve actual problems from the
domain. In the case of Lula, domain-specific languages operate at several
levels: the cue algebra forms a small domain-specific language. Moreover,
Lula employs an embedded domain-specific language to express lighting an-
imations. It also provides a specialized stand-alone language called Lulal to
the user of the system which allows her to design her own animations.

Stratified design Lula’s core subsystems are organized as a stack of linguistic
levels building on one another: the cue system builds on the system for pa-
rameter settings, the embedded domain-specific animation language builds on
the cue system, and Lulal builds upon the embedded language.

The Lula code base depends on a number of advanced implementation techniques:
e automatic memory management
e higher-order-programming
e functional programming
e data-directed programming
e parametric inheritance
e concurrent programming

This combination is presently only available in advanced functional programming
languages [Thiemann, 1994, Hudak, 2000, Field and Harrison, 1988, Hughes, 1990].
Lula in particular is written in Scheme [Kelsey et al.. 1995], a particularly flex-
ible functional imperative language. It makes extensive use of the added fea-
tures of the DrScheme programming language environment [Felleisen et al., 1998,
Flatt et al., 1999].

Even though functional programming is still something of a novelty in industrial
development, the techniques cited above are really the folklore of the functional
programming community. Hence, Lula’s implementation is everything but rocket
science. However, as most work in functional programming still happens in the
research community, comparatively few complete end-user applications exist.



8 CHAPTER 1. THE LULA PROJECT

The rigorous use of formal modelling techniques and functional programming
has a deep impact on the development process has consequences far beyond shorter
time-to-market, improved reliability and lower maintenance costs.

The development of Lula has shunned some of the more conventional trends
in software engineering, in particular the use of object-oriented design, modelling
languages, and CASE tools. Moreover, Lula uses object-oriented programming quite
rarely, even though the environment it runs in has extensive facilities for it.

There is another aspect to Lula’s design, namely the application of modern
user-interface design techniques which play an important part in making Lula the
effective application it is. These techniques, however, are standard by now, and the
novelty is mainly in their application to an application domain which has ignored
them in the past. Hence, the particulars of Lula’s user interface construction are
not explicitly covered in this dissertation.

1.3 A Brief History of the Lula Project

In late 1996, Prof. Herbert Klaeren’s working group for programming languages and
compiler construction was preparing a presentation for the 1997 CeBIT computer
trade show. Our work is ordinarily not very well suited for such presentations, since
programming language research is by definition work necessary before a computer-
science-related product goes into production. Moreover, it is difficult to demonstrate
in 10 minutes the significance of an innovation which shows its benefits primarily
in large long-term projects. So we needed a demo.

One of my spare time interests is theater and specifically theater lighting. For
productions I directed, I usually insisted on doing the lighting design as well.

I had long been disappointed by the fact that although modern lighting installa-
tions have computer-driven operating consoles, these consoles operate on principles
which have not progressed very far since the 70s. As a consequence, creating the
lighting for a show always takes too long, the results are often less than satisfying.

More specifically, it also always took me too long, and much of the time I was
able to spend on creating a lighting design was spent operating the console or waiting
for someone else to do so. The ideas I had in my head about what a lighting design
should look like and what its structure is never seemed to translate very well into
what I had to tell the console. On several occasions, I have actually had changes
which should have been trivial to tell the console about delay the opening of a show.

I had long wanted to invest some time into the development of a new type of
console. The 1997 CeBIT proved to be a perfect opportunity: thus the first version
of Lula was born. Back then, the hardest part of getting Lula was interfacing a
computer to the electrical installation. I, having no prior experience in hardware
design and construction, got out my books on digital circuit design from the early
1980s. I hand-soldered the Lula 2000, a bulky logic design, in about four weeks,
starting five weeks before the CeBIT. That left one week for the software, just right
for demonstrating that the use of functional programming could actually help create
a complete application.

Thus Lula 1 premiered at the 1997 CeBIT. It already featured the fundamental
concepts of componential lighting design which form the cornerstone of the Lula in
use today.

After the CeBIT, Lula moved to the Brecht-Bau Theater, the University stage,
and the theater groups there have made extensive use of it in a large number of
productions. The original Lula 2000 also remains in use there to this day.

In late 1997 and 1998, Lula 2 was created, a more polished version of the original
Lula with largely unchanged functionality. Special emphasis was put into making
the program reliable—a crash on a lighting console is somewhat more serious than
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with other applications, and can be a very valid reason to reject a console and favor
another, even though it might be technically inferior.

In early 1999, an effort began to make Lula into a potential marketable prod-
uct. On the outset, this meant making Lula compatible with DMX512, the digital
protocol used on most major stages. Another hardware interface, the Lula DMX,
was the result. With this new addition, Lula toured extensively with U34, a local
theater outfit and thus received extensive testing in practice.

At about the same time, commercial DMX512 interfaces became affordable. As
a consequence, Lula’s driver structure now supports many vendors of such inter-
faces. Lula 3 was a major rewrite of many parts of the system. Besides many
additional bells and whistles, it was the first Lula to allow the creation of a lighting
script which obviates the tedious back-and-forth looking between a cue book and
the computer screen. Lula 3 was also more in tune with modern graphical-user
interfaced standards, and also was the first Lula to have a written manual as well
as a tutorial.

Lula 3 is the currently distributed version of Lula; used correctly, it is the most
effective console for theater lighting available.

When Lula 3 came out, many lighting designers who had tested it encouraged
me to extend Lula to also support concert lighting which is different from theater
lighting in many respects. Specifically, they requested support for moving lights
which is significantly harder than just doing theatrical lighting. Moreover, concert
lighting requires some sort of ,effect engine“ for the dynamic lighting common at
larger concerts.

So I went back to the drawing board for yet another rewrite. On my own, I had
concluded that the componential lighting idea had an underlying algebraic structure
which I wanted to explore. Also, in 1997, I had visited Conal Elliott at Microsoft
Research in Seattle who back then was working on a new declarative programming
model for reactive animation, by now dubbed Functional Reactive Programming.
By the time I started the work on Lula 4, I was pretty sure I could apply the same
ideas and programming techniques to put a programmable effect engine into Lula.
This happened, and Functional Reactive Programming is now actually responsible
for all light changes in Lula.

At the time of writing of this dissertation, Lula 4 is still in the prototype phase,
but well on its way to also become a finished production-quality application.

1.4 Contributions

To summarize, the main contributions of this dissertation are the following:

e This dissertation, to my knowledge, is the first systematic investigation of
computer-assisted lighting design and control. Prior work in this area was
mainly by the design departments of the various console manufacturers. How-
ever, as I argue in this dissertation, their results have been rather ad-hoc.
Grab’s excellent investigation of requirements lighting control systems is lim-
ited to theatrical lighting [Grab, 1999].

e Lula is the first lighting control system to support the novel idea of compo-
nential lighting design.

e This dissertation contains the first formalization of lighting look construction.
Lula’s cue model for componential look design is new and superior to that of
available consoles.

e Lula is the first system to apply reactive animation to the domain of animated
light. Lulal, Lula’s domain-specific language for lighting animation, is the first
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such language. Moreover, Lula is probably the first end-user application of
functional reactive programming.

e The Lula application itself is an indicator that functional programming lan-
guages are excellently suited for industrial-strength application development.

e The extremely rapid development time needed for implementing Lula shows
that modern functional programming language technology and programming
paradigms scale well to large-scale applications.

e Lula shows some possible avenues for improvement of programming language
technology to support application development even better.

1.5 Overview

The dissertation is structured in seven parts, this introduction being the first.
Part [ is a study of the application domain. The first chapter in this part discusses
the nature of the most important hardware in lighting—the light sources them-
selves. Chapter B discusses common protocols for connecting fixtures to control
electronics. Chapter [f is a very brief introduction to the basics of lighting design,
especially as they relate to requirements for lighting control software. Chapter H
reviews some of the more advanced commercially available lighting control systems.

Part [ offers a brief tour of the Lula software from the user’s standpoint.
Chapter B addresses the basic concepts of the system; Chapter [ covers advanced
issues, including animated light.

The architecture of Lula is the subject of part [V]. The first chapter in that part
discusses tools an techniques instrumental in the implementation of the system.
Chapter § gives a structural overview of the system viewed as a reactive network,
and the implementation technology used to connect its pieces.

Part M is concerned with Lula’s support for designing static lighting “looks”
from components. Chapter [[J establishes some requirements and prerequisites for
successful modelling of looks. Chapter [[1] is an extensive formal account of Lula’s
answer to the look construction question—its cue subsystem. This chapter also
contains some implementation notes.

Animated lighting is covered in Part [VI. Chapter [ contains an extensive
account of functional reactive programming, the implementation technology under-
lying the light animation. Chapter [ covers the application of functional reactive
programming to the application domain of lighting.

Part [VII offers some closing remark. Chapter [[4 assesses the success of the
system design and its implementation. Chapter [[J contains on outlook on future
work.
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I just think about things as they
come up. I never been much of a planner.
—LuLA in Wild at Heart

The application software designer does well in studying the application domain
thoroughly. The domain of stage lighting has many facets among which software
is only a small part. On the other hand, the software controlling the lighting for
a show is at the nexus of a number of processes, each of which requires specific
attention from the software designer. Some of these processes are technical, some
of them creative in nature, and lighting control software must support all of them
to be effective.

Moreover, electronic lighting control systems have existed for a long time. Hence,
the design of a new one must build on the experience gained from the use and
evaluation of previous systems. This is especially important in a field as tradition-
infused as stage plays, concerts and other live performances: the practitioners of
stage lighting are conservative in their adoptions of supposedly “new” methods—
and justly so: the methods in current use have been sufficient to create wonderful,
astonishing designs, and any new system must first prove that it can do what others
can do, and more.

Lighting a show has three basic interrelating aspects:

Design An idea of what the stage lighting should look like.

Hardware The light sources; the mechanical and electrical systems supporting
their operation.

Control The instructions given to the hardware to perform to their purpose; the
electrical or electronic systems which communicate the instructions.

This part is an overview of these basic ingredients of lighting design. In order to
be coherent to some degree, it touches upon a number of issues which are pertinent
to Lula, but whose realization in Lula is outside the scope of this dissertation. The
part starts off with the physical and technical: Chapter B describes the types of
light sources in use on contemporary stages as well as the electrical prerequisites
for making them work. Chapter B describe the protocols in use to communicate
control instructions to the electrical installation.

After the hardware, the design process is the subject of Chapter @ which gives a
brief and necessarily incomplete account of some of its methods. Finally, Chapter |
describes the control systems common in the industry today, and what they do to
support practical lighting design and operation.
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Chapter 2

Stage Fixtures

I love it when your eyes get wild,
honey. They light up all blue almost
and little white parachutes pop out
of ’em.

—LuLA in Wild at Heart

A fixture is a source of light on the stage—the fundamental prerequisite for stage
lighting. (Other words for fixtures are luminaire or instrument, or, specifically for
stage fixtures, lantern.) As lighting designers need complete control over all aspects
of lighting on stage, stage fixtures have a number of controllable parameters. This
includes, beside basic visibility and brightness, many other aspects such as direction,
distribution, color, focus, selectivity, beam shape, and so on. The lighting industry
has produced a stunning variety of different fixture types to cater to the demands
of the field. Modern multi-parameter light give remote control over many of these
aspects to the lighting console; a lighting control system needs to provide some
degree of modelling of such fixtures. For this reason, this chapter gives a basic
overview of the most common types of stage fixtures as a basis for lighting control
system design.

2.1 Parameters

A fixture consists of a lamp inside a housing. A stage fixture also has an optical
system consisting of mirrors and lenses, as well as a rigging attachment, typically a
yoke. This is only the most basic arrangement.

Stage fixtures allow control over a large number of qualities of the light produced.
Such a quality is called a parameter. Most parameters are “static,” referring to a
quality of the light constant over a period of time. Here is a list of the basic static
parameters:

Intensity or brightness. Changing the voltage applied to the lamp or adjusting an
iris or lamelle changes the intensity.

Color Color is an inherent quality of the lamp (possibly intensity-dependent), and
can be influenced by using colored gels (or filters) to block out parts of the
light spectrum. A particularly important aspect of light from the viewpoint
of the lighting designer is saturation, a particular aspect of color.

Direction Stage light is generally directional light, and always “points” in a certain
direction defined by the position of the yoke,

15
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Beam size Light leaves a fixture at a certain angle, possibly asymmetrically with
respect to the direction of the beam. The exit angle defines the so-called
spread of the beam. Moreover, the size and shape of the aperture in front of
the lamp also has an effect on beam size.

Beam shape A beam of light can have a shape different from a circle, or even a
pattern.

Beam focus Focus refers to the wavefront convergence of the light rays constitut-
ing the beam. On stage, focus is visible as a property of the edge of the light
beam which might be soft or harsh. Focus imbues a corresponding quality on
the objects it hits.

These are the static parameters. Some qualities of the light arise only indirectly
from the combination of several parameters such as distribution, flow and selectivity.
Moreover, the light of some fixtures have inherently dynamic qualities, most notably
the light flashes produced by strobes.

Depending on the fixture type, the operator may only have control over some of
the parameters. Moreover, the control may be manual: someone has to get up on a
ladder and adjust the parameter, and it will stay the same until the next adjustment.
Some controls are under remote control—the operator can adjust them from the
control system. Most fixture types allow remote control via a dimmer (see below).
Advanced, so-called multi-parameter fixtures, allow remote control over most if not
all parameters of the light beam.

2.2 Dimmers

The most important remote control for any stage fixture is its intensity. A device
able to gradually change the intensity of a lamp is called a dimmer.
With incandescent lamps, changing the applied voltage also varies the output.
In particular, modern dimmers work by chopping off parts of the output waveform.
Nowadays, dimmers mostly come in packs integrating a number of output cir-
cuits. Remote control is either by a small input voltage or current per circuit, or
via a digital protocol (see Chapter J).

2.3 Lamps

Household lamps are rarely suitable for use on stage. They do not have near enough
the required output power. Moreover, the frequent changes in intensity shorten the
household lamp’s life cycle to the point where it is no longer practical to maintain
a large number of them in an average stage situation.

Three basic methods for generating light are common in stage fixtures:

Tungsten sources Most stage lamps use a tungsten filament to emit the light, just
like household lamps. However, almost all tungsten stage lamps are halogen
lamps: the bulb is filled with a halogen which binds to evaporating tungsten
atoms, which eventually returns them to the filament. This greatly increases
the life cycle as compared to a vacuum bulb. It also reduces light and color
temperature in the output. Note that the relationship between input voltage
and the various output parameters is not linear. Figure P shows a diagram
of a section from a typical output distribution.

Discharge sources Discharge lamps contain two electrodes and an inert gas or
vapor. An electric arc between the electrodes generates the light. Discharge
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Figure 2.1: Partial characteristics of a tungsten halogen lamp.

lamps have a considerably higher efficiency than tungsten sources, and their
life cycle is longer.

However, a discharge source has to be “struck” to start it up by applying a
high voltage across the electrodes to break down the resistance within the gas.
After that, an electronic ballast regulates the current flowing inside the gas.
Striking usually takes about a minute or two; when the lamp is switched off,
it needs a cooling-down period before it can be restruck. Some HMI sources
with two-sided sockets can restrike immediately, however.

Discharge sources are generally not dimmable. Therefore, fixtures using them
use an iris or with a lamelle mechanism for dimming.

Fluorescent tubes are filled with vaporized mercury at low pressure which emits
UV light through electron excitation. A coating of sulfides, silicates, or phos-
phor converts the UV light to the visible spectrum.

Whereas household tubes are not dimmable, professional lighting tubes often
are. A dimmable tube has a heating circuit to keep the electrons excited at
low voltages. Special controllers are necessary for dimming which traditionally
hook up to standard triac dimmers. Recently, control systems which work
directly off a digital input signal have emerged.

Of course, more kinds of lamps exist, but their use on stage rare. Of those, sodium



18 CHAPTER 2. STAGE FIXTURES

vapor lights do have occasional use because of their intense yellow-orange light.

2.4 Gels

Color is a crucial part of lighting design, and lighting designers use it frequently. In
fact, many shows feature few or no fixtures with unmodified, “white” light.

Changing the color of the light of a fixture is only possible by subtracting parts
of its output spectrum. There is no way to generate wavelengths not part of the
original spectrum of the lamp. Gels or filters are typically dyed sheets of polyester
or polycarbonate which absorb certain wavelengths. Manufacturers of gels usually
put out palettes with dozens, if not hundreds of different colors.

A special kind of gel is the color conversion filter that changes the distribution
of blues and reds to adjust the color temperature of the light. Moreover, dichroic
filters work by reflecting the wavelengths they subtract rather than absorbing them.
Dichroic filters are made of glass with a thin layer of suitable chemical inside them.

A diffusion filter is a sheet of frosted plastic or glass fiber used to soften the
edges of the light beam. Directional diffusion filters stretch the exit angle along one
axis.

2.5 Theatrical Fixtures

In theater, the main goal of lighting is the illumination of the actors and the props,
conveying the action on stage. Nuances are at a premium, and even small stages
often employ large numbers of fixtures to create the lighting for a show. Hence,
a theatrical fixture usually fits a quite specific purpose. As moving-light effects
are rare in theater (and moving lights are expensive), control over all parameters
save for intensity is manual for most of these fixtures. Most stages have electrical
installations consisting of a dimmer array somewhere in a back room, with power
lines running from the dimmers to a rigging matrix under the ceiling.

2.5.1 Cycloramas, Floodlights, and Groundrows

Floods form the simplest fixture type: a flood consists only of a lamp, a reflector,
and housing. The beam produced by a flood is large, as is its exit angle. Hence,
floods light large areas on stage, and are not suitable for any kind of selectivity.
Nowadays, most floodlights are linear, containing a long, horizontal lamp, creating
increased spread as compared to a round bulb. Moreover, asymmetrical floodlights
feature a larger exit angle at the bottom to ease lighting walls from a fixture hanging
from the ceiling.

Figure B shows a cyclorama flood designed especially for lighting the large
cloths forming the wall of a stage. The figure also shows a more generic floodlight.

Figure B3 shows a special kind of flood, the groundrow, which is located on
the floor rather than at the ceiling. Groundrows are usually compartment floods,
consisting of a row of small floodlights.

Parcans Figure 24 shows a parcan, a simple fixture consisting of a so-called par
lamp and a simple tin or aluminum housing. A par lamp is an integrated unit with
a reflector and a lens sealed in. A par lamp produces a near-parallel beam, with
different lamp types producing different beam angles. There is no direct control over
focus which is entirely determined by the choice of the lamp. Since the par lamp is
a completely integrated unit it can run at high pressure—par lamps are particularly
bright and brilliant which makes them uniquely suitable to a number of applications,
specifically in concert lighting where bright, parallel beams are important.
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Figure 2.2: Cyclorama Flood (Strand Lighting Iris), Floodlight (Strand Lighting
Coda).

Figure 2.3: Groundrow (Strand Lighting Orion).

2.5.2 Plano-Convex and Fresnel Spots

The most common type of fixture in theatrical use is the plano-convex spot, or PC
for short. “Spot” is a generic term for all fixtures which allow control over the exit
angle of the light beam. Figure £.3 shows such a PC. A reflector is behind the lamp,
and a fixed-position lens is at the front of the housing. The lens is flat on one side
and convex on the other, giving the fixture type its name. The distance of the lamp
to the reflector and the lamp is adjustable, giving control over exit angle.

The lenses used in PCs often have a pebbled surface which diffuse the beam,
giving it a softer edge, while retaining its selectivity. PCs are usually equipped with
barndoors (as is the one in Figure B.§)—a set of four rotatable shutters at the front
of the fixture which allows some control over beam shape. Designers mostly use
barndoors to block out scatter light.

A variation of the PC is the fresnel spot which uses a Fresnel lens instead of a
plano-convex one. Fresnel spots are shorter and lighter than PCs, but produce a
softer, less-defined beam, but are otherwise comparable.

Figure 2.4: A par can (KLS Parcan 64).
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Figure 2.5: PC spot (Strand Lighting Alto).

2.5.3 Profile Spots

Figure 2.6: Profile Spot (Strand Lighting Optique).

Profile spots have a reflector-lamp-lens arrangement similar to a PC. However, un-
like a PC, a profile spot has a stationary lamp and a movable lens. A profile spot,
having a lens with a smooth surface, can produce a narrow beam with a very hard,
precise edge. Profile spots have an adjustable aperture just in front of the lamp
called the gate. A gate can accommodate a number of beam-shaping devices:

e a set of (typically four) shutters to make a three- or four-sided shape

e an iris, an adjustable circular diaphragm to alter gate size, or

0000609

Figure 2.7: Gobos.

e a gobo to create a pattern (see Figure B.7).

An extension of the basic concept of the profile is the variable-beam profile or zoom
profile which contains two, independently movable lenses in the housing. This
arrangement allows independent control over exit angle and focus. Figure £.6 shows
such a zoom profile; the two lateral knobs are attached to the two lenses.

A special kind of profile spot is the follow spot, used to create tight illumination
of a moving target. A follow spot is mounted on a railing or tripod, and has handles
for control by a dedicated operator.
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2.5.4 Fluorescent Tubes

Fluorescent tube lamps emit light very different from that of traditional incandes-
cent lamps. Their light is undirectional and very uniform. This makes fluorescent
tubes unsuitable for most traditional applications of lighting. However, since they
remain cold during operation, they can serve as scenographic elements on stage.

Recently, directional fluorescent fixtures have appeared on the market with sim-
ilar characteristics as the traditional incandescent fixtures. They have not yet be-
come common on the market, however.

2.6 Color Changers

The next step up in remote control from a dimmable fixture is the color changer.
Two basic types of color changers exist:

e A rotatable wheel is mounted at the gate which contains a discrete number
of gels. The operator can control which of the gels is in the path of the light
beam, and therefore choose a color from a fixed selection of about 6-12.

e Several independently rotatable wheels are mounted at the gate, each with
continuous coloring. Typically, there are three wheels containing shades of
cyan, magenta, and yellow to provide coverage of a large part of the spectrum.

2.7 Beam Shape Control

A number of devices are available to control beam shape:

e A shutter can blackout the light very quickly as well as provide strobe-like
effects.

e A movable lens can control focus and exit angle.
e A wheel with gobos can provide variable patterns.

e A variable frost can soften the edge of the light beam.

2.8 Moving Lights

Moving-light fixtures provide remote control over the direction of the light beam.
There are two basic types of moving-light fixtures, the the moving head and the
moving mirror. With a moving-head fixture, the lamp and the optical arrangement
itself moves. The lamp of a moving-mirror fixture remains stationary; its light
reflects off a movable mirror.

Moving lights are developing to the point where they are usable even in theatri-
cal environments. One of their main problems is noise generation—moving lights
usually need a cooling fan. The noise generated by the stepping motor is also
sometimes a problem.

2.8.1 Moving Heads

With moving-head fixtures, the parameters for direction control are pan and tilt
as dictated by the construction of the yoke. For a moving head hanging “upside-
down,” pan rotates the fixture in the horizontal plane, whereas tilt changes the
vertical angle. Figure E.§ shows such an arrangement.
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Figure 2.8: Moving head (Vari-Lite VL2400).

Figure 2.9: Moving head for theatrical usage (Strand Lighting Pirquette).

Simple moving heads are basically standard theatrical fixtures equipped with
motors for pan/tilt control. Figure B.g shows such a fixture; it is obviously a beefed-
up PC.

Sophisticated moving lights, mostly for concert usage, include an entire array of
controls in addition to direction alone. These fixtures also feature gobo changers,
color changers, adjustable focus and beam size, and shutters. Figure E.I0 shows
such a fixture.

Note that the electrical connections confine the angular movement of both pan
and tilt. Usually, tilt range is just over 180°, pan range just over 360°.

2.8.2 Moving Mirrors

A moving-mirror fixture puts the lamp, its optics and electronics in a non-moving
base and projects a light beam at a movable mirror. Moving-mirror fixtures are
often called scanners. Because a mirror is much lighter than the lamp and the
optical machinery, scanners can provide significantly faster moving effects. This
makes them primarily useful for disco and concert lighting. Since the light emitted
by a scanner is usually quite narrow and focused, it is mainly useful for specialized
tasks and for replacing zoom profiles.

Figure BT shows a moving-mirror fixture. It illustrates that the moving mirror
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Figure 2.11: Scanner/moving mirror (Martin RoboScan 918).

has tighter movement restrictions than the moving head.

2.9 Strobes and Other Effects

Strobes are special fixtures which give out a periodic series of very short light flashes.
This creates an impression of jerky motion.
Other light-related effects include:

slide, overhead, or video projections

mirror balls

pyrotechnics

artificial fog

“black lights,” UV light directed at materials that fluoresce under it

lasers
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Chapter 3

Protocols for Lighting
Control

Little Miss Muffet sat on a tuffet,
eating her curds and whey ... Along
came a spider and sat down beside her,
and extended his hand out to play.
—DMR. REINDEER in Wild at Heart

Any system for lighting control must interface to the actual fixtures in use or to the
electrical installation driving them. The lighting industry has created a multitude
of protocols and protocol standards for such interfaces; a fair number of them are
still in active use. The characteristics of these protocols determine the structural
design of both interface hardware and the software drivers for that hardware. Lula
is no exception in this regard—its development produced two separate hardware
interface designs, as well as half a dozen or so revisions of the driver structure.
Moreover, Lula can now drive a small zoo of commercial hardware interfaces (see
Chapter [ for details). Hence, a discussion of common protocols and their charac-
teristics is in order. This chapter is it. By nature, this chapter is concerned with
structure rather than details. The reader interested in the latter is referred to the
literature [Sandstrém, 1997, Hunfington, 2000].

3.1 The Control Problem

Chapter B has shown that lighting fixtures are complex devices: any ambitious
control protocol which claims to support these fixtures must be sufficiently general to
support all or at least most of their functionality. As fixture functionality increases,
the fixture control problem also grows:

1. The simplest setting is, again, an array of purely theatrical fixtures. The fix-
tures typically connect to dimmers (see Section P.2) which take input from the
control system. These fixtures have only one remote-controlled parameter—
intensity, essentially a number in a fixed range. With standard theatrical
fixtures, the viewer can distinguish somewhere between 250 and 1000 shades
of intensity. Moreover, the viewer can distinguish somewhere between 15 and
40 changes in intensity per second as separate.

2. Multi-parameter fixtures require control over more parameters. The numeri-
cal parameters—pan/tilt for example—frequently require a resolution greater
than that of the intensity control. (At a distance of just 10m, a deviation of
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1° in pan angle already moves the focus by 17cm.) Such fixtures generally
have their own control interfaces.

3. In addition to the parameter control problem—the fixture merely follows a
continually present or continuously retransmitted parameters—there is also a
command control problem: Some fixtures require discrete commands to change
to another state in operation. Examples include firing up discharge sources
or setting a mode of operation for the fixture. The control system must only
transmit such commands once.

As systems and control setups grow in complexity, two other protocol-related issues
arise:

Playback control and synchronization Lighting control falls in the general area
of show control which also involves, among other things, sound and pyrotech-
nic effects. Shows involving several such aspects often require synchronized
playback, for example between sound effects and light changes.

Feedback In large lighting setups with many fixtures, it is desirable to have central-
ized feedback about the proper operation of the installation. Control proto-
cols designed for this purpose must transmit back information about hardware
problems—blown bulbs, discharge sources gone out, motor problems etc.

Metainformation With the advent of hugely flexible multi-parameter fixtures, it
is desirable that the fixtures hooked up to a control system identify themselves
to the system rather than requiring the operator to name and assign them.

3.2 Analog Protocols

Analog protocols are the most simpleminded of protocols. They basically apply
purely to intensity control: a small, low-current voltage controls the effective output
voltage of a dimmer.[]

o Fully-mapped setups have a separate wire for each circuit, running from the
control system to the dimmer. Hence, a setup for, say 48 theatrical fixtures will
have 48 lines running from the lighting console to the electrical installation.

o Multiplexed protocols periodically transmit several analog voltage signals in
quick succession, resulting in packets of intensity values. This requires only
a single line. The electrical installation must demultiplex the signal onto the
dimmers.

A multiplexed setup is vastly more practical once the number of fixtures ex-
ceeds a certain number. However, there are increased demands on line quality.
Also, the electronics involved is considerably more complex. Note that the
electrical installation must maintain a small memory—typically a capacitor—
to preserve a dimmer intensity between packets.

Many dimmers still allow fully-mapped analog control. The industry seems mostly
to have settled for a voltage from 0-10V for a single intensity control.

Also, a number of proprietary multiplexed analog protocols exist. Strand’s pro-
tocols AMX192 (for 192 channels, later adopted as an USITT standard) and D54
(for 384 channels) protocols became especially popular in 1980s.

LA receding faction of dimming systems is current- rather than voltage-controlled.
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3.3 Digital Channel Control

The natural move from multiplexed analog protocols is to multiplexed digital pro-
tocols. The only difference at the electrical level is that the transmitted packets
consist of digital numerical values rather than values implied by voltage levels.

A number of such multiplexed digital protocols exist. They share a number of
characteristics:

e A single transmitter sends packets of numerical values to multiple receivers
hooked up to the wire. Thus, the topology of multiplexed-protocol control
networks is necessarily DAG-shaped. Protocol support hardware includes
boosters, splitters (for shipping a single signal to several destinations), and
mergers (for combining the packets of several signals into one by some arbi-
trary strategy).

e The transmitted packets have no intrinsic structure; they are merely sequences
of numbers.

e The association between number positions in a packet (so-called slots) hap-
pens at the receiving end: All receivers receive all the slots, but only pick out
a few.

e The control system re-transmits the packets periodically.

Whereas the structure of these protocols still reflects the original, limited purpose of
controlling intensities only, the digital nature of these protocols makes it reasonably
easy to also (ab)use slot values for controlling other parameters. However, the
protocols themselves contain no provisions for structuring the packets according to
these requirements.

A number of proprietary such protocols exist, among them examples CMX (Col-
ortran), K96 (Kliegl) and the AVAB protocol. By now however, they have all but
been replaced by DMX512. The latter is sufficiently omnipresent in the industry to
deserve its own section.

3.4 DMX512

DMX512 [DMX512-1990. 1990, DINDMX, 1997] is a standard developed by the
lighting industry starting in 1986, and turned into various official national standards
in 1990. Here is how it basically works:

e On the electrical level, DMX512 is a serial protocol based upon EIA-485, the
same standard as used for Ethernet, for example. Its transmission speed is
250 KBit/s.

e The control system periodically transmits packets of up to 513 bytes or slots.
The first byte is reserved; 512 slots remain for actual control information.

e There is no feedback and no handshake; the receivers are responsible for de-
coding packets and picking out the slots meant for them.

e The standard requires receivers to retain the values of transmitted slots for
at least one second, but not indefinitely.

e The packets can contain less than 512 slots. With full-sized packets, the
maximum transmission rate is about 44 packets per second.
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The latter attribute of DMX512 requires transmitters to keep transmitting packets,
even if their content does not change. Conversely, when a DMX512 signal stops, or
if the gap between packets exceeds one second, dimmers and fixtures have the right
to stop operation. This unfortunate property, combined with the susceptibility of
the electrical side of the protocol (proper bus termination, interference) frequently
leads to connectivity problems, inherently unreliable setups and wild-goose-chase
debugging. The lack of feedback is especially regrettable in this context. Moreover,
since there is no telling whether a given fixture on the bus has received a packet,
DMX512 is less than optimal for command control.

A new version of of DMX512 is in the making [DMX512-2000, 2000]. However,
compatibility requirements as well as quibbling between the vendors involved in the
process has prevented exciting developments. The new standard will, however, have
rudimentary provisions for feedback and the transmission of text.

In the special context of interfacing standard computer hardware with a DM X512
bus, special issues arise which reflect in design choices of the interface hardware and
corresponding requirements for the driver software:

e Volatile devices which rely on software to actually drive DMX512 packet gen-
eration. Volatile devices are often straightforward converters from a standard
hardware protocol such as Centronics or RS232C to DMX512. The second
hardware interface which grew out of the Lula project, the Lula DMX | is an
example. They do not have internal buffer memory. Thus, volatile devices
will cease to produce output when they do not receive input.

e Persistent devices have an internal buffer memory for the packet slot values.
The hardware continually generates DMX512 packets from the buffer. The
computer controls the DMX512 packets by modifying the buffer memory.

3.5 Feedback Protocols

The next step up from simple multiplexed protocols is the addition of feedback,
providing the control system with information about the proper operation of the
installation, advising control system and operator about real and potential prob-
lems.

Since feedback already implies bidirectionality, it is only a small step to truly
bidirectional protocols. Now that networked computers have become so ubiquitous
and with the simultaneous success of Ethernet, most current developments of such
protocols indeed use Ethernet as a substrate. Examples include AVAB’s AVABnet,
Strand’s ShowNet and ETC’s ETCnet.

However, no clear standards have crystallized as of yet. ESTA’s control protocols
working group is, at the time of writing of this dissertation, working on ACN—
Advanced Control Network—an ambitious standard for building lighting control
systems [ESTAZ000, 2000]. The ACN effort includes provisions for the following
facilities:

Automatic Resource Allocation Special nodes in the network—so-called ses-
ston managers—manage the allocation of protocol slots to other nodes in the
network.

Error Detection and Diagnostics Recipient nodes of control can communicate
back error information and diagnostics.

Dynamic Configuration The network can react to and deal with changes in the
membership of the network.

Resource Sharing The network can include several control systems.
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Metainformation Devices hooked up the network can communicate their func-
tionality and parameter mapping to the control system(s). A special Device
Description Language (DDL) is being invented for this purpose.

3.6 Playback Control and Synchronization

The final issue in protocol design is the coordination between different components
of show control. Two separate approaches to the coordination problem exist:

Absolute time One means of coordination is to use absolute, coordinated time.
Two standardized protocols exist for this purpose: the ANSI-standardized
SMPTE Linear Time Code, and the MIDI Time Code that is part of the
MIDI standard in music [MIDI, 1996].

Synchronization The other means of coordination is sending playback signals
from one control system to another. The most popular method for doing this
is MIDI Show Control (MSC) designed specifically for this purpose.
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Chapter 4

Basics of Lighting Design

You see, Johnnie. I toucha number
one bottle once, I toucha number two
bottle once, and I touch your face.
This is a game we love to play.
—JUANA in Wild at Heart

This chapter gives a short account of the technical basics of lighting design. The
material presented here draws from established sources in the literature on the
subject but puts a special emphasis on the specific aspects affecting the design of
lighting design systems. It is directed at readers who have had no or little prior
experience in lighting design to provide a feel for the process of lighting design.

The presentation exhibits a bias towards issues affecting then design of con-
trol system. Consequently, the treatment of some areas have been simplified com-
pared to more comprehensive treatments of the subject. Specifically, the chap-
ter contains no material on matters such as production style analysis, designer-
director communication, or safety. The interested reader may refer to the extensive
body of published literature [Reid, 1987, Shelley, 1999, Reid, 1993, (Gillette, 1989,
Fitt_and Thornley, 1992].

Furthermore, lighting design is both an art and a craft. At its best, stage lighting
possesses expressive power comparable to that of an actor. Consequently, no single,
true “method” for creating the lighting for a stage production can exist. The field
has many rules of thumb and general guidelines—proficient designers break them
all when it fits their purposes.

4.1 Purposes of Stage Lighting

Stage lighting differs radically from conventional room lighting, both in its range
of purposes and its complexity. Consider the following selection of functions stage
lighting can perform:

INlumination Lighting is necessary to make things and persons visible on stage.

Modelling Lighting serves to highlight three-dimensional structure, of actors’ faces,
dancers’ bodies, set pieces, set spaces, etc.

Focus Lighting can emphasize people, specific areas, and set pieces at the expense
of others.

Representation of the Environment Lighting can represent aspects of the en-
vironment such geographical location, season, weather, time of day, and tem-
perature through lighting characteristic to these conditions.
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Creation of Atmosphere Human emotion reacts strongly to light as a source of
mood. Stage lighting can exploit this.

Transition Lighting often changes to mark transitions in the chain of events on
stage.

Pacing Animated light can provide pacing to a stage show.

Hiding Lighting can hide things or events happening on stage, for example by
drawing away the focus from them or by blinding the audience momentarily.

Painting Especially in concert lighting, the light itself can be the focus of audience
attention rather than objects it might illuminate. This applies specifically to
animated, moving light.

4.2 Lighting a Subject

For a given show or event, some part of the lighting will usually be chiefly for
illumination—making someone or something on stage visible. At first, this may
seem a simple job—just point some fixture at the subject head-on. Unfortunately,
this is rarely sufficient or appropriate. This section focuses on lighting a single
person on stage.

4.2.1 Directional Lighting

For lighting a single subject, it is important to consider the specific effect of light
coming from a single direction. Mere visibility is usually enough: for an actor,

Figure 4.1: Front light [Gillette, 1989].

the audience needs to see facial gesture. Directors in theater often use spatial
arrangements to illustrate relationships. For understanding dance, it is crucial to
view it in three dimensions rather than just two. Figure 1] shows a with head-on
so-called front light. 1t appears flat; the light hits the face at right angles, gets into
most of the facial crevices, thus effectively obliterating most facial features.[]

Changing the direction of the light to come more from the side improves the
visibility of facial features. Unfortunately, now one side of the face is much more
visible than the other—depending on the specific angle of the light. This is usually
an unwanted effect, and the resulting image looks unnatural. The specific effect
of emphasizing the three-dimensional aspects of a face, body or set piece is called
modelling.

1Drastic make-up can recover some of the facial structure, but at an obvious cost.
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As far as illumination and modelling is concerned, using a single light source
from any direction usually has desirable as well as unwanted effects. Here is a
summary of the directional possibilities, as seen in the horizontal plane.

Figure 4.2: Down light [Reid, 1987, Gillette, 1989].

Down light Down light is vertical light from above. It provides a very specific
focus on the actor, but does not illuminate his face. As the light moves slightly
to the front, facial features become visible. Facial extremities—typically the
the eyebrows, the nose, and the chin throw dramatic shadows.

Figure 4.3: Front light [Reid, 1987].

Front light As the light moves from the vertical axis to the front, facial features
become more visible. However, as it reaches the horizontal, just like with down
light, the quality of the illuminated face will decrease. Moreover, horizontal
front light illuminates a corridor behind the actor, throwing a large shadow.

Figure 4.4: Side light [Reid, 1987, Gillette, 1989].
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Side light As lighting moves from the vertical to the side rather than the front,
both modelling and visibility increase on the side the lighting comes from.
As with front lighting, the more the light moves towards the horizontal, the
larger the area illuminated will be.

Figure 4.5: Back light [Reid, 1987, Gillette, 1989).

Back light Light coming from behind the actor does not illuminate the face di-
rectly, but creates an enhanced impression of depth.

Figure 4.6: Light from below [Reid, 1987].

Light from below In most stage environments, light from below will necessarily
have to come partly from the front. While such light generally has a simi-
lar effect on face visibility and modelling as down light has, the reversal of
direction creates unnatural-looking effects. Hence, lighting designers usually
employ light from below to achieve very specific effects. Moreover, lighting
from below creates shadows bigger than the subject.

Of course, the actor will not always face the front, and, by moving, change the
specific direction of the incident lighting. The general effect of light coming from a
single direction is always the same, however.

4.2.2 Composite Lighting

The discussion of the previous section suggests that a single source of light is usually
not sufficient for lighting a person on stage. Instead, a lighting designer usually com-
bines several fixtures to achieve composite lighting with good modelling properties,
hopefully eliminating adverse effects emanating from specific light sources.

The standard approach to lighting a subject on stage is to use three fixtures, two
coming diagonally from the front, one coming from the back, with approximately
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Figure 4.7: Light from three primary angles [Reid, 1987, [Gillette, 198Y].

120° between them. Figure 77 shows this arrangement. Since the fixtures usually
have independent dimming controls, the designer can vary modelling and other as-
pects of the lighting, such as directional motivation simply by changing the relative
intensities of the lights involved in lighting a single subject.

Many variations on this combination exist: the exact incident angle of the back
light is not important—especially on small stages, it is often a straight down light.
Also, the exact angle of the two crossed lights from the front may vary. Often, the
stage arrangement will prevent exact adherence to the arrangement—at the sides of
the stage it is often not possible to position a third light in an appropriate position.

‘  Py

Figure 4.9: Light coming from four primary angles [Reid, 1987].

Furthermore, balanced lighting is also, to some degree, possible with two lights
(see Figure [.§). Four lights as shown in Figure .9 provide even more flexibility.
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4.3 Color

Color is a crucial ingredient in lighting design: a subtractive gel attached to the
front of an fixture changes the color of the light it projects. Color is a powerful
means for influencing what the audience sees. Color conveys information about our
environment, and influences our mood. Lighting designers employ gels frequently
for a number of purposes:

Colored light This is the most obvious use of color: create light of specific, per-
ceptible color.

Canceling out non-linearities The light from incandescent sources most com-
mon in stage lighting changes its color as the intensity changes. The brighter
the glow, the more its color spectrum moves towards white. At lower intensi-
ties, it will move visibly towards yellow and red. Since gels have a subtractive
effect on the light passing through them, they can balance the spectrum across
the intensities.

Modelling Having several lights trained on a single subject as explained in the
previous section means that the designer can equip them with different colors.
A careful selection, for example of peach and rose colors with steely blues for
the front light, can enhance the modelling qualities of the light without visibly
projecting a specific color.

Atmosphere Colored light can create atmosphere and convey a mood. Warm
colors in the yellow/red spectrum are “cheerful,” colder colors, green and
blue, create an unhealthy, sad atmosphere.

Environment Colored light can convey environmental attributes, such as time,
place and weather. Even subtle aspects of the environment such as humidity
have their expression in lighting.

Note that unchanged “white” lighting from stage lighting fixtures frequently looks
unnatural, as it does not correspond exactly to any light either in natural outdoor
lighting or typical indoor lighting.

4.4 Secondary Targets for Lighting

So far, the focus has been on lighting a person or stage piece—a (three-dimensional)
subject. Lighting makes the subject visible, and helps in defining its visual qualities.
Some light will be focused on different targets, however, depending on the function
it is to fulfill.

4.4.1 Atmosphere and Environment

Whereas light on the subject focuses on making someone or something on stage
visible, atmospheric and environmental lighting works by some quality of the light
itself rather than of something that reflects it.

Conveying atmosphere and environment through light is often a function com-
plementary to the primary task of lighting a subject. Hence, lighting designers
will often use separate fixtures to create and change atmosphere and environment
during the course of a show.
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4.4.2 Walls and Backdrops

Walls and backdropsf] are usually flat surfaces. Backdrops may have elaborate scene
paintings on them that require as much attention as human subjects do. With the
rich textures common for these surfaces, the direction of the lighting does not much
matter. Separate floods positioned above or below the surfaces do the job.

4.4.3 Simulating Real Light Sources

Often, a set implies the presence of an actual light source, such as the sun, the moon
or lamps positioned inside a room. Especially in naturalistic sets, special fixtures
create effects similar those the actual light sources create. It is rare that an actual
light fitting—a practical—is sufficient to create its own effect. Typically, the rest
of the lighting is relatively much brighter than household lights, and the designer
adds further theatrical lights to complete the picture.

4.4.4 Effects and Projections

Special lighting fixtures can create a wide range of special effects. Here are some
examples:

Projections A light projects a slide or video onto a solid or semi-transparent screen
(from the front or from the back) or onto smoke.

Shadow projections The lighting designer paints a shape on a rigid piece of trans-
parent material and uses a light to project the resulting gobo onto a surface.

Strobes Strobe lights give a fast series of light flashes, making the action appear
to be frozen into a jerky series of still frames.

Black lights Black light is suitable for scenes where only very specific objects or
part of them are visible.

Gauze Gauze curtains, when lit only from the front appear opaque. Removing the
front light and lighting the scenery behind the curtain can make it “magically”
appear.

4.4.5 Corrective Light

Some lights have the sole function of eliminating odd effects created by the rest
of the lighting installation. They serve to eliminate unwanted shadows and blind
spots.

4.5 Lighting the Stage

The previous sections have primarily dealt with lighting a single subject at a time,
or creating a single effect at a time. Ultimately, the designer needs to light the
entire stage, resulting in a complete stage picture—a so-called look. This section
describes a common procedure for placing and combining the available lights to
create a coherent look. Again, hard rules do not exist in the field. A designer might
employ an entirely different approach.

2A backdrop is a large cloth at the back or the side of the stage, sometimes with a painted
motif.
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4.5.1 Playing Areas

Even though a finished look might create the impression of uniform lighting when
uninhabited, a given production will have certain focal points: places where actors
or musicians perform crucial actions, or stay for longer amounts of time. The stage
action might dictate the choice of focal spots. Also, seating furniture, doors, or
bars might create natural areas of focus. Typically, a designer will determine the
playing areas from the groundplan and from discussions with the director or stage
manager.

door -l

drinkg
table

side
table
window
US Chair

@ DS Chair

Figure 4.10: Sample groundplan.

Figure .10 shows a sample groundplan. The furniture—the sofa and the two
chairs (“DS” is for “downstage” meaning closer to the audience; “US” correspond-
ingly is for “upstage”) are the focal points of three natural playing areas, as are the
drinks table, the side table, the door, and the window.

{door -l

side
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Figure 4.11: Sample groundplan with playing areas.

Lighting the focal spots creates playing areas—usually roughly circle-shaped
areas on stage. The size of the playing areas depends on a number of environmental
factors: the distance between the fixtures and the area, the opening angle of the
fixtures used, use of shutters etc. A diameter of 6-10 feet is normal for a single
playing areas. Figure f.I1 shows the sample groundplan with the central playing
areas drawn in.

Often, the playing areas intersect or create gaps between them. Intersection re-
quires careful coordination in colors and intensities of the intersecting areas. How-
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ever, at this stage of the design process, it is usually not a matter of concern yet.
In some cases, floor coloring or texture will have a strong effect on the visual im-
pressions created by intersections. In that case, some prior planning may be in
order.

drinks
table

Figure 4.12: Sample groundplan with primary and secondary playing areas.

As for gaps, they typically create require separate lighting, creating secondary
playing areas. Extending and slightly moving the primary playing areas where
appropriate, and adding secondary areas creates complete coverage of the stage.
Figure T4 shows the modified groundplan. Note that the primary playing area
around the drinks table has disappeared—there is no way to place the secondary
area without lighting the table separately. As long as no pointed focus on the
table is necessary, this arrangement should be sufficient. A similar rearrangement
is possible for the side table. The small gaps still remaining will either disappear
“by themselves” by adjustment of the lights for the existing areas; where necessary,
the designer can add additional fixtures to fill the gaps later (see Section £5.3).

The division of the groundplan into playing areas is the first step in the design
process, creating a basic lighting arrangement. The planning of atmospheric and
environmental lighting, practicals, and special effects is separate from this. In the
particular arrangement of Figure LT3, it might be suitable to plan for additional
back light beyond the door and the windows.

4.5.2 Fixture Placement

Next on the list is determining positions for the fixtures. This happens with the help
of a special groundplan which includes the pipes and booms and all other rigging
equipment, a so-called rigging plan. Occasionally, it is not possibly or inordinately
costly to move the fixtures. In that case, determining fixture placement reduces to
assigning the existing fixtures to functions within the lighting plan.

The plan in Figure -IZ shows that even a small production, involving only
handful of playing areas and specials, requires a large number of fixtures, especially
when the designer strives for three-source or even four-source lighting for any given
area.

Figure .13 shows a typical arrangement from such a plan. Three adjacent
playing areas require two front lights each, coming in at an angle. This results in a
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Figure 4.13: Fan setting.
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Figure 4.14: Partial rigging plan.

so-called fan setting, where fixtures lighting different playing areas are interleaved
on the pipes.

Complete rigging plans are usually large. The dense arrangements might even
involve several overlays. Figure .14 shows the beginning of such a plan, with
three-angle lighting for the sofa, two-angle lighting for the chairs, and two blue
floods upstage.

A complete rigging plan will also indicate gel colors, and the assignment of
dimmer circuits to fixtures. In environments with a limited number of circuits (this
actually being the norm), it might be necessary to switch several fixtures to a single
circuit. In this case, the rigging plan also includes the relevant information.

Once the rigging plan is finished, the actual onstage work can commence: the
fixtures are hung and connected.

4.5.3 Coloring and Focusing

The next phase in lighting is pointing each fixture at its target, making the necessary
adjustments to the shape of its beam and inserting the appropriate color gel. This
process is called focusing.
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Since with most fixtures the main concern is lighting actors, the lighting designer
will walk around on stage during the focusing. (When the set is particularly tricky
or spectacular, it might be necessary to light the set per se first and determine
later if the resulting lighting is sufficient for the actors.) An operator will turn on
the lights one by one, and the designer will usually use her shadow (or a pair of
sunglasses) to check that the light is actually hitting her.

The secondary concern with focusing is to curb unwanted light: almost every
fixture will throw light at places which do not need it, or, worse, where it creates an
unwanted effect. When the designer is lucky, the stray light is mostly on the floor
or offstage where it does not cause any harm (unless the floor is white ...). When
it is not possible to completely block out the unwanted light, the lighting designer
typically applies two principles to solve the problem:

e Soft edges are less noticeable than hard ones. PCs and Fresnel spots allow
the necessary adjustments to create a soft edge. For profile spots, frosts and
diffusion filters do the job.

e Where possible, beam edges should coincide with edges on the set, or on the
proscenium. Almost all theatrical lights have shutters or barndoors for this
purpose (see Chapter ).

For a lighting designer, scatter light is the enemy as it is not under the control of

the designer. Because of this, most stage floors and bare stage walls are black.
After the individual lighting of each playing area, the designer still needs to check

if there any gaps (sometimes called black holes) remain between them. Eliminating

them might require readjustment, and, in some cases, hanging additional fixtures.
The rigging and focusing phases are often interleaved.

4.5.4 Intensity Adjustments

With multi-angle light for a single acting area, the fixtures involved will need sepa-
rate intensity adjustments to achieve smooth illumination as well as good modelling.
Therefore, making and noting down the relative intensities needed for lighting each
playing area is next on the plan.

The lighting for the separate playing areas, merely taken together, will typically
not result in a smooth look for the entire stage. Even though each area has a good
intensity balance “internally,” they will not convey identical intensities when seen
together.f] This requires another round of adjustments, keeping “internal” relative
intensities constant and only varying “external” intensities. Moreover, the coloring
or beam shape of adjacent playing areas might not work well together, requiring
more fixture adjustment.

When the basic lighting is finished, it may be necessary to introduce specials
to eliminate unwanted shadows. Finally, the designer will put the basic light in
conjunction with the atmospheric and environmental lights, and add the other ef-
fects to create an arsenal of looks. Ideally, the arsenal will cover the entire range of
lighting situations during the show.

4.6 Assembling the Show

The final phase of preparation for a show is arranging the finished looks into a
sequence. This brings time into the purview of the lighting design. Most shows
are essentially sequences of scenes with fixed looks and with controlled transitions

3 “Perfect sight” seems to be almost as rare as perfect pitch.
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between them. Such a transition is called a fade. As looks by themselves convey
static properties of the stage picture, transitions between them show change:

e Simple transitions simply separate scenes from each other. (Actually, the
simplest of all transitions are blackouts for the sole purpose of allowing set
changes to happen in the dark.)

e A change in focus can draw the attention of the audience from one aspect of
the stage to another. For a set with several locations present on stage at the
same time, a focus change can prepare a shift of the action from one setting
to another.

e Subtle changes in atmospheric light can underline atmospheric changes in the
action.

e Changes in the environmental light suggests environmental dynamics—the
passing of time, or a change in weather.

e Generally, all changes in color can effect transitions in all aspects on which
color has an impact (see Section [.3).

These are only examples—as with the static aspects of lighting, the functions tran-
sitions can take on are limited only by the designer’s imagination.

The arrangement of fades usually happens in close coordination with some sort
of script—this might be a play script or a rough list of what will happen during a
show. Cross-references are necessary to ensure that both remain in synch.

In addition to the pre-scripted sequence of transitions, it might also be necessary
to arrange for any number of manual controls for aspects of the lighting the show
operators needs to operate live. For theatrical productions, the only manual control
might be for the curtain call lighting. Concert lighting typically requires large
numbers of manual controls.

4.7 Concerts and Moving Light

Concert lighting emerged fairly late into a discipline by itself—in the 1960s. Hence,
the specific body of established requirements and techniques for concert lighting is
by far not as developed as for theater lighting. Documentation is scarce. Hence,
this section can only give the briefest glimpse of concert lighting as it touches
upon console design. Again, the reader is referred to the literature for a better
insight [Moody. 1998].

Lighting for concerts has some of the same functions as theater lighting: the
audience wants to see the musicians on stage. Also, more and more big rock bands
erect theatrical sets on stage. However, concert lighting has two major elements
theatrical lighting usually does not have: effect lighting and dynamic manual con-
trol.

Effect Lighting The main departure in concert lighting is the use of lights not
meant to illuminate something on stage. For a concert, most of the lights typically
point into the air. The audience sees the light beams themselves, and the dynamic
patterns rhythmic patterns they paint as they go on and off and as they move.

This is mostly the reason for the development of the large range of moving lights
(see Chapter f]): the beams of moving lights can create startling visual impressions:
fans that open and close, sweeps of the audience, circular motions, combined inten-
sity and direction changes like ballyhoos etc. Movement of the lights is, just like a
form of dancing, a visual support of the music.
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Dynamic Manual Control Whereas departures from a preestablished sequence
of events are rare (and usually unwanted) in theater, they are the norm in concert
lighting: the band might simply change the order of the songs, improvise or do
other unpredictable things.

Consequently, the job of the playback operator is significantly harder than in
theater: she needs direct simultaneous manual access to a large number of possible
light changes and effects. Several effects might have to happen simultaneously.
Moreover, the operator requires additional control over parameters such as the
speed of dynamic effects, relative timing, and relative positioning.

4.8 Lighting for Other Occasions

A number of other event types require professional lighting and professional lighting
design. Their requirements vary. Some examples:

Dance already mentioned briefly in Section E-21], has all the requirements of the-
atrical lighting in three dimensions. In addition, dance often requires follow
spots or moving lights to create a special focus on a single dancers.

Musicals combine elements from theater, dance, and show lighting. The premium
is usually on effects, not nuance.

Variety shows such as galas and award presentations draw from a large variety
of presentation forms and, therefore, elements from all disciplines of lighting.

Industrial presentations are usually instances of show lighting: effects are re-
quired. Special circumstances arise from the fact that the object of lighting
is often a thing rather than a person.

Sports events With big sports events, the chief difference is in dimension which
requires coordination between many lighting designers and operators.
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Chapter 5

Lighting Consoles

That’s a double-barreled, sawed-off,
Ithaca shotgun with a carved pistol
grip stock wrapped with adhesive tape.
Next to it’s a cold Smith and Wesson
.32 handgun with a six inch barrel.
—BoBBY PERU in Wild at Heart

The final part of a lighting installation is its control system, or console for short.
A console is essentially an interface between the (human) operator and the fixture
electronics.

The market is abundant with lighting consoles. This chapter gives a systematic
account of the functionality requirements for lighting consoles as well as of common
industry practices in console design. Moreover, it defines basic, consistent terminol-
ogy for the basic concepts underlying console design. The terminology set forth here
does not correspond to a single accepted standard, as there is none: The manuals
for the various lighting consoles as well as books on the subject use different terms
for identical concepts. Worse, they assign different meanings to the same words.

The design of a new lighting console such as Lula requires a careful systematic
study of existing systems. Hence, the second part of this chapter is an attempt at
classifying the properties of consoles available today. The chapter concludes with a
survey of some of these consoles.

5.1 Parameter Control

Technically, a lighting console determines all controllable parameters of the fixtures
on stage, as described in Chapter B. At the very least, for purely theatrical con-
soles, this means controlling the dimmers to affect intensity. Sophisticated consoles
additionally know about other fixture parameters such as pan/tilt, color, focus,
beam shape, gobos, shutters,etc. Moreover, such consoles often allow the operator
to configure further parameters and define how new fixture types allow control over
them.

5.1.1 Fixture Types

As described in Chapter B, existing digital protocols for fixture control do not carry
metainformation: the control information is basically a stream of packets, each
packet an unstructured vector of bytes. Moreover, they are usually unidirectional—
the console transmits, the dimmer or fixture receives and executes.

45
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Consequently, the operator must manually specify the nature of the lighting
installation hooked up to the console—how many fixtures it includes, and how it
turns a byte packet into a specific setting for its parameters. As just about every
fixture type implements its own mapping, the console needs to maintain a library
of fixture types with the necessary information to implement the necessary pre-
protocol reverse mapping. Typically, the operator, upon starting out on a new
venue, tells the console the number of fixtures and their types.

5.1.2 Patching

Traditionally, patching is the assignment of circuits to wall sockets—an electrician
would connect a circuit outlet to a socket feed via a cable. A similar process is
necessary with modern digital protocols for lighting control: a fixture (or a dim-
mer) will receive its parameter settings from a certain window of the byte packets
it receives. As the protocols are unidirectional and do not perform any automatic
negotiation of window addresses, their assignment is another manual job for opera-
tor: after setting the window addresses on the hardware, she needs to communicate
these same settings to the console. A console maintains its own internal address-
ing scheme—based on numbering or naming—for the fixtures, and so this process
consists of assign hardware addresses to console-internal, “logical” addressing. This
process is also called patching or softpatching. Some consoles allow arrangements
other than the usual one-to-one mapping, such as mapping several fixtures to a
single internal address.

5.1.3 Dimmer Curves

The conversion of digital value to a light intensity—a physical entity—is a very
complex process [Gerthsen et al., 198Y]. It is not even at all clear which photometric
unit of measurement should actually be the basis for the conversion, whether it be
an objective one, or whether the conversion should take into account the spectral
sensitivity curve of the human eye.

Moreover, in real lighting setups, the conversion of control into intensity is usu-
ally a two-stage process: a dimmer converts some digital quantity into an electrical
waveform (see Section B.2); the lamp or tube converts the waveform into light. Tol-
erances in the manufacturing processes of both dimmers and lamps are often very
visible. Therefore, when the operator specifies an intensity of, say, 50%, this “half
intensity” might not translate to any intuitive counterpart on stage. Worse, one
fixture “at 50%” can produce an entirely different subjective intensity from another
fixture hanging next to it at the same percentage, especially when distinct fixture
or dimmer types are involved.

Figure 5.1: Intensity output of a tungsten lamp and dimmer curve correcting for
the non-linearity.

Thus, a lighting console needs to be able to correct for this type of static non-
linearity. Typically, the operator can assign a dimmer curve to the intensity pa-
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rameter of a fixture, specifying a mapping from the console’s unit of intensity mea-
surement to a parameter setting for the fixture. This mapping is effectively an
inverse to the mapping performed by the dimmer and the lamp. Figure b1 shows
the intensity conversion of a typical tungsten lamp along with a dimmer curve that
corrects it.

Adjustable dimmer curves can also solve another pragmatic problem: lamp types
which require preheating get dimmer curves which start at the preheat intensity
rather than at zero.

Figure 5.2: Dynamic non-linearity.

Such a simple dimmer curve assumes that the lamp is always in a stable state—
its intensity parameter setting as well as the intensity itself do not change. However,
transitions between such stable states often happen smoothly over a period of time,
sometimes several seconds. Different types of lamps or tubes, in addition to these
static non-linearities, also exhibit markedly different dynamic behaviors. Fluores-
cent tubes react almost instantaneously, whereas big floods usually require large
amounts of energy to heat up or cool down, and therefore are usually late in exe-
cuting requested intensity changes, resulting in dynamic non-linearities. Figure b4
shows an example. To some degree, it is possible to compensate for these by using
a non-linear output ramp. Note that using an inverse to the light output at linear
input as suggested by Figure b-2 will probably not be entirely correct, but might at
least help.

5.1.4 Indirect Parameters

The relationship between a number, say, between 0 and 100, and a visible lighting
intensity is fairly intuitive. With other parameters, specifying its numerical value
directly may not be appropriate. Instead, a console might allow control over a
different representation of a parameter—a so-called indirect parameter. Examples
are Cartesian coordinate control over pan/tilt, or the application of different color
models to color changers.

Pan/Tilt Pan/tilt is not a good quantity to work with if the operator wants to hit
a specific spot on stage, even more so when the intended target is moving: Cartesian
coordinates are more appropriate. Consoles offering Cartesian coordinate control
require calibration before programming begins: the operator indicates the pan/tilt
settings corresponding to certain reference spots on stage prior to programming.

Color Since color gels work in a subtractive manner, color changers capable
of mixing colors usually accept the color parameter as a CMY triple. However,
for a human, a different color model such as HSV or RGB might be more in-
tuitive. Moreover, lighting designers and operators are frequently used to the
numeric coding of color gels defined by their manufacturers [LEE Filters, 2000,
Rosco Laboratories, 2000]. For fixed-size color changers, the operator decides what
color gels they carry—this also requires calibration on the console.
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5.2 Look

With control over the fixture parameters, it becomes possible to construct complete
looks. As looks eventually appear during a show, it is important that the console
be able to store looks for later recall. With storage capability comes the need to
modify already-stored looks.

5.2.1 Look Construction

Look construction is easily the most time-consuming part of both lighting design
and implementation. The operator could theoretically construct a look by setting
every single fixture parameter separately. However, this is already tedious with
small installations, and unacceptable for large ones—programming the looks would
take far too long. Hence, electronic consoles usually have facilities for manipulating
identical parameters of several fixtures at once, as well as pre-storing groups of
fixtures and parameters for rapid composition. Section p.7.4 further down describes
the various levels of support for look construction in commercially available consoles.

5.2.2 Look Storage

In the old days, the operator would store looks, after having constructed them, by
writing down every single parameter setting on paper. Recalling the look would
consist of re-setting the parameters in the same way. Of course, modern electronic
consoles offer storage of looks for later recall.

5.2.3 Look Modification

Once the operator has constructed and stored a look, it often becomes necessary to
change the look later, and replace the storage slot by the new version. Incidentally,
many consoles are very optimistic about the need for later changes and make them
exceedingly and surprisingly difficult.

5.3 Sequence Assembly

Armed with a collection of looks, the lighting designer can proceed to assemble
them into sequence, resulting in the lighting for the complete show. Changes from
one look to another are rarely instantaneous; they usually happen gradually. There
are several systematic ways of transforming one look into another gradually:

Crossfades A crossfade is a smooth linear transition from one look to the next:
each intensity will change from the intensity of the original look to the intensity
of the new look proportionally to time.

In/out fades An in/out fade has separate times for obliterating and old look and
making a new one appear.

In/out fades behave differently for fixtures with increasing and decreasing
intensity. For an in/out fade whose in time is shorter than its out time,
fixtures which increase in intensity fade more quickly, reaching their target at
the end of the in time and staying constant for the rest of the fade. Fixtures
decreasing in intensity fade over the longer out time. Figure b.3 shows an
example of such a fade. The (intended) visual impression is that the “old”
look lingers around for slightly longer.

Conversely, in/out fades with an in time longer than the out time typically
reach a lower overall intensity level before making the new look entirely visible.
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Figure 5.3: In/out fade for fixtures with increasing and decreasing intensity.

The fades of the fixtures with increasing and decreasing intensity behave in
an opposite fashion.
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Figure 5.4: In/out fade with in delay for fixtures with increasing and decreasing
intensity.

In/out fades with delays Finally, delays allow delaying either the “in” or the
“out” part of a fade, actually leaving an old look untouched for the first
segment of a fade. As with in/out fades, an in delay affects only fixtures
which increase in intensity from the old to the new look. Figure b.4 shows
the fade curves for a delay fade with a short in delay, a short in time, and a
longer out time.

5.4 Animated Light

A fade is the simplest and the most common form of animated light—light changing
automatically over time upon the press of a single button.

Many other forms of animated light are feasible. Fades per se affect only inten-
sity. In addition, animation applies to all other fixture parameters. The common
forms of animated light are chases, effects, and shapes, in increasing order of so-
phistication.

5.4.1 Chases

A chase is a sequence of looks, separated by identical fades between them. A
chase loops indefinitely, and a variety of ordering choices are common: sequential,
backwards, back-and-forth, random, etc. Chases typically implement “flickering”
effects such as running lights, burning fires, and disco beats.
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5.4.2 Effects

An effect a sequence of separate fades, often called steps, each to be specified by
the operator. Looping is typically optional, but available.

5.4.3 Shapes

Moving lights in principle support light choreography—the “drawing” of shapes ei-
ther with the light beam itself or with the parts of the stage it hits. The first
requirement of light choreography is continuous animation: the setting of param-
eters according to continuous functions of time. This applies to movement, but
also to color, beam shape, and all other lighting parameters, resulting in shapes of
movement.

Sophisticated consoles offer the application of a limited range of mathematical
function, as well as the construction of freehand shapes. The combination of shapes
with effects allow the construction of successions of shapes.

5.5 Playback and Manual Intervention

The crucial job for the console is during the show itself: the console must play back
the contents of its memory, performing fades and effects automatically and in real
time.

5.5.1 Sequential Playback

For theater productions, playback usually only involves playing back a single se-
quence of fades; the operator simply presses a “Go” button to initiate each fade,
coordinating between the script, the action on stage, and the programming of the
console.

5.5.2 Parallel Playback

Big live shows as well as the occasional theater production requires several lighting
actions to take place simultaneously. In theater, this is usually necessary when
certain parts of the stage obey separate laws as far as lighting as concerned. Subtle,
slow, and pervasive changes might indicate the passing of a time or a change in
atmosphere. Some illustrative examples:

e A fireplace requires a continual lighting effect which stays the same as the rest
of the lighting changes.

e The sun rises during the entire playing time of the show.

e Some part of the stage slowly reveals someone hiding there at the beginning
of the show.

5.5.3 External Control

A technically complicated show requires coordination between its various aspects.
This is typically a temporal coordination, for example, between sound and light
cues via MIDI control sequences, or between light cue playback through a time
code. Also, events on stage, such as the tripping of a light barrier might trigger
actions on the console.
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5.5.4 Look Preparation

In shows where the chief function of lighting is illumination—making visible what is
on stage—a fade usually affects intensity only. When moving lights are present, it
would be disconcerting if they changed position, color etc. simultaneously. Hence,
the operator must ensure that the non-intensity attributes of the target look of a
fade are in place before the fade itself happens. Of course, this is only possible with
fixtures at zero intensity. This is also job a console can do automatically, at least
in principle.

5.5.5 Manual Intervention

Concerts and other “volatile” live shows require that the operator makes lighting
decisions during the show itself. In the extreme case, a collection of looks, fades
and effects is available before the show, but the operator decides which ones to use
at what times dynamically. This requires flexible access to the console’s playback
facilities, as well as complete manual control over all fixture and effect parameters.

Even theater productions require facilities for manual intervention: actors are
occasionally late, mix up the scene sequence, or move to an unexpected place on
stage. Also, applause lighting must adapt to what happens on stage and the audi-
ence. Here are some common forms of manual intervention:

e temporarily stopping a fade for later continuation,

e changing the speed of a fade,

e changing the rate of change in a chase or effect,

e changing the order of a preprogrammed sequence of fades,

e operating a fader to control lighting of the stage or a part of it,

e “injecting” arbitrary fades or effects into the output of the console,

e turning off single fixtures because of hardware problems.

5.6 User Interface Controls

Consoles offer formidable arrays of user controls for easy fixture and parameter ac-
cess. Buttons can control boolean values. Continuous parameters, however, require
special controls. Here is an overview:

Faders The fader is the simples continuous control. It is absolute: its position
represents a fixed parameter value. Thus, it also doubles as a parameter view
when in use. Moreover, it has fixed minimum and maximum positions.

Rotary encoders A rotary encoder is a wheel the user can turn. Unlike a fader,
a rotary encoder turns indefinitely; it has no minimum, or maximum, and is
therefore usually a relative control. The user cannot see the value represented
by the encoder by looking at it; it does not offer a view.

Trackballs, touchpads and mice These Ul controls are relative, like rotary en-
coders, and do not offer a view. They can, however, control two-dimensional
parameters. They are usually less precise than rotary encoders.

Motorfaders Motorfaders look just like regular faders. However, the console soft-
ware can also set its position via a motor.
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Figure 5.5: A picture of the GrandMA console | ran . l.

Touchscreens Touchscreens usually display buttons and allow the user to push
them. Some specially manufactured touch screens work like motor faders,
however: the user can move her finger along a touch-sensitive display strip.
The strip displays the current parameter value.

Figure .3 shows a console featuring an especially large selection of different controls.
Many consoles also offer handheld remote-control devices which allow a limited
control from onstage, for example.

5.7 Console Functionality Options

How do existing consoles support the requirements of lighting design and playback?
Despite the plethora of existing consoles and the truly babylonic diversity in ter-
minology between them, all consoles operate essentially on the same conceptual
basis.

They differ in user interface details and quantitative issues—what functionality
a console offers, how many fixtures it can control, how many fades it can perform
at the same time, memory capacity etc. This section offers an overview of the
functionality options that distinguish existing consoles from one another.

5.7.1 Parameter Variety

Consoles differ in their support for the control of different fixture parameters:

Intensity only Traditional theater consoles, particularly those with direct or mul-
tiplexed analog outputs are limited by design to control intensity only.
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Direct parameter access Consoles with digital protocol outputs such as DMX512
(see Chapter [J) often allow direct control over the values of the output slots.
This allows the operator, with the help of the DMX slot assignment chars
of multi-parameter fixtures, to control non-intensity aspects of the fixtures.
This is, of course, a tedious process. Some consoles contain rudimentary sup-
port for discrete parameters, such as color or gobo changers via “non-dim”
channels.

Parameter modelling Sophisticated consoles have a conceptual notion of the fix-
ture parameters along with dedicated controls for setting them. Moreover,
these consoles maintain a library a fixture types along with their mapping
between packet slots and parameter settings.

5.7.2 Look Construction and Modification

The crucial part of a console is its arsenal of facilities for constructing looks. The
key to effective look construction is the ability to group collections of fixtures and
parameters settings and treat them as entities. Consoles, as they get more sophis-
ticated, offer successively more and more grouping facilities. Moreover, consoles
allowing the storage of looks must also allow the operator to modify these looks
after construction.

Single-fixture control A pure fader board has one fader per fixture which con-
trols its intensity. Even simple electronic consoles allow only setting the intensity of
a single fixture. An incremental improvement is to set several fixtures to the same
intensity in one action.

Groups In light painting, fixtures show up in herds: all fixtures in a single row,
only the even-numbered ones, all fixtures of a certain type, and so on. During the
show, fixtures in such a group often operate in unison: they go up at the same time,
or perform the same motions.

In lighting installations with large numbers of fixtures, groups facilitate fixture
selection: an operator can set all fixtures of a group to a common intensity, color,
position, or other parameter setting. Groups can also help the operator select single
fixtures by group.

Submasters A submaster is a control for a set of fixtures along with associated
intensities. On the console, a submaster is usually associated with a fader which
controls the relative intensities of its members. Consider a submaster for a fixture 1
at 30%, a fixture 3 at 70%, and a fixture 7 at 100%, notation {13°, 379, 7190} 'When
the submaster fader is at, say, 50%, console output is {1'%,335 750},

Submasters mostly occur in theater: a submaster typically stands for a concep-
tual part of the lighting, for example the lighting for a single acting area on stage, a
certain prop or atmosphere. The operator will typically collect a convenient set of
submasters prior to programming proper and use the submasters to construct the
looks themselves.

Note that even though an operator might construct a look entirely from sub-
masters, the console will only store fixture/intensity pairs: the storage model of the
console is still flat. This has some notable consequences:

e When the operator needs to edit a stored look later, the console cannot phys-
ically restore the submaster faders to their original positions. Hence, editing
again happens at the level of single fixtures.
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e Should the operator change the meaning of a submaster, the looks constructed
using from it will not change automatically. The operator needs to change
each look separately.

Palettes A palette is a pre-stored collection of parameter settings. Examples for
palettes include:

e a color, representing a specific CMY setting,
e a beam shape,
e a position on stage.

The operator can apply a palette to a set of fixtures, turning them all the same
color, or focusing them on the same spot on stage.

The stored representation of a look constructed a palette does not contain its
parameter settings themselves, but rather a reference to the palette. Consequently,
when the operator changes a palette, all looks constructed from it change with it.
This is convenient for adapting a show to changes on stage, say, when a position
moves and requires refocusing.

Presets A preset is a parameter setting for a set of fixtures. As opposed to a
submaster, a preset can specify arbitrary attributes, but does not allow relative
intensity control. When constructing a look, an operator can apply a preset to a
set of fixtures; the look assumes the parameter settings specified in the preset.

When storing a look containing a preset, the console stores a reference to the
preset itself rather than its individual parameter settings. Consequently, just as
with parameters, changes to presets propagate to the stored looks containing them.
Still, with most consoles, the presets themselves are still flat.

For some consoles, palettes and presets are the same thing: palettes are presets
specifying the settings for a single fixture.

Hierarchical Presets The most sophisticated consoles allow the construction of
presets from other presets, creating a hierarchy of presets.

5.7.3 Tracking Consoles

A tracking console uses “relative” storage for looks: such a console keeps track of
the changes an operator makes changing one look into the next. This assumes that
look playback will be in the same order as look programming. Tracking addresses
two pragmatic problems:

e Tracking effectively implements the sharing of some parameter settings among
consecutive cues. This allows the operator to achieve certain changes which
must affect a sequence of looks equally by changing the single parameter
setting at the beginning of the sequence.

e Playback happens in a “relative” fashion. This makes it easy to prepare
looks several sequence positions in advance by setting the parameters of fix-
tures currently at zero intensity. Tracking will ensure that looks between the
preparation and the target look will not change these parameters if they do
not set them explicitly.
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5.7.4 Effect Construction

Consoles offer four primary methods for constructing effects:

from sequences Sequence effects are essentially sequences of fades. Typically,
the same customizations that apply to chases also apply to sequence effects.
Most importantly, consoles offer control over the order of sequencing: forward,
backward, back-and-forth, random etc.

from functions Another kind of effect arises from assigning mathematical func-
tions to parameters of a set of fixtures. Operators can use this feature to
create shape-like movement effects such as circles, ellipses, Lissajous figures,
etc. More possibilities arise from the combination of shapes with animated
intensity and color. The consoles offering function-generated shapes all pro-
vide about the same selection of available functions: standard arithmetic,
exponentiation, trigonometry, rectangles, and sawtooth.

Some consoles allow the construction of composite functions from arithmetic
expressions.

from predefined shapes Some consoles offer libraries of common movement pat-
terns, sometimes offering shapes that are not definable in the function lan-
guage.

from freehand drawing Finally, operators can construct shape effects by free-
hand drawing, using a touchscreen or pointing device. Sophisticated consoles
even allow the freehand construction and editing of curves, offering a subset
of the functionality of common vector-graphics programs

5.7.5 Conflict Resolution

Consoles which support parallel playback or simultaneous playback and manual
control hold the possibility of conflict: several sources of parameter information
might request different parameter settings for the same fixture. In case two sources
request control over a common parameter setting,, the console must resolve the
conflict and decide on the actual parameter setting to send to the fixture. Three
different conflict resolution strategies exist:

HTP HTP is for highest takes precedence and is suitable mostly for intensity set-
tings: of two conflicting settings, the highest wins; the console transmits the
maximum of the two.

LTP LTP is for latest takes precedence. LTP takes into an account the order in
which the masters become active. Later masters take precedence over earlier
ones.

Priority Another approach is to assign priorities to the various sources, or to allow
the operator to assign them.

5.7.6 Stage Modelling

Operators identify fixtures by one of two means: by function or by position. The
control protocols between console and fixtures identify a fixture by an artificial
number. Therefore, operators usually keep a plan on paper with the fixture positions
and these numbers drawn in. Some consoles maintain such a plan internally, and
allow the operator to select fixtures by position directly. In fact, some manufacturers
will, for a specific stage, custom-manufacture a console with positional controls.
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Some consoles even maintain a three-dimensional model of the stage, along with
more accurate physical modelling for the fixtures themselves, and their orientation
in space. Moreover, these consoles can display the arrangement as well as the light
beams itself. This allows the designer to get a rough impression of the lighting
arrangements offline. It can help determining beam size and overlap, and avoid
unfavorable arrangements of the fixtures.

5.7.7 Playback and Playback Storage

Fader boards The simplest consoles have no storage capability whatsoever, and
only a single array of faders. Thus, the operator has to operate each fader
manually during a fade.

A

10 1

B

10

Figure 5.6: A rudimentary preset console.

Preset Consoles The next step up from the simple fader board is the preset con-
sole. It still has no storage, but it has two identical fader boards. Moreover,
each board has an associated master fader which controls the relative intensity
of the look “preset” into its board. Figure p.§ shows the arrangement of a
preset console. With, say, board A at 100% intensity, and board B at 0, the
operator can prepare the target look for a fade on board B. The two master
faders work in opposite ways. Thus, by pulling down both faders simultane-
ously, the operator effects a crossfade from the look on board A to the look
on board B.

Sequential memory A sequential-memory console stores a cuelist—a sequence of
looks with associated fade times. Each cue receives a sequence number, and
the operator can trigger the fades in the cuelist by pressing a “Go” button.
The consoles differ in the range of fade options available (see Section p.3):
some only offer crossfades, some do not offer delayed fades.

Multiple cuelists More sophisticated consoles maintain multiple cuelists for par-
allel playback. Multiple cuelists usually coexist with facilities for chases and
effects.

Metainformation Finally, some consoles come with a regular character keyboard
and allow the storage of comments along with the looks of a sequence. The
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console displays them before activation to help the operator coordinate with
the script or the action on stage.

5.7.8 Sequence Assembly and Parallel Playback

Consoles generally build on one of two principles for supporting the assembly of
sequences of lighting events and playing them back later:

Cuelists and playback masters A cuelists is, as discussed above, a sequence of
fades, occasionally annotated with additional ordering information for out-of-
sequence playback or looping. Before playback, the operator assigns a cue list
to a playback master, a collection of controls for playing back the events of
the cue list. These controls usually include a “Go” button, two faders for con-
trolling in and out fade position, an intensity-limiting fader, suspend/resume
buttons, possibly faders for slowing down or speeding up fades. Multiple play-
back masters allow simultaneous playback of several independent cue lists.

Sequencer Sequencer consoles use an approach like an audio sequencer, with the
fixtures being the conceptual tracks.

5.7.9 External Triggering

There are several common protocols which allow coordination between different
control devices involved in a show; Section contains an overview.

5.8 An Overview of Existing Consoles

This section provides an overview of the most popular high-end consoles. The
cutoff criterion for including consoles in this selection was the support for both
concerts and theater, support for multi-parameter moving lights as well as accu-
rate modelling of different multi-parameter fixtures. The latter criterion excludes
consoles which are historically dimmer-only consoles but have tacked-on support
for multi-parameter fixtures—such as Rosco’s Horizon [RoscoHorizon98.]] or the
Strand family of consoles [StrandGeniusPro, 2000, StrandTracker, 1998].

The first part of this section has short descriptions of all reviewed consoles,
followed by tabular classifications of their look and effect subsystems. The classifi-
cations focus on the differences between the consoles.

5.8.1 Console Synopses

ASM R2-D2 The R2-D2 [ASMR2DZ, 2000] uses a different design approach than
the other consoles: the console consists of a handful of subsystems with priority-
based conflict resolution. Instead of an array of playback masters, the show pro-
gramming subsystem uses a sequencer. R2-D2 is the only console with priority-
based conflict resolution, and thus does not have to deal with the complexity of
LTP-based approach.

Avolites Sapphire 2000 and Diamond I/II The Avolites Sapphire and Dia-
mond consoles [Mitchell, 1999, Marks, 1998] are tracking preset consoles with LTP
conflict resolution.

ETC Obsession II The Obsession II console [ETCObsession, 199¥] is, together
with the WholeHog, one of the very few hierarchical consoles on the market. The
Obsession calls presets “groups.”
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Flying Pig WholeHog IT The WholeHog [Fly, 1999] has long been one of the
most popular consoles for moving lights on the market. It has accumulated one of
the largest feature sets. In particular, it is one of only two hierarchical consoles on
this list. WholeHog’s presets are integrated into its palette engine.

MA GrandMA The GrandMA [MAGrandMA, 2000] is one of the youngest con-
soles on the market, building on and enhancing the concepts from MA’s successful
Scancommander series [MAScanCommander, 1996]. Its distinguishing feature is
the use of motorfaders to allow easy look editing. Moreover, it features TF'T touch-
screens with a modern windowing user interface. Its effect engine is one of the
most sophisticated available. In particular, it allows the construction of composite
function shapes and freehand editing.

High End Status Cue High End’s Status Cue [HighEndStatusCue. 1997] is a
PC-based system: High End provides only the software and an add-on control board
with a DMX512 interface. The operator hooks up a standard Windows-based PC to
the control board. The software itself follows standard GUI windows conventions.
Otherwise, the console is fairly standard.

Martin Case The Martin Case [MartinCase, 2000] family of consoles is primarily
for disco and concert use. Its design focus is on fast live access to parameters and
effects. Its distinguishing feature is its stage modelling capability—the operator can
define a stage grid and tell the console where each fixture is located within the grid.

Vari-Lite Virtuoso The Virtuoso [VariLiteVirtuoso. 2000] is large console with
an emphasis on accurate modelling of its environment: Its stage modelling subsys-
tem actually maintains a three-dimensional model of the stage, and its extensive
data on the correspondence between moving-light parameter settings and reality
even allow it to provide a rough simulation of the shapes and target areas of the
light beams.

5.8.2 Look Construction Subsystems

XYZ conceptual| tracking hierarch- | LTP/ stage
colors ical priority modelling

R2-D2 No Yes No No Priority Yes
Sapphire Yes Yes Yes No LTP Yes
Diamond

Obsession No No Yes Yes LTP No
WholeHog | Yes Yes Yes Yes LTP No
Status Cue | No Yes No No LTP No
GrandMA | No Yes Yes No LTP No
Case No Yes Yes No LTP Yes
Virtuoso Yes Yes No No LTP Yes

Figure 5.7: A classification of the look construction subsystems of some consoles.

Figure b7 shows a classification of the look construction subsystems of the reviewed
consoles. All reviewed consoles are preset consoles (see Section p.7.1), support HTP
conflict resolution as well as the forming of groups and submasters. The criteria in
which they actually differ are the following:
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XYZ means the console can point a moving light at a specific spot on stage, spec-
ified by Cartesian three-dimensional coordinates.

Conceptual colors means that console allows specifying color parameters device-
independently through RGB, CMY or HSV triples, or manufacturer codes.

Tracking means the console stores look within a sequence in a relative way—it
records only changes between successive looks (see Section p.7.9).

Hierarchical means the console supports hierarchical presets (see Section 5.7.9).

LTP /priority specifies the conlict resolution strategy. “LTP” means the console
gives precedence to the most recently activated subsystem. “Priority” means
that the subsystems have assigned, fixed priorities that determine precedence.

Stage modelling says whether the console maintains at least a two-dimensional
model of the rigging setup, and allows the operator to select a fixture by
pointing at its graphical location.

5.8.3 Effect Construction Subsystems

functions | composite | predefined | freehand | freehand
functions | shapes drawing editing

R2-D2 No No No No Yes
Sapphire No No Yes No No
Diamond

Obsession No No No No No
WholeHog | Yes No Yes Yes Yes
Status Cue | No No No No No
GrandMA | Yes Yes Yes Yes Yes
Case Yes No Yes No No
Virtuoso No No No No No

Figure 5.8: A classification of the effect engines of some consoles.

Figure p.§ is a classification of the effect engines (see Section p.7.4. All consoles
reviewed support chases as well as fade sequence effects. Here are the criteria for
which the consoles actually differ:

functions means the console allows assigning mathematical functions over time to
parameters.

composite functions means the operator can construct new functions from arith-
metic expressions.

predefined shapes means the console has a library of geometric shapes and other
shape effects.

freehand drawing means the operator can create a new shape by drawing it with
a 2D pointing device.

freehand editing means the operator can interactively create and edit new shapes
from lines and splines.
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Take a bite of Lula.
—LuULA in Wild at Heart

This part of the dissertation gives a tour of Lula from the user’s viewpoint. Lula
is a large and complex application, but its basic concepts are simple and easy to
master.

The two chapters in this part are not meant to be a manual. Rather, they
demonstrate the important features of the system, especially in areas where Lula
departs from the design practice of existing consoles. Where possible, the tour
compares Lula with existing console. Mostly however, the conceptual differences
are too great for such an endeavor to make any sense. Those areas which are indeed
similar most often do not warrant an examination in this context.

Some of the most innovative aspects of the system are covered in depth in
later parts of the dissertation—specifically, the cue model and the subsystem for
animated lighting. The tour merely skims over those. A number of novel aspects
of Lula not central to Lula’s main structural innovations—dynamic dimmer curves,
multi-section playback, and the priority system, for instance—were also swept under
the rug.

Chapter f explains the basic functionality of Lula necessary to create simple
shows with a linear sequence of light fades, using theatrical fixtures. Chapter [
highlights some of Lula’s advanced concepts, especially those related to animated
light, parallel playback, and multi-parameter fixtures.
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Chapter 6

Basic Lula

Hey, Tommy ... What’s goin’ on over
there in number four where al them
bright lights are all the time?
—BuDDY in Wild at Heart

In theater lighting, an operator needs the lighting console to do three basic jobs:
construct looks, assemble those looks into a sequence of light fades, and play back
that sequence during the show. All of these tasks are straightforward in Lula.
However, they differ significantly from the corresponding features of conventional
consoles: look construction is hierarchical and allows the construction of looks from
components, so-called cues. For sequence assembly, Lula contains a basic word
processor; the operator pastes light fades into a script which may contain hints or
even the text of the entire show. Finally, playback closely cooperates with the script
editor, highlighting upcoming events and scrolling automatically.

6.1 Startup

As Lula starts up, it presents the user with four windows: the script window, a cue
editor, a fixtures view, and a sources view. Figure B-1 shows the arrangement. The
script window is for assembling the light fades into a show. The cue editor allows
the construction of look components and looks. The fixtures view shows the current
parameter settings of the fixtures known to the system.

The fixtures view is initially empty; it fills up after patching—making the avail-
able fixtures known to the system. Patching in Lula does not differ significantly
from other consoles, so a description of the process is omitted here. The sources
view, finally, shows all windows which actively contribute fixture parameter set-
tings. The color of the window icons corresponds to the colors displayed in the
sources view (not visible in the figure); clicking on a button in the sources window
raises the associated cue.

6.2 Constructing Simple Cues

The first job at hand is the construction of looks. For demonstration purposes,
assume a scene involving the groundplan described in Section [23: the scene involves
the sofa and the two chairs as playing areas. Moreover, some additional blue wash
lighting is supposed to create a nighttime atmosphere ready for romance.

In Lula, the operator constructs looks from components, so-called cues. A cue
specifies—at least for the purposes of this section—some fixtures and their intensi-
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Figure 6.1: Windows after startup.

ties. The simplest cues contain only a single fixture. Compound cues result from
combining several smaller cues. Each cue has a unique name chosen by the user.
The window in front of Figure B-1]is a cue editor, the tool for constructing cues. The
blank area on the left shows the subcomponents of the current cue—the so-called
subcues. The slider in the middle allows adjusting the intensity of subcues. The
two areas on the right show the currently available cues and fixtures. One cue is
predefined: Black is a cue specifying complete darkness.

Returning to the example setup, assume two fixtures trained on each of the
chairs, one from each side, as well as three fixtures on the sofa: one from the left,
one from the right, and from the front. Moreover, two blue floods provide the
nighttime atmosphere. This corresponds to the partial rigging plan in Figure E.14.
Usually, the first job is to create a cue for each of the fixtures, giving it a name
reminiscent of the function of its fixture. Figure B.2 shows an example. The user
can add subcues to the cue by double-clicking on one of the lists on the right. Lula
determines parameter settings of the compound cue by HTP-combining those of
the subcues (see Section p.7.9). It does, however, support other of combination, as
shown in the next chapter. In any case, the slider in the middle is for adjusting the
relative intensities of the subcues.

Once this first phase is completed, the cue list will contain cues Sofa Left,
Sofa Right, Sofa Front, US Chair Left, US Chair Right, DS Chair Left, DS
Chair, Right, Blue Flood Left and Blue Flood Right.

Now all is set for the construction of larger cues: a cue Sofa contains three
components: Sofa Left, Sofa Right and Sofa Front. When the user double-
clicks on them in the list on the right-hand side, they appear in the editor on the left.
By selecting single subcues and operating the slider, she can change their relative
intensities. Note that the user, for constructing the Sofa cue, need not remember
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Figure 6.2: Cue editor with simple cue.
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Figure 6.3: Cue editor with compound cue.

the particular fixtures or their numbers trained on the sofa—that information is
hidden away in Sofa’s subcues.

Presumably, the user repeats the process for the two chairs, resulting in cues
called US Chair and DS Chair, and for the two floods, resulting in a cue Nighttime.
The next step is the construction of the cue for the basic lighting for the furniture—
a compound cue with Sofa, US Chair, and DS Chair as subcues. Figure b.4 shows
the result.

Finally, Furniture and Nighttime combine to form the cue Romance which
constitutes the look of the scene. Romance is ready for use in the show.

The cue list on the right-hand side of the cue editor allows the user to view the
structure of the cue hierarchy in tree form by clicking the red triangles. Figure G.6
shows the result after unfolding the Sofa cue in this way.

6.3 Modifying Cues

The user can load a cue back into the cue editor at any time by selecting it in the
cue list ands pressing the Load button. All changes made to a cue immediately
propagate to all other containing it.

In the example, assume the fixture contained in US Chair Left needs to be



68

CHAPTER 6. BASIC LULA

Facat cue = 15lx]
Edit Windows Help
Nighttime Intensity Scale Wiew @Al . Roots &

— | Linear #2
Record New| Copy ] b Mighttime = Linear #3
i i b Furniture Linear #4
Subsribe| Unsubsaribe - Linaar #5
Page f HTP P Blue Flood Right i
scale /100 | b Blus Flood Left Linear #7
-~ P US Chair Linaar Ho
P DS Chair Linear #3
DS Chair B US Chair Right Linear #10
P Us Chair Left Linear #11
Sofa P DS Chair Right Linear #12
b OS Chair Left Linear #13
14 . Lingar #14
b Sofa Right Linear #15
P Sofa Left Linear #16
b Sofa Front Linear #17
P Black Linear #18
Linear #13
Linear #20
i 7 | Linear #21
seloct | pelote] yncol = L 22 :
|Add a page with HTP subcues
Figure 6.4: Cue editor with compound cue.

A it cue F|-|ox]
Edit Wwindows Help |
Romance Intensity Seale Yiew @Al Roots [Linear #1 =

— | Linear #2
Record New| Copy| = b Romance = Lingar #3
T i b Mighttime Linear #4
Subscribe| Unsubscribe . Lingar #5
Page f HTP :E}ue F}oog Rlzht et
Scale 7100 Blue Flood Left +
| ,r_l I9F urniture] L]near #7
30% » sofa Linear #8
. Linear #3
Furniture -100% P Sofa Right ;
P Sofa Front H:z:; m?
b sofa Left Linear #12
b US Chair Lingar #13
P DS Chair Linear #14
B US Chair Right Linear #15
P US Chair Left Linear #16
b DS Chair Right Lingar #17
B DS Chair Left Linear #18
P Black Lingar #19
Linear #20
H 7 | Linear #21
Select All| Delete| Undo 0 !.m?ar’ ﬁgf .

Figure 6.5: Cue editor with look cue.

softer everywhere it occurs, possibly because of a mistake or because the fixture
needed to be replaced by a stronger one. When the user turns down the intensity of
the fixture in US Chair Left, all cues containing US Chair Left will reflect the de-
creased intensity immediately. The affected cues are US Chair, Chair, Furniture,
and Romance. The user can see the effects of changes to a subcue in a cue containing
it live by opening a second cue editor to make the changes.

Thus, the components of a cue are really only references to other cues which
makes Lula a hierarchical console (see Chapter f]). This distinguishes Lula from
most other consoles which are conceptually flat. It greatly simplifies making perva-
sive changes, a frequent task in practical lighting design.

Lula’s cue system requires proper use to be effectively: the cue hierarchy must
correspond to the conceptual model of the lighting looks. This means creating cues
corresponding to their conceptual function in the show on stage rather than their
implementation through particular fixtures. Specifically, the user needs to exercise
some care when sharing subcues between cues: this is only appropriate when the
subcues fulfill equivalent functions. Otherwise, a change to the subcue might lead to
the desired effect in cue which contains it, but do something unwanted in another.
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Figure 6.6: Cue hierarchy display.

6.4 Assembling the Script

With a single look in place, Lula is now ready to accept the programming of a
script. Lula’s main window is called the script window. The blank area in the
middle is a simple word processor: it allows typing in text or pasting it in from
other applications. The editor supports simple attributes such as font size, font
family and color. Moreover, the script can also contain pictures.

Assume the scene of the example is part of a simple play: the show starts out in
blackout. Actors come in and sit down on the furniture. The lights come up on the
Romance look, and the show starts. After some time, the scene ends and the lights
fade to black.

[P untitied - Lula i=k|
File Edit Actions Config Optivns Wwindows Help |
‘Hsavel = Edit Cuel gl Insert Event & Manual Faderl a2y Start Eventsl
The audience has come in. The doors have closed. Sview 2all < Roots
The curtain epens, AXL SLASH, and IZZY come in. b Romance =]

} Highttime
1 w Primary b Blue Flood Right
. b Blue Flood Left
g ¥ Light Fade b Furniture
P Sofa
Elx[s] b Sofa Right
P Sofa Front
L [Romancel P Sofa Left
P LS Chair
b DS Chair
b US Chair Right
b LS Chair Left
b DS Chair Right
M Ac e g |
] ]
ocen ||

Figure 6.7: Light fade in a script.

The scripts starts off with some introductory remarks. The user can insert an
instruction for a light change by pressing the button labeled Insert Event. A
Light Fade box appears, by default set to a crossfade, marked by an X. The user
must complete the blank fields for the fade time and the name of the target cue,
respectively. Figure p.1 shows the result. The menu button to the left of the X allows
switching to other fade types such as in/out fades, or in/out fades with delays (see
Section B.3).

Presumably, the dramaturgy department has provided electronic text of the
conversation taking place in the scene. The user can paste that text into the script
and insert another light-fade event after the end of the conversation. Figure (.8
shows the final portion of the script. The script is now ready for playback.
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Figure 6.8: Final light fade.

6.5 Playback
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Figure 6.9: Start of playback.

The operator starts playback by pressing the Start Events toolbar button:
the script window splits as shown in Figure B.9, showing the script as well as the
playback panel at the bottom.

The lower part displays what actions are waiting to happen or running. At the
onset of playback, the stage is still dark, and Lula waits for a signal to start the
first light fade. The script highlights the upcoming event with a red border. At any
time, the user can press the Scroll button to move the next upcoming event into
the script window.

The user starts the first event by pressing the Go button: the fade time display
shows the progress of the fade. Moreover, the user can intervene in the running
fade with the speed slider, thereby making the fade go faster or slower. The End
Action and End Sequence buttons end the light fade prematurely, moving on the
the next.
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Figure 6.10: Playback.

After the first fade has completed, the next event moves into the playback panel.
By pressing Scroll, the user can also get the script to display the relevant part
containing the event. Figure B.I0 shows the situation.

At any time, the user can change the sequence of events by clicking on an event
in the script window: a menu with a single entry labeled Inject appears. Selection
causes the event to become the next event in the playback panel. Figure E.11 shows
the menu.

6.6 Manual Control

A number of situations require direct manual control over the look on stage. Ex-
amples include lighting the curtain call, reacting to spontaneity on change, or ad-
dressing emergencies. For this purpose, pressing the Manual Fader button pops up
a manual fader window. Double-clicking on a cue produces a slider which the user
can activate. Once activated, operating the slider brings up the cue. Figure p.12
shows a manual fader with a slider for the Sofa cue.

6.7 Changing Venue

Once the evening’s show is over, the production could tour to a different location.
Given the time constraints usually associated with a guest performance—usually
only one day for the complete setup, often less—it is important that re-programming
the lighting does not take long.

From venue to venue, the structure of the show will not change, and neither
will the basic layout of the set and the basic structure of the lighting. If the cue
structure reflects the structure of the lighting, adapting to a new venue is straightfor-
ward: Only the “leaf cues” Sofa Left, Sofa Right, Sofa Front, US Chair Left,
US Chair Right, DS Chair Left, DS Chair Right, Blue Flood Left and Blue
Flood Right contain references to actual fixtures. Thus, it is necessary to change
these cues to refer to the fixtures in the new setting. Consequently, the new cues
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Figure 6.11: Injecting an event.
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Figure 6.12: Manual fader.

reflect the changes in the lighting hardware, no more and no less. Possibly, the
distribution of fixtures is different: there may be only two fixtures trained on the
sofa, or three fixtures on one of the chairs, for example. In this case, it is necessary
to change the cues at the level above. Note that this still merely reflects the changes
in hardware.

The rest of the cue structure, as well as the script, is preserved throughout
these changes. In all probability, the new lighting is already functional at this
stage. Further adjustments are necessary to achieve optimal looks, but these are
typically minor.



Chapter 7

Advanced Lula

Let’s go dancin’, peanut. I’'m ready.
—SAILOR in Wild at Heart

The essential features described in the previous chapter are sufficient for many
theatrical shows. Lula has a number of capabilities beyond those revealed in the
previous chapter: Lula’s cue editor, in addition to the standard HTP combination of
subcues, supports combining cues via restriction and difference which considerably
enhance the expressiveness of cues. Also, Lula supports dynamic lighting situations
such as concerts with multi-parameter fixtures with its added demands on light ani-
mation and advanced playback. Cues can specify non-intensity parameters, thereby
supporting multi-parameter fixtures. Moreover, Lula has extensive support for dy-
namic lighting through the use of animated light specified by reactive programs and
advanced playback features through the use of sequencers and parallelizers.

7.1 Advanced Cue Operations

By default, combining several cues into a larger cue follows the HTP principle: Lula
combines the parameter settings of the subcues; if several subcues specify intensities
for a common fixture, the combined cue specifies their maximum. Thus, as a cue
gathers more and more subcues, it can only get brighter.
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Figure 7.1: Adding a page to a cue.
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Figure 7.3: Cue editor displaying a restriction page.

Some natural cue constructions require means of combination different from
HTP. For example, a typical look for the groundplan from Chapter @l might be “base
lighting for the entire living room without the window.” The natural component
cues for this look are for “base lighting” and for “window,” yet HTP offers no way
to remove the window from the base lighting cue. This cue construction is a an
example for the difference between two cues.

Another cue construction not covered by HTP is “base lighting for the entire
living room with the window dimmed down.” Again, the natural component cues
are “living room” and “window,” but neither HTP nor difference allows this con-
struction. Rather, this cue is a so-called restriction of the living room cue with
the a dimmed-down version of the window. Restriction is equivalent to difference
followed by HTP.

Lula offers difference and restriction. These means of combination are new—
they are not available in any other lighting console. Chapter systematically
develops the requirements that lead to the inclusion of difference and restriction.
Moreover, the three combinators are the basis for an algebraic characterization of
cues which were instrumental in their design. Chapter [[1 contains an extensive
account.

Lula offers difference and restriction through the Edit menu: the user can add
additional pages to the cue. Each page contains subcues combined either by HTP
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Figure 7.4: Selecting a page.

or by restriction or difference Figure [[-1] shows the relevant menu choices. Lula
combines the pages constituting a cue by HTP. In practice, however, most cues
consist of just a single page. Initially, a cue contains a single HTP page.

Figure [[-4 shows a cue editor displaying a difference page: the base subcue is at
the top; the other subcues are “subtracted” from the cue. By clicking on the box
to the left of one of the subtracted subcues, the user can specify the complement of
that cue—all fixtures not included in it. Subtracting the complement of a cue acts
rather like a stencil: the difference of a cue a¢ and the complement of another cue b
specifies all fixtures which a and b in common at the intensities specified in a.

Figure [[-d shows a cue editor displaying a restriction page: the subcue at the
top is restricted by all subcues under it.

Figure [[-4 shows how the user can switch between the pages constituting a cue
by clicking on the choice button.

7.2 Non-Intensity Parameters

Lula has full support for multi-parameter fixtures. Setting non-intensity parameters
is similar to setting intensity: in the middle of a cue editor, various controls for the
other parameters pop up. Figure [[-J shows a cue editor with a visible pan/tilt
control.

By default, operating the control has no effect on the selected subcues. Rather,
subcues must subscribe to the control. The user subscribes a subcue to a control by
pressing the Subscribe button. Subsequently, a display of the parameter setting
shows up next to the subcue. Figure [[-g shows such a situation.

Just like with intensity, non-intensity parameter settings apply uniformly to all
fixtures contained in a subcue. The effect of a pan/tilt setting differs from that of
the intensity scale: The intensity slider is a relative control—it merely multiplies
the intensities specified in a subcue by some factor. In contrast, the pan/tilt control
is absolute—all fixtures in the subcue simply assume the settings specified by the
control, potentially overriding settings specified by the subcue itself.

A number of other controls are available, corresponding to the most common
parameters available in modern multi-parameter fixtures with remote control (see
Chapter ). For a more systematic description of how parameter settings work, see
Chapters [[J and [[1.
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Figure 7.5: Cue editor with pan/tilt control.

7.3 Animated Lighting

So far, light fades have restricted playback to linear transitions between fixed looks.
In addition, Lula can also animate cues—continuously change parameters according
to the specifications of the operator. This applies to theatrical settings—a “breath-
ing” look, simple chases, strobe effects, and so on. Animation is especially attractive
with multi-parameter fixtures—tracing geometric figures with the light beams, fans,
ballyhoos, etc.

To this end, Lula includes a small programming language called Lulal which is
the basis for a library of reactive effects. In Lulal, the user specifies tasks composed
from reactive behaviors and events: A behavior is a specification of a value changing
continuously over a time. It can react to external events—alarm timers, buttons and
other controls, or external hardware triggers. A task finally specifies the execution
of a behavior with a beginning and an end. Chapter [4 has full details on the Lulal
language.

Figure [(21 shows the Lulal editor window, a modest interactive program environ-
ment for Lulal. Prior to playback, Lulal performs static syntax and type checks to
avoid the most common programming errors. The Validate buttons performs these
checks; validation highlights erroneous expressions. Figure [[.§ shows an example.

With an effect library in place, the user can specify effects as actions in the script
window, either directly naming a task specified in the Lulal window, or calling a
procedure defined there to return that task. Figure [[-9 shows an example. Lula as
shipped includes an effect library written in Lulal ready for inclusion in scripts: the
user does not have to learn Lulal to create effects. Only for more advanced effects,
some programming is unavoidable. In turn, the user gains expressive power other
consoles do not offer.
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Figure 7.6: Subscribing to pan/tilt control.
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Figure 7.7: Lulal window with Lulal program.

7.4 Advanced Playback

Playback is not restricted to a linear succession of actions. Rather, the user can
customize the playback engine through the addition of playback masters. FEach
playback master executes functions independently from the others. This allows the
playback of multiple parallel strands of activity.

Lula offers two kinds of playback masters:

Sequencers A sequencer performs actions sequentially. The primary display in
the playback panel is a sequencer. When the user injects new actions into a
sequencer, it will flush any pending actions.

Parallelizer A parallelizer contains multiple sequencers. Whenever a new action
arrives, the parallelizer creates a new sequencer to perform it. When an action
ends, the parallelizer deletes the corresponding sequencer again.

The user can add an arbitrary number of playback masters. Each playback master
has a name for reference in the script window. Figure [[.1J shows the relevant dialog.
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Figure 7.9: Effect event in script window.

(Other consoles usually offer only a fixed number of sequencers and no parallelizers
at all.)

In the script window, the user can add so-called secondary actions to an event
which address playback masters other than the primary ones. Upon playback, Lula
will inject these secondary actions into the specified playback master. Figure 11
illustrates the selection of a playback master for a secondary event.

Upon playback, Lula displays a separate panel for each playback master. Each
new arriving event injects its actions into the respective playback masters. The Go
button applies to all playback masters collectively. However, stopping or killing off
the actions in a playback master is possible on an individual basis.
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Figure 7.10: Creating new playback masters.
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Hard to tell what’s shakin’ in a

place like this, honey. You don’t
want to be walkin’ in the wrong door.
—SAILOR in Wild at Heart

The development of a piece of application software starts with some important
choices that determine the structure of the final products in important ways. These
choices broadly fall in two main areas:

Tool Selection Ultimately, the application will consist of large amounts of code.
A number of tools are responsible for helping the developers produce that
code. In some cases, integrated development environments and CASE tools
might play an important part. However, by far the most crucial tool choice
is that for a particular programming language, as orders of magnitude lie
between the effectiveness of languages used today. With the choice of pro-
gramming language comes the choice of programming paradigms to use, the
choice of libraries which can benefit the application, and the choice of the
implementation of the language.

System Architecture With the tools in place comes a broad subdivision of the
task at hands into parts along with designs of the communication pathways
and dependencies among them. The choice of these architectural components
again strongly depends on the choice of programming tools in the first phase.

This part of the dissertation explains some of the architectural decisions which
have shaped the Lula code. The first chapter—Chapter B—indeed concerns the
tools and techniques used which are largely independent of the application at hand.
The second chapter of this part—g—is a structural overview of the Lula code.
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Chapter 8

Tools and Techniques

I think they are too serious, these
American fishermen. In Honduras, we
are not so concerned with the method.

—REGGIE in Wild at Heart

The choice of software development tools and techniques have shaped Lula in im-
portant ways, both structurally and in the functionality available to the end user.
The pivotal choice is that of the programming language: Lula is written in Scheme,
and with Scheme comes a wide assortment of programming paradigms and tech-
niques available to the software developer. This chapter gives a brief overview of
the techniques that play prominent roles in the Lula source code.

8.1 Scheme

Scheme [Kelsey et al., 1998], seen by many as a descendant of the Lisp family of
languages, is related to Lisp only in its similarity of syntax. Semantically, Scheme
has its roots in the \ calculus [Barendregt, 1990] and the Algol family of languagesfl.
Scheme has mostly become popular as a language for teaching introductory com-
puter science [Abelson et al., 1996, Hailperin et al., 1999] and programming lan-
guage research. Only in recent years, Scheme implementations with dedicated sup-
port for application development have emerged.

Here are the most important properties of Scheme as they apply to day-to-day
programming:

e Scheme’s syntax is extremely regular and simple which makes it easy to re-
member.

e The core language is very small, again reducing space requirements in the
head of the programmer.

e Scheme mandates automatic memory management or garbage collection.

e Scheme is higher-order: procedures are first-class values. This, among other
things, allows the construction of special-purpose “glue” to connect program
components, define new control structures, and object systems. Section B4
below has more on the matter.

e Scheme is extensible: user-defined procedures look exactly like the primitives
provided by the language.

Mn fact, the fourth revision of the definition of Scheme bore a dedication to Algol 60.
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e The language supports, in addition to abstraction over values, syntactic ab-
straction through a hygienic macro system. Again, user-defined syntactic
forms look exactly like the built-in ones.

e Scheme has latent or dynamic typing: types are attached to values at run
time rather than to variables at compilation time. All procedures are fully
polymorphic.

e Scheme has first-class continuations; a program can capture the program
execution context and restore it at any given time. First-class continuations
are extremely useful for implementing non-local controls structures such as
exception handling, coroutines, concurrency, and non-determinism.

The unifying upshot of these aspects is that Scheme basically allows the programmer
to abstract over everything: ,ordinary* first-order values, procedures, control, and
syntax. This allows the programmer to implement libraries which enable entire
programming paradigms (this chapter lists a few below), thereby effectively defining
new languages.

The resulting style of programming—identifying the paradigms needed for a
particular application domain, implementing those paradigms as a library, the us-
ing them—originated with Lisp [Steele Jr. and Gabriel, 1993]. Scheme’s flexibility
enables this to the extreme. It also explains its popularity in teaching: computer sci-
ence educators typically use the language merely as a vehicle for teaching paradigms
rather than putting the language itself at the center of a course. Moreover, it ex-
plains why Scheme has survived despite its having been a niche language for so
long [Steele, Jr., 1999].

Note that this ,little language® approach to programming runs somewhat con-
trary to recently popularized notion of using patterns [Gamma et al., 1995): pat-
terns are generally extralinguistic natural-language instructions for solving recur-
ring programming problems. Scheme programmers generally implement patterns as
code, thereby obviating the concept, or depending on the viewpoint, having used it
for decades before the term emerged [Chambers et al., 2000]. This chapter shows
some examples.

8.2 DrScheme

The Lula code runs on a DrScheme [Felleisen et al., 1998, Flatt et al., 1999, a
Scheme implementation developed at Rice University as part of their Educational
Infrastructure program. Originally targeted at educational software, its main fo-
cus is on providing an interactive programming environment suitable for beginning
students in computer science. Thus, the project involves the creation of graphical
user interfaces, and the safe interactive execution of Scheme programs within the
DrScheme environment.

Because of those extensive requirements, DrScheme’s Scheme engine contains
functionality more often associated with operating systems [Flatt et al., 1999]:

e concurrent threads of execution,
e GUI context management, and
e resource control.

Besides these, DrScheme offers a number of other facilities instrumental for the
development of Lula:

e a GUI framework portable between X Windows, Microsoft Windows, and
MacOS [b'latt and Findler, 20000, [F'latt and Findler, 20003],
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e a collection of GUI widgets for multimedia editors,

e a higher-order, fully-parameterized module system [Flatt and Felleisen, 199§],
and

e an object system with single inheritance, supporting parametric inheritance
via mizins [Flatt et al., T998] (more on that below in Section B.7),

8.3 Automatic Memory Management

Automatic memory management, often known under the name of its most popular
implementation, garbage collection, has long been known to be crucial for fully
modular programming [Wilson, 1992]. It is crucial to an application like Lula for
two reasons:

e In lighting control software, reliability is paramount: the software might have
to be up and running for a long time. Space leaks, as are almost unavoidable
with application-controlled memory reclamation, are unacceptable. Of course,
persistent space leaks are still possible with garbage collection, but much less
likely and much easier to avoid, as there are few permanent data structures
in Lula which might grow indefinitely over time.

e With garbage collection, the memory management subsystem has more con-
trol over how, when and where memory allocation happens as opposed to
malloc/free-style manual management. This enables a garbage collector to
be incremental which is important for Lula’s (soft) real-time requirements.

8.4 Higher-Order Programming

The one single aspect of Scheme which makes it particularly effective for program
development in the large is its support for higher-order programming—the use of
procedures as first-class data values. In practice, Scheme programs contain many
higher-order procedures: procedures that take other procedures as parameters or
return procedures. Higher-order programming has many uses in practical program-
ming. These are among the most important:

e custom-built local control structures
e glue for program construction

e effective data representation

Local Control Structures A simple typical example for a higher-order proce-
dure is the built-in map procedure. Map takes as arguments a procedure with one
parameter as well as a list; it applies that procedure to all the elements of the list
and returns a list of the results:

> (map (lambda (x) (x x 10)) ’(1 2 3 4 5))
(10 20 30 40 50)

Map is a small useful abstraction which generalizes over one very common form of
loops. The most immediate effect is a reduction in program size.

The principle underlying map extends well beyond loops: any container-like data
structure such as vectors, trees, tables, and so on, often induces a small number
of loop forms used to traverse them. Higher-order procedures are a good means
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of abstracting over those loops, comparable to iterators and the visitor pattern in
object-oriented languages, albeit with less notational overhead.

Lula uses inductive data structures extensively, specifically for cues and pre-
sets (see Chapter [[1). A number of higher-order procedures provide the control
structures which iterate or fold over them.

Program Glue In traditional procedural languages, the only way to combine
procedures is to call one procedure from another. A higher-order languages allows
the construction of new forms of glue between program parts. A trivial example is
the compose procedure which composes two procedures:

(define compose
(lambda (f g)
(lambda (x)

(f (g ()N

F and g must be procedures of one parameter; compose returns the composition
fogof fandg.

Higher-order procedures are the enabling technology for some very effective
large-scale program structuring techniques such as monads [Wadler, 1992] which
is a basis of Lula’s reactive programming substrate as described in [[3.

Data Representation Procedures essentially allow the wrapping of computa-
tions in data structures, which in turns opens up new opportunities in data repre-
sentation.

A typical example is delayed evaluation, replacing a value by a procedure which
will compute it. Delayed evaluation allows structuring many intricate algorithmic
problem in natural way. Lula in particular uses it extensively for the representation
of reactive values as explained in Chapter [3.

Delayed evaluation coupled with memoization yields lazy evaluation, a particu-
larly effective technique for expressing many normally state-based computations in
a purely functional way as well as for formulating functional counterparts to many
imperative algorithms [Okasaki, 1998]. This is why recent functional languages such
as Haskell [Haskell98. T998] have adopted lazy evaluation as their default evaluation
strategy.

8.5 Functional Programming

Another aspect of Scheme is its support of functional programming or purely func-
tional programmingf. Functional programming is a programming style which avoids
the use of assignment and other side effects. Procedures written in this style behave
rather like mathematical functions: passed the same arguments, they will always
return the same result because they do not use assignment to remember any infor-
mation from one call to the next.

Since functional programming primarily means doing without a common pro-
gramming construct, languages supporting functional programming must make up

2There is some disagreement about the use of the term. In many contexts, it actu-
ally refers to higher-order programming. This section uses it in the sense suggested by the
comp.lang.functional FAQ:

Functional programming is a style of programming that emphasizes the evaluation of
expressions, rather than execution of commands. The expressions in these language
are formed by using functions to combine basic values. A functional language is a
language that supports and encourages programming in a functional style.
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for the loss by offering powerful means of abstraction not usually available in tra-
ditional languages:

e cheap general-purpose functional data structures such as lists and trees (as
opposed to inherently imperative data structures such as arrays and hash
tables)

e higher-order programming
e lazy evaluation
e automatic memory management

With these means in place, the designers of modern functional languages such as
Haskell [Haskell98, T998] have chosen to remove assignment from the language al-
together. In the development process, the use of functional programming has a
number of important advantages, among them:

equational reasoning In a functional program, meaning is not affected by sub-
stituting equals for equals, a property also called referential transparency.
This gives the programmer considerable more power for reasoning about the
behavior programs, both formally and mentally.

persistent data structures A purely functional program never modifies a data
structure in place. Rather, when it needs a changed version of a data structure,
it will create a new one while the old data structure remains in place using
copying and sharing. This again reduces worry in the programmer’s head:
when a program is holding on to a data structure, the programmer need not
worry that some other part of the program modifies it in unpredictable ways.

no need for synchronization Synchronization between concurrent processes op-
erating on shared data always means synchronizing modifications to that data.
When there no modifications, no synchronization is necessary.

In the development process of Lula, a number of central data structures which orig-
inally had imperative representations have successively been replaced by functional
ones:

e Cues (see Chapter [T) used be to be modified in place whenever the user made
a change in the cue editor. The new Lula simply generates a new one. This
has reduced program complexity as well as locking issues significantly.

e Presets (again, see Chapter [[1]) used to be based on arrays. Numerous syn-
chronization issues arose, and the original code had significant bugs. More-
over, the array is an inherently fixed-size data structure, and some size re-
striction in Lula 3 can only be changed by a restart of the program. The new
preset representation is functional, based on lists, cutting down on program
complexity and bug count.

e Actions (explained in more detail in the following chapter) used to carry state.
This caused numerous race conditions and other bugs in the original code
which appeared only under marginal conditions. The current code avoids
this, again resulting in less and cleaner code, and less bugs.
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8.6 Data-Directed Programming

Data-directed programming is a generic term for programming techniques for deal-
ing with different data types which support a common interface. Consider a classic
example for data-directed programming, polar and rectangular representations of
complex numbers [Abelson et al., 1996]. Both representations supports the same
operations, but their implementations are different. The standard procedural solu-
tion to the problem is explicit dispatch on type:

(define (+-complex number-1 number-2)
(if (complex-rectangular? number-1)
(+-complex-rectangular number-1 number-2)
(+-complex-polar number-1 number-2)))

This style of programming is tedious, and, more seriously, requires that all repre-
sentations are known at the time of writing of +-complex. If there are many such
generic operations, the programmer must modify all of them when she adds a new
representation. This may not even be possible if the code is compiled.

The most popular technique for implementing data-directed programming is
message-passing style: the programmer makes the operations for a particular rep-
resentation part of the representation itself, and subsequently “sends the represen-
tation a message” to retrieve the operation. In Scheme, this is easily accomplished
by using a procedure which accepts the message and performs the operation:

(define (make-complex-rectangular real imaginary)
(lambda (message)
(case message
((real-part) real)
((imaginary-part) imaginary))))

(define (make-complex-imaginary angle magnitude)
(lambda (message)
(case message
((real-part) (* magnitude (cos angle)))
((imaginary-part) (* magnitude (sin angle))))))

(define (+-complex number-1 number-2)
(make-complex-rectangular
(+ (number-1 ’real-part) (number-2 ’real-part))
(+ (number-1 ’imaginary-part) (number-2 ’imaginary-part))))

In this code, all complex numbers—regardless of the representation—are repre-
sented as procedures accepting one of two messages, real-part or imaginary-part,
yielding the real and imaginary component of the number, respectively. The rect-
angular representation uses simple selection, the polar representation computes the
components—ifrom the outside, they both look the same. The new +-complex pro-
cedure uses no type dispatch itself. This makes the operations on numbers easily
extensible. Lula uses data-directed programming in most of the places where dif-
ferent representations support the same interface:

General behaviors Lula uses several specialized representations for reactive be-
haviors, all of which support the same interface. See Chapter [ for details.

Actions Lula’s playback engine can handle arbitrary kinds of actions. Each action
handles two basic operations, prepare and terminate. Prepare prepares for
starting the action and establishes initial communication with the device that
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Figure 8.1: Frame classes in GUI framework.

executes it; prepare returns two procedures which start and stop the action,
respectively. Terminate terminates the connection to the device. Section Pj
has more details.

The set of action types is easily extensible through data-directed program-
ming. (In fact, it is even extensible at runtime by virtue of DrScheme’s dy-
namic module system.)

Script editor subwindows Lula’s script editor consists of a number of nested ed-
itor widgets, each of which supports a common set of operations (implemented
by a small number of mixins, as shown below in Section B.7).

DrScheme’s object system provides a convenient syntactic mechanism for creating
representations with data-directed operations.

8.7 Parametric Inheritance

Traditional object systems offer classes as the primitive means of organization: A
class is essentially a template for object creation; it specifies a set of attributes that
each object created from the class has. Construction of a class happens by inheriting
from an existing class and then adding and overriding selected attributes. In this
arrangement, the original class is the superclass, the new class which inherits from
the superclass is called the subclass.

Class construction via subclassing is usually a monolithic process: it names the
superclass as well as the attributes it adds and overrides with one single syntactic
construct. However, this mechanism is often not sufficiently flexible to address the
needs of real programs.

Lula, for example, contains numerous classes for toplevel frames of its graph-
ical user interface. These classes inherit from a variety of different classes from
DrScheme’s GUI library, depending on the features they need: some of these frames
contain editors and must display the editor status, some contain help browsers with
the appropriate menus, some frames are just plain. Depending on the function
the frame has, there are various features it may need to offer as part of the Lula
application:

e showing the Lula logo as an icon
e showing a Lula logo which changes color according to the source it controls

e be able to save the window geometry and restore it upon the next program
run

Figure Bl shows the hierarchy of the relevant classes in DrScheme’s GUI library.
Lula now requires frame classes each of which inherits from one the classes in that
hierarchy and includes a selection of the features from the above list. Figure B2
shows the desired hierarchy for frame classes capable of showing the Lula logo.
Simple inheritance is not able to express this situation naturally; it requires the
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Figure 8.2: Frame classes with icon feature.

programmer to define separate subclasses for each of the original frame classes,
each of which contains a copy of the code which installs the icon. The fundamental
problem is that simple inheritance does not offer a suitable abstraction for isolated
features applicable to a range of classes. The difficulties grow as the program needs
frame classes with combinations of the above features.

Fortunately, classes in DrScheme are first-class values. This makes it possible to
write procedures over classes. Specifically, it is possible to express the extension of
a frame class by one the above features as a procedure from a class to class. Such
a procedure which represents a feature applicable to all classes with a common
interface is called a mizin [Flatt et al., 1998, Findler and Flatt. T998]. Here is the
mixin for adding the icon:

(define lula-frame-mixin
(lambda (frame%)
(class frame}), args

(inherit set-icon)

(sequence
(apply super-init args)
(set-icon lula-icon-bitmap lula-icon-mask ’large)
(set-icon lula-icon-small-bitmap lula-icon-small-mask ’small)))))

With this definition, lula-frame-mixin is a procedure mapping a class with in-
terface frame<y> to a subclass with interface 1lula-frame<y>. In the body of the
class, the first line (apply super-init args) performs superclass initialization.
The next two lines set the icon. Now, a program can simply use

(lula-frame-mixin a-frame’%)

to create a subclass of a-frame’, with the logo icon feature. Hence, mixins are a
kind of parametric inheritance. Whereas this example is trivial, the mixins for other
features on the list are considerably more involved. Mixins appear in a number of
contexts in Lula, all associated with the construction of graphical user interfaces:

e DrScheme’s application GUI framework [Flatt and Findler, 2000a] is com-
pletely organized as a collection of mixins, each providing a single feature
to be added to a single kind of GUI widget class.

e Lula’s GUI extension collection provides a number of GUI widget features
as mixins. Among them are a mixin for specializing an interactive editor to
accepting numeric input, a feature set for editors that can search for contents
according to specified properties, and an extension to add auto-completion to
an editor.

e A number of mixins allow connecting reactive values (as described in Chap-
ter [2) to GUI components. This includes turning a button into an event, turn-
ing a slider into a behavior, or a behavior into a gauge. The library contains
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only two mixins—reactive-controller-mixin and reactive-view-mixin—
which connect GUI controllers and views with appropriate reactive values.
The definitions of reactive sliders, gauges, buttons, check boxes, choice wid-
gets etc. all result from applications of these two mixins.

e Lula’s script editor consists of a number of nested editor widgets, each of
which must communicate with the editor around it in the same way. The
relevant functionality is a mixin.

8.8 Concurrent Programming

Lula is a naturally concurrent application: Lula needs to interact with the user while
at the same time driving light changes as well as communicating with the hardware.
Therefore, Lula runs as a collection of separately running threadsf]. Concurrent
programming with threads requires support from both the programming language
and its implementation. With Lula, the salient properties of DrScheme’s thread
system are the following:

Preemption DrScheme’s thread system is preemptive—its scheduler transfers con-
trol between threads without their consent. This differs from non-preemptive
(or cooperative) implementations of threads which require a thread to perform
a system call before any transfer of control can take place. This is important
in Lula, as several of its threads (the sampling thread, for example) exclusively
perform computations.

Transparent I/0 I/O blocking must not get in the way of thread scheduling. In
Lula, the program must not stop when an interface device is not ready for
input.

Asynchronous signals DrScheme supports breaks to send asynchronous signals
between threads which are delivered as special exceptions. Lula uses breaks
to implement disjunctive operations on threads, particularly to implement the
merge of reactive behaviors.

Lula could actually benefit significantly from higher-level thread communication
primitives as in CML [Reppy, 1988, Reppy, 199Y]. Presently, DrScheme supports
only semaphores and breaks [Flatt, 2000]. This would obviate the need for breaks
and simplify much of the thread-related code. Currently, DrScheme’s thread system
has too much overhead to allow an implementation of CML.

3Note that here, threads serve as programming paradigm rather than means for improving
performance by using multiple processors
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Chapter 9

Application Structure

But

the way your head works is God’s own
private mystery. What was it you

was thinkin’?

—SAILOR in Wild at Heart

Whereas the previous chapter looked upon the Lula implementation from the stand-
point of the programming language and the paradigms it provides, this chapter takes
the opposite view: it presents the structure of the Lula system, and explains some
of the abstractions that were instrumental in putting it together. The focus is on
structural aspects: Lula, being a highly interactive piece of software, is structured
as a reactive network. Hence, the techniques used to connect the pieces of the net-
work form a kind of structural glue—they are the primary shaping force behind the
Lula code.

The chapter begins by giving an overview of the subsystem structure of the Lula
code. It goes on to explain the general nature of reactive networks. Lula contains a
small number of libraries that provide the infrastructure needed for implementing
reactive networks. The subsequent sections highlight two important subsystems—
cues and actions—and how they connect to the reactive structure of the system.

9.1 A Bird’s Eye View of Lula

Figure P-1] shows a diagram of the most important subsystems of the Lula applica-
tion. In the diagram, an arrow means “provides information for.” The rectangles
delimit subsystem collections with strong cohesion.

At the heart of the picture is the subsystem collection responsible for cues. Cues
serve as the basis of basically all programmed lighting: the manual fader allows
fading in cues, light fades specify a target cue, and reactive effects also use cues as
their basic components for assembly.

On the left, the diagram shows the subsystems associated with the script editor
and playback. The script editor allows pasting events into the script; events ulti-
mately consist of actions. There are numerous action types; the script editor leaves
all specific functionality to their implementations. More on that subject below in
Section 3.

Once the user decides to play back a show, the playback controller takes over. It
controls the show playback panel and creates subpanels associated with the various
playback masters—the sequencers and parallelizers that start and stop the jobs of
the actions. Again, the playback masters leave all implementation details specific
to the action types to their implementations.
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The third collection of subsystems on the right concerns concerns the interface
to the outside world. The sampling subsystem computes, from the various sources
of lighting, unified parameter settings for all the fixtures in the system.

The sampling subsystem is also responsible for respecting dimmer-specific and
fixture-specific dimmer curves, based on the information it gets from the configura-
tion subsystems. Moreover, the sampling subsystem converts the fixture parameter
settings into protocol-specific channel data. The hardware drivers retrieve that data
and feed it into the hardware interfaces.

The manual fader takes up a somewhat lonely position: it uses the cue subsystem
and provides data for the sampling subsystem.

9.2 Stratified Design

light fades | Lulal
reactivity subsystem
cues
presets

Figure 9.2: Stratified design in Lula.

Within the structure of Lula as a whole, the most important subsystems form a
classic stratified design [Abelson et al., 1996]: its basic data structure for represent-
ing fixture parameter settings is called preset (see Section [I.14; cues build upon
it. The reactivity subsystem, the substrate for all animated light, builds upon cues
and presets. Finally, both Lulal and light fade actions build upon the reactivity
subsystem. Figure P-4 shows the setup.

9.3 Reactive Networks

Lula is highly interactive software. This is not just in the sense that it has an in-
teractive user interface. Rather, Lula keeps doing things even between user actions,
and it must react to user requests to start new jobs, terminate old ones or modify
their behavior. It is not just the user who provides impulses to change the behavior
of the system: rather, the system produces such impulses internally as well. This
makes Lula essentially a large message network [Peyton Jones et al.. 1999] or reac-
tive network. The mechanisms which form the connections between the components
are important for understanding the structure of Lula as a whole.

Figure B3 shows a segment of Lula’s network structure: the cue, light fade, and
manual fader subsystems are sources for lighting activities, encoded as some sort
of messages. They supply data to the sampling subsystem which merges it into
parameter settings. The parameter settings in turn flow into the patch subsystem
which converts them into channel data for the hardware drivers. They also flow into
the fixture view that displays the parameter settings to the user. Conceptually, the
nodes at the top are sources, the oval nodes are filters, and the bottom nodes are
sinks that turn information into observable effects. Flow networks like this one are
common in interactive applications.

9.3.1 Push and Pull Architectures

An implementor of a reactive network needs address the question of control flow:
how does a message actually travel between two nodes in a network? Which of the
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cue subsystem light fade action manual fader

sampling subsystem

patch subsystem

[ hardware drivers } [ fixture view }

Figure 9.3: Reactive network in Lula.

two nodes takes the initiative, the originator or the recipient? There are two basic
alternatives:

Push In a push-based setting, the originator, when it has a message to send, im-
mediately “pushes” the message to the recipient, typically calling a procedure
or method associated with it.

Pull In a pull-based architecture, the recipient decides when to receive a message: it
“pulls” the message from the originator, possibly blocking if none is available.

The effect is, that in push architectures, availability drives the propagation of mes-
sages, whereas in pull architectures, it is demand that matters.

The composition of reactive networks is a natural part of the construction
of graphical user interfaces. For example, the classic model-view-controller pat-
tern [Krasner and Pope, 1988 prescribes an originator-recipient relationship be-
tween the model and the view as well as between the controller and the model. GUI
toolkits typically have explicit support for constructing push-based or pull-based re-
active networks. Most GUI toolkits based upon object-oriented programming sup-
port push. Examples include DrScheme’s toolkit, MrEd [Flatt and Findler, 2000B)],
Smalltalk-80, and Java’s Swing library [Walrath and Campione, 1999]. More recent
designs, especially in the context of functional programming, favor pull. Exam-
ples are eXene for Standard ML [Gansner and Reppy. 1993] and Haggis for Haskell
[Finne and Peyton Jones. 1995].

The push and pull architectures have different merits and disadvantages: push
shines in situations where low latencies between message creation and message de-
livery are required. Pull architectures are more flexible because message recipients
only need to pull messages when they are ready to process them. Pull is partic-
ularly effective for implementing Lula’s reactivity subsystem—there, the temporal
relationship between event occurrence and event handling can get quite complicated.
Chapter [[2 explains the implementation.
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9.3.2 Implementing Push

The implementation of push architectures are usually based on the concept of the
callback: A callback is a procedure or method registered with an originator of
messages. The originator invokes the callback whenever a message is available,
traditionally passing the message along with a reference to the originator itself.

In DrScheme, GUI controller components accept a procedure for a callback.
Consider this example:

(define button (make-object button) "Click Me" parent
(lambda (self event)
(display "I’ve been clicked."))))

Button is a button with an associated callback that prints a short message; the
event loop will invoke the callback whenever the user presses the button. In the
above example, the callback is permanently associated with the controller—there is
only one immediate recipient for button-click messages. In callback-based systems,
an originator can continue processing messages only after the callback has returned.
This means callbacks must not block or run for a long time. If a message is supposed
to trigger a longer-running or blocking action, its callback needs to delegate to
another thread. This raises potential synchronization issues.

When the programmer needs to hook up several recipients to a single origina-
tor, it is necessary to demultiplex the recipients off that callback. A convenient
means to allow the dynamic adding and removal of recipients is the observer pat-
tern [Gamma_ et al.. 1995]. It involves establishing a registry for recipient callbacks
with the originator.

Note that with push, the originator keeps the recipient live. Even if the re-
cipient stops having an effect (say, if its display window is deleted), the origina-
tor will still keep sending messages to it, as well as keeping the garbage collector
from reclaiming the storage it occupies. This results in a space leak with poten-
tially serious consequences. Preventing this unwanted effect requires a weak pointer
mechanism [Peyton Jones ef al., 1999].

Lula naturally uses push to communicate with the GUI toolkit. Also, its play-
back controllers communicate with the playback masters via push. Moreover, Lula
uses push to transfer sampled channel data to the hardware drivers—here, low la-
tencies are important. In all of these contexts, the recipients and originators are
fixed. Consequently, simple callback models suffice; it is not necessary to implement
the observer pattern.

9.3.3 Implementing Pull

Pull is somewhat harder to implement than push. As an interactive application
must be continually responsive to user actions, it is necessary to buffer messages
between the time they become available and the time a recipient is ready to process
it. Moreover, there is a natural concurrency of the originator code which delivers
messages and the recipient code.

Lula uses message queues for buffering messages: a message queue is a thread-
safe version of a standard queue data structure. It supports two operations: “send”
which prepends a message to the queue, and “receive” which dequeues the last
message. Thus, the message queue is a data structure with several potential origi-
nators and a single recipient of messages—once a recipient pulls out a message, it
is gone. Consequently, message queues are sufficient for implementing the top part
of Figure B3, but not for the bottom part.

In Lula, exchanges generalize over message queues: An exchange is a message
buffer with potentially many originators as well as recipients. It contains a set of
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message queues; one for each recipient. Sending a message to an exchange adds
it to all of the queues. Consequently, an exchange provides insulation between an
originator and its recipients, much like the observer pattern in the push model.

Just like the callback implementation of push, the message-queue implementa-
tion of pull requires some care to avoid space leaks: as messages arrive in a message
queue, they take up space until the recipient retrieves them. Should the recipient
die or be otherwise occupied, messages might pile up. For that reason, Lula’s im-
plementation of exchanges uses weak sets for holding the message queues; when the
exchange is the only data structure holding on to a message queue, the garbage
collector is able to reclaim it.

Lula uses exchanges for all communication involving the cue subsystem. Sec-
tion P-4 explains some details. As mentioned above, the reactivity subsystem is also
pull-based.

9.3.4 Interfacing Push and Pull

As Lula uses both push and pull connections in its reactive network, it must be
able to interface between the two models. Actually, message queues and exchanges
already provide the necessary machinery to send a message from an originator which
assumes push to a recipient which assumes pull. The following code fragment shows
such a connection:

(define exchange (make-exchange))

(define button (make-object button) "Click Me" parent
(lambda (self event)
(exchange-send! exchange ’click))))

(define message-queue (exchange-make-message-queue exchange))
(define recipient-thread
(thread
(lambda ()
(let loop O
(let ((message (message-queue-receive! message-queue)))
(process message)

(Loop))))))

The button—a push-based originator—sends a message to exchange on every click.
The recipient, represented by a thread, adds a message queue to the exchange and
loops pulling click messages out of the queue, processing them.

The other way around—connecting a pull-based originator with a push-based
recipient—again requires a loop running in a thread:

(define originator-queue (exchange-make-message-queue exchange))
(define originator-thread
(thread
(lambda (O
(let loop O
(let ((message (message-queue-receive! message-queue)))
(callback message)

(Loop))))))

Originator-thread calls the callback with each message as it arrives. Note that,
for this to work efficiently, blocking on message-queue-receive! must be cheap—
polling is out of the question as the number of originators grows. In Lula’s im-
plementation of message queues, a semaphore counts the number of messages still
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waiting in the queue, and thus blocking on an empty message queue costs nothing.
The reactivity subsystem contains a somewhat more complicated mechanism called
placeholders to implement efficient blocking. Once again, Chapter [Z has all the
details.

9.4 The Cue Subsystem

The cue subsystem is at the heart of Lula; essentially all other system which function
as sources of lighting parameter settings feed off it. The subsystem provides three
kinds of information to dependent parts of Lula:

e the structural representation of each single cue, as specified by the user via
the cue editor,

e the parameter settings specified by each single cue, computed from the struc-
tural information, and

e notification of cue creation and deletion.

Lula uses a term representation for the structure of the cue, the so-called cue flat
form; the parameter settings are specified as presets—essentially sorted association
lists. Chapter [[1] has all the details on that.

This section focuses on the reactive connections of the cue subsystem with rest
of Lula: it must reflect all changes made to the cues live—the user must be able to
see the consequences of each change immediately. Now, a modification to one cue
has an effect on the meaning of the cues which contain it, directly and indirectly.
Lula must propagate these changes through the cue DAG. At the same time, this
updating process must not block any other running subsystem. Lula uses the pull
model for all communication emanating from the cue subsystem.

Preset Caching and Invalidation To avoid having to recompute the preset for
a cue—the representation of its parameter settings—each cue caches the associated
preset which is computed on-demand. Here is the definition for the cue record type
using SRFI 9 notation [Kelsey, 1999]:

(define-record-type :cue

(real-make-cue semaphore

name

flat-form

opt-preset upper-cues

structure-exchange preset-exchange)
cue?
(semaphore cue-semaphore)
(name cue-name)
(flat-form real-cue-flat-form unsafe-set-cue-flat-form!)
(opt-preset real-cue-opt-preset unsafe-set-cue-opt-preset!)
(upper-cues real-cue-upper-cues unsafe-set-cue-upper-cues!)
(structure-exchange cue-structure-exchange)
(preset-exchange cue-preset-exchange))

The semaphore in the semaphore field synchronizes writes to the opt-preset and
flat-form fields:

The opt-preset field is the preset cache—it is #f if no preset has been com-
puted yet and contains a preset otherwise. Each cue contains two exchanges,
structure-exchange and preset-exchange. The cue subsystem sends a message
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to structure-exchange whenever it changes the structure of the cue by replac-
ing the cue’s flat form in the flat-form field by another. The constructor for
cues always adds a special global message queue *bust-cue-cache-queue* to the
cue’s preset exchange; a dedicated thread monitors this queue to propagate preset
changes through the cue hierarchy asynchronously:

(define (make-cue name)

(let ((cue
(real-make-cue (make-semaphore 1)
name
(make-cue-rep (make-flat-form ’()))
#f
>0

(make-exchange) (make-exchange))))
(exchange-add-message-queue! (cue-preset-exchange cue)
*bust-cue-cache-queuex*)
cue))

The cue subsystem sends a message to the preset-exchange whenever the cue’s as-
sociated preset changes. This may happen because the cue’s structure has changed,
or because the parameter settings of any of the subcues have changed. Here is the
procedure that signals a change to a cue’s preset, invalidating the opt-preset field:

(define (cue-notify-preset-change! cue)
(with-semaphore (cue-semaphore cue)
(lambda ()
(unsafe-set-cue-opt-preset! cue #f)))
(exchange-send! (cue-preset-exchange cue) cue))

A structure change is always a preset change as well:

(define (cue-notify-structure-change! cue)
(cue-notify-preset-change! cue)
(exchange-send! (cue-structure-exchange cue) cue))

The procedure responsible for actually making a structure change to cue is set-cue-
flat-form! The procedure must notify the cues of all subcues, called under cues in
Lula. Set-cue-flat-form! does the job, with the help of cue-flat-form-under-
cues which collects the under cues, and swap-under-cues! that adjusts the
upper-cues components of the under cues. Finally, the set-cue-flat-form! pro-
cedure notifies the structure exchange.

(define (set-cue-flat-form! cue flat-form)
(let* ((old-flat-form (real-cue-flat-form cue))
(old-under-cues (cue-flat-form-under-cues old-flat-form))
(new-under-cues (cue-flat-form-under-cues flat-form)))
(with-semaphore (cue-semaphore cue)
(lambda ()
(unsafe-set-cue-flat-form! cue flat-form)))
(swap-under-cues! cue old-under-cues new-under-cues))
(cue-notify-structure-change! cue))

Set-cue-flat-form! only notifies the structure exchange of the cue whose flat
form has changed. This change must propagate upwards through the hierarchy, as
mentioned above. Therefore, the cue subsystem runs a dedicated preset invalidation
thread which runs the bust-cue-caches procedure. Bust-cue-caches waits for
messages on *bust-cue-cache-queuex* and, upon receiving one, notifies the cue:
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(define (bust-cue-caches)
(let loop O
(let ((cue (message-queue-receive! *bust-cue-cache-queuex*)))
(with-semaphore (cue-semaphore cue)
(lambda ()
(for-each cue-notify-preset-change!
(real-cue-upper-cues cue))))

(loop))))

Thus, preset recomputation happens concurrently with the rest of the system—
cascading preset changes do not block the rest of the application.

Cue Creation and Deletion The cue subsystem also uses an exchange to reg-
ister creations of new cues as well as cue deletions:

(define *cue-list-exchange* (make-exchange))

The install-cue! procedure (which may run asynchronously, and hence uses a
semaphore to synchronize) adds a newly created cue to the system and notifies the
exchange with an install message:

(define (install-cue! cue)
(with-semaphore *cues-semaphore*
(lambda ()
(set! *cues* (insert-sorted cue *cues* cue<))
(exchange-send! *cue-list-exchange* (cons ’install cue)))))

A recipient of these changes calls make-cue-1list-change-message-queue to create
a message queue that will receive these messages:

(define (make-cue-list-change-message-queue)
(exchange-make-message-queue *cue-list-exchangex))

Cue Views A number of Lula’s windows display a view of the cue hierarchy via
a treelist GUI component (see Chapter ). Such a cue view must monitor both cue
structure changes as well as creations and deletions of cues. Hence, it provides a
good example for a recipient of cue information.

Each cue view maintains a single message queue which receives both cue struc-
ture changes as well as cue creation and addition messages:

(private
(message-queue (make-cue-list-change-message-queue)))

(Private is a clause in DrScheme’s object system denoting a private instance vari-
able.)

Furthermore, whenever the user “opens” a cue in a cue view to look at this struc-
ture, the cue view must monitor all changes to this structure. The on-item-opened
method which the treelist component calls in this case adds message-queue to the
cue’s exchange in that case:

(override
(on-item-opened
(lambda (item)
(open-compound-item item get-under-cues)
(if (not (item-ever-opened? item))
(exchange-add-message-queue!
(cue-structure-exchange (get-item-cue item))
message-queue)))))
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Furthermore, each cue view has its own thread which monitors the message queue
and updates the display:

(private
(update-thread
(thread
(lambda (O
(let loop O
(let ((message (message-queue-receive message-queue)))
(if (cue? message)
;5 cue structure change
(for-each-observer (lambda (item)
(update-item item get-under-cues))
message)
;; cue creation or deletion
(update-all-cues))
(1oop)))))))

9.5 Representing Actions

A critical aspect of the Lula code is its representation of actions as they are the
most reactive part of the system. The choice of representation is critical for the
implementation of playback masters and playback controllers which supervise the
controlled execution of the jobs associated with the actions. Actions use the push
model for communication with the rest of Lula.

The action representation must accommodate a number of different types of
actions. Here are some examples:

e light fade
e light effect
e sound playback (a future extension)

e pause for a certain time

wait indefinitely

To abstract over these different actions, it is necessary to divide the life cycle of an
action execution into different phases.

Preparation An activity might need preparation. For example, if the action spec-
ifies playing a CD track, Lula needs to spin up the CD drive so that playback
can start instantaneously.

Activity The “go” signal from the user triggers the activity of the action.

Relaxation After some time, the activity completes by itself or the user requests
that it complete. A “stop” signal ends the activity. However, it may be
necessary to keep a residue of the activity. For example, a completed light
fade must keep the stage lit.

Nonexistence Finally, even the residue must go—either because a subsequent
action takes the place of the current one, or because the show is over. A
“terminate” signal condemns the action to nonexistence.
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preparation activity relaxation

time

prepare go stop terminate

Figure 9.4: The life cycle of an action.

Figure P-4 shows a plot of these phases.
Actions use a data-directed representation using DrScheme’s object system. For
action execution, its interface contains three basic methods:

(define action<}>
(interface ()
get-device
prepare
terminate))

Get-device identifies an abstract device associated with the action. This is impor-
tant for action sequencing: for instance, a sound-playback action must not terminate
a prior light fade. Therefore, a sequencer will keep the actions for different devices
separate from each other.

Prepare starts the preparation phase of an action. It returns two thunks, go and
stop. Calling go starts the activity, calling stop stops it and starts the relaxation
phase.

Prepare takes as arguments a callback which is invoked upon the end of the
activity—no matter if it was caused by the natural end of the activity or user
intervention. The callback, when invoked, will receive a so-called token representing
the residue of the action. When prepare is passed such a token which belongs to
a prior action, it will initiate a transition between the prior action and the current
one. For a light fade, for instance, this involves keeping the lights up.
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Sailor, that ozone layer is
disappearin’. Seems to me the
government could do somethin’ about
it. One of these mornings the

sun’ll come up and burn a hole clean
through the planet like an X-Ray.
—LurA in Wild at Heart

One of the two principal tasks of the lighting designer is the construction of looks—a
look is a configuration of the lighting fixtures that—together with the set and the
actors—creates a stage picture.

From the viewpoint of the lighting operator, a look is a setting for the parame-
ters of the fixtures belonging to a show. This is actually the way most commercial
lighting consoles view looks, and the operator spends her time setting specific pa-
rameters of specific fixtures via the operation of the console keyboards as well as
faders and fader-like controls.

However, there is more to lighting design than just arbitrary collections of fix-
tures and their parameter settings. In fact, designed light has structure which
emerges first as the ideas of the director and the lighting designer evolve, later
as the lighting operator puts them into practice. Notably, good directors and de-
signers will specify their ideas at a level that is independent of the concrete stage
environment and the number, nature and location of the available fixtures. This
is important for touring productions which must function in wildly varying stage
environments but where the desired structure of the lighting remains the same.

Unfortunately, the means of commercially available consoles for dealing with
structure in looks is, in most cases and at worst, non-existent, at best awkward.
Programming the lighting for a show at the level of single fixtures and their param-
eters is a lengthy, error-prone and inflexible process. Changes to such installations
“after the fact” are hard and time-consuming. Presently, the market seems to
feature only two hierarchical consoles which are, in principle, able to model look
structure. However, the hierarchical nature of these consoles is hidden away in the
documentation and awkward to use.

Lula’s approach to look design is radically different:

e Lula’s model of a look is structural. Programming progresses along the con-
ceptual structure of the design, as do all later changes.

e Lula allows componential lighting design which views a look as a combination
of components, each of which may itself consist of components, and so on.
The smallest components of a look are individual fixtures.

e Componential lighting design allows, to a high degree, venue-independent pro-
gramming. Most programming does not happen at the level of individual
fixtures but rather that of higher-level structures in the design. The actual
fixtures of a given installation are interchangeable, and only require the oper-
ator to change those aspects of the programming which relate to the changes
in the environment. The operator can preserve and re-use the conceptual
components.

This part of the dissertation describes Lula’s model for looks and lighting compo-
nents in Chapter [[J from the viewpoint of the lighting designer. Chapter [ gives a
solid algebraic foundation for the model which has proven crucial for designing the
user interface and verifying the soundness of the model.
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Chapter 10

Requirements for Look
Construction Systems

Johnnie, you take a good look at me,
baby, cause you gonna haf’ta watch
close to know when we do it to ya ...
—JUANA in Wild at Heart

In lighting design, the design of looks is the creation on configurations of light
intensities and other parameter setting to create a stage picture. Few looks consist
only of one picture—even lighting a single small square on stage usually requires
more than one light source (see Chapter f]). Even on small stages, a look might be
a complicated composition of many fixtures.

As the lighting designer and operator create a look, they impose organization
upon the fixtures. Their ability to achieve the stage picture they want depends on
the ability of their lighting console to represent this organization. Typically, this
means dividing a complicated look into several, more or less independent parts, and
composing them to create the picture. As the preparation of the show progresses,
other factors impact the lighting work: Does a console allow making changes to
a look programmed earlier? How difficult is this? How robust and flexible is the
programming in the face of these changes?

This chapter examines the issues involved in look construction from the view-
point of the lighting designer and provides motivation for Lula’s specific look con-
struction system which is based on the notion of cues. It starts with an account
of the basic terminology and a short review of the methods of commercial lighting
consoles for dealing with look construction, reiterating some material from Chap-
ter B.

10.1 Componential Lighting Design

As opposed to most traditional lighting consoles, Lula actually manages and stores
structural information about a look, rather than just viewing it as a collection
of fixture/parameter/value triples. Moreover, Lula allows the modification of the
current show on a structural level. This provides significant added flexibility over
traditional models.

The central idea underlying Lula’s model for look construction is componential
lighting design. Lula’s basic assumption is that lighting design and programming
evolves in components. A director or lighting designer will see a show as a sequence
of looks or pictures, each of which requires its lighting to correspond to structural
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Living Room at Night

Living Room Night
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Figure 10.1: A look with hierarchical structure.

aspects of the show. As for the look aspects of lighting, examples include the
following—all taken from theater (cf. Chapter f):

e “In Scene 4, Bert is sitting on that armchair. We need light on him.”

e “We need the dining table, and good facial light on the people sitting down-
stage, left, and right.”

e “Scene 3 plays at night. We want the whole stage lit, but dimly, and something
resembling moonlight.”

e “I want the whole stage lit except for the downstage-left corner.”

e “The square in the middle of the stage is the principal acting arena. We need
focus on the square and less emphasis on the surrounding area.”

The first example asks for light on a specific actor, maybe the smallest unit of
lighting in classic theater lighting. For good facial lighting, several fixtures are
necessary (see Chapter fl). However, the conceptual component is the lighting
on the armchair, not the specific combination of fixtures and intensities used to
implement it.

The second example already provides more structure than the first one: three
actors are sitting at the dining table, and their faces need to be visible. It may
be possible to light two of them with a common fixture, but generally, the lighting
component “three people sitting at the dining table” includes three subcomponents
for the three actors. (Additional lighting might be necessary for the table itself,
or other areas around the table, creating additional subcomponents.) So far, the
components are playing areas or combinations of them (see Section [L.5.1]).

The third example also provides structure: dim lighting on the stage and moon-
light, possibly provided by a dim blue-colored floodlight. Presumably, the lighting
on the stage also consists of several subcomponents. However, at the level of de-
scription of the moonlit stage, this is not important.

Whereas the first three examples are all additive in a sense—combining subcom-
ponents means adding them visually on stage. The fourth example is subtractive:
in the resulting look, a corner is missing from the “stage” component.

The structure of the final example is less clear: it might be additive, consisting
of subcomponent for the central square and the surrounding stage. It could also
consist of a subcomponent for the entire stage with the area around the stage forced
to lower intensities.

The examination even of designs for small shows and small stages often reveals
a surprisingly rich hierarchical structure. Part of this structure often already exists
in the director’s script; the lighting designer provides the rest. Figure [0.1 shows
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a structural view onto a component “Living Room at Night”: it has two subcom-
ponents “Living Room” and “Night”, both of which have subcomponents of their
own. A single flood provides the “Night Lighting” which provides the implemen-
tation of the conceptual “Night” entity. “Living Room,” on the other hand, has
two conceptual subcomponents, each in turn with their own structure. The entire
structure forms a tree. All the components in a show form a hierarchy, represented
by a directed acyclic graph.

Traditional lighting consoles offer grouping facilities which allow some degree
of component assembly, usually called presets, masters, or submasters. However,
these consoles usually limit the depth of the hierarchy to two or three, and compo-
nents exist during construction only: the structure is visible in the configuration of
faders on the operating board. As soon as the operator presses the “Record” but-
ton, the console forgets the structural aspects of the current console, saving only
fixture/parameter /value settings.

The lack of structural information in the console’s memory means that changes
to an already-recorded cue happen only at the fixture/parameter/value level, rather
than on the cue structure, as they should. This frequently leads massive typing
efforts necessary to apply a simple change to a structural aspect. Consider a show
with a large number of light changes; a single fixture breaks, and has to be replaced
it with a different, brighter fixture (or, worse, several smaller fixtures). The operator
now needs to adjust the intensity channel of the fixture for every single cue which
is part of the show. Tracking consoles and consoles separating between presets and
cues can sometimes alleviate the problem with careful programming, but cannot
solve it in general.

10.2 Cues

Lula’s model for looks builds on the cue; a cue is a component of a lookf]. The
“smallest” cues are single fixtures, the “largest” cues are complete looks. Lula
allows combining “smaller” cues into “bigger” ones. The cue subsystem is the
central innovation in Lula. It has a number of desirable properties which existing
consoles do not have or possess only to a limited degree:

e The model allows for componential lighting design which allows the designer
to construct a library of building blocks which may be combined to form new
cues.

e The model allows for venue-independent programming: a designer can separate
the conceptual aspects of a design (“What do I want to see on stage?”) from
the physical ones (“What fixtures have to perform what function to make
it happen?”) This allows the offline preparation of major parts of a design.
Moreover, it allows touring shows to preserve most of their programming.
Offline preparation is a crucial feature, as onstage time is often expensive and
limited.

e Componential lighting design leads to programming which is both flexible
and robust: Lula allows changes at the structural level at any time during the
lighting design (even during a running show). Robustness is a consequence
of venue independence: as the physical environment changes, much of the
programming of a show can survive.

Lula’s model is based on algebraic principles; Chapter [[1] gives a detailed accounts
of its foundations and its properties. The algebraic design enforces regularity and

1In retrospect, the choice of terminology seems unfortunate, as in theater language, a ,cue®
denotes a marker for a point in time.
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usability of the model. Fortunately, the user does not have to deal with algebra in
order to use Lula; she sees only the pleasant consequences.

In the terminology of this dissertation, a cue stands for a collection of fixture
parameter settings. A cue is a component of a look. Actually, a look is itself a cue—
this dissertation will use the term look cue in contexts where there is a difference
between them and “ordinary cues.”

When a fixture is part of the lighting specified by a cue, the cue contains or
specifies the fixture. More precisely, a cue specifies settings for the parameters of
the fixtures it contains.

10.3 Compositionality

The key to designing an effective model for cues lies in preserving a property called
compositionality. Compositionality—a term originating in denotational semantics—
essentially means that the meaning of a composite object is completely determined
by the meaning (rather than the structure) of its parts. Applied to lighting, com-
positionality ensures that a cue hierarchy remains manageable, and that making
changes to the cues will actually have the effects an operator naturally expects.
Commercial consoles typically do not implement compositionality, but rather use
low-level ad-hoc mechanisms to control the meaning of composite lighting. This
section explores the cause for this and present Lula’s approach to the problem.

The key benefit in representing a lighting component by its name is abstraction:
the cue name should abstract from the details of its “implementation”—the concrete
fixtures and their parameter settings that create its stage picture. Rather, what
counts is the look the lighting component creates. In principle, the implementation
is replaceable.

HTP and Compositionality When an operator creates a composite cue from
two subcues, it is easy to describe the outcome if the implementation of the subcues
do not share any fixtures. As the composite cue is invoked, all the fixtures involved
in the first subcue will be at the intensities and positions it specifies; likewise for
the second subcue. But what if there is a conflict—a fixture is part of the imple-
mentations of both the first and second subcue? For traditional theatrical fixtures
which only have an intensity control, the solution is simple: the composite cue will
drive the fixture intensity at the maximum of the intensities specified in the sub-
cues. This means the composite cue will illuminate everything on stage at least as
brightly as each of its subcues.

In lighting design, this principle—a maximum or lowest upper bound in Math-
ematics terminology—nhighest takes precedence or HTP, is simple and effective. In
fact, HTP by itself is sufficient for most theatrical applications; up until and includ-
ing Lula 3, this was the only strategy for cue combination Lula supported.

Unfortunately, HTP is sometimes undesirable and sometimes not applicable.
Consider moving lights: a composite cue might consist of two subcues, each of
which include a moving light at different positions. Usually, moving lights accept
their position in two numbers, one for pan, the other for tilt. Pan/tilt has no natural
notion of “maximum.” Moreover, “maximum” as applied to pan/tilt does not corre-
spond to any intuitive counterpart in the lighting. Specifically, it would depend on
the orientation of the actual lights on the ceiling. For example, if the composition
operator were to use element-wise maximum as for intensities, the result would be-
come completely unpredictable, sometimes using pan from one subcue, and tilt from
another. Hence, two subcues specifying different positions for a common moving
light are fundamentally incompatible as far as HTP combination is concerned.
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Combining Non-Intensity Parameters As it turns out, HTP is not applica-
ble to most non-intensity parameters of modern multi-function fixtures: what is the
maximum of two colors? Two beam settings? Two gobos? Therefore, a lighting
console must offer a way to combine subcues which allows overlap, yet resolves pos-
sible conflicts. This makes it necessary to give one subcue or the other precedence.
Most lighting consoles use latest takes precedence (LTP). LTP is a property of a
single output parameter or slot. Should two subcues to be combined share a fixture
with an LTP parameter, the console will choose the value specified by the latter of
the two subcues. (See Chapter | for more details on how commercial consoles deal
with conflict resolution.)

The LTP strategy reliably resolves conflict, but destroys compositionality: LTP
is a property which does not correspond to any visible aspect of the lighting. There-
fore, it is impossible to predict the outcome of a combination of the two subcues
looking at the meaning of (the light generated by) the two subcues separately.
Rather, determining the meaning of the composite cue require knowing a non-
visible, implicit aspect of their implementation. Thus, LTP conceptually happens
at the implementation level, not at the structural level. This leads to inflexible,
hard-to-modify programming. Consequently, Lula does not support LTP for con-
flict resolution.

Lula chooses a different, explicit approach to conflict avoidance: Lula offers a
novel combination operator called restriction. The restriction of some subcue A
with another subcue B will look like A in places where A does not overlap with B,
and like B in all others. Essentially, B takes precedence over A.

Lula’s approach to conflict resolution forces the operator to be explicit about
situations which she would normally handle by trial-and-error on a console which
supports LTP. However, Lula rewards the explicitness introduced by the use of
restrictions with more flexibility and robustness when it comes to using the resulting
cues in different contexts and modifying them later.

10.4 Cue Combination

This section summarizes the different means of cue combination Lula offers the
operator for constructing cues from subcues. Besides HTP and restriction, there is
a third one called difference.

Besides satisfying most practical needs, this set of “cue combinators” also has
pleasant algebraic properties which in turn help structure the user interface in an
intuitive way. Chapter [[1] has the details, along with a formal specification of cue
semantics. This section also suggests a notation for subcue combination.

HTP For two subcues a and b, allb is their HTP. allb specifies all fixtures of both
a and b at the same positions, colors, beams etc. as they appear in the respective
subcues. a Ll b will specify the intensity of each fixture appearing in both a and b
at intensities ¢; and io as max(iy,iz).

The HTP only exists if s; and so are compatible. Intuitively, compatibility
means it is actually possible to achieve the visual effect of s; and so simultaneously
as far as visibility is concerned. Specifically, two subcues are compatible if they do
not both specify a non-intensity parameter for a common fixture.

Restriction For two subcues a and b, a/b is the restriction of a with b. Restriction
applies to any two subcues. The restriction specifies all fixtures in either a or b.
Fixtures only a specifies appear in a//b as they appear in a. All others appear as
they do in b. Thus, a//b is a combination of a and b which assigns precedence to b.
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Difference Lula’s cue model includes a third means of combination. Whereas
HTP and restriction always “add” the set of fixtures specified in subcues, subtrac-
tion reduces it. For two subcues a and b, a \ b is the difference between a and b.
The difference includes all fixtures appearing in a but not appearing in b at the
same parameter values as in a.

In conjunction with differences, it is also sometimes useful to subtract the com-
plement of a cue rather than the cue itself. a\ b is the difference between a and
the complement of b. The complement of a cue contains all fixtures not in the cue.
Thus, subtracting the complement of a cue is somewhat like placing a stencil over
a cue: a\ b contains all fixtures that a and b have in common, at the parameter
setting a specifies. Complements appear only in conjunction with differences, and
indeed only make sense in that context.

Fixtures at Zero Intensity Restriction of one subcue with another raises an-
other issue of cue semantics affecting compositionality: what is the meaning of a
cue which includes fixtures at zero intensity? Restriction and difference reveal a
difference between a cue B including a fixture f at zero intensity and another cue
B’ identical to B in look, but which does not include the fixture in the first place:
Restricting a cue A which specifies fixture f at non-zero intensity with B will result
in a new cue with f off as well. On the other hand, restriction with B’ will leave f
on as specified with A.

The difference between a cue specifying a fixture at zero intensity and a cue
which does not contain the fixture at all is not visible, at least not on stage. (Lula’s
user interface does show the difference.) It only becomes apparent in combination
with other cues. This breaks compositionality: a non-visible aspect of a cue has
impact on its behavior. On the other hand, it is a situation with no immediately
obvious application, so a reasonable approach to the problem would be to forbid
zero-intensity fixtures as parts of cues.

10.5 Examples Review

Here is how the cue combinators apply to the examples from Section [OU-1:

e “In Scene 4, Bert is sitting on that armchair. We need light on him.”
This instruction does not contain any explicit structure.

e “We need the dining table, and good facial light on the people sitting down-
stage, left, and right.”

This instruction is a typical application of the HTP principle to subcues for the
dining table, and the facial lights on the downstage, stageleft, and stageright
areas.

e “Scene 3 plays at night. We want the whole stage lit, but dimly, and something
resembling moonlight.”

Again, a typical application of HTP to two components.

e “I want the whole stage lit except for the downstage-left corner.”

This is an application of subtraction: presumably, there is a cue for the entire
stage as well as one for the downstage-left. The cue requested here is the
difference between one and the other.

e “The square in the middle of the stage is the principal acting arena. We need
focus on the square and less emphasis on the surrounding area.”
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This is a possible application for restriction: if there are cues for the entire
stage and the central square respectively, this could be a cue with the entire
stage restricted by a dimmed-down version of the central square lighting.

10.6 Cue Transformation

It is rarely sufficient that compound cues arise simply by application of the three
cue combinators described in the previous section. Typically, a subcue needed to
compose a compound cue is not just another cue, but will need some change applied
to it before it works in the compound cue.

The most common such change to a cue for inclusion as a subcue is the applica-
tion of a relative intensity. Typically, the lighting designer applies such an intensity
change so that the subcue will look good together with other subcues that are part
of the compound cue. Such a relative intensity change is purely an adjustment to
account for the lack of “absolute sight” on the part of the designer. However, such
an intensity change might also be a director’s instruction. Consider the examples
in Section [[0.1] design calling for softer overall lighting or just for parts of a cue to
be darker than usual.

The idea of a uniform change to a cue extends to other parameters beside in-
tensity. Here are some examples of such changes:

e “I want this cue, but in green.”

e “I want this cue, but without any red.”

e “T want this cue [composed of moving lights], but shifted two feet to the left.”
e “I want this cue, but with softer beams.”

These are all examples of transformed versions of cues, and the selection of trans-
formations available has a strong impact on the expressiveness of the cue language.
Here are some of the transformations Lula currently supports. The set is easily
extensible:

Intensity Scale An intensity-scale transformation scales the intensity of the fix-
tures in a cue uniformly by some factor. Ideally, the application of a 0.5
intensity-scale transformation to a cue will yield a cue “half as bright.”

Color Set A color-set transformation sets the color of all fixtures in a cue that
allow color control to a certain color. Depending on the kind of fixture, the
actual color generated might be approximate.

Pan/Tilt Set A pan/tilt-set transformation sets the pan and tilt parameters of
all moving lights involved in a cue.

X /Y /Z Set An X/Y/Z-set transformation specifies stage coordinates for the mov-
ing lights of the resulting cues to focus on. (As moving lights usually operate
in polar coordinates, the operator needs to perform calibration on all moving
lights for this to work.)

X/Y/Z Offset An X/Y/Z-set transformation moves the light beams of moving
lights by an offset in the horizontal plane at the specified Z coordinate. This
is useful, for example, to correct light positioning on dancers with a prepro-
grammed choreography.
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Hence, in Lula, a subcue is a cue together with a set of transformations. In the
construction of compound cues, the cue combinators apply to subcues in this sense
rather than untransformed “ordinary” cues.

Note that, in a cue a \ b, transformation of b has no effect on the difference: all
fixtures that b contains are not part of the compound cue. A transformation has
no effect on the set of fixtures a cue contains.



Chapter 11

An Algebra of Cues

Yeah ... yeah ... Iguessso...
That kind’a money’d get us a long
way down that yellow brick road ...

—SAILOR in Wild at Heart

This chapter gives a formal description of Lula’s cue model. The model is based
on a small term language with two central sorts—one for cues, and one for uniform
parameter transformations of cues. The semantics of the language yields fixture
parameter settings directly.

The cue language is effectively a little language [Bentley, 1986] or domain-specific
language (DSL) [van Deursen et al., 2000], and has strong methodological similar-
ities to Haskore [Hudak ef al., 1996], a language for describing sheet music. The
cue language, itself having two levels is the basis for the animation layer, described
in Part [V of this dissertation, itself a DSL, and thus contributes to the stratified
design at the core of Lula.

The term structure of the language is not visible to the Lula user. Rather, the
user creates and edits cue terms via a graphical user interface. However, it would
be perfectly feasible to present an alternative view and control onto cues, employing
traditional term notation and a text or structural editor.

The work in this chapter was instrumental in designing Lula’s graphical user
interface for cues. The main problem which needed solving is that graphical user
interfaces are conceptually flat. The display and control of tree-like data is possible
through the use of box-and-pointer diagrams, but is rather unwieldy for the user
as compare with more traditional user-interface elements such as list-boxes and tab
controls. Fortunately, all cue terms in Lula are equivalent to a term with depth 3;
this chapter contains a proof of this property. The resulting representation, cue flat
form, is perfectly amenable to standard GUI techniques.

Bringing formal methods into a domain as practically oriented as lighting may
seem excessive. However, the previous chapter has shown that semantic questions
do arise in day-to-day lighting, and the resolution of the resulting ambiguities is a
pertinent issue in current console design and operation.

Applying semantics to lighting yields some interesting parallels to the denota-
tional semantics of programming languages: if the primary purpose of light on stage
is to make things visible and thereby convey information, cues exhibit a semantic
structure similar to semantic domains.

119
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11.1 Simple Cue Terms

Initially, it is easiest to consider a setting with exclusively theatrical fixtures which
only have intensity control. However, the concepts presented here extend straight-
forwardly to multi-parameter fixtures. Section [T.9 shows how.

Cues form an algebraic specification [Wirsing, 1990, Klaeren, 1983]. The basic
signature for cues builds on a two primitive sorts:

e factor represents a scalar factor; the scale function uniformly scales the inten-
sity of a cue.

e fixture represents a fixture, with an assumed constant for every fixture.

signature Xcygg =
sort factor
sort fixture
sort cue
functions
fromfixture : fizture — cue
scale : factor, cue — cue
black :— cue
U : cue, cue — cue
_J_: cue, cue — cue
_\_: cue, cue — cue
endsignature

Figure 11.1: Signature for simple cues.

Figure [T shows the signature of the algebraic specification. The scale function
scales the intensity of a cue by some factor. (Presumably, the signature would also
contain constructors for factor values. These were omitted for brevity.)

The fromfixture constructor converts a fixture into a cue containing only that
fixture at maximum intensity. The combinators LI_, //, and _\_are HTP, restriction,
and cue difference, respectively (see Section [[0.4).

In the language of the specification, the cue in Figure [[0-1 in Section [0 has
the following definition, disregarding intensity adjustments:

Sofa, left| := fromfixture(PC 1)
Sofa, right fromfixture(PC 2)

Sofa| := |Sofa, left|lLl/|Sofa, right

Door | := fromfixture(PC 14)
Living Room| := |Sofa|Ll|Door

e

Night fromfixture(Floodlight 7)

Living Room at Night‘ = ‘Living Room‘I_I‘Night‘

Should, say, the sofa need less intensity for the right side to be properly balanced,
the corresponding definition could change this way:
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11.2 Carrier Sets for Cues

The normal procedure for constructing an algebraic specification is to write the
specification first and worry about carrier sets and semantics later. In this case,
however, the actual carrier already live in the real world. Thus, it makes sense to
start with an attempt to represent reality semantically, and backtrack from there
to an equational specification.

A meaning for Xcoygg is a Ycyuge-algebra. Such an algebra for Yoygg consists
of carrier sets or domains for factor, fizture, and cue, as well as meanings for the
functions.

A Ycugg-algebra A° represents a natural intuition in the realm of theatrical
lighting and centers around the notion of the cue. A cue conceptually has the
following components:

e a set of fixtures that are part of the cue, and
e intensities for these fixtures.

The notion of “cue contains fixture” is explicit. Thus, the model distinguishes
between a cue ¢ which does not contain some fixture f and a cue ¢’ which differs
from ¢ only by including f at zero intensity.
An intensity is a non-negative real number, bounded by some maximum value
M:
I:=R%},

0

The natural Ycugo-algebra is called A°. Its carrier set Aﬁxtm,e for fixture contains

elements for all fixtures. A%, is a set with:

AO c P(A]%xture) X (A%acture ~ H)

cue —

to I. Of course, a cue must

0
cue

A ture ~ 1is the set of partial functions from A%

define intensities for exactly the fixtures it contains. Hence, A
fulfilling the above condition as well as:

Tture
is the largest set

(F,p) € A?

cue

< F = dom(p).
Factors are non-negative real numbers:

0 o m0,+
Afactor =R

11.3 Semantics of Cues

The next step in constructing A° is assigning meaning to its constants, black, scale,
fromfixture, apply as well as for HTP, restriction, and subtraction.
The black cue is easiest:

black?’ = (2, 2)

The fromfixture constructor assembles a cue from a single fixture at its maximum
intensity:
fromixture™’ (f) := ({}, {f = M})

The scale function scales all fixtures in a cue uniformly:

scale™ (i, (F,p)) := (F.p') where p/(f) := min( - p(f), M)
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The HTP combinator merges the fixtures involved, and assigns maximal intensities:

. pi(f) for f & Fy
(Fi,p1) U (Fa,p2) := (Fy U Fy, p) where p(f) := { pa(f) for f & I
max(p1(f),p2(f)) otherwise

Restriction also merges the fixtures involved, but gives precedence to the intensities
of the cue in the exponent:

pi1(f) for f ¢ F

(FL.p1) [ (F2,p2) == (F1 U Fy,p) where p(f) := {pQ( ) otherwise

The difference combinator is the set-theoretic difference between the fixtures con-
tained in the operand cue. Note that the difference does not consult the intensity
assignment of the second operand.

(F1,p1) \AO (F2,p2) = (F1 \ F2,pip\F,)

11.4 Axioms and Theorems for Cues

The A° algebra is a good starting point for deriving fundamental algebraic prop-
erties of cues to develop Xcugo into an algebraic specification. It has a number of
pleasant properties which will form an axiomatic basis for the specification. Here
is the most immediate onelll:

11.1 Axiom
HTP is commutative and associative.

Proof Follows from the commutativity and associativity of U and max. O

HTP and restriction are trivially idempotent:

11.2 Axiom
HTP and restriction are idempotent. For every cue c:
c I_IA0 c = ¢
cf] A% = ¢
Proof O

A number of trivial axioms concern the behavior of the black cue:

11.3 Axiom
For any cue c:

cUA’ black® = ¢ (11.1)

C/AO black’ = ¢ (11.2)

black/Aoc = ¢ (11.3)

A\ black® = ¢ (11.4)

black’’ \4’c = black”’ (11.5)

c \A0 ¢ = black?® (11.6)

Proof O

1 These properties are called axioms here because they are axioms in the resulting specification.
At this point, they still require proofs of their validity in A°.
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The next insight is that restriction is expressible in terms of HTP and difference:

11.4 Lemma
In A°, for any cues a and b:

aff*b = (a\* b)LA b
Proof Let (Fy,p1) := a and (Fy,p3) := b. Furthermore, let

(F.p) = af"*"b

and . .

(F'.p') == (a\* b) U b
Clearly, F = Fy UFy, = (Fy \ F») U Fy, = F'. Moreover, p = p’ follows from simple

case analysis. O

Moreover, some useful correspondences between \ and L and their set-theoretic
counterparts exist:

11.5 Axiom
In A°, the following equations hold for all cues a, b, and c:

@ D)\ ¢ = @\ out” 6\ ¢ (11.7)
a\* L) = @\ )\ e (11.8)
@\ )\ e = (@\V e\ (11.9)
@\ )\ e = @\ o\ )\ e (11.10)

Proof Let (Fi,p1) :=a, (Fy,ps) :=b, and (F3,p3) :=c.

(1.2 Let (F,p) = (a A’ b)\2" ¢ and (F',p") = (a\*°* ¢) UA” (b\4’ ¢). Then,
F=(FLUFR)\ F3=(F1\ F3)U(Fy\ F3) = F'. Furthermore p = p’ follows from
simple case analysis.

: Let (F,p) =a\** (bUA° ¢) and (F',p') = (a\* b) \A’ c.

(LL9): Let (F,p) =a )\ (F',p

Now,

F=F\(FRUF) = (F\FR)\F=F.

Moreover, p = p1|p = p1)pr = p’ holds trivially.

(I1.9): follows from ([[1.§) and Axiom [[1.].

(II1Q): follows directly from the corresponding property of \. O

11.6 Theorem
Restriction is associative in A°. For all cues a, b, and c:

a2 b e) = (@M b) A

Proof
a0 e) = (a\N BN )L (] )

(Theorem [T.4) = (a \AO ((b \AO c) uA’ c)) U4’ ((b \AO c) uA° c)

M3 = ((@\*" O\ )\ )t (b\* o)1t o)
@TI0) = ((a\* &)\ ) u?” (B\* o)1 )
(I_IAU associative) = (((cl \A0 b) \A0 c) uA’° (b \A0 c)) U’ ¢

D = ((a\" o)L 5\ o)ut’c

(Theorem [[T.4) = (a/AOb)/Aoc
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11.7 Theorem
Restriction left-distributes over HTP in Ay: For all cues a, b, and c:

(a LA’ b)ﬂAD c= (a/AO c) LA’ (bﬂA0 c

Proof
@ o) e = ((au? B\ Ut e
M) = ((@\* eu? <b\A"c>>uA°c
(Axiom [T3) = ((a\* ¢) |_|A (b\A ) U °c
(Axiom[[T3) = ((a\"" ¢)u?” )L ((B\ c) uA° ¢)
(Theorem [[T.4) = (aﬂAO c) LA’ bﬂAU

Note that restriction does not right-distribute over HTP.
Finally, a number of trivial axioms concern the interaction of scaling with the
various cue combinators:

11.8 Axiom
For any factor p and cues a and b, the following equations hold:

= black
scale(u, a) U scale(p, b)

scale(u, a) [/scale(u, b)
= scale(u,a)\ b

scale(p, black

)

scale(u, a U'b)
scale(u, a//b)
)

scale(u, a \ b

11.5 An Algebraic Specification for Cues

The axioms of Section [[T.4 form the basis for a simple algebraic specification of cues
as an abstract data type. Figure [1.2 shows the result. The specification allows
reasoning about cues without referring to their semantics.

11.9 Theorem
AV is a model for CUEQ.

11.6 Cue Flat Form

Using arbitrary terms to represent cues is an effective way for the computer lan-
guage expert to express and deal with look design. Terms—or trees with arbitrary
depth—are not quite so easy to deal with for the ordinary user. Therefore, flat
structures with a small number of levels are much more desirable than general
terms. Fortunately, there is a language of flat cue terms which is able to express all
general cue terms—the language of cue flat forms. There is only a small catch: the
base language requires a slight modification to support the flat subset. This change
complicates the language slightly, but actually clarifies the correspondence to the
intuitive semantics somewhat.

The change becomes necessary through the nature of cue difference: to repre-
sent arbitrary differences, the flat language will require an additional complement
operator. For a cue ¢, the complement yields another cue which contains exactly
those fixtures not contained in ¢. Thus, subtracting the complement of ¢, ¢, works
rather like applying a stencil to a cue. Unfortunately, the complement does not
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spec CUEQ =
signature Xcugg
axioms
scale(p, black) = black
scale(p, a U b) = scale(u, a) U scale(p, b)
scale(u, a/Jb) = scale(u, a) [scale(p, b)
scale(p, a \ b) = scale(u,a) \ b

(aUb)Uc=al (bUc)

(afb)fe = af(b]c)

aldb=>bUa

clc=c

cfle=c

cUblack = ¢

¢/[black = ¢

black/e = ¢

¢\ black = ¢

black \¢ = black

¢\ ¢ = black
(aUb)\c=(a U(b\ec)

endspec

Figure 11.2: An algebraic specification for cues.

have a clear semantics on cues: What are the intensities of the fixtures in a comple-
ment? It should be unimportant, as complements should only occur as the second
argument of the difference operator, but the language Ycygo does not reflect that
fact.

Figure [[T.3 shows a new signature Xcyg; for cue terms which includes another
sort fixtureset for sets of fixtures or fizture sets. They arise out of the semantics
of cue difference: in its second argument, set difference only looks at the fixtures
contained at as cue, not their intensities. Hence, in Ycyg, difference accepts only
fixtures sets as its second argument. An abstraction operator | _ converts a cue to
its associated set of fixtures, and the complement operates on fixture sets only.

The natural algebra for this signature, A;, is a straightforward modification of
Ag. Here are the differences between the two: First off, fixture sets are sets of
fixtures:

1 1
Aﬁztureset = P(Aﬁa:ture)

Cue abstraction simply extracts the first component from a cue:
1 (Fp) = F
The complement has the obvious set-theoretical interpretation:
F = A}imtu're \ F

Double complement is the identity on fixture sets:
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signature Ycyg; =
sort factor
sort fixture
sort fixtureset
sort cue
functions
fromfixture : fizture — cue
scale : factor, cue — cue
black :— cue
U cue, cue — cue
_J]_: cue, cue — cue
| _: cue — fiztureset
" fiztureset — fixtureset
B \ _: cue, fiztureset — cue
endsignature

Figure 11.3: A signature supporting cue flat forms.

11.10 Axiom
For any fixture set F', the following holds:

gl
[
o

Proof O

The semantics of the difference operator needs to reflect the change in signature:

1
(Fr,p)\* Fo = (F1\ Fa,piyp\ )

To avoid overly complicating the presentation and having to rewrite all terms in-
volving differences, abstraction will sometimes be implicit from here on. With this
notational agreement, all axioms of Section [T-4 hold as before, and the axioms of
CUED also apply after the insertion of the necessary abstraction operators. In A*,
another axiom holds:

11.11 Axiom
For cues a, b, and ¢, the following equation holds:
a\* O\ o) = @\ pu A\
Proof Let (Fi,p1) := a, (F3,p2) := b, and (F3,p3) := ¢. Moreover, let (F,p) =

a\1" b\ ¢) and (F',p') = (a\*" b) U A'(a\ "' 7).
The following equation holds by straightforward application of set theory:

a\* 0\ o) =a\* (bNe)
Hence,
fGF@fEFl/\(ngQ\/fEFg).

Also,
fEF/@fEFl/\(ngQ\/fGF;g).

Therefore, F' = F'. Clearly, both p and p’ are both restrictions of p; to F' = F'. [
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spec CUEL =

signature Xcug;

axioms
scale(p, black) = black
scale(p, a U b) = scale(u, a) U scale(p, b)
scale(u, a/Jb) = scale(u, a) [scale(p, b)
scale(p, a \ b) = scale(u,a) \ b
(aUb)Uc=al (bUc)
(afb)fe = af(b]c)
alb=bUa
clc=c
cfle=c
cUblack = ¢
¢/[black = ¢
black/e = ¢
¢\ | black = ¢
black \ F' = black
¢\ | ¢ =black
(@Ub) \ F = (a\ F) U (b\ F)
a\ L (bUc) = (a\ L)\ L e
(a\F1)\ F2 = (a\ F2)\ 1
(a\F1)\ F2 = (a\ (F1\ [2)) \ F?
afflb=(a\ [ D)UD
(aub)fe=(afe)U(afc)
F=F
a\ (b\ ) = (a\ b)U(a\?)

endspec

Figure 11.4: An algebraic specification for cues which differentiates cues from fixture
sets.

Actually, making statements about difference would become easier with adding
the missing operator from set theory—intersection. However, intersection does not
have clear intuitive meaning when applied to lighting. Section [IT.§ contains more
discussion of this issue.
Figure [[T.4 shows a revised algebraic specification CUE1 for cues based on
Y.cug1 which differentiates cues from fixture sets, and has the additional axioms.
It is now possible to define the flat cue language:

11.12 Definition
Assume that Ycyg1 has constants ci,...,c, :— cue. An atom is either one of the
¢; or a term of the form fromfixture(f) for a fixture constant f.

A flat cue term has the following form:

where each of the s; is either an atom or has one of the following two forms:
arffazf]...[lan, with ay,...,ay,,atoms
ay \ az---\ @, with ay,...,a,,atoms

Each a; is either a; itself or its complement @;. The difference operator is assumed
to be left-associative.
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The fundamental result associated with flat cue form is that every cue term has
one:

11.13 Theorem
Again assume that Ycyg1 has constants ¢y, . .., c, :— cue. For each cue term t over
Ycugl, there exists a flat cue term t' equivalent to t in A'. Moreover, it is possible
to choose t' such that it contains the same atoms as t.
Proof By term rewriting. The first objective to pull all HTP operators to the
top level. The equations in Axiom [[1.J and Theorem [[1.7 show how to do this for
most cases. The remaining ones involve restriction which reduces to the previous
cases by Theorem [[T4.

HTP and restriction are associative, so that the internal structure of subterms
involving only one of these two does not matter. This is not the case with differences.
However, here Axiom [[I.T] comes to the rescue. O

11.7 Algebra, Flat Form and User-Interface Design

The algebraic treatment of cue terms and the development of cue flat form are
crucial prerequisites to developing an effective user interface to cues. This section
only mentions the relevant aspects of the design. Please refer to Chapter B for
details on Lula’s actual user interface.

e Cue flat form means Lula can utilize a familiar user-interface construction
for cue editing: Lula represents the upper level of cue flat forms—the “big
HTP”—by a simple choice or tab widget. The second level has specialized
editing widgets customized to the operator at hand.

e HTP and restriction are associative as per Axiom [[T.1]. This means the editing
widget for HTP and restriction can use a linear list box.

e A left-associative sequence of differences

60\01\...\Cn

is commutative in ¢q,...,c, per Axiom [I.5. This again means that a list
box with a specially treated editor for ¢q suffices to edit difference subterms
in cue flat forms.

11.8 A Domain-Theoretic Interpretation of Cues

Denotational semantics uses partial orderings on the elements of semantic domains
to distinguish the amount of information they contain [Gunfer and Scott. 1990].
From a conceptual standpoint, lighting works in a similar way: the more light there
is on stage, the more is visible to the audience.f]
Consequently, it is possible to define an ordering on cues, induced by the HTP
operator:
aCb:<—=alb=0>

The meaning of the C operator becomes clearer when related to the semantics:

(Flapl) QAI (FQ,pQ) <— F} C F5 and pl(f) < pg(f) for all f cF

Thus, a C b means that all fixtures contained in a are also contained in b and shine
at least as bright in b. Therefore, the a C b is pronounced “a is darker than b” or
“b is brighter than a.”

2This discounts the fact that strong back light can blind the audience and actually disclose less
information at higher intensities. Ah well.
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11.14 Theorem
C is a partial order.

Proof reflexive: by commutativity of L.
transitive: Consider cues a, b, and ¢ with

alb bCec.

This is equivalent to:

alb=1> blUc=c
Hence:

alec = alU((bUc)
(aUb)Uec
= bUc

= C

and therefore a C c.
anti-symmetric: Consider two cues a and b with:

alb bCa.

This means
alb=1»b alb=a

and thus a = b. O

This makes U a standard least upper bound. It is possible to drive the analogy
between cues and semantic domains even further:

11.15 Theorem
Cues form a complete partial order in Al: every w-chain in AL, has a least upper
bound B

1

Proof  This result follows from the finiteness of Aﬁztwe and the boundedness of
I. O

Here is another straightforward correspondence of the cue algebra with semantic
domains:

11.16 Theorem
HTP and restriction are continuous in both arguments.

The relationship with domains ends with the difference operator which is continuous
in its first but not in its second argument. This is hardly surprising as, conceptually,
difference positively remowves information from a cue.

Taking our formalization a little further. In A', U induces a dual operation I:

(Fy,p1) A (Fa, pa) := (F1 N Fy,p) where p(f) := min(a(f), b(f))

With this definition, (Al,.,C) even forms a complete distributive lattice. Unfortu-
nately, it is not yet clear if this operator, if actually available to the operator for
cue construction, would have any practical use. Presently, Lula does not include it.
Note also that fixture sets are a natural abstraction of cues in a domain-theoretic
sense—cues and fixture sets form a Galois connection [Gunter. 1992] via the |

projection and a corresponding embedding T with the following semantics:

TAI (F) := (F,p) where p(f):=0forall f € F

3This is one of two common definitions for the term “complete partial order.” This defini-
tion [Winskel, 1993], sometimes called “w-cpo,” is slightly weaker than the alternative “directed
cpo” definition used in other places [Gunter and Scott. 1990).
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11.9 Multi-Parameter Fixtures

The CUEL specification is surprisingly specific to fixtures which allow intensity
control only. Non-intensity parameters require a different treatment, both in the
implementation and in the formal specification. There are two reasons for this:

e Intensity is qualitatively different from other parameters: If the intensity is
zero, no change to any of the other parameters is visible.fj On the other hand,
every change in intensity is visible, at least in principle.

e Even though most numeric parameters do have a limited parameter range,
they mostly do not have an evident ordering. (Is a color a with a higher
proportion of red than another color b larger or smaller?)

Applying the semantic view to a lighting installation with multi-parameter light
helps find a principle for resolving the problem. This principle translates fairly
directly into a new algebraic specification for cues.

11.10 A Semantic View of Multi-Parameters Cues

The domain-theoretic interpretation of cues presented in Section [T.8 assumes that,
for any two cues a and b, a least upper bound a U b exists: a LI b is a cue which
reveals everything a and b reveal. a LI b is brighter than both a and b.

This view is not powerful enough for handling multi-parameter fixtures: Even
though every fixture in a cue @ might be brighter than every fixture in cue b, the
fixtures might point in different directions, therefore revealing some other thing
entirely, and leaving the target of a literally in the dark.

The specification of different settings for a non-intensity parameter in the same
cue term is called a conflict. Such cue terms do not correspond to well-defined
parameter settings. Consequently, two cues a and b containing multi-parameter fix-
tures can only be comparable if the non-intensity parameters of all fixtures included
in @ and b have the same settings. This means that not all pairs of cues have least
upper bounds. Furthermore, not all pairs of cues have HTPs: a LIb does not exist
if @ and b share fixtures with different settings for non-intensity parameters.

11.11 Modelling Parameter Transformations

Besides the issue of conflict, the introduction of multi-parameter fixtures raises a
pragmatic problem: how does the concept of intensity scaling extend to the other
parameters?

The previous chapter in Section introduced the concept of transformation
to generalize over changes in the setting of a certain parameter: a transformation
maps a parameter setting to another parameter setting. Each transformation is
specific to a certain parameter, and applies uniformly to all the fixtures in a cue.

Some of these transformations actually make use of an old setting to produce
a new one—such as intensity scaling or applying an offset in stage coordinates—
whereas others are simple value assignments. The former are called relative trans-
formations, the latter absolute.

As the operator assembles cues by applying transformations and applying the
cue combinators, transformations accumulate in two different ways:

40f course, a motor controlling one of the other parameter might be audible, but this problem
is easy to fix in practice: put in a guitar solo or have an actor scream.
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signature XTraro2 =

sort factor

sort itrafo

sort angle

sort pttrafo

sort trafo

exception notrafo : trafo

functions
scale : factor — itrafo
€itrafo — itrafo
_Oitrafo _ : ttrafo, itrafo — itrafo
_|l _: itrafo, itrafo — itrafo

pan/tilt : angle, angle — pttrafo

Epttrafo pttrafo

_Optirafo _ : Dttrafo, pttrafo — pttrafo

_F#_:itrafo, pttrafo — trafo

_o_: trafo, trafo — trafo

_* _: trafo, trafo — trafo
endsignature

Figure 11.5: A signature for parameter transformations.

Composition arises when a cue already transformed is transformed again: the
two transformations compose functionally.

Juxtaposition arises from the HTP combination of two cues which contain a com-
mon fixture. For two intensity transformations, juxtaposition produces their
least upper bound. For non-intensity parameters, juxtaposition is only mean-
ingful in the absence of conflicts.

The introduction of these two concepts justifies separating out the specification
of transformations. Figure [[I.J shows a signature for parameter transformations.
It only supports parameters for intensity and pan/tilt. However, adding further
parameters is analogous to pan/tilt. The signature differentiates between sorts for
specific transformations for intensity and pan/tilt—itrafo and pttrafo and general
transformations trafo.

Since juxtaposition is conceptually a partial function, ordinary algebraic specifi-
cations are not expressive enough. Some sort of exception handling is required. The
Y TRAFO2 signature uses a special exception value notrafo in the trafo sort trafo.

Presumably, the scale constructor builds intensity-scale transformations from
scale values, pan/tilt constructs transformations that set pan/tilt from two angle
values. (It is coincidence that intensity transformations are relative in this speci-
fication, and pan/tilt absolute—other constructors are possible.) Moreover, €iirafo
and €prafo are special constants meaning “no intensity (or pan/tilt, respectively)
transformation specified.”

The two o compose intensity and pan/tilt transformations respectively. More-
over, || juxtaposes two intensity parameters.

A transformation in trafo is conceptually a tuple of an intensity transformation
and a pan/tilt transformation: the # operator assembles one from its components.
The ¢ operator composes two transformations; x is for juxtaposition.

Figure [[1.9 shows an algebraic specification for transformations matching the
Y TrRAFO2 signature. In the specification, the propagation of the notrafo exception
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spec TRAFO2 =

signature XTraro2

axioms
€itrafo itrafo 1=1
{ Oitrafo €itrafo — {
Epttrafo Opttrafo P = P
P Opttrafo Epttrafo = P
(i1#p1) © (i2#p2) = (i1 Odtrafo 12)#(P1 Opttrafo D2)

€itrafo H 1=1

i | i2 =iz || @

(i1#€ptirafo) * (i2#p) = (i1 || i2)#p

tl * t2 =t %t

P1 7é Epttrafos P2 7é Epttrafo - (Zl#pl) * (Zl #pQ) = notrafo

endspec

Figure 11.6: An algebraic specification for parameter transformations.

value is implicit [Klaeren. 1983, Gogolla et al., 1984]. The error is not repairable,
hence all variables are safe by assumption.
Finding an algebra A2 for the TRAFO2 specification is straightforward: trans-
formations are functions with special values for the e constructors added.
Intensity transformations are mappings from intensities to intensities plus a
bottom value. The e constructors correspond semantically to bottom values, hence
the symbols chosen for A2:

Azztrafo = (I[ - ]I) + {J—pttrafo}
€itrafo = L itrafo

The scale function has a new meaning in TRAFO2: it turns a factor into a function
which scales an intensity value:

scale” (1)(i) := min(pi, M)

A pan/tilt setting consists of two angles. For example:

2 . 0+
Aangle T RSZﬂ'
The definition of A]23tt7ufo is analogous to that of A?t,.afoz
A2, e (A2, % A2 1
pttrafo ( angle X angle) + { pttme}
Epttrafo = J—pttrafo

The pan/tilt operator constructs a constant function:

pan/tiltA2 (ap,ar) == (ap, ar)

For non-bottom intensity transformations i; and i3 or pan/tilt transformations p;
and po, composition is simply functional composition:

. A2 . . .
1 Oitrafo 2 = 11012
A2
P1 Opttrafo P2 = P1OP2

As an aside, note that, even if scaling is the only transformation available for in-
tensities, it is not possible to represent a scaling transformation by its factor, and
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thus achieve composition of two intensity-scaling transformation by multiplication
of their factors. To see why, consider the cue term:

apply(scale(0.5), apply (scale(2), fromfixture(f)))
Composition by factor multiplication would pleasantly reduce this to:
apply (scale(1), fromfixture(f))

and, hence, fromfixture(f). Unfortunately, this is wrong: There is no such thing as
“double maximum intensity” for a real fixture. Hence, apply(scale(2), fromfixture(f))
is equivalent to fromfixture(f) in a faithful model. Compositionality really does re-
quire that the example term has f only at half the maximum intensity.

To get back to defining compositions for intensity and pan/tilt transformations,
the two bottoms are neutral with respect to composition as in the specification:

2

1 Oﬁrafo Litrafo == 1@
2
J—itrafo Of}trafo o= 1
A2
p Oitrafo J‘Ptt“lfo = p
A2
J—itrafo opttrafo p = D

Intensity transformations allow juxtaposition via forming the least upper bound:

(i1 | 32)(v) == max(i1 (v), i2(v))

Finally, a transformation really is a tuple of an intensity and a pan/tilt transforma-
2
tion. Also, tmfoA contains an exception element called { ;yqf0:

Atrafo = (it’rafO X pttmfo) + {é trafo}
notrafo” = & trafo

Composition of two transformation works by pointwise composition and must take
care to preserve exceptions:

. A2 /. . A2 . A2
(Z17p1) < (22,])2) = (Zl Oitrafo ¥25 P1 Cpttrafo p2)
2
é trafo <>A t = é trafo
A2
<¢ é trafo — é trafo

Juxtaposition also works as in the specification:

- 2 .
= (i1 | iz,p)

(41, Lpttrafo) * 2(11,)

(i1,0) ¥ (i1, Lpttrao) = (i1 | i2,p)
)
t

) A2
(Zlvpl) (117P2 = étmfo for p1,p2 7é J—pttmfo

2

é trafo = é trafo

t <> *é trafo = é trafo

11.12 Modelling Multi-Parameter Cues

The new signature for cues with pan/tilt fixtures is an extension of Yrraro2. Fig-
ure [[1.7 shows it. The parts not related to the application of an intensity scale are
largely unchanged from Xcyg:-
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signature Ycygs =
extend Y1raro2 U Xpoor by
sort fixture
sort cue
sort setting
functions
_@Q_: fizture, trafo — setting
_ < _: cue, setting — bool
fromfixture : fizture — cue
apply : trafo, cue — cue
black :— cue
_L_: cue, cue — cue
_J]_: cue, cue — cue
|l _: cue — fiztureset
_: fixtureset — fixtureset
_\ _: cue, fixtureset — cue
endsignature

Figure 11.7: A signature for cues with pan/tilt fixtures.

Dealing with conflicts requires considerably more elaboration on the semantics of
cues on the part of the specification: a conflict happens at the level of a parameter
setting for a single fixture, so the specification needs to define how cues define
parameter settings. To this end, Ycyg2 has a new sort setting.

A setting is an association of a fixture with a transformation. In X cyge, it has,
for a fixture f and a transformation ¢, the form f@t, pronounced “f is at t.” The
— operator relates a cue with a setting: For a cue ¢ and a setting s, ¢ < s means
that ¢ specifies a setting s. The pronunciation of ¢ — f@Qt is “c has f at ¢.”

Figure [T.§ shows an algebraic specification for cues matching Ycygz. The
rules for apply look much like the rules for scale in CUEO and CUEl. However,
there is an additional rule explaining the composition of transformations in terms
of composition of its components.

The rules in Xcyg2 for apply are able to propagate transformations to the leaves
of a cue term, the fromfixture terms. Moreover, the composition rule for apply
allows squashing several nested transformations into one.

In turn, the — relation infers an obvious setting for a fixture from a leaf term
of the form apply(¢, fromfixture(f)). The other rules propagate settings up inside
compound cues. This upwards propagation works only through the regular cue
combinators, not through transformation applications. Hence, inferring setting in-
formation for the fixtures contained in a cue means first pushing the transformations
inwards, squashing them there and inferring setting information for the fixture leaf
nodes, and then propagating the settings back outwards.

The other rules in CUE2 are identical to those in CUEL.

Building an algebra A? for CUE2 is more involved than the construction of A'.
First off, A% includes A! unchanged. The construction of the cue carrier must map
fixtures to transformations instead of intensities as in A'. A well-defined cue must
only have defined transformation. An exceptional transformation, when part of a

cue, produces an exceptional cue. The new A2, is a set with:

A%ue g (,P(Ajzﬁwtu're) X (A]%a:ture ~ (Afrafo \ {é trafo})) + {é cue}

As above, A2, must also fulfill the following condition:

€

(F,p) € A?

cue

<= F = dom(p).
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spec CUE2 =
extend TRAFO2 U BOOL by
signature Ycyg2
axioms
apply (¢, black) = black
apply(t, a LUb) = apply(t, a) Ll apply(t, b)
apply(t,a//b) = apply(t, a) Japply(t, b)
apply(t,a \ b) = apply(t,a) \ b
apply(t1, apply(t2,c)) = apply(t1 o t2, )
apply (¢, fromfixture(f)) — f@Qt
a — f@tl ANb— f@tQ — ((l (] b) — f@(tl *t2)
a — fQt; A ﬁ(atg.b — f@tg) - (a L b) — fQ@t,
b— fQt = (a//b) — fQt
a — f@t1 A _‘(Htg.b — f@tg) — (aib) — f@tl
a — f@tl A _‘(E’tg.b — f@tg) - (a \ b) — f@tl

(aUb)Uc=alU(bUc)
(@fb)fe = aj(bfc)
alb=bUa

clc=c

cfle=c

cUblack =c¢

c¢/[black = ¢

black/fe = ¢

c\ | black = ¢

black \ F' = black

¢\ | ¢ = black

(@Ub)\ F=(a\F)U(b\F)
a\ | (bUe) = (a\ [ D)\ L ¢
(a\ F1)\ Fy = (a\ F2) \ [y
(a\F1)\ Fo = (a\ (F1\ F2)) \ F?
aflb=(a\ ] b)Ub
affbub=ajcubjec

F—F

o\ (0 6) = (@\ D)L (a\ D

endspec

Figure 11.8: An algebraic specification for cues with pan/tilt fixtures.

The black cue has the same meaning as before:
black?” := (2, 9)
A single-fixture cue has only an undefined transformation associated with it:

2
fromﬁxtureA (f) = ({f}? {f = (Litrafoy Lptt'rafo)})
The setting constructor @ is simple tupling:
Aiatting A%rafo

fat = (f,t)

135

Application of a transformation treats all fixtures contained in a cue uniformly:

apply™’ (t, (F,p)) := (F,p) with p/(f) :=t o™ p(f)
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Of the cue combinators, HTP is the most interesting as it involves the juxtaposition
of transformation, and, therefore, the potential for conflicts:

pl(f) for f ¢ FQ
(F1,p1) U A?*(Fy,p2) == (Fy U F,p) where p(f) := ¢ pa(f) for f ¢ Fy
p1(f)*Y pa(f)  otherwise

This definition is only valid if all pq(f) *A% py (f) involved do not produce an ex-
ception. If juxtaposition does produce a transformation exception, the HTP is
undefined, signaling a conflict:

(F1,p1) U A2(F27p2) = écue
if there is an f € Fy N Fy with py(f) ** p2(f) = 4 trafo

Restriction and difference basically work as before:

pi(f) for f & Fy

(F17p1)iAO(F27p2) = (Fl ) F27p) where p(f) = {pz(f) otherwise

(Fl,pl)\AO (Fi,p1) = (F1\ Foypip\F,)

Relating settings to cues is straightforward in A2:
(F.p) =" (f,t) = f € F and p(f) =t

11.17 Theorem
A? is a model of CUE2.

Proof  The axioms concerning — are the only ones requiring attention. The
result by structural induction over cue terms:
The base case is

applyA2 (t, fromfixture”” (f)) = (f,1).

Now, fromfixture?” (f) maps f to (Litrefo, Lpttrafo) Which is neutral with respect to
oA Therefore,

(F,p) := applyA2 (t, fromfixture”” ()

= {1 A = 0™ (Livafor Lpttraso) })
= ({fHLif—1)

and consequently (F,p) —*" (f,t).
For the first non-base axiom, consider cues (Fy,p1) and (F»,ps) and transfor-
mations t, and to in A? as well as a fixture f with

(Fi,p1) = (f,t1) and (Fa,pa) =™ (f, )

corresponding to the prerequisite of the second axiom for —. Hence, f € F; and
f € Fy. Let (F,p) = (Fy,p1) U A?(Fy,p2) be non-exceptional. Therefore, by the
definition of LUA?:

p(f) = pi(f) ™ pa(f)-

For cues (Fy,p1) and (Fs,p2), transformations t; and to as well as a fixture f, the

condition
ﬁ(ﬂﬁg.b — f@tg)
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simply means f ¢ F». Again, by the definition of LIA?:

p(f) =pi(f)

proving the axiom.

The specification has two rules for restriction. Restriction always prefers the
transformation specified by the exponent if there is one. The prerequisite, for cues
(F1,p1) and (Fa,p2) and a transformation t corresponds to f € Fy. The definition
of restriction for (F,p) := (Fl,pl)]A2 (Fy,p2) reduces to p(f) = p2(f), and, hence

(F,p) =™ (1)

The prerequisite of the second restriction axiom translates to f ¢ F,. The definition
yields p(f) = p1(f), proving the axiom. The difference axiom works in exactly the
same way. (|

11.13 Indirect Parameters and Fixture Calibration

CUE2 does not address the issue of indirect parameters—alternative representa-
tions of the ordinary “direct” parameters, such as RGB representations of color or
Cartesian coordinates.

Ideally, the cue algebra would allow the transformation of indirect parameter
as if they were direct ones. This is straightforward with an indirect parameter
which has a fixed relationship with its direct counterpart. For example, the color
wheels of color-changing units generally have fixed colors. Thus, translating an
RGB representation of a color into the CMY and back as is necessary for driving
the changer is a trivial matter.

On the other hand, some indirect parameters require installation-specific infor-
mation for translation. Examples include finite-size effect wheels with exchangeable
gels, and, more importantly, Cartesian-coordinate representation for a beam target.
(Note that the mapping from to Cartesian coordinates to pan/tilt is not injective—a
light beam crosses many points in space along its path.)

Loading the control system with the data necessary for performing the transla-
tion is called calibration. The system must provide a mapping from fixtures to the
calibration information.

As long as every indirect parameter corresponds to exactly one direct parameter,
the basic model of CUE2 remains unaffected. All that is necessary is

e a richer language for constructing transformations from mappings on indirect
parameters, and

e providing the transformations with the calibration data upon application to
a fixture.

The rest of the specification remains intact.

11.14 Implementation Notes

The implementation of cues in Lula strongly reflects the algebraic design and specif-
ically cue flat form. A closer look at some aspects of the implementation illustrate
the influence of the algebraic design. This section takes a bottom-up approach:
more primitive data structures are first.
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Flat Form Representation and Subcues The representation Lula uses for cue
terms is restricted to flat forms. This ensures that the graphical user interface for
edititing cues always sees and manipulates a valid representation. The important
conceptual issue is the nature of the atomic components of cue flat forms.

In Lula, every cue has a name, and every cue term can reference another cue by
that name. Specifically, the atomic subterms of cue flat form in Lula are so-called
subcues consisting of a a cue and a transformation—the meaning of a subcue results
from applying the transformation to the cue. A subcue is always part of exactly
one supercue. Here is the representation for subcues:

(define-record-type :subcue
(make-subcue cue supercue trafos)
subcue?

(cue subcue-cue!)
(supercue subcue-supercue)
(trafos subcue-trafos))

Lula internally uses the plural “trafos” to correspond to the trafo sort in the alge-
braic specification. This corresponds closely to the graphical representation—Lula
displays each atomic components of a cue as a cue with a list of parameter trans-
formations to its right. See Chapters [q for some screen shots.

Representation of Transformations Lula assumes represents every parameter
setting by a single Scheme value. A parameter transformation is essentially just
a mapping between two settings of the same parameter. However, some metain-
formation is also needed as well as access to the fixture for calibration purposes.
Therefore, Lula uses MzScheme’s object system [Flatt, 2000] to implement a data-
directed representation. The meat of the interface is this:

(define trafo<)>
(interface ()
get-aspect
transform))

Note that even though the name is trafo<y>, the interface is only for single-
parameter transformations, abstracting over the sorts itrafo or and pttrafo and
others. Get-aspect returns the parameter a transformation is responsible for. (Pa-
rameters are called aspects in the implementation for historical reasons.) Transform
takes a fixture and a parameter setting as arguments and returns a transformed
setting. Here is the implementation for intensity-scaling transformations as an ex-
ample:

(define intensity-scale-trafol
(class* object’ (trafo<¥%>) (scale)
(sequence
(super-init))

(public
(get-aspect (lambda () intensity-aspect))
(transform
(lambda (fixture n)
(* scale n)))

Complete transformations—members of CUE2’s trafo sort are represented as lists
of parameter transformations. When such a list lacks a certain aspect, the corre-
sponding parameter transformation is assumed to be L.
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Presets Lula stores the settings for a cue in a data structure called a preset.
A preset is a mapping from fixture parameters to parameter values. This differs
from the representation CUE2 and A? suggest where a setting is an association of
a parameters to a transformations rather than a parameter value. Several reasons
are behind the implementation choice:

e Both CUE?2 and A? never address the issue of the actual parameter values—
they do not need to. However, Lula ultimately has to produce the parameter
values to drive the fixtures.

e Transformations are functions constructed by successive composition and jux-
taposition. The efficient composition and juxtaposition of transformations
requires structural knowledge the transformations do not naturally expose—
trafo<¥%>’s transform is just a procedure. Representing the required struc-
tural information would be additional programming work and would limit the
opportunities for abstraction.

e The structure of a transformation is only relevant as it relates to the cue struc-
ture. By itself, it has no useful meaning to the operator: only the resultant
values are important.

Representing Cues Here, finally, is the type definition for cues. Note that its
reactive aspects were already discussed in Section B.4:

(define-record-type :cue

(real-make-cue semaphore

name

flat-form

opt-preset upper-cues

structure-exchange preset-exchange)
cue?
(semaphore cue-semaphore)
(name cue-name)
(flat-form real-cue-flat-form unsafe-set-cue-flat-form!)
(opt-preset real-cue-opt-preset unsafe-set-cue-opt-preset!)
(upper-cues real-cue-upper-cues unsafe-set-cue-upper-cues!)
(structure-exchange cue-structure-exchange)
(preset-exchange cue-preset-exchange))

The semaphore synchronizes modifications to the mutable components of :cue.
Name is the name of the cue. Flat-form is its term representation in flat form.
Opt-preset is either the current preset of the cue of #f. The upper-cues compo-
nent is a list of the upper cues—cues that include this one as a subcue. The two
exchanges receive notifications from the cue subsystem upon structural changes to
the cue itself as well as changes of its preset. The latter can also be caused by
changes in the subcues.
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Part VI

Lula in Motion
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There’s

somethin’ wild in Lula I don’t know
where it comes from.

—MARIETTA in Wild at Heart

A lighting console is a animated reactive system: It must continually drive (or an-
imate) hardware attached to the console while reacting to internal and external
events. Moreover, animation in lighting systems is live; reactivity must be instan-
taneous.

In conventional theater lighting, the variety of animations available to the op-
erator is limited: Usually, the lighting during a theater production is static most
of the time; it changes only for scene transitions with fades. However, concert and
disco lighting often involve movement as part of the show itself.

Because of the complexity of modern multi-parameter fixtures, the operator
must be able to use pre-programmed animations as well as design new ones: the
operator effectively becomes a programmer.

Here is the biggest single challenge to designing a lighting control system: whereas
the lighting designer thinks in terms of what should happen on stage, programming
is usually concerned with how this happens.

This is especially obvious with simple systems, where operators commonly tran-
scribe between conceptual movement (“make that moving light point at the drum-
mer”) and DMX512 slot values (“17 at 244, 18 at 12”). Complex animations such
as smooth geometric figures are not possible with this level of control. Unfortu-
nately, even sophisticated consoles subscribe to the latter user-interface philosophy,
requiring the operator to describe an animation as a sequence of steps, with limited
control over transition parameters, and even less control over interactive reactivity.

Consequently, to support sophisticated lighting animations, Lula goes a different
route. The software uses functional reactive animation as a substrate to offer the
user control over animated lighting. The key difference to traditional system is its
declarative nature: the operator can concentrate on what she wants the animation
to be, rather than how it should be implemented.

Lula equips the user with a simple domain-specific language for reactive ani-
mations called Lulal. The language grows with the user: simple animations only
require mastery over very few language constructs. Sophisticated animations—
which in scope go far beyond traditional consoles—involve abstraction, reactivity,
and repetition.

Lula utilizes Functional Reactive Programming (FRP) for the description and
implementation of all animated lighting. FRP focuses on separating the modelling
from the rendering aspects of animation. Originally designed for graphics anima-
tions, FRP has applications in all fields involving continuous behaviors over time.
Notable examples beside lighting include the construction of graphical user inter-
faces and robotics.

Chapter [7 introduces Functional Reactive Programming as a general concept
and then describes the FRP framework which is part of Lula. Building on theses
concepts, Chapter [[3 shows the application of FRP to the animation of lighting and
describes the Lulal language.
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Chapter 12

Functional Reactive
Programming

Hey, don’t jump back so slow ... I
thought you was a bunny ... Bunny
jump fast—you jump back slow ...
Mean somethin’, don’t it?

—BoBBY PERU in Wild at Heart

Functional Reactive Programming is a programming technique for representing val-
ues that change over time and react to events. It is suitable for a wide range of
applications, among them graphics animations [Elliott, 1997], graphical user inter-
faces [Sage, 2000], and robotics [Peterson et al.., 1999b, [Peterson and Hager, 1999,
Peterson et al., 19994]. As it turns out, it is also eminently applicable to animated
lighting.

The advantage of using Functional Reactive Programming over more tradi-
tional imperative reactive frameworks [Boussinot, 1991, Boussinot and Susini, 1998,
Pucella, 1998, Scholz, 199§] is its clear separation between modelling and presenta-
tion. FRP allows an implementor to provide a set of primitive reactive values and
combinators to construct new ones which capture the essence of what an animation
should be rather than how the application should render it. This makes FRP a
classic declarative approach to a traditionally imperative problem.

The published implementations of FRP are written in Haskell [Haskell98, 199g],
starting with Fran [Elliott and Hudak, 1997], a system for graphics animations.
Implementations which provide the full declarative power of the approach—among
them time transformation and recursive reactive values—inherently exploit func-
tional programming and lazy evaluation. Unfortunately, these implementations ba-
sically assume that the entire program execution is under the control of the reactive
sampling engine, and thus do not integrate well with existing program frameworks.
Space leaks and the lack of synchrony complicate the use of Fran in realistic ap-
plications. Newer, imperative experimental implementations exist [Elliott, 1998d],
but presently do not provide the full power of the functional implementations.

This chapter introduces FRP as a general concept, echoing some of Elliott’s
work [Elliott and Hudak, 1997, Elliott, 1998d]. It also describes Lula’s subsystem
for reactive programming which has some notable differences to traditional imple-
mentation approaches: Lula is written in Scheme, and the lack of implicit laziness
requires more care in the implementation of the FRP primitives. Moreover, as Lula
also allows hooking up user-interface components based on more traditional models
of reactivity such as callbacks, it must provide synchrony between user actions and
model reactions. This motivates an implementation strategy for reactive events

145



146 CHAPTER 12. FUNCTIONAL REACTIVE PROGRAMMING

different from Fran’s. Because documentation of many of the implementation de-
tails of FRP systems is generally sparse, this chapter provides some more technical
insight into Lula’s reactivity subsystem along with actual code for the most crucial
combinators.

12.1 Reactive Values

Reactive programming requires a notion of time. There are two basic time-dependent
entities in a reactive system [Elliott and Hudak, 1997]:

Behaviors represent time-varying values. Lula represents all lighting parameters,
such as intensity, position, and color as behaviors. Even though a digital sys-
tem will usually use discrete sampling to actually drive the fixtures, behaviors
are conceptually continuous.

Events represent sources of event occurrences. An event occurrence represents
the fact that something happened, usually along with some information on
what it actually was that happened. The stream of button presses associated
with a button can be a primitive event; the reactive aspects of other GUI
components have similar representations as events. Events do not necessarily
represent intervention from the outside world: alarm clocks and time-varying
conditions are also primitive events.

Behaviors and events are not restricted to the primitive notions described above.
Often, reactive values arise as transformations and combinations of other reactive
values. Abstraction is common.

12.2 Semantics of Reactive Values

Functional reactive programming builds on a formal semantic model. This section
presents a somewhat idealized semantics which provides a suitable intuition for
understanding the nature of the reactive values in the framework.

The semantics uses a domain time for values representing points in time. To all
intents and purposes, time values are real numbers.[]

Behaviors and events both form parameterized abstract data types:

A behaviors in behavior, represents time-varying value in «. The semantics
given by the function at determines the value at a certain amount in time. To do
this, at takes two points in time as an argument: the second one is the time of
interest for which at determines the value. The first time argument is the start
time. The start time is relevant for reactive behaviors which change according
to occurring events. Such a behavior takes only event occurrences into account
happening after the start time.

at : behavior, — time X time — «

Events map an interval in time to a sequence of event occurrences—pairs of values
and timestamps.

occs : event, — time X time — («a X time)*

For an event e, occs(e) returns a function accepting two points in time, ¢; and
to, representing an interval (t1,t3]. The function returns a finite sequence of time-
ascending occurrences in that interval. Note that occs does not catch occurrences
happening precisely at ;.

LA precise interpretation also includes partial elements [Elliott and Hudak, 1997]. This view
does little to enhance the intuition, however.
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12.2.1 Constructing Simple Behaviors

Simple behaviors result by the construction of primitive behaviors from ordinary
values and functions over their domains, and the primitive time behavior.

Time The most primitive behavior is time itself. Its semantics is trivial:

time :  behaviorTime
at(time) = A(ts,t).t

Lifting The simplest constructed behavior is probably a constant one. The pro-
cess converting a value into a behavior is called lifting:

lift : o — behavior,,
at(lift(v)) = Ats,t)v

Lifting generalizes to arbitrary functions between “ordinary values”: Lifting con-
verts a function from values to a value into a function from behaviors to a behavior.
For n € N, the lifting operator for an n-ary function is lift,,:
lift, : ((a1 X -+ %X a,)— B) — (behaviory, X --- x behavior,, ) — behaviorg
at(lift, (f)(b1,...,bn)) = Ats,t).f(at(b1)(ts, 1), ..., at(b,)(ts, 1))

Note that liftg = lift.

Time Transformation Time transformation is one of the most attractive fea-
tures of the framework: it replaces a behavior’s notion of time with another, itself
denoted by a behavior.
time-transform :  behavior, X behaviorime — behavior,,
at(time-transform(b, b;)) = A(ts,t). at(b)(¢s, at(bs)(ts,t))

12.2.2 Constructing Events

Primitive events come from two sources: foreknowledge of occurrence time and
value, and external sources controlled by the user.

Constant Events The simplest kind of event has only one occurrence. It is like
an old-fashioned alarm clock:
alarm :  time X o — event,
occs(alarm(t,v)) = Ai.[(t,v) |t € 1]

A similar construct is closer to modern digital watches:

periodic-alarm  :  time X dtime X a — event,,
occs(periodic-alarm(t, §,v)) = Mi.[(t+nd,v) | n € Nt +nd € i

External Events External sources of event occurrences are typically Ul elements
such as the keyboard, or GUI controls. The semantics assumes that these have
primitive events associated with them, such as:

keyboard : event pqr
left-mouse-button : eventyn

mouse-position : evenirxr
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Event Handling New events result from old ones primarily through event han-
dling—transforming an event into another one whose occurrences happen at the
same points in time, but with different resultant values. Ideally, the function per-
forming the transformation will have access to both time and value of every occur-
rence:

handle-event :  event, X (time x a — (3) — eventg
occs(handle-event(e, f)) = Xi.[(t;, f(ti,vi)) | oces(e)i = [(t1,v1), .., (tr, V)]

Handle-event induces a number of derived combinators which do only part of its
work:

map-event :  eventy X (v — ) — eventg
map-event(e, f) := handle-event(e, A(¢,v).fv)
time-only-event :  event, x (time — ) — eventg
time-only-event(e, f) := handle-event(e, A(t,v).[t)
const-event :  eventy, X [f — eventg
const-event(e,v*) := handle-event(e, A(t,v).v")

Filtering Events Sometimes, it is desirable to filter out the event occurrences of
an event satisfying a given predicate:

filter : event, X (o X time — boolean) — event,
occs(filter(e,p)) = Ai.[(t;,v;) | oces(e)i = [(t1,v1),- - -, (tk, vk)], p(ti, vi)]

Predicate Events A predicate event watches a boolean behavior and produces
an occurrence every time the behavior changes from false to true. Whereas the
intuition is simple, the semantics is somewhat involved:

predicate :  behavioTpoolean — CVENEynit

For the semantics of predicate(b) and an interval ¢ := (¢,,t;), consider a partition
[t0,. .. ] of [ta,ts] values cy,...,c, € boolean compatible with b in the following
way:

e Forall je{1,...,n—1}, ¢; = =¢jt1.
e Forall je{l,...,n—1}, t € (t;_1,t;) implies at(b)t = ¢;.

If such a partition exists, then occs(predicate(b))i := o where o is the shortest
time-ascending sequence with the following elements:

e If ¢; = true at(b)t, = false, then (t,,()) € o.
e For je{l,....,n—1}, (¢j,()) € 0if ¢; = false.
o If ¢, = false and at(b)t = true, then (¢,()) € o.

Choice The merge operator combines the occurrences of two compatible events
into one:

merge : eventy, X event, — eventy
occs(merge(er, ea)) = Ni.[(ti,vi) | (t;,v;) € oces(er)i or (¢, v;) € oces(ez)]
This definition is actually ambiguous: If e; and es both have occurrences at the exact
same time, the definition does not specify which one merge specifies in the output

sequence. Ideally, the occurrences in e; would take precedence. The difference is
unimportant for the most purposes.
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Figure 12.1: Converting from behaviors to events and back.

12.2.3 Combining Behaviors and Events

A number of combinators take both events and behaviors as parameters and combine
them in various ways.

Reactivity The key combinator for constructing behaviors from events is until:
it behaves like one behavior until an event occurs, and then switches to behaving
like a different behavior produced by the event:

until  :  behaviory X eventpehavior, — behavior,
at(b)(te,t)  if oces(e)(ts,t) = |
at(until(b, e))(ts,t) = or occs(e)(ts,t) = [(t1,01),...] and t <ty

at(by)(t1,t) otherwise for oces(e)(ts,t) = [(t1,b1),...]

Converting Events to Behaviors An event has a natural analogue as a piece-
wise-constant behavior, where the value at a point in time is determined by the
value of the last event occurrence:

stepper : « X event, — behavior,
v if oces(e)(ts,t) =]
at(stepper(v,e)) = A(ts,t).qv; if oces(e)(ts,t) =[(t1,v1),...,(tn,0n)],t; <tandt; +1 >t

v, if oces(e)(ts,t) = [(t1,v1), ..., (tn,vn)] and t, <t
Figure [[Z-]] illustrates the correspondence between behaviors and events established
by predicate and stepper.
Sampling Behaviors Sometimes it is useful to obtain the value of a behavior at

the time an event occurs. The snapshot does this:

snapshot :  event, X behaviorg — eventqxg
occs(snapshot(e, b)) = A(ts,t).[(¢t1, (a1,01))s- -+, (tn, (An, bn))]
where occs(e)(ts,t) = [(t1,01),. .., (tn,an)] and at(b)(ts,t;) = b;

12.2.4 Integral and Differentiation

Integration and differentiation are also possible:

integrate :  behavior e, — behavior eq;
at(integrate()) = A(ts,?). / ' (@b(b) (e, ))dr

derivative behavior:;l — behavior reqy
at(derivative(b)) = A(ts,t). (%)
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Implementation use numerical approximation. Especially integration is extremely
useful in, for instance, the simulation of physical behavior. In Lula, an integral
behavior defines progress in a light fade, dependent on the position of the “Speed”
fader.

12.3 Implementation Issues

The semantics given in Section [2:7 suggests modelling the representation of be-
haviors and events after at and occs: the semantics maps both to functions—in a
functional language, these have first-class representations. There are two pragmatic
problems, however:

e The semantics allow looking arbitrarily far back into the past: both at and
occs produce functions which accept arbitrary times as arguments. Even
though simple behaviors have representations as simple functions, truly reac-
tive values would have to record all event occurrences forever to support the
full semantics.

This is not just a space problem: the functional semantics do not easily al-
low for any bookkeeping between samplings: reactive values involving, say,
cascaded applications of until, must re-sample all events of the past at every
sampling interval. Some caching could remedy the problem, at the cost of an
even bigger space leak [Elliott, 1998d].

e The semantics allow looking arbitrarily far into the future, again because there
are no constraints on the sampling times. Reactive programming must be able
to function in an interactive environment where the system does not know all
event occurrences in advance.

Primarily because of these two problems, implementations of FRP have used a
variety of representations different from the naive one suggested by the seman-
tics [Elliott, 19986, Elliott, 1998d, Elliott, 1998d).

All representations must tackle the problem of aging: the running application
must—implicitly or explicitly—allow the FRP substrate to “forget” events that
happen in the past. There are fundamentally two ways of doing this:

e Use an applicative representation and automatic storage management to re-
claim space for old events no longer needed [Elliott, T998H, Elliott, 1998d].
When necessary, require the programmer to provide aging annotations.

e Use an imperative representation [Elliott. 1998d] which observes only “current
time.”

The two approaches to the representation of reactive values differ along several
axes. The most fundamental one seems to be that declarative representations are
demand-driven and thus present a pull-based notion of reactivity, whereas impera-
tive implementations are push-based: event occurrences drive progress in the system
(see Section P-3.0)).

The decision for one or the other—besides having various consequences for the
programmer—is visible to user: push-based implementations usually exhibit syn-
chronicity between an event occurrence and the reaction to it, whereas pull-based
systems usually have sampling loops which notice event occurrences only at sam-
pling intervals. Depending on the duration of the sampling interval, the delay may
be quite visible to the user.

Hence, Lula uses a hybrid representation which strives to retain the good declar-
ative properties of the applicative representation, while supporting synchronicity
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Figure 12.2: Actual event occurrences and sampling.

where desired. The central problem that any implementation of FRP must address
is that of sampling event non-occurrences. Lula’s FRP implementation is closely
related to a simple stream-based implementation of FRP.

12.4 Stream-Based Reactive Values

Consider a stream-based representation of behaviors and events [Elliott, 19980,
Elliott, 1998d]. The stream-based representation has the advantages of being suit-
able for realistic implementation, while having a closely, formally explored relation-
ship to the semantics [Wan and Hudak. 2000)].

For now, a stream is a—potentially infinite—sequence of values. A stream of
values in « is denoted by stream,. Here are the representations on behaviors and
events:

behavior, = StreaMigme — Streame

eventy, = Sreamiime — Streamopt

(opt,, stands for a value in « or for some special value e denoting “nothing.”)
Both representations map monotonically increasing time streams (a constraint not
expressed in the domains) to other streams, the idea being that the elements in the
input stream correspond to elements in the output stream.

Hence, the function representing a behavior takes a stream of sampling times
as its argument and returns a stream of the values of the behavior at those times.
For events, the situation is slightly more complicated: for a sampling time ¢ in the
input stream, the corresponding optional value in the output stream says whether
there was an event occurrence before t. When there are more than two event oc-
currences between two sample times, the occurrences reported in the output stream
distribute over the following elements. Figure [[2.7 illustrates the situation. Thus,
the underlying assumption is that, over time, sampling will happen more often than
event occurrence.

Note that it is crucial that the semantics be able to express non-occurrence
explicitly: the output stream will contain epsilon if the event did not occur between
the previous sample time and the current one. The sampling of reactive values, such
as behaviors created by until, will need to know for any given time ¢, if the event
has occurred before t.

Since the stream-based representation offers only an approximation of the true
semantics, the original definitions of at and occs are no longer appropriate. More
reasonable semantics for these representations are the two functions at and oces
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which accept finite time streams rather than intervals:

at :  behavior, — streamipme —
at(b) := Mts.last(b(ts))
occs :  eventy, — Streamiime — SETeAM imexa
oces(e) = Ats.[(t,v) | (t,v) € e(ts),v # €]

The last function merely extracts the last element of a finite stream.

Under certain constraints, at and occs approximate the at and occs functions,
respectively [Wan and Hudak, 2000]. Of course, certain combinators like predicate
which depend on the ability to catch a change in a continuous behavior can miss
instantaneous conditions. (Other implementations of FRP allow interval analysis
which can detect instantaneous peaks in behaviors [Elliott and Hudak, 1997]; they
are less suited for practical implementation, however.)

12.5 Implementation of Reactive Values

Lula represents every source of output to the interface as a behavior over presets.
This requires smooth integration of FRP with the rest of Lula, a stateful system
which needs to run reliably for extended periods of time. This requirement imposes
special constraints on the implementation:

1. Even though the implementation must sometimes remember event occurrences
in the past, it must not run out of memory. This is the most serious issue.

2. The system must be able to repeatedly start and stop sampling of behaviors
as it runs. This is different from closed-world systems like Frob and Fran
where one application essentially samples one single behavior forever.f

3. The system must function in a multi-threaded environment; it must allow
integration with traditional callback-based GUI systems.

12.5.1 Streams, Laziness and Recursion

Lula’s implementation of FRP is essentially stream-based, just like the representa-
tion described in Section [2Z-4. Since Lula is written in Scheme, a strict language,
the most immediate question is how to represent streams.

Ordinary (strict) lists will not do since the streams which occur in FRP are
not completely available when computation starts and potentially become infinite.
Representing lazy lists in Scheme is easy enough through delay and force which
implement delayed evaluation. However, for non-strict lists, there are two different
representations with different degrees of strictness [Wadler et al., 1998]:

e The odd style of representing lazy lists uses delay for the cdr of the list. The
lazy list corresponding to the stream [1, 2] is constructed in the following way:

(cons 1 (delay (comns 2 (delay >()))))

This style of constructing lazy lists seems fairly common in the Scheme com-
munity [Abelson et al., 1996). This style is called “odd” because a finite lazy
list contains an odd number of constructors, counting cons, delay, and ’ ()
[Wadler et al.. 1998]. Note that the representation is strict in the head of the
list.

2This can actually turn into an advantage: The current implementation of Fran still leaks
memory, partly because it holds on to the history of the user interactions for the entire runtime
of the program.
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e The even style moves the delay operator to the front. Here is the represen-
tation for [1,2]:

(delay (cons 1 (delay (cons 2 (delay ’())))))

With this style, the number of constructors is always even. Whereas the even
style leads to somewhat more convoluted programs, it yields the behavior
which programmers familiar with non-strict languages usually expect.

(The problem is not prominent in the published literature on FRP, as it exclusively
uses Haskell [Haskell98, 1998], a non-strict language, where everything is lazy.)

Laziness is an important issue with recursively defined reactive values such as
integral (see Section [2.5.7). Simultaneous behavior and event values might have
interdependencies, requiring delayed evaluation for both. Consequently, Lula’s re-
activity kernel uses the even style for lazy lists:

(define-syntax stream-cons
(syntax-rules ()
((stream-cons head tail)
(delay (cons head tail)))))

(define (stream-car stream)
(car (force stream)))

(define (stream-cdr stream)
(cdr (force stream)))

(define (stream-null? stream)
(null? (force stream)))

Actually, for events, the reactivity library further protects the lists with semaphores
to allow concurrent access in a multithreaded setting, but the strictness behavior
remains the same.

The implementations for behaviors and events used by Lula’s reactivity subsys-
tem allow the definition of two procedures at and occurrences which return the
applicative representation presented in Section [2-4:

(at behavior time-list) procedure]

At accepts a behavior and a lazy list of sample times, and returns a lazy list of
values of the behaviors.

(occurrences event time-list) procedure

Occurrences accepts an event and a lazy list of sample times, and returns a lazy
list of possible occurrences which are #f for non-occurrence or a record consisting
of a timestamp and the promise of a value:

(define-record-type :occurrence
(make-occurrence time promise)
occurrence?

(time occurrence-time)
(promise occurrence-promise))

3The description of Scheme procedures or macros uses the same format as the
RPRS [Kelsev el al.. 1998]. “Procedure” in this case means that at is a procedure, not a macro.
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12.5.2 Implementing Behaviors

The straightforward stream-based implementation of behaviors as functions from
time streams to value streams is simple enough, but has at least one fundamental
problem which makes it unsuitable for use in long-running systems:

Consider a reactive behavior b := until(¥’,e) for an arbitrary behavior b and
an event e. As long as the program accesses this behavior, it also needs access to
e. Now, even though b depends only occurrence of e, e may in fact have many
other occurrences, all of which must stay accessible and therefore consume mem-
ory. Specifically, if e is tied to some Ul component—say, a mouse button—it will
accumulate more occurrences as run time progresses, all of which have to be stored.
This is a space leak, and the representation does not allow for a fix.

Hence, Lula’s reactivity subsystem uses a richer inductive representation for
behaviors which, for examples, allows discarding e in the example above after
its first occurrence. It is close, but not identical to the representation used in
Fran [l‘.‘)lliottw 1998b, Ellott, 1998d, Elhott, 1999, Elliott, 19988].

The representation is derived from the set of behavior constructors. It consists
of a number of record types whose names start with behavior*. Note that this
is only the representation of the behavior structure. The actual representation for
behaviors, behavior, is a promise of a behavior*: ... value to allow for recursion.

There is are two truly primitive behaviors, constant behaviors and time:

(define-record-type :behavior*:constant
(make-behavior*:const value)
behavior*:const?

(value behavior*:const-value))

(define-record-type :behavior*:time
(make-behavior*:time)
behavior*:time?)

These two have straightforward semantics expressed by a procedure at* which, for
a behavior structure behavior* maps a time stream to a value stream:

(define (at* behavior* time-stream)
(cond
((behavior*:time? behavior*) time-stream)
((behavior*:constant? behavior*)
(repeat-stream (behavior*:constant-value behavior*)))

Repeat-stream just repeats its argument:

(define (repeat-stream x)
(stream-cons x (repeat-stream x)))

Another type of behavior is the arises from the lifted version of function application:
a behavior of functions from values to values is applied to a behavior of values:

(define-record-type :behavior*:app
(make-behavior*:app proc-behavior arg-behavior)
behavior*:app?

(proc-behavior behavior*:app-proc-behavior)
(arg-behavior behavior*:app-arg-behavior))

The semantics of app behaviors results from taking the semantics of both the
proc-behavior and the arg-behavior component and applying them elementwise
to each other. The at procedure used in the semantics appears further below. Note
that this is a continuation of the cond expression that is the body of atx*:
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((behavior*:app? behavior*)
(streams-apply (at (behavior*:app-proc-behavior behavior*) time-stream)
(at (behavior*:app-arg-behavior behavior*) time-stream)))

Streams-apply procedure has the obvious definition:

(define (streams-apply proc-stream arg-stream)
(stream-cons ((stream-car proc-stream) (stream-car arg-stream))
(streams-apply (stream-cdr proc-stream)
(stream-cdr arg-stream))))

Time-transformed behaviors also have their own place in the representation:

(define-record-type :behavior*:time-transformed
(make-behavior*:time-transformed behavior time-behavior)
behavior*:time-transformed?

(behavior behavior*:time-transformed-behavior)
(time-behavior behavior*:time-transformed-time-behavior))

Its semantics again uses at, in a straightforward way:

((behavior*:time-transformed? behaviorxk)
(at (behavior*:time-transformed-behavior behavior*)
(at (behavior*:time-transformed-time-behavior behavior*)
time-stream)))

The most significant case—as far as space behavior is concerned—is the behavior*:until
type:

(define-record-type :behavior*:until
(make-behavior*:until behavior event)
behavior*:until?

(behavior behavior*:until-behavior)
(event behavior*:until-event))

Implementing the semantics of behavior*:until involves actually sampling it. To
this end, at* uses at and occurrences to generate parallel lazy lists of behavior
values and possible occurrences. Sampling loops over both lazy lists until it finds
an event occurrence. As soon as that happens, at switches to the behavior stashed
in the event occurrence:

((behavior*:until? behavior*)
(delay
(let loop ((time-stream time-stream)
(values (at (behavior*:until-behavior behavior*) time-stream))
(maybe-occurrences (occurrences (behavior*:until-event behaviorx)
time-stream)))
(let ((maybe-occurrence (stream-car maybe-occurrences)))
(if maybe-occurrence
(force (at (force maybe-occurrence) time-stream))
(cons (stream-car values)
(delay
(loop (stream-cdr time-stream)
(stream-cdr values)
(stream-cdr maybe-occurrences)))))))))

The code above is a slightly simplified version of the code actually in Lula—it is a
little too strict in forcing the event value. This matters in recursive reactive values;
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there is a more detailed explanation of the mechanisms involved in Section [Z.5.71
further below.

To support recursion, the behavior representation wraps the structural informa-
tion represented by the behavior*:... types in a promise:

(define-record-type :behavior
(make-behavior *-promise)
behavior?

(*-promise behavior-*-promise))

Thus, the at procedure that computes the semantics of behaviors uses a delay-
force pair to unwrap/wrap the promise of the behavior structure:

(define (at behavior time-stream)
(delay (force (at* (force (behavior-*-promise behavior)) time-stream))))

The representation for behaviors is similar to that used in Fran [Elliott. 19988,
Elliott. 1998d, Elliott. 1999, Elliott, 19984]. Fran’s representation is somewhat more
involved, mainly because Haskell, the language Fran is written in, presently cannot
express the types for behavior*:time and behavior*:app. Moreover, Fran uses
memoization to avoid redundant sampling [Ellott. 19980, Ellott. 1998d], but it
is not clear whether the added implementation complexity yields any significant
performance improvement. If fact, caching sometimes actually slows down sampling.

12.5.3 Event Non-Occurrences and Synchrony

Whereas the implementation of behaviors arises in a straightforward way from the
stream-based representation, the implementation of events is more involved. Again,
just as with behaviors, representing an event as a stream-transforming functions
does not allow for a reasonable form of garbage collection.

Fran instead uses an explicit first-oder representation—an event is a stream of
possible occurrences. However, Fran’s representation for events raises two immedi-
ate issues: blocking and synchrony. This section discusses Fran’s approach to the
problem and the blocking issue; the following section describes Lula’s implementa-
tion which differs from Fran’s.

Here is Fran’s representation for events:

eventy 1= StreaMiimex opt,,

Again, the stream of event occurrences representing an event must be monotonically
increasing with respect to the timestamps.

The stream may also contain elements containing only a timestamp. An element
(t,€) represents a non-occurrence: it means that the event did not occur between
the timestamp of the previous element in the stream and ¢. This may surprising at

first—an event
[(0,a),(1,€),(2,b), (3,¢€), (4,¢€), (5, ¢)]

is obviously equivalent to one without the non-occurrences:

[(0,a),(2,0), (5,¢)]

However, in an interactive application, most event occurrences are typically not
known when the system starts—they arise from interaction with the user over time.
If the stream representing an interactive event could not contain occurrences, ac-
cessing, say, the first element of the stream might block until the interaction actually
occurs. This is unacceptable: the animation must be able to continue; accessing the
stream representing an event must never block. Therefore, when the sampling loop



12.5. IMPLEMENTATION OF REACTIVE VALUES 157

accesses an event that is still waiting to happen, the event stream will generate a
non-occurrence.

The necessity of representing non-occurrences exposes a deeper issue with the
practical implementation of FRP: sampling a reactive value at a given time can only
take into account what event occurrences are known at the time of sampling. In fact,
it is entirely possible, that, through communication latencies, an event occurrence
becomes known at a wallclock time significantly later than the time of the occur-
rence itself. This breaks the monotonicity requirement for the occurrence stream.
Fortunately, this is not a problem in practice as long as the actual occurrences in
the stream are in the right order. The system will still react to the occurrence, al-
beit with a delay. (Of course, the delay may actually cause non-continuous changes
in the animation, but there is not really a way to rectify the problem when the
communication of event occurrences is not instantaneous.)

The important insight is that the system will usually generate non-occurrences
for the current wallclock time to indicate that an event has not occurred “until
now.”[] Thus, in practice, non-occurrences primarily serve to associate wallclock
time time—an implicit concept—with event occurrence or non-occurrence. This
suggests that there may be a way to keep non-occurrences implicit, thereby saving
the space overhead required for storing and garbage-collecting the non-occurrences.

There is another problem with the non-blocking explicit representation of non-
occurrences: detecting an event occurrence requires polling the occurrence stream
continually. Since polling can only happen at discrete intervals, this introduces
a latency between event determination and reaction. Unfortunately, for simple
controller-model-view interactions, where activation of a control is supposed to pro-
duce an immediate change in the model and the view, even short delays of 1/20 of
a second are quite visible to the user. Moreover, polling can be computationally
expensive. Hence, the streams representation of events is not synchronous.

12.5.4 Determination vs. Occurrence

The key to having an implicit representation of event non-occurrence is the dif-
ference between the time at which an event occurrence is known and the time it
actually happens. While the latter is the time of occurrence, the other is the time
of determination.

Consider an “alarm event” constructed by the alarm procedure alarm in Lula’s
reactivity subsystem:

(alarm time) procedure

Alarm returns an event with exactly one occurrence at time time. If alarm is called
with a time in the future like

(define e (alarm (+ (current-time) 5.0)))

at time t, the time of occurrence of e is very close to ¢t + 5, whereas the time of
determination is t. For practical purposes, the time of determination cannot be
significantly later than the time of occurrence: to be accurate, the sampling engine
needs to know about event occurrences which happened in the past as soon as
possible.

Conversely, this means the sampling engine might just as well go ahead and
assume that, when it is sampling a reactive value at wallclock time, that all event
occurrences which have not been determined will occur in the future. This leads
to a simple strategy for detecting event non-occurrences even when they have no

4Actually, in Fran, event filters also generate non-occurrences, but it is not difficult to re-
implement them without using non-occurrences.
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explicit representation: attempt to sample the event for the next occurrence. There
are three possible scenarios:

1. The sampling yields an occurrence in the past which has been determined in
the past: occurrence.

2. The sampling yields an occurrence in the future which has been determined
in the past: non-occurrence.

3. The sampling engine detects that sampling would block because no event
occurrence is available. The determination time of the next occurrence is in
the future, so it is safe that the next occurrence time will also be in the future.

Consequently, sampling requires test which checks if sampling an event would block.
The test itself must not block.

12.5.5 A Synchronous Implementation of Events

Lula’s representation of events is based on the same idea as the stream-based repre-
sentation with two notable differences: the representation of event non-occurrence
is implicit, and the central data structure is no longer a promise but instead a
placeholder.

Placeholders Placeholders abstract over the functionality of both promises and
write-once variables, and are thread-safe.] This dual functionality makes them
suitable both for “pre-fabricated” internal events such as the ones produced by
alarm and interactive events hooked up to user interface controls.

Placeholders representing write-once variables result from a call to the make-
placeholder constructor without any arguments:

(make-placeholder) procedure
An attempt to obtain its value will block until a call to placeholder-set!:
(placeholder-set! placeholder obj) procedure

The placeholder-value procedure returns the value of the placeholder if it has
been set previously via placeholder-set!. If no call to placeholder-set! pre-
ceded the call of placeholder-value, placeholder-value will block until it oc-
curs, returning the newly set value.

Another kind of placeholder contains a piece of code specified upon construction
which placeholder-value calls when asked to obtain its value:

(make-placeholder thunk) procedure

Thunk is a procedure of no arguments. When the program calls placeholder-value,
it will evaluate the thunk, memoize its value and return it. Evaluating the thunk
may block.

A third form of calling make-placeholder allows the caller to be more specific
as to the blocking behavior of placeholder-value:

(make-placeholder thunk blocking-info) procedure

5Placeholders started out as an implementation of the communication mechanism of the same
name in Kali Scheme [Cejtin_et_al.. 1997] and newer versions of Scheme 48 [Kelsey_and Rees, 1997,
but has evolved beyond the original idea. Lula’s placeholders subsume the functionality present
in these systems.
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In its simplest form, blocking-info is a boolean value, in which case it specifies
whether evaluating thunk would block. It may also be another placeholder which
signals that evaluating thunk will also attempt to obtain the value of that place-
holder. Finally, blocking-info can also be a thunk whose value, when evaluated, will
tell whether evaluating thunk would block.

Another selector beside placeholder-value, placeholder-ready?, tells if call-
ing placeholder-value on the placeholder would return immediately or block:

(placeholder-ready? placeholder) procedure

Events as Placeholder Lists Lula’s reactivity subsystem represents events as
two lazy lists represented using placeholders: the first list, head, starts with the
the first event occurrence. The second list, current, is for interactive events, and
points to a placeholder representing the first undetermined event occurrence:

(define-record-type :event
(real-make-event head current)
event?
(head event-head)
(current event-current set-event-current!))

An event starts off with both lists being the same:

(define (make-event . args)
(if (not (null? args))
(make-event (car args))
(let ((plist (make-placeholder)))
(make-event plist plist))))

For an interactive event, a callback from a user interface control will typically write
to the current placeholder and advance it by one. The callback must supply the
occurrence data:

(define (determine-event! event occurrence)
(let ((next (make-placeholder)))
(placeholder-set! (event-current event)
(cons occurrence next))
(set-event-current! event next)))

Note that the obvious way of creating and feeding interactive events is usually not a
good idea. A programmer might be tempted to define an event and then repeatedly
call determine-event! on it:

(define e (make-event))

(determine-event! e (make-occurrence (current-time) (delay ’foo)))

This program will not allow the garbage collector to reclaim e. Consequently, e will
accumulate ever more occurrences which take up an increasing amount of space:
the provider of e effectively keeps e alive, whereas really the client of e—ultimately
the sampling engine—should determine how far back occurrences of e should be
remembered. Hence, the provider, after determining an event occurrence, should
replace the event by another which does not hold on to that occurrence. The
ping-event procedure returns the desired event:

(define (ping-event event thing)
(determine-event! event (make-occurrence (current-time)
(delay thing)))
(rest-event event))
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The rest-event procedure skips the first occurrence—in the case of ping-event,
it is the occurrence just generated:

(define (rest-event event)
(make-event (cdr (placeholder-value (event-head event)))))

With ping-event, the code above turns into the following space-safe variant:

(define e (make-event))

(set! e (ping-event e ’fo0))

On the other hand, pre-determined events provide the occurrence list to make-event
and use the other kind of placeholder. Alarm has only one occurrence; obtaining it
can never block:

(define (alarm time)
(make-event
(make-placeholder (lambda ()
(cons
(make-occurrence time (tdelay ’alarm))
(make-placeholder (lambda () ’()) #£)))
#£)))

The procedure implementing the semantics of events, occurrences, utilizes the
implicit representation of non-occurrence: given a sampling time, occurrences
assumes that, if the event has not been determined yet, it will not occur before the
sampling time. Hence, in first case of the cond of the loop, occurrences just sticks
#f into the output list if the placeholder is not ready yet. Occurrences returns a
“traditional” even-style lazy list:

(define (occurrences event time-stream)
(delay
(let loop ((head (event-head event))
(time-stream time-stream))

(cond
((not (placeholder-ready? head))
(cons #f

(delay (loop head (stream-cdr time-stream)))))
((null? (placeholder-value head))
(force (repeat-stream #f)))
(else
(let* ((pair (placeholder-value head))
(occurrence (car pair))
(next-time (stream-car time-stream)))
(if (<= next-time (occurrence-time occurrence))
(cons #f
(delay (loop head
(stream-cdr time-stream))))
(cons occurrence
(delay (loop (cdr pair)
(stream-cdr time-stream)))))))))))))

It is important that combinators constructing events from other events propagate
the blocking behavior. Many such combinators simply match occurrence with oc-
currence; hence, obtaining an occurrence of the resulting event will incur obtaining
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a corresponding occurrence of the original. Consider the handle-event proce-
dure, an implementation of the handle-event operator introduced in Section [Z.2.2.
Handle-event chains the placeholder of the resulting occurrence list to the corre-
sponding placeholder of its argument:

(define (handle-event event proc)
(make-event
(let loop ((head (event-head event)))
(make-placeholder
(lambda ()
(let ((pair (placeholder-value head)))
(if (null? pair)
»O
(let* ((rest (cdr pair))
(occurrence (car pair))
(otime (occurrence-time occurrence))
(promise (occurrence-promise occurrence)))
(cons (make-occurrence otime
(delay
(proc otime
(force promise)
(make-event rest))))
(loop rest))))))
head))))

The code for sample-event is still straightforward, and very similar to the imple-
mentation in a direct stream-based implementation of events. Still, there are a few
operators which require more effort. An example for a more troublesome operation
is filter-map-event:f]

(filter-map-event event proc) procedure

Proc is a procedure which accepts one argument of the same type as the event
occurrence values. Proc returns either #f or some other value. Filter-map-value
will produce an event with a subset of the occurrences of its argument; it omits
occurrences for which proc returns #f, and replaces the occurrence values of the
others by the return value of proc, respectively.

How is filter-map-event to determine if obtaining its first occurrence would
block? Potentially, proc always returns #f, and thus obtaining the value could
start a computation which takes an infinite amount of time. One way to solve the
problem would be to use a thread that speculatively samples event and uses timeouts
to always keep the new event up-to-date. However, it seems that the problem of
infinite computation can only occur in degenerate situations. Two conditions have
to coincide:

1. Proc returns #f for a large prefix of the event occurrences of event.
2. The placeholders for this large prefix do not block.

Hence, the problem is mostly relevant with pre-determined events with many non-
blocking occurrences in a row. Such events are rare (a periodic alarm comes to
mind), and applying a filter to an artificially generated event seems to make little
sense in general. Thus, an implementation of filter-map-event which does not
require spawning any threads is possible. It merely requires some care in specifying
the blocking behavior of its occurrences. The generation of the resulting event

61 owe Peter Biber for spotting the problem.
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occurrences is straightforward—a loop looks at the event occurrences, constructing
new occurrences from proc matches, and skipping non-matches:

(define (filter-map-event event proc)
(make-event
(let loop ((head (event-head proc)))
(make-placeholder
(lambda ()
(let inner-loop ((head head))
(let ((pair (placeholder-value head)))
(if (null? pair)
>0
(let* ((occurrence (car pair))
(stuff (proc (force (occurrence-promise occurrence)))))
(if stuff
(cons (make-occurrence (occurrence-time occurrence)
stuff)
(Loop (cdr pair)))
(inner-loop (cdr pair))))))))

Filter-map actually exploits make-placeholder’s ability to accept a thunk speci-
fying the blocking behavior of the placeholder. If obtaining the next occurrence of
event would block, so would obtaining the next occurrence of the filtered event:

(lambda ()
(let loop ((head (event-head))
(if (not (placeholder-ready? head))
#t

If event has no more occurrences (and if obtaining that fact would not block),
neither has the filtered event:

(let* ((pair (placeholder-value head)))
(if (null? pair)
#£

Finally, if the next occurrence matches, the filtered event will also have a corre-
sponding occurrence—obtaining it will not block:

(let* ((occurrence (car pair))
(stuff
(proc (force (occurrence-promise occurrence)))))
(if stuff
#£
(loop (cdr pair))))))INII)))

Should the restrictions filter-map-event imposes on its argument event become
relevant, it is easy enough to convert an event into an equivalent synchronous event,
where event determination always happens after occurrence, preferably very close
to it. To achieve this effect, the synchronous-event procedure maps over the event
occurrences, delaying the availability of each occurrence until its occurrence time
has come.

(define (synchronous-event event)
(make-event
(let loop ((head (event-head event)))
(make-placeholder
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(lambda ()
(let ((pair (placeholder-value head)))
(if (null? pair)
>0
(let* ((occurrence (car pair))
(delay-time (- (occurrence-time occurrence)
(current-time))))
(if (positive? delay-time)
(sleep delay-time))
(cons occurrence
(loop (cdr pair)))))))
(lambda ()
(if (not (placeholder-ready? head))
#t
(let ((pair (placeholder-value head)))
(if (null? pair)
#f
(let* ((occurrence (car pair))
(delay-time (- (occurrence-time occurrence)
(current-time))))
(positive? delay-time))))))))))

With the synchronous representation, the operation most difficult to implement
is merge: merge accepts two events as arguments and returns an event with the
occurrences of both. In principle, merge performs a standard list-merge operation
on the occurrence lists. However, with the synchronous representation, merge must
preserve synchronousness, even when only one or none of the two events have been
determined at sampling time. In case both events have occurrences determined, the
code is straightforward:

(define (merge event-1 event-2)
(make-event
(let loop ((head-1 (event-head event-1))
(head-2 (event-head event-2)))
(make-placeholder
(lambda ()
(let ((ready-17 (placeholder-ready? head-1))
(ready-27 (placeholder-ready? head-2)))
(cond
((and ready-17 ready-27)
(let ((pair-1 (placeholder-value head-1))
(pair-2 (placeholder-value head-2)))
(cond
((null? pair-1) pair-2)
((null? pair-2) pair-1)
(else
(let ((occurrence-1 (car pair-1))
(occurrence-2 (car pair-2)))
(let ((otime-1 (occurrence-time occurrence-1))
(otime-2 (occurrence-time occurrence-2)))
(if (<= otime-1 otime-2)
(cons occurrence-1
(loop (cdr pair-1) head-2))
(cons occurrence-2
(loop head-1 (cdr pair-2))))))))))



164 CHAPTER 12. FUNCTIONAL REACTIVE PROGRAMMING

If only event-1 has a determined occurrence, merge may need to wait until ei-
ther the occurrence time of that occurrence or the determination time of the next
occurrence of event-2, whichever comes first:

(ready-17
(let ((pair-1 (placeholder-value head-1)))
(if (null? pair-1)
(placeholder-value head-2)
(let* ((occurrence-1 (car pair-1))
(otime-1 (occurrence-time occurrence-1))
(delay-time (- otime-1 (current-time))))
(if (positive? delay-time)
(begin
(placeholder-wait/timeout head-2 delay-time)
(placeholder-value (loop head-1 head-2)))
(cons occurrence-1
(loop (cdr pair-1) head-2)))))))

The placeholder-wait/timeout procedure waits for either the placeholder value
to become available or for a timeout to expire. The case where event-2 has a
determination occurrence is analogous:

(ready-27
(let ((pair-2 (placeholder-value head-2)))
(if (null? pair-2)
(placeholder-value head-2)
(let* ((occurrence-2 (car pair-2))
(otime-2 (occurrence-time occurrence-2))
(delay-time (- otime-2 (current-time))))
(if (positive? delay-time)
(begin
(placeholder-wait/timeout head-1 delay-time)
(placeholder-value (loop head-1 head-2)))
(cons occurrence-2
(loop head-1 (cdr pair-2))))))))

Finally, if neither event-1 nor event-2 has a determined occurrence available,
merge needs to wait for one; placeholder-wait-2 waits until either of its argument
placeholders produces a value:

(else
(placeholder-wait-2 head-1 head-2)
(placeholder-value (loop head-1 head-2))))))

The code for computing the blocking behavior is analogous:

(lambda ()
(let ((ready-17 (placeholder-ready? head-1))
(ready-27 (placeholder-ready? head-2)))

(cond
((and ready-17 ready-27) #f)
(ready-17

(let ((pair-1 (placeholder-value head-1)))
(if (null? pair-1)
#t
(let* ((occurrence-1 (car pair-1))
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(otime-1 (occurrence-time occurrence-1))
(delay-time (- otime-1 (current-time))))
(positive? delay-time)))))
(ready-27
(let ((pair-2 (placeholder-value head-2)))
(if (null? pair-2)
#t
(let* ((occurrence-2 (car pair-2))
(otime-2 (occurrence-time occurrence-2))
(delay-time (- otime-2 (current-time))))
(positive? delay-time)))))
(else

#£3)))))))

12.5.6 General Behaviors

Specific application domains of FRP—say, sprite-based animation, robotics, or, in
this case, lighting—can benefit from a specialized representation for reactive values,
specifically for behaviors. Specialized representations communicate more domain-
specific structural information. Often, this information, together with structural
domain knowledge, allow the application to exploit simplification and optimization
opportunities not possible with the “plain” behaviors provided by Lula’s reactiv-
ity subsystem. For example, Fran uses a representation for 2D image animations
amenable to translation into the sprite representation of Microsoft’s DirectX en-
gine [Elliott, 1999, Elliott. 1998a)].

To avoid excessive code duplication, it is desirable to factor the representation
of behaviors into a small “core” which actually accesses the representation, and a
layer of high-level combinators which do not. In the case of behaviors, the core
reduces to four procedures. This list is identical to the one in Fran [Elliott. 1998a]:

(until behavior event) procedure

Until is the implementation of the until operator introduced in Section [2:2:3. The
behavior until returns behaves like behavior until the first occurrence of event
which must produce another behavior as its value; this is the new behavior from
then on.

(after-times behavior time-list) procedure

After-times is the fundamental aging operator: it accepts a behavior and a lazy
lists of times. It returns a lazy list of behaviors corresponding to the elements of
time-list. Each behavior in the output list “forgets” all samples before its corre-
sponding time in time-list, thereby potentially releasing memory previous elements
occupy. After-times is primarily for internal use by higher-level combinators.

(time-transform behavior time-behavior) procedure

Time-transform is the implementation of time transformation as described in Sec-
tion [2:21]: time-behavior supplies a new local time for behavior.

(cond-unopt bool-behavior behavior-1 behavior-2) procedure

Cond-unopt is a simple conditional: it produces behavior which assumes the value
of behavior-1 at times bool-behavior produces true, and behavior-2 at times the
bool-behavior produces false.

Fran uses Haskell type classes to abstract over all so-called generalized behav-
iors which implement these four operators. Lula uses a traditional data-directed
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programming approach [Abelson et al., 1996], employing MzScheme’s object sys-
tem [Flatt, 2000] for the implementation. An interface captures generalized behav-
iors:

(define gbehavior<y>
(interface ()
until
after-times
time-transform
cond-unopt))

(The trailing <%> is merely a naming convention.) This approach covers almost all
the grounds that Fran’s type-class-based implementation does; the only thing it does
not provide is parameterized lifting, such as from pairs of behaviors to behaviors of
pairs. The procedures specified above merely call the methods of the interface:

(define (until gbehavior event)
(send gbehavior until event))

(define (after-times gbehavior time-stream)
(send gbehavior after-times time-stream))

(define (time-transform gbehavior time-behavior)
(send gbehavior time-transform time-behavior))

(define (cond-unopt bool-behavior behavior-1 behavior-2 time-behavior)
(send behavior-1 cond-unopt bool-behavior behavior-2))

12.5.7 Recursive Reactive Values Revisited

A number of behaviors arising in applications are naturally recursive. The most
prominent example is the integral, which also generally is a good example of FRP.
Typical approximation algorithms add up pieces of the area under a function graph.
The integral computation adds every new piece to the area computed so far. Lula’s
implementation of integrals uses Euler’s algorithm. A naive programmer might
produce the following first shot, using an event step-event to provide the approx-
imation intervals:

(define (integral-1 behavior step-event)
(letrec ((new-sample
(map-event
(snapshot (time-only-event step-event)
('cons behavior integral-behavior))
(lambda (stuff)
(let ((tO0 (car stuff))
(y (car (cdr stuff)))
(int-so-far (cdr (cdr stuff))))
('+ (! int-so-far)
(t* (1= time (! t0))
NN
(integral-behavior (switcher (! 0) new-sample)))
integral-behavior))

Integral-1 creates two mutually recursive reactive values: new-sample is an event
providing a new integral value for each occurrence, sampling behavior every time.
Integral-behavior is the corresponding behavior.
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Integral-1 calls a number of procedures whose names start with !. These are
all lifted versions of the corresponding procedures without a !. The ! specifically
creates a constant behavior from a value. '+ takes two behaviors of numbers as
arguments and returns a behavior of sums. Analogously, !- is the lifted version of
-, '* is the lifted version of * and !cons is the lifted version of !cons.

Furthermore, time-only-event turns any event whose occurrences have their
timestamps as values. Hence, the call to snapshot returns an event that samples
three values:

e its timestamp,
e the current value of the behavior to be integrated, and

e the integral approximation accumulated so far.

Map-event turns these three values into a behavior of integral approximations from
the event occurrence on.

The switcher procedure assembles the piecewise approximation behaviors into
one, starting with a constant 0 up to the first occurrence of the sampling event.

Now, even though the logic underlying the above implementation is correct, it
will not work: Scheme is a strict language, and the both right-hand-sides of the
bindings evaluate the other binding respectively. Thus, a correct implementation
of integral-1 must delay both new-sample and integral-behavior. Unfortu-
nately, this changes the representation from a behavior or an event to a promise
respectively, and the reactivity subsystem cannot deal with those.[]. Fortunately,
the subsystem does use promises for the representation of behaviors, and a simple
procedure promise->behavior converts a promise of a behavior into a behavior
without forcing the promise:

(define (promise->behavior promise)
(make-behavior
(delay
(force
(behavior-*-promise (force promise))))))

The correct implementation of integral-1 uses the promise->behavior procedure
to delay integral-behavior; and ordinary promise suffices for new-sample:

(define (integral-1 behavior step-event)
(letrec ((new-sample
(delay
(map-event
(snapshot (time-only-event step-event)
(!cons behavior integral-behavior))
(lambda (stuff)
(let ((t0 (car stuff))
(y (car (cdr stuff)))
(int-so-far (cdr (cdr stuff))))
('+ (! int-so-far)
('* (!- the-time (! t0))
¢y
(integral-behavior
(promise->behavior
(delay
(switcher (! 0) (force new-sample))))))
integral-behavior))

"Here, Haskell makes the programmer’s life much easier by delaying everything implicitly.
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Chapter 13

Functional Reactive Lighting

I'm always ready to dance. But I
need me a kiss first, honey. Just one?
—LuLA in Wild at Heart

Functional Reactive Programming has direct application to animated lighting. Lula
internally expresses all light changes as animations in term of FRP. The key ingre-
dient for the representation of light changes is the preset behavior, a specialized rep-
resentation for behaviors over presets. Lula offers simplified graphical user interface
components for simple light changes and effects. For more complex animation, the
user has direct access to FRP via a built-in domain-specific programming language
called Lulal, a restricted dialect of Scheme with static typing. Lulal allows the user
to assemble preset behaviors into tasks which allow the sequencing of animations.

This chapter introduces the concepts and machinery behind Lula’s substrate for
animated lighting. It starts off with a formulation of the most important goals of
a lighting animation engine from the application domain. It then goes on with a
formal description of Lulal, and shows how to achieve the goals stated earlier. The
chapter concludes with an overview of the implementation issues; the concern the
implementation of Lulal itself, and the sampling engine which turns Lulal expres-
sions into lighting actions.

13.1 Sanity Checks

Here are some sample jobs from actual show designs the reactive subsystem of Lula
must be able to perform:

e The lighting intensity “breathes,” dimming and brightening periodically ac-
cording to a sine curve.

e A moving light describes a circle on the floor of the stage around a specified
center, with a specified radius.

e A moving light describes a circle whose center and radius are under interactive
control.

e The lighting changes color when a dancer crosses a light barrier on stage.

e A moving light follows an actor on stage. Another one follows the first one
with a two-second delay. Another one follows with a four-second delay.

e Several lights simulate a flickering fire when activated at random.

Section [[3.§ shows how Lulal copes with these examples.
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(expression) ::= (variable)
| (literal)
| (procedure call)
| (lambda expression)
| (conditional)
| (let expression)
| (values expression)
| (random expression)
| (derived expression)

(literal) ::= (boolean) | (number) | (cue name)
(cue name) = (string)

(procedure) ::= ({operator) (operand))

(operator) ::= (expression)

(operand) ::= (expression)

(lambda expression) ::= (lambda (formals) (body))
(formals) ::= ({variable)*)

(body) ::= (expression)

(conditional) ::= ((test) (consequent) (alternate))
(test) ::= (expression)

(consequent) ::= (expression)

(alternate) ::= (expression)

(let expression) ::= (let (({binding spec)*) (body))
(binding spec) ::= ({variable) (expression))

(values expression) ::= (values (expression)')
(random expression) ::= (random (expression)™)

Figure 13.1: Lulal primitive expression syntax.

13.2 The Lulal Language

Lulal is a higher-order, purely functional, strongly typed language with parametric
polymorphism. Its syntax is mostly borrowed from Scheme [Kelsey et al., T99g)].
As its semantics also builds upon Scheme, the description of Lulal in the section is
brief and focuses on the differences.

The design of Lulal makes a number of departures from Scheme syntax and
semantics which gear Lulal more specifically towards its use in an end-user appli-
cation. Most of them are restrictions on Scheme semantics to prevent an average
user from making unnecessary mistakes. Here is a summary of the changes:

e Explicit recursion is not allowed.

e Lulal is strongly typed. Its type system is a modified version of the popular
Hindley/Milner system [Damas and Milner, 1982, Hindley, 1969].

e The language allows a limited form of overloading of constant values with
constant behaviors.

13.2.1 Lulal Syntax

Figure [[371] shows Lulal’s expression syntax. The grammar is basically an excerpt
of the Scheme grammar in R5RS [Kelsey ef al., 1998]. It builds on the same lexical
structure as Scheme whose grammar was omitted here for brevity. As the grammar
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(derived expression) ::= (sequence expression)
| (let* expression)
| (and expression)
| (or expression)
| (cond expression)

(let* expression) ::= (let* ((binding spec)*) (body))
(sequence expression) ::= (sequence (sequence step)')
(sequence step) ::= (expression)
| ({expression) => (variable))
(and expression) ::= (and (test)*)
(or expression) ::= (or (test)®)
(cond expression) ::= (cond (cond clause)* (else (expression)))
(cond clause) ::= ({test) (expression))

Figure 13.2: Lulal derived expression syntax.

(program) := (definition)*
(definition) ::= (define (variable) (expression))

| (define ((variable) (definition formals)) (body))
(definition formals) ::= (variable)*

Figure 13.3: Lulal program syntax.

shows, some derived forms are missing—everything having to do with assignment
and side effects, case, letrec, do, and delay. Also, Lulal has neither quote nor
backquote syntax. Lambda is restricted to a fixed-length parameter list.

Strings make little sense in Lula, so their syntax is available for a different
purpose: a string literal stands for the name of a cue. Part of the syntactic analysis
is checking that all cues named in a Lulal program actually exist.

Lulal has two primitive expression types not in the Scheme grammar. Values is
similar to the primitive procedure of the same name in Scheme: it constructs a tuple
of its arguments. It is in the grammar rather than the list of primitive procedures
because its type would not be expressible in the Hindley /Milner system. A random
form evaluates to one of its operands, chosen at random during runtime. It also is
in the syntax rather than the library for typing reasons.

Another small difference to the Scheme grammar is the listing of 1let under the
primitive expression syntax rather than the derived one. This is also for typing
reasons; Hindley/Milner depends on let being a primitive form.

Figure [[37 shows the syntax of the derived expressions in Lulal. They are
a fairly standard subset of the corresponding part of the Scheme syntax with one
exception: sequence. Sequence is a special syntactic construct for the sequencing in
the task monad, akin to Haskell’s do syntax [Haskell98, 1998]. Its precise semantics
is explained in Section [3.3.

A Lulal program is a sequence of definitions. Figure [3-3 shows the definition

syntax which again is a subset of the Scheme syntax. A Lula show can then use
tasks defined in the Lulal program for defining events (see Chapter [q).
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13.2.2 Lulal Semantics

T = b b base type

| v v type variable
| 71—m7

| 71X X1,

| behavior,

|  event,

|

task

Figure 13.4: Lulal type language.

Figure [3-4 shows the type language of Lulal. The base types are unit, numbers,
booleans, and (points in) time. In addition, the language includes function and tuple
types. Moreover, behaviors, events, and tasks are primitive types.

Lulal handles tuples in a way akin to ML [Milner et al., 1997]: conceptually,
every procedure has exactly one parameter and one return value. A lambda with two
or more formals in fact creates a procedure with a tuple-type argument, whose body
implicitly binds the parameters to the tuple components. Values constructs tuples
which are first-class values in Lulal. Most of the time, this distinction from Scheme
is of little consequence for the Lulal programmer who knows Scheme. However, some
unusual constructs are possible. The following expression yields 65, for instance:

((lambda (x y) (+ x y)) (values 23 42))

As in Scheme, (values x) for any expression x is equivalent to z itself: a one-
component tuples is identified with its component.

13.2.3 Behaviors and Events

Lulal’s value domain includes parameterized behaviors, events, and tasks for con-
structing reactive values.

The semantics of behaviors and events is that defined by the primitives of Lula’s
reactive subsystem as explained in the previous chapter and detailed below.

13.2.4 Tasks

Tasks represent actions to be done in the reactive framework: a task defines a
lighting change behavior as well as a time at which it ends. When the action of a
task is done, the task also produces an exit value.

Tasks form a monad [Moggi. 1988, Wadler, 1995], a special value domain for
representing computations. Lulal’s use of monads for representing tasks is similar
to the one in used in Monadic Robotics [Peterson and Hager, 1999]. Lulal supports
the usual monadic combinators return and bind. Within the monad, the Lulal
semantics propagate two values: the start time of a task’s action as well as the
preset defined by the previous action at its end.

A more thorough explanation of the way tasks work along with the primitives
available for them in Lulal is below in Section [33.

13.2.5 Type Inference and Overloading

To simplify the work of the programmer, Lulal allows a limited form of overloading:
a value of a base time is also overloaded as the corresponding constant behavior.
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This is most useful for numeric literals. Consider the following example:
(sin (+ (seconds time) 1.0))

Lulal automatically coerces the value of the literal 1.0 to a constant behavior.
If is also thus overloaded, and doubles as a conditional over behaviors. The
same holds true for the derived forms cond, and, and or.

13.3 Built-In Bindings

This section gives a brief overview of the primitive bindings available to Lulal pro-
grams. Many of these procedures correspond directly to primitives in Lula’s reac-
tivity subsystem. For details, refer to the previous chapter.

13.3.1 Reals

All standard numerical operators are available in versions lifted to behaviors: +,
-, *, /, sin, asin, cos, acos, tan, atan, exp, expt, sqrt, and abs, along with
predicates =, <, >, <=, >=,

Lulal has two notable additions specific to behaviors:

integral: behavior eq — behavior eq

(integral behavior) procedure
derivative: behavioreq — behavior eq
(derivative behavior) procedure

These procedures compute numerical approximations to the integral or the deriva-
tive of the argument behavior, respectively. The sampling interval is determined by
a heartbeat internal to Lula, at most as long as the central sampling interval.

13.3.2 Time

time: behaviorime
time value

This is the wallclock time behavior.

seconds: behaviorime — behavior req
(seconds time) procedure

This procedure converts a time behavior into a behavior over reals. The reals
returned are measured in seconds.

later: time X real — time
(later time delay) procedure

This procedure adds an offset to a point in time.

delayed: behaviorime X behavior e — behavior e
(delayed time delay) procedure

This procedure delays a behavior of points in time by delay seconds.

slower: behavioriyme X real — behavior ime
(slower time factor) procedure
faster: behaviorijme X real — behavior yime
(faster time factor) procedure
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These procedure slow down (or speed up, respectively) a behavior of points in time
by a factor of factor.

time-transform: behavior, X behavioriyme — behavior,,
(time-transform behavior time-behavior)

Time-transform creates a time-transformed version of behavior by feeding it the
points in time from time-behavior.

13.3.3 Pan/Tilt

These behaviors specify transformations of the pan/tilt parameter.

pan/tilt: behavior e X behavior e — behavior pan /i
(pan/tilt pan tilt) procedure

Pan/tilt creates an absolute pan/tilt transformation behavior from separate be-
haviors pan and tilt. Pan and tilt are both in radians.

xyz: behavior eqr X behavior eqr X behaviorT reqr — behavior pay /1i
(xyz 2 y 2) procedure

Xyz creates an absolute pan/tilt transformation behavior from separate behaviors
for 3D Cartesian coordinates. Lula converts these coordinates internally to pan/tilt
settings with the help of the calibration provided by the operator.

xyz—offset: behavior eq X behavioT eq X behavior eqr — behavioT pap tie
(xyz-offset z-offset y-offset z) procedure

Xyz-offset creates an absolute pan/tilt transformation behavior from separate
behaviors for 3D Cartesian coordinates. Xyz-offset works in a somewhat subtle
way: the z-offset and y-offset arguments specify offsets in the horizontal plane at
Z coordinate z (see Section [[0.4).

13.3.4 Colors

lee: behavioripteger — behavior qoior

(lee n) procedure
rosco: behaviorinteger — behavior coor
(rosco n) procedure

These procedures create color behaviors, mapping from the familiar identification
numbers from Lee [LEE Filters, 2000] and Rosco [Rosco Laboratories, 2000].

rgb: behavior eqp X behavior eq X behavior eq — behavior req

(rgb r g b) procedure
hsv: behavior eq; X behavior eq X behavior g — behavior g
(hsv h s v) procedure
cmy: behavior eqr X behavior eqr X behavior eqr — behavior ey
(cmy ¢ m y) procedure

These procedures construct color behaviors according to the Red/Green/Blue,
Hue/Saturation/Value, and Cyan/Magenta/Yellow color models. (For details about
the various color models, refer to the literature [Foley et al.. 1996].)
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13.3.5 Preset Behaviors

Presets are parameter settings for fixtures (see Section [I.14 for details). In an
animated setting, presets generalize naturally to preset behaviors. In Lulal, cues
define the primitive preset behaviors. A string literal is implicitly a reference to a
cue. The behavior associated with a cue changes its value whenever the user modifies
the cue. Lulal contains a subset of the primitives available for cue construction:

restrict-with: preset-behavior X preset-behavior — preset — behavior

(restrict-with preset; presety) procedure
subtract: preset-behavior x preset-behavior — preset — behavior
(subtract preset preset) procedure

These are the restriction and difference operators from the cue algebra (see Chap-
ter [[1]). HTP is not available because it may lead to conflicts during the sampling
of a Lulal-defined behavior.

scale: behavior,eq X preset-behavior — preset — behavior
(scale: real preset) procedure

This procedure creates a scaled preset behavior from a real behavior defining a scale
factor and a preset behavior.

with-color: behavior coior X preset-behavior — behavior qoior
(with-color color preset) procedure

With-color creates a colored version of a preset behavior. The color argument must
be a color behavior constructed with the primitives described in Section [3.3.4.

with-pan/tilt: behaviorya, iy X preset-behavior — behavior yan /i
(with-pan/tilt pan/tilt preset) procedure

With-pan/tilt creates a version of a preset behavior with all moving lights of
the preset at the pan/tilt values specified by the pan/tilt argument. The pan/tilt
argument must be a pan/tilt behavior constructed with the primitives described in
Section [333.

13.4 Events

This section describes the means for event construction available in Lulal. These
correspond mostly to similarly-named primitives in the reactivity library:

never: eventynit
alarm: time — eventynit

(alarm time) procedure
periodic-alarm: time X real — event,ni
(periodic-alarm time period) procedure

These all define primitive events: never has no occurrences ever, alarm has ex-
actly one at the specified time, periodic-alarm an initial occurrence at time, then
periodically after intervals period seconds long.

map-event: event, X (o — ) — eventg

(map-event event proc) procedure
subst-event: event, X [ — eventg

(subst-event event wval) procedure
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residual-event: event, — event,

(residual-event event) procedure
time-event: event, — eventiime

(time-event ewvent) procedure
timestamp-event: event, — eventiimexa

(timestamp-event event) procedure

These procedures all define means of event handling—transforming events into new
ones with occurrences at the same time but with different values. Map-event maps
a procedure over the values. Subst-event substitutes a constant value for all event
values. Residual-event turns an event into one whose values are the respective
residual events. Time-event transforms an event whose values are the occurrence
times. Timestamp-event keeps the original event values, but tuples them with the
occurrence times.

switcher: behavior, X eventyehavior, — behavior,

(switcher behavior event) procedure
stepper: a X eventqipha — behavior,
(stepper wal event) procedure

These two procedures turn events into behaviors whose value changes at each event
occurrence. Switcher starts off with initial behavior behavior and then continues
at each event occurrence with the behavior specified by the occurrence. Stepper as-
sembles a piecewise-constant behavior from an initial value and new values specified
by each event occurrence.

merge: eventy, X event, — eventy
(merge event; eventy) procedure

This procedure merges the occurrences of two events into one.

13.5 Tasks

Tasks are the top-level entities in Lulal relevant to the user: When the user specifies
an action that triggers an animation, she must specify a task defined by the Lulal
program which describes the animation.

Intuitively, a task defines a preset behavior as well as an event whose first occur-
rence signals completion of the action of the task. The user can combine arbitrary
preset behaviors with events to form tasks. In addition, Lulal provides fades as
primitive tasks. The user can combine tasks by sequencing or running the actions
side-by-side.

13.5.1 Basics

The primitive task construction procedure is make-task:

make-task: ((time x preset) — (behaviorpreser X eventy)) — taskq
(make-task proc) procedure

Proc is a procedure taking a start time and a starting preset as arguments and must
return a preset behavior and an event whose first occurrence marks the end of the
task’s action.

return: o — task,
(return wval) procedure
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Return lifts a value into the task domain: it returns a task which terminates im-
mediately, yielding the value val.

bind: task, X (o — taskg) — taskg
(bind task proc) procedure

Bind sequences two tasks. The action of the task the bind procedure returns first
runs the action specified by task, feeds its result into proc and then runs the action
of the task returned.

For convenient notation of bind cascades, Lulal provides the sequence con-
struct. The operands of sequence are steps, each specifying a new application of
bind. A step which is simply an expression throws away its exit value. A step of
the form (e => v) binds the exit value of e to v for the remaining steps. Here is a
simple example:

(sequence
(get-last-preset => preset)
(x-fade 5 (restrict-with preset "Sofa"))
(x-fade 7 "Living Room"))

It translates to the following bind cascade:

(bind get-last-preset
(lambda (preset)
(bind (x-fade 5 (restrict-with preset "Sofa"))
(lambda (dummy)q
(x-fade 7 "Living Room")))))

In Scheme, sequence could be defined with the following macro:

(define-syntax sequence
(syntax-rules (=>)
((sequence exp) exp)
((sequence (exp0 => v) stepl ...)
(bind expO
(lambda (v)
(sequence stepl ...))))

((sequence expO stepl step2 ...)
(sequence (exp0 => v) stepl step2 ...))))

get-start-time: taskiime
get-start-time value

Get-start-time is a task returning its start time immediately.

get-last-preset: taskpreset
get-last-preset value

Get-last-preset is a task returning the terminating preset of the previous task
immediately.

wait: real — taskunit
(wait delay) procedure

Wait creates a task which simply does nothing for delay seconds.
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13.5.2 Combinators

repeat: integer X task, — taskq,
(repeat n task) procedure

The repeat combinator returns a task whose action executes the action defined by
task n times in sequence.

loop: tasky — taske
(Loop task) procedure

The action defined by the task returned by loop repeats the action of task endlessly.

restrict-task-with: task, X task, — task,
(restrict-task-with task; tasks) procedure

This procedure creates a parallel task: the task returned runs task; in parallel
tasks. It terminates at the later of the termination times of the actions of task; and
tasks. The preset behaviors defined by the tasks are defined by restriction of the
two component behaviors.

13.5.3 Fades

x-fade: real X preset-behavior — taskynst
(x-fade duration preset) procedure

The x-fade procedure creates a task that performs a cross-fade to preset preset in
duration seconds.

in/out-fade: real X real X preset-behavior — taskynqt
(in/out-fade in out preset) procedure

The in/out-fade procedure creates a task that performs an in/out fade to preset
preset with in/out times in and out.

in/out-delay-fade: real X real X real X real X preset-behavior — task
(in/out-delay-fade in-delay out-delay in out preset) procedure

The in/out-delay-fade procedure creates a task that performs an in/out fade
with delay to preset preset with in/out times in and out and delays in-delay and
out-delay.

13.6 Simple Examples

Here are example programs to solve the sample assignments from Section [3-1] using
Lulal. They all turn out to be very simple, but they give at least a glimpse of the
expressive power of Lulal:

Breathing Light Here is a task which lets the lights defined by the cue Living
Room breathe:

(make-task (lambda (start-time last-preset)
(values
(scale (sin (- time start-time)) "Living Room")
never)))
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Circle Assume center is a pair of pair of real behaviors representing the X and
Y coordinates, respectively. Two procedures get-x and get-y are selectors for the
such a tuple:

(define (get-x x y)
x)

(define (get-y x y)

y)
The circle procedure creates a pan/tilt transformation describing a circle at ground
level:

(define (circle center radius)
(xyz (+ (get-x center) (* radius (sin time)))
(+ (get-y center) (x radius (cos time)))

0))
(make-task (lambda (start-time last-preset)
(values
(with-pan/tilt (circle center radius) "Moving Light #1")
never)))

Note that this pattern of a never-ending continuous task is easily turned into a
procedure:

(define (preset-behavior->task behavior)
(make-task (lambda (start-time last-preset)
(values behavior never))))

Use of this procedure further simplifies the previous two examples.

Circle under interactive control For a circle with interactive controls, the user
most define two sliders, one one-dimensional, the other two-dimensional. Assume
two procedures get-radius and get-center return behaviors corresponding to
these two sliders. Here is the task:

(let ((radius (get-radius-behavior))
(center (get-center)))
(preset-behavior->task
(with-pan/tilt
(circle center radius)
"Moving Light #1")))

Reactive Color Change Assume get-light-barrier-event returns an event
for the light barrier:

(with-color
(stepper color-1
(subst-event (get-light-barrier-event) color-2))
"Light Cue")

Cascading Followspots Assume that some sensory equipment is hooked up to
the console which reports the actor’s positionf]. Further assume the procedure
get-position returns a behavior tuple which reports the X, Y, and Z coordinates
of the actor’s head (or whatever portion of his body should be lit). Here is an
expression yielding an appropriate task:

1Such systems are commercially available.
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Figure 13.5: Lulal implementation stages.

(let* ((position (get-position))

(later-position (time-transform position (delayed time -2.0)))

(even-later-position
(time-transform later-position (delayed time -2.0))))

(preset-behavior->task
(restrict-with

(with-pan/tilt (xyz position) "Followspot #1")

(restrict-with
(with-pan/tilt (xyz later-position) "Followspot #2")
(with-pan/tilt (xyz even-later-position) "Followspot #3")))))

Flickering Fire Assume the fire consists of five different, alternating cues called
Fire 1, Fire 2, Fire 3, Fire 4, and Fire 5:

(define (some-fire)
(random "Fire 1" "Fire 2" "Fire 3" "Fire 4" "Fire 5"))

(1oop

(sequence
(x-fade 0 (some-fire))
(wait 1)
(x-fade 2 (some-fire))
(x-fade 1 (some-fire))
(x-fade 3 (some-fire))
(wait 2)
(x-fade 2 (some-fire))))

13.7 Implementation Notes

The implementation of Lulal is straightforward and follows established techniques
for implementing domain-specific languages. Figure [3-3 shows the familiar stages
a Lulal program goes through before it is ready for use by the main application.

13.7.1 Frontend Issues

The frontend parts of the Lulal implementation—the reader, the parser, and the
type inference engine—depart from the traditional implementation folklore for Lisp-
like languages which use read for parsing and perform no type checking:

Reader and parser build upon the Zodiac framework [Krishnamurthi, 1995] which
is part of DrScheme: Zodiac first reads in the source program, performs macro ex-
pansion for the derived forms, and then produces an abstract syntax tree. This
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syntax tree carries source location annotations. These annotations enable the syn-
tax and type checker to provide the user with visual feedback about the location of
errors, similar to the feedback DrScheme itself produces for its interactive develop-
ment environment (see Chapter [7).

The type inference engine uses an implementation of the classic algorithm W
[Damas and Milner, 1982]. The only significant departure is in the unification al-
gorithm which handles the overloading. For every unification performed, the type
inferencer returns coercions necessary to make the arguments type-compatible. The
type inferencer returns an annotated abstract syntax tree with type and coercion
information.

13.7.2 Implementing Tasks

The implementation of tasks is a specialized version of the task monads in the Frob
system [Peterson and Hager, 1999]. The state it has to propagate is less elaborate
than in Frob. Moreover, no exception handling is necessary since there is no feedback
from the elecrical installation anyway.

The state propagated by the task monad is called a task environment. It carries
the the start time and a reference to a driver, an internal data structure of the
sampling subsystem described below in Section [3:7-4:

(define-record-type :task-environment
(make-task-environment start-time driver)
task-environment?

(start-time task-environment-start-time)
(driver task-environment-driver))

The task itself is represented by a procedure:

(define-record-type :task
(make-task proc)
task?
(proc task-proc))

The proc component of a task of type task, is a procedure of two arguments of
type

task-environment x ((task-environment X a) — preset-behavior) — preset-behavior
e The first parameter is a task environment.

e The second parameter is a continuation called when the present task termi-
nates with the new environment and the new exit value.

The return and bind primitives are simple to implement:

(define (return k)
(make-task (lambda (task-environment cont)
(cont task-environment k))))

Return calls the continuation immediately, passing it the value injected into the
task monad.

(define (bind task proc)
(make-task
(lambda (task-environment cont)
((task-proc task) task-environment
(lambda (task-environment-1 result-1)
((task-proc (proc result-1)) task-environment-1 cont))))))
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Bind creates a new task which first runs the action defined by task, passing it a
continuation which will compute the task to follow after it, and applying that to
the continuation.

A number of primitive task access the task environment.

(define get-task-environment
(make-task (lambda (task-environment cont)
(cont task-environment task-environment))))

(define get-start-time
(bind get-task-environment
(lambda (task-environment)
(return (task-environment-start-time task-environment)))))

(define get-driver
(bind get-task-environment
(lambda (task-environment)
(return (task-environment-driver task-environment)))))

(define get-last-preset
(bind get-driver
(lambda (driver)
(driver-last-preset driver))))

At this point, suffice it to say that the driver gives access to the last preset of the
previous action via the driver-last-preset selector.

Finally, make-reactive-task is the implementation of Lulal’s make-task prim-
itive described in Section I33.

(define (make-reactive-task proc)
(make-task
(lambda (task-environment cont)
(call-with-values
(lambda () (proc task-environment))
(lambda (behavior end-event)
(until
behavior
(map-event (timestamp-event end-event)
(lambda (stuff)
(let ((end-time (car stuff))
(end-event-value (cdr stuff)))

(cont (make-task-environment end-time
(task-environment-driver
task-environment))

end-event-value))))))))))

Make-reactive-task calls proc to yield a behavior behavior and a terminat-
ing event end-event. The behavior defined by the task returned is identical to
behavior up until the first occurrence of end-event at which point the task will
call the continuation with a newly created task environment.

13.7.3 Representing Preset Behaviors

Lula’s sampling subsystem, and with it the rendering of reactive actions defined by
Lulal program, is based on the idea of the preset behavior: a collection of parameter
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settings. Lula’s cue subsystem (see Section [T.14) maintains a preset for each cue,
and Lulal extends this to animated presets.

The representation of preset behaviors is another aspect of the implementation of
Lulal deserving some consideration. Ordinarily it would seem the ordinary behavior
representation from the reactivity library described in the previous chapter would
be just the right.

However, Lula uses a specialized representation for preset behaviors, primarily
because they are at the juncture between the functional reactive subsystem and the
imperative sampling engine. For instance, preset behaviors created from cues need
to track all changes the user makes in the cue editor to assure instant feedback on
changes. However, these changes happen imperatively and it is therefore difficult
to forge the change history of a cue into the stream-based representation described
in Section [Z:4. Moreover, the implementation details for fades which must respect
dimmer and fixture curves, among others, are easier to address in the sampling
subsystem at the imperative level. Thus, it is more appropriate to embed the
necessary domain-specific structural knowledge into the representation for preset
behaviors. This effectively duplicates some implementation effort, but not enough
to warrant complex interface machinery between the two. These considerations are
similar to those in Fran [Elliott. 19984, Elliott. 199Y].

For the representation of the structural information about a preset behavior,
Lula defines a set of record types which later become part of an instance of the
gbehavior<y> interface described in the previous chapter in Section [2.5.§. Here
is a description of the most important of them.

The most basic representation is for constant preset behavior:

(define-record-type :const-presetb
(make-const-presetb preset)
const-presetb?

(preset const-presetb-preset))

The :cue-presetb record type represents cue-associated preset behaviors. The
behavior follows all changes the user makes to the cue:

(define-record-type :cue-presetb
(make-cue-presetb cue)
cue-presetb?

(cue cue-presetb-cue))

The gbehavior<y> interface requires until and time-transform methods which
simply translate to the creation of instances of the :until-presetb and :time-
transform-presetb record types.

(define-record-type :until-presetb
(make-until-presetb behavior event)
until-presetb?

(behavior until-presetb-behavior)
(event until-presetb-event))

(define-record-type :time-transform-presetb
(make-time-transform-presetb behavior time-behavior)
time-transform-presetb?

(behavior time-transform-presetb-behavior)
(time-behavior time-transform-presetb-time-behavior))

The :restrict-presetb record type is the implementation of the restrict-with
primitive in Lulal:
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(define-record-type :restrict-presetb
(make-restrict-presetb behavior-1 behavior-2)
restrict-presetb?

(behavior-1 restrict-presetb-behavior-1)
(behavior-2 restrict-presetb-behavior-2))

In the same vein, :transformed-presetb is responsible for implementing the with-. ..
constructs in Lulal. Its behaviors specify a base behavior and a behavior of trans-
formations to be applied to it.

(define-record-type :transformed-presetb
(make-transformed-presetb behavior trafos-behavior)
transformed-presetb?

(behavior transformed-presetb-behavior)
(trafos-behavior transformed-presetb-trafos-behavior))

Finally, the :x-fade-presetb type is for representing cross-fades. It takes preset
behaviors start-behavior for the starting preset and end-behavior for the target
preset, as well as the duration of the fade and a behavior representing the time left:

(define-record-type :x-fade-presetb
(make-x-fade-presetb start-behavior duration time-left-behavior
end-behavior)
x-fade-presetb?
(start-behavior x-fade-presetb-start-behavior)
(duration x-fade-presetb-duration)
(time-left-behavior x-fade-presetb-time-left-behavior)
(end-behavior x-fade-presetb-end-behavior))

There are corresponding representations for in/out fades and in/out fades with
delay.

Based on these record types, Lula defines a preset-behaviory, class which is
an instance of gbehavior<}>. Each instance of preset-behaviory contains an
instance of a representation record types; the class merely serves as an interface
between the internal representation and the reactivity library.

13.7.4 Sampling Preset Behaviors

Finally, Lula needs to sample the preset behaviors created by the various preset
sources in the system: a central driving loop keeps track of the various active preset
behaviors, extracts a preset from each of them, combines these presets and feeds
the resulting parameter settings to the fixtures view and the hardware interfaces.

Lula keeps a centralized time stream whose head is the current wallclock time.
Each preset behavior has a loop which keeps sampling the behavior and communi-
cating the resulting preset upwards, effectively moving continuous behaviors into the
realm of the discrete. This upwards communication is not as trivial as it may seem
at first, since a preset behavior might consist of other preset behaviors—it might,
for example, be defined as the restriction of two other behaviors. Consequently,
imperative code which simply sets slots in some array of parameter settings will not
do, since the sampling settings must combine those same parameter settings with
others later on.

Essentially, the easiest way to write the corresponding code would be along the
following lines, showing only the case for constant preset behaviors:

(let ((representation (preset-behavior-representation preset-behavior)))
(cond
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((const-presetb? representation)
(let ((preset (const-presetb-preset representation)))
(let loop O
(communicate preset upwards)
(Loop))))
L))

The ideal implementation paradigm for this is a generator-like mechanism where
an expression can have a sequence of return values [Griswold and Griswold, 1996].
Lula contains an abstraction called routines for this purpose: A routine is a sort of
subordinate coroutine. The running program creates a routine from a thunk. The
program can yield control to the routine by calling the resume procedure on the
routine. The routine then runs until it encounters a call to the suspend procedure.
The routine then yields back control to the program, communicating its argument
upwards. Lula contains two alternative implementations for routines, one based on
continuations, the other based on threads.
With routines, the sampling code for constant behaviors looks as follows:

(cond
((const-presetb? representation)
(let ((preset (const-presetb-preset representation)))
(make-routine
(l1ambda ()
(let loop O
(suspend preset)

(Loop))N)))

This avoids the need to keep explicit state between iterations of the sampling loop.
The code for the other types of preset behaviors is analogous; some selected exam-
ples illustrate how it works.

((cue-presetb? representation)
(let ((cue (cue-presetb-cue representation)))
(make-routine
(lambda ()
(let loop O
(suspend (cue-preset cue))

(Loop))N)))

The sampling of some preset behaviors first requires sampling some other component
behaviors and assembling a preset from their results. Transformed are an example:

((transformed-presetb? representation)
(let ((behavior (transformed-presetb-behavior representation))
(trafos-behavior
(transformed-presetb-trafos-behavior representation)))
(let ((behavior-routine (preset-behavior->routine behavior)))
(make-routine
(lambda ()
(let loop ((trafos-stream (at trafos-behavior (the-time-stream))))
(let ((trafos (stream-car trafos-stream)))
(suspend (preset-apply (resume behavior-routine) trafos))
(loop (stream-cdr trafos-stream)))))))))

This routine first creates a routine for sampling behavior. Moreover, it uses the
reactivity library’s at procedure to obtain a sample stream for trafos-behavior.
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(The-time-stream returns a stream of sampling times starting at wallclock time.)
At each iteration of the loop, the routine resumes behavior-routine, transforms
the result and suspends it back to the program.

Sometimes, it is necessary to switch sampling from one behavior to another, most
notably with until-constructed reactive behaviors. Here is their implementation.
First, routine creates another routine for sampling behavior:

((until-presetb? representation)
(let ((behavior (until-presetb-behavior representation))
(event (until-presetb-event representation)))
(let ((behavior-routine (preset-behavior->routine behavior)))
(make-routine
(lambda ()

The sampling loop must watch out for occurrences of event. It obtains a stream of
possible occurrences from the occurrences procedure from the reactivity library.
When that stream is at its end, the behavior is identical to behavior until the end
of time. In that case, the routine returns another routine to take its place instead
of a preset:

(let loop ((event-occs-stream
(occurrences event (the-time-stream))))
(cond
((stream-null? event-occs-stream)
(suspend behavior-routine))

When the routine finds an event occurrence, it samples behavior one last time and
then switches over to a newly created routine for sampling the new behavior:

((stream-car event-occs-stream)
=> (lambda (occurrence)
(suspend (resume behavior-routine))
(let* ((behavior (tforce (occurrence-tpromise occurrence)))
(behavior-routine (preset-behavior->routine behavior)))
(suspend behavior-routine))))

Finally, if the event has not occurred yet, the routine just keeps on sampling
behavior:

(else
(suspend (resume behavior-routine))
(loop (stream-cdr event-occs-stream)))))))))))

With the actual sampling code in place, Lula’s sampling subsystem is based on the
concept of drivers: a driver is associated with a source of parameter settings; each
driver defines a routine that keeps resuming presets or new routines. At its core,
the sampling subsystem calls the kick-driver! routine which obtains a sample
from a driver:

(define (kick-driver! driver)
(let loop O
(let ((routine-or-preset (resume (driver-routine driver))))

(cond

((routine? routine-or-preset)
(set-driver-routine! driver routine-or-preset)
(Loop))

((preset? routine-or-preset)
(set-driver-last-preset! driver routine-or-preset)
(inject-preset! routine-or-preset))))))
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Kick-driver! keeps resuming the routine until it produces a preset. At that point,
it stashes the resulting preset for use by subsequent tasks, and calls inject-preset!
to supply both the fixture views and the hardware interfaces with the preset data.
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Part VII

Closing Arguments
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Oiga, amigo. If ever somethin’

don’t feel right to you, remember what
Pancho said to The Cisco Kid . ..
‘Let’s went, before we are dancing at
the end of a rope, without music.’
—SAILOR in Wild at Heart

I did not start to write Lula to make a point originally. Its inception was as much
accident as it was intention, and it grew to the point where it is today mainly
because of the requirements which grew out of daily use, as well as ignorance of
much of the work done by the designers of commercial consoles.

In this part, I review the work done so far, and summarize the contributions of
this dissertation. The final chapter is an outlook on future work.
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Chapter 14

Assessment

I also want to

thank you fellas, you’ve taught me
a valuable lesson in life.

LULA!I

—SAILOR in Wild at Heart

This dissertation has described Lula, a system for computer-assisted lighting design
and control. Lula’s advantage over conventional lighting consoles rests on two cor-
nerstones: its user interface and its implementation. Without the former, Lula is
just one more lighting console. Without the latter, it would not have been possi-
ble to implement Lula in the time available. This chapter looks back on the Lula
project and tries to assess the validity of the techniques used during its lifetime so
far.

14.1 Lula in the Real World

Assessing the effectiveness of Lula’s user interface is inherently difficult: An objec-
tive investigation would compare Lula side-by-side with another high-end lighting
console as applied to a single project under realistic conditions to achieve compa-
rable results. This is impossible in practice for several reasons:

e “Realistic conditions” for a lighting console means a stage with lots of fixtures—
in the case of Lula, with at least some multi-parameter fixtures. Such stages
are not generally available for experimentation—they are usually in use.

e A “typical user” for a system like Lula hardly exists. Lighting designers
differ in the methodologies they employ; lighting operators often define their
expertise by the selection of consoles they know.

e If the same person should redo a project to evaluate another console, the
environmental conditions will have changed to the point which makes the
result of the comparison meaningless: the designer and operator know much
more about the final result after the first design. The comparison would only
have some meaning if the second run would take longer.

e Arguably, the objective is not really to get the job done faster, but rather to

get it done better. However, “good” and “better” are elusive qualities in what
is effectively an art form.
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e Obtaining sufficient data for anything approaching an empirical quantitative
analysis is completely out of the question. Lighting design for single show
typically takes hours, often days.

Having stated some of the necessary limitations of the assessment, here are some
data points from the real world:

e The fundamental concept underlying Lula—componential lighting designs—
grew directly out of the difficulties I had had with conventional consoles in a
number of venues. Many hair-raising situations I have lived through—mnever-
ending sessions of calling out channel numbers and percentages, pervasive
last-minute changes—would objectively not have happened if I had had Lula
available to me.

e I myself have used Lula extensively, both in the Brecht-Bau theater and on
tour. I have used it on a variety of small and medium-sized stages. Besides the
Brecht-Bau theater, these include the Foyer U3 in Reutlingen, the Metropol
in Munich, and the Theaterhaus in Stuttgart.

In my own experience, designing lighting with Lula is fast. In the Brecht-Bau
Theater, Lula has cut the entire time I have needed for lighting shows in half—
including hanging and focusing. I have had the opportunity to re-light the
same show on different stages, with and without Lula. Again, the time spent
operating the console is easily cut in half, no matter if it is me or someone
familiar with the local stage and lighting console is operating the lights.

e With a touring production, when the programming from a previous venue is
still available, the time savings are considerably greater. I had the opportunity
to take Lula with me on U34’s production of Peter Shaffer’s Fquus in 1999.
I cut down time spent on lighting by about a factor of four in those venues
where I was able to use Lula. More importantly, some of the shows would not
have gotten off the ground in time for the curtain with another console.

e Audience members who saw Fquus in several venues reported that the lights
were much better in those where we used Lula.

e I give occasional workshops on the use of Lula to the amateur lighting de-
signers working at the Brecht-Bau theater. The workshop—usually a group
of about 6—takes at most three hours. After that time, the users are usually
completely on their own. Questions are rare and mostly concern operative
details rather than conceptual issues.

The accounts reflect mainly the experience with Lula 3 which was limited to the-
atrical lighting. The effect subsystem and Lulal have not received any exposure to
practitioners except myself. Still, Lulal and its library functionality subsume the
effect subsystems of all conventional consoles whose documentation was available to
me. The ease of operation is at least comparable to these consoles, arguably much
better.

Lula breaks with the tradition of conventional console design, which still treats
a lighting console essentially like an automated version of a fader board. This
historical baggage accounts for the complexity of the user interface of most of today’s
popular high-end consoles. Their manuals often comprise several hundred pages and
still omit essential aspects of the consoles’ functionality.

In contrast, Lula’s fundamental concepts are few in number which reduces the
conceptual overhead of its operation. Moreover, these concepts relate directly to the
structure of the design process, or at least a common form of it. I conjecture that
these aspects of the design of Lula form its principal advantage. The application of



14.2. MODELLING 195

modern user-interface design techniques, also a part of Lula’s development, mainly
reflect the structure of the system rather than impose a structure of their own. For
this reason as well as reasons of space, this dissertation does not contain a discussion
of user-interface issues.

14.2 Modelling

The essential ingredients for Lula’s model of lighting builds on three essential in-
gredients:

Algebraic modelling Algebraic methods were instrumental in designing Lula’s
cue model. Whereas I designed the simple HTP-only model in Lula 1—3 purely
ad-hoc, I actually derived the specification in Chapter [[1] by the algebraic methods
set forth there, in roughly that order. The domain-theoretic interpretation formed
the basic intuition for the design of the support for multi-parameter fixtures. Con-
sequently, Lula’s cue model would not have been near as powerful as it is without
of these methods.

The lack of a proper design foundation in conventional consoles emphasize the
validity of this method. Specifically, the two hierarchical consoles on the market
have no explicit machinery in place to deal with semantic issues such as the com-
position of transformations or conflict avoidance.

Domain-specific languages The specification for cues is effectively a small do-
main-specific language to create static lighting components. The graphical cue
editor obscures this aspect of the cue subsystem, but it would be perfectly feasible
to offer a more general programming interface to cues.

Furthermore, whereas the effect subsystems in conventional consoles are purely
ad-hoc, Lula builds on a strong and powerful semantic foundation: functional reac-
tive programming—effectively an embedded domain-specific language—provides a
common substrate for all light change and animation in Lula.

Moreover, Lula puts the expressive power of functional reactive programming in
the hands of the user through Lulal, a standalone domain-specific language. While
Lulal is powerful, the novice user does not have to deal with it to create animated
light—the system provides an extensible library of common task for direct use.

Stratified design Finally, the core of Lula constitutes a classic stratified design:
fixtures form the lowest level, cues build upon them. Presets build upon cues. Preset
behaviors build upon presets on cues. The sampling subsystem finally builds upon
preset behaviors. The insulation between these layers if reflected in Lula’s mod-
ule structure, and it would be reasonably easy to replace any layer independently
from the others. In fact, this happened a number of times during the development
process.

14.3 Quantifying the Development Process

Assessing the development process of the Lula software is subject to similar limi-
tations as assessing the effectiveness of its user interface: there is just no basis to
comparison which would allow me to say that different techniques would not have
produced similar results. In the light of these problems, it is at least instructive to
look at some numbers.

Table [4.1] shows the development time needed for each successive version of
Lula. The numbers are necessarily approximate. Except for the first version, I
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Lula 1

Lula 2

Lula 3

Lula 4 (current)

Lula 4 (estimated final)

= 0o N |

2

Table 14.1: Development times (in Mike-weeks).

never had even a contiguous week of full time available to spend on Lula. The most
important number is the first: it took me almost exactly a week to finish the first
version. I had not worked with DrScheme or known about its GUI toolkit before.
Still, Lula 1 was fully functional and fairly stable—it ran nonstop at CeBIT 1997 for
six nine-hour days without a single crash, and was also used to light a production
of Who'’s afraid of Virgina Woolf? in the Brecht-Bau theater. There was one glitch
on the third night: the hardware overheated. Still, I think it is safe to say that
only the use of advanced development techniques could enable anyone to write the
software this fast.

Core | Library | Total
Lula 1 6000 0 | 6000
Lula 2 5400 1000 | 6400
Lula 3 11000 3000 | 14000
Lula 4 (current) 17000 7000 | 24000
Lula 4 (estimated final) | 20000 10000 | 30000

Table 14.2: Code size of successive Lula versions (in loc).

Table [[4.9 shows the (absolute) line counts of the Lula code in successive ver-
sions, separating between code specific to lighting and library code which could
be useful to other applications. Between Lula 1 and Lula 2 the code consolidated
which accounts for the only slight increase in size. Lula 3 and Lula 4 presented
significant functional enhancements. Particularly, the support of multi-parameter
fixtures and animated lighting in Lula 4 is taking its toll. Studies seem to suggest
that Scheme code is about 1/3 to 1/10 of the size of C++ code with comparable
functionality [Hudak and Jones, 1994]. A factor of 1/2 to 1/5 compared with Java
seems realistic. I conjecture the sheer typing work would have failed to meet the
deadline of Lula 1, for instance.

Another quantitative aspect of Lula is its reliability. This is even harder to assess
objectively. The bugs found by end users were precious few, less than six at the time
of writing of this dissertation. The only software bug which ever occurred during a
show was not in Lula itself, but rather in the substrate implementing DrScheme’s
editor functionality which is written in C++.

14.4 Reviewing Tools

In retrospect, the choice of development tools—Scheme and DrScheme—has been
exceedingly appropriate for the task at hand. It is worthwhile to reconsider the
most important techniques cites in Chapter B:

Automatic memory management It is sad that memory management is still
the subject of heated discussion; its benefits have been known for decades, and
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the implementation techniques have progressed to the point where garbage collec-
tors can compete with the best hand-tailored allocation and memory management
strategies.

For an application with the size of Lula which, due to its highly interactive nature
has to perform dynamic memory management, garbage collection is indispensable.
It is simply not practical to implement manual storage management to the point
that no space leaks remain which is necessary to ensure the reliable operation of
the system.

Higher-order programming Higher-order programming is pervasive in Lula, so
it is difficult to say what the code would look like without it. Many implementation
choices—the representation of reactive behaviors, for instance—are made possible
only by the availability of higher-order procedures in Scheme and their notational
succinctness.

Approaches such as this one lose much of their appeal if higher-order proce-
dures are only available through some surrogate mechanism such as anonymous
classes in an object-oriented language. This is actually an often-overlooked aspect
of programming language design: Lisp and Scheme programmers often claim that
“syntax doesn’t matter” because their languages basically allow them to have any
syntax they want within the confines of parenthesized sexprs. However, most other
programming languages do not have extensible syntax, and consequently the pro-
grammer is stuck with the syntax at hand. Given this, even though a particular
programming paradigm may be expressible in the language, the notational incon-
venience may make the paradigm considerably less attractive. This chasm is the
cause for many misunderstandings between programming language evangelists.

Functional programming Wherever feasible, I have used functional data struc-
tures in Lula. This was not always the case: versions of Lula before Lula 4 used a fair
number of imperative data structures: presets were array-based, as well as all the
representation of all patching information. Executing light fades were represented
as arrays of state automata. The list goes on.

Lula 4 contains not a single array, and updates to record types have been con-
fined to a few well-chosen places. This has led to the lifting of a number of imple-
mentation limits—the number of fixtures or number of channels supported by the
application, for instance. Moreover, I was able to remove a significant amount of
thread synchronization code, and thus reduce the opportunities for race conditions
and other bugs inherently related to the use of imperative data structures.

Data-directed programming In data-directed programming or its incarnation,
message-passing style, many software practitioners will recognize a familiar part
of the dominant variant of object-oriented programming also known as dynamic
dispatch. In the words of Jonathan Rees:

Object-oriented programming isn’t a single idea but a hodgepodge of
several

e references to changing state (object = variable = pointer)

e interface inheritance implementation inheritance (code re-use)

e dynamic dispatch

The “object” concept is sophistry and should be deconstructed whenever
it’s used.
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Lula code uses DrScheme’s object system extensively. However, most of these uses
make no use of inheritance; the merely use objects as a convenient notation for
data-directed programming,.

Parametric inheritance Inheritance only shows up in relation to Lula’s graphi-
cal user interface. This is unavoidable as DrScheme’s GUI toolkit is based on objects
and inheritance.

However, all inherent uses of inheritance within Lula are parametric (see Sec-
tion B7), and are confined to the construction of the graphical user interface. Mixins
have been very useful in Lula’s development. They implement a number of useful
features for Lula’s GUI components, among them the resurrection of window geome-
try, the correct setting of frame icons, and the creation and appropriate arrangement
of menu items.

Concurrent programming Finally, Lula’s model of execution is inherently con-
current: the program needs to drive the interface hardware while still being respon-
sive to user actions. Multiple sources can provide parameter settings simultaneously.
Several actions can execute concurrently. Implementing the system without con-
currency support in the programming language would have been much harder and
certainly impossible in the time span available.

14.5 Objections

Lighting design and control is a field full of opinionated practitioners. So, naturally,
there are a number of criticisms of Lula both from the field and from the outside.

Objection 1: “Experienced lighting designers and operators are used
to the conventional lighting boards. They will not be able to adjust to
Lula’s way of doing things.”

This is certainly valid criticism, but also sort of a self-fulfilling prophecy: If users
would stick with systems they know, progress would never happen. I have invested
considerable time in providing at least some terminology and some controls within
the software familiar to users of conventional consoles. When I talk with professional
lighting designers, they usually have little trouble understanding the concepts—after
all, they are based on actual design process. The step from there to actual operation
of the Lula is small. All it takes is the will to make that step.

Objection 2: “Most of time spent during lighting design is spent hang-
ing and focusing the fixtures, putting in gels, and so on, not with pro-
gramming the console.”

This is probably true in today’s theatrical environments. But still, considerable
time is spent at the console. Every hour saved counts. Moreover, I predict that this
objection will become less valid in the future with the advent of multi-parameter
lights. More and more of the work now done manually at the fixtures will be
remote-controlled from the console in the future.

Objection 3: “An effective lighting console requires a special control
board. A PC keyboard and a mouse or trackball slows down the opera-
tor.”

This issue is closely related with the design of the board: Many consoles were inher-
ently designed to require a bulky control board. Lula was not, and consequently it



14.5. OBJECTIONS 199

does well without one. However, in some situations, especially with highly dynamic
lighting, Lula could benefit from more easily identifiable buttons. There is nothing
in the software architecture which prevents implementing support for an external
add-on control board.
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Chapter 15

Future Work

Johnnie ... That’s the past ... We
gotta get on to our future, sugar!
—MARIETTA in Wild at Heart

Like any project, Lula is far from finished. This holds at the time of writing of
this dissertation, and will probably hold true forever. This chapter outlines some
possible directions for future work.

15.1 Lula 4

Lula 4 needs some polishing before it is ready for release. Most of the remain-
ing tasks are small: numerous cosmetic improvements to the user interface, driver
support for more hardware, and bug fixes.

Lula also needs a comprehensive library of fixture types ready for patching. A
domain-specific language for specifying them would be nice. The set of available
transformation types is far from complete. Also, the effect subsystem and the Lulal
language require better integration with the rest of the system. The system needs a
larger base library of common effects. A freehand shape editor would also be nice.

Lula’s user interface needs one more fundamental addition: its support for cues
is mainly constructive. However, with a finished cue, the designer might point at
a fixture at say “Why is this fixture on?” The answer may be hidden in the cue
hierarchy, and Lula presently does not help much in finding it. Presenting the nec-
essary information in a useful way requires defining a formal notion of responsibility
for the cue specification and implementing a user interface for it. The former has
been done, the latter has not.

15.2 Lula 5

Lula 4 will hardly be the end-all of lighting consoles. While Lula 4 focuses on
conceptual modelling of the lighting design, and the use of abstraction, the plan for
Lula 5 is to assist the operator in dealing with the concrete: While the selection
and assignment of fixtures is a straightforward matter in Lula 4, fixtures are still
essentially numbers to Lula.

Therefore, Lula 5 will provide modelling for the stage geometry, so that the user
can select fixtures by pointing at a symbol on the groundplan. The next step is the
extension of the groundplan into the three-dimensional, and full geometric modelling
of multi-parameter fixtures, including some sort of three-dimensional rendering of
the resulting looks. This is primarily useful in show lighting on stages with fixed
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riggings. In theater environments, simulation the look of cues is of limited usefulness
because of the importance of (possibly variable) set pieces, textures, and nuance is
general.

15.3 Add-On Hardware

Lula’s usability could probably benefit from a specialized control console, especially
for continuous controls. The difficulty with specialized controls is always determin-
ing the mapping to input parameters for the software. A fixed mapping is easiest
to remember to the user but limits flexibility. Many commercial consoles use touch-
screens. This approach would probably also work well for Lula.

One area that merits special attention is the advent of wearable computers and
wireless networking. Many commercial consoles already come with limited remote
controls so that the operator does not need to constantly run back and forth between
the stage and the console. With a wearable computer, it becomes possible to offer
the complete functionality of the software. It also remains to be investigated how
speech input can be useful in lighting.

15.4 General Show Control

Running a show involves other aspects besides lighting. Specifically, the problems
of sound playback are closely related to those of lighting playback. Light and sound
effects often require coordination. To this end, many commercial lighting consoles
come with MIDI inputs to take “Go” signals from some music source. The resulting
setups are often awkward, and still mostly require the operator to press buttons on
two consoles. Hence, support for playing back sounds—CD tracks or digitized sound
effects—is desirable. This has some nice side-effects; for instance, Lula could check
that the operator has really inserted the right CD for an upcoming sound playback.

A prototype extension of Lula 2 already includes support for playing back CD
tracks. Lula’s present present action architecture easily supports this feature. The
extension just needs backporting and some polishing up. It remains to be seen
whether functional reactive programming could also help design sound effects, say
for designing sound envelopes.

15.5 Lessons for Tool Support

The previous chapter has already identified how a programming language can sup-
port effective application development by providing a number of programming
paradigms. It is not always sufficient for a programming language implementa-
tion to satisfy the general language-level requirements of these paradigms. In some
areas, performance issues are sufficiently important to have a major impact on the
usefulness of certain paradigms. Some of them warrant work in the context of Lula
development:

Garbage collection Garbage collection has long been stigmatized as too ineffi-
cient for practical use. Even recently published computer science textbooks
insist that garbage collection inherently hurts performance. The truth is that
most implementations of garbage collection are poor, especially in freely avail-
able software. (Emacs being a notorious example.) DrScheme’s garbage col-
lector is currently improving significantly, but still causes noticeable pauses.
An incremental collector would help satisfy Lula’s modest real-time require-
ments better.
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Lightweight continuations One of the distinguishing characteristics is its sup-
port for first-class continuations: a running program can reify the current con-
tinuation at any time via the call-with-current-continuation primitive.
The reified continuation has unlimited extent; the program can invoke it mul-
tiple times. Continuations are useful for implementing a number of program-
ming paradigms, among them exception systems, various other non-local con-
trol structures [Dybvig, 1996], thread systems, and monads [Filinski, 1997].

However, to be truly practical for these applications, continuations need to
efficient in space in times. This requirement basically excludes traditional
stack implementations of continuations. More efficient implementations have
been known since the late 80s [Clinger et al., 1999], but have not made their
way into many implementations yet. Unfortunately, DrScheme is not presently
among them.

Lightweight continuations would have, for example, simplified the implemen-
tation of routines (see Section [3.7.4).

Lightweight threads The term “threads” by now comprises a wide range of pro-
cess-like abstractions. The implementation of threads is closely related to
the representation of a continuation, as a thread is usually characterized as a
process which shares state with other threads but has its own continuation.
Implementations of threads differ greatly in the cost of their representation,
ranging from about 100 bytes per thread in SML/NJ to about 2 Megabytes
for Linux operating threads.

Truly lightweight threads allow, for instance, attaching a thread to every
single component of the graphical user interface, thereby greatly simplifying
the encapsulation of state [Gansner and Reppy. 1993]. DrScheme threads take
up about 20 Kilobytes each which makes them impractical for this purpose.
Consequently, I had to undertake significant efforts to reduce the number of
threads in Lula. With a more lightweight thread system, it would also be
feasible to implement a much richer library of synchronization primitives such
as CML [Reppy. 1988, Reppy, 1999).

15.6 Art

At the end of the day, what counts with a lighting system is the show the audience
sees. Thus, ultimately, the goal of the Lula Project is to improve the quality of
lighting design by improving the quality of the tools available to the designers—to
further art. Of course, a tool which saves time is already useful to this end: the
designer use the time gained to perfect the design. Still, T think that especially
animated lighting has not reached its potential, primarily because of the limited
functionality of the available control systems. I predict that, as better tools such
as Lula emerge, a true discipline of choreographed light will emerge. I look forward
to that time.
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Avolites Diamond, 57

Avolites Sapphire, 57

award presentation, 43

back light, 34
backdrop, 37
balanced lighting, 35
barndoors, 19, 41
beam focus, 16
beam shape, 16, 21
beam size, 16
behavior, 76, 146
preset, 175
recursive, 166
below, light from, 34
black, 121
black hole, 41
black light, 23, 37
blackout, 42
blind spot, 37
blocking, 156
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booster, 27
break, 93

brighter than, 128
brightness, 15
bulb, 16

button, 51

calibration, 137
callback, 99
Cartesian coordinates, 47
Case, 58
chase, 49

wild-goose, 28
choice event, 148
choreography, 50
circuit, 46
class, 91
CML, 93, 203
CMX, 27
CMY, 47
color, 15, 18, 36, 42, 47, 174
color change, 21, 47
color changer, 21
color conversion filter, 18
color-set transformation, 117
coloring, 40
command control problem, 26
compartment floodlight, 18
compatibility, 115
complement, 75, 116, 124
complete partial order, 129
componential lighting design, 111
componential lighting design, 113
composite lighting, 34
composition, 131
compositionality, 114
compound cue, 66
concert lighting, 42
concurrent programming, 93, 198
conflict, 114, 130, 136
conflict resolution, 55, 57, 115
console, 45
continuation, 86, 185
continuations, 203
continuous, 129
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continuous animation, 50

continuous parameter, 51

control, 51

control problem, 25

control protocol, 25

corrective light, 37

cpo (complete partial order), 129

crossfade, 48

cue, 65, 101, 113, 119
compound, 66

cue combination, 115

cue editor, 66

cue flat form, 124

cue modification, 67

cue page, 74

cue representation, 139

cue semantics, 121

cue transformation, 117

CUEQO, 124

CUEL, 127

CUE2, 134

cuelist, 56

curtain call, 42

cyclorama floodlight, 18

D54, 26

dance, 32, 43

darker than, 128

data representation, 88
data-directed programming, 90, 197
DDL, 29

delayed evaluation, 88
denotational semantics, 128
design, 31

determination, 157

Device Description Language, 29
Diamond, 57

dichroic filter, 18

difference, 74, 116, 122, 175
diffusion filter, 18, 41

digital control, 27

dimmer, 16, 25, 45

dimmer curve, 46

direction, 15

directional lighting, 32
directional motivation, 35
discharge source, 16
distribution, 16

DMX512, 27

DMX512-2000, 28
domain-specific language, 7, 119, 195
down light, 33

downstage, 38

driver, 186

INDEX

DrScheme, 7, 86
dynamic dispatch, 197
dynamic non-linearity, 47

effect, 50
from function, 55
from freehand, 55
from sequence, 55
from shape, 55
effect construction, 55
effect lighting, 42
effect looping, 50
effect step, 50
encoder, rotary, 51
environment, 31, 36, 41, 42
equational reasoning, 89
error detection, 28
ETC Obsession, 57
ETCnet, 28
even stream, 153
event, 69, 146, 175
choice, 148
predicate, 148
synchronous, 162
event determination, 157
event handling, 148
event non-occurrence, 151, 156
event occurrence, 146, 157
event, light-fade, 69
exchange, 99
eXene, 98
external control, 50
eye, 46

fade, 42, 50, 178
cross, 48
in/out, 48
in/out/delay, 49
fader, 51
fader board, 53, 56
fan settings, 40
feedback, 26, 28
filter, 15, 18, 97
color conversion, 18
dichroic, 18
diffusion, 18, 41
fire, 49
fixture, 15
moving-light, 21
multi-parameter, 25
theatrical, 18
fixture placement, 39
fixture set, 125
fixture type, 45
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flat console, 53, 54

flat cue term, 127

flood, 37

floodlight, 18, 47
compartment, 18
cyclorama, 18
linear, 18

flow, 16

fluorescent tube, 17, 21, 47

Flying Pig WholeHog, 58

focus, 16, 31, 38, 42

focusing, 40, 41

fog, 23

follow spot, 20, 43

Fran, 145, 156, 183

freechand effect, 55

fresnel spot, 19, 41

front light, 32, 33

frost, 41

FRP (functional reactive programming),

145
fully-mapped protocol, 26
function effect, 55
functional data structure, 197
functional programming, 7, 88

functional reactive programming, 145

gala, 43

Galois connection, 129
garbage collection, 87, 202
gauze curtain, 37

gel, 15, 18, 36, 47
glue, 88

gobo, 20, 37
GrandMA, 52, 58
groundplan, 38
groundrow, 18

group, 53

Haggis, 98

halogen lamp, 16

handling events, 148

Haskell, 153

hiding, 32

hierarchical console, 68
hierarchical preset, 54

High End Status Cue, 58
higher-order, 87, 197

highest takes precedence, 55, 114
HSV, 47

HTP, 55, 73, 114, 115, 122, 136

illumination, 31
implementation, 7

in/out fade, 48
in/out/delay fade, 49
incandescent source, 16, 36
incident angle, 34, 35
indirect parameter, 47, 137
indoor lighting, 36
industrial presentation, 43
inheritance, 198
instrument, 15

intensity, 15, 16, 46, 130
intensity adjustment, 41
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intensity scale transformation, 117

interface, 25
intervention, 51
intervention, manual, 50
iris, 20

juxtaposition, 131
K96, 27

A-calculus, 85
lamp, 15, 16
halogen, 16
par, 18
lantern, 15
laser, 23
latest takes precedence, 55, 115
lattice, 129
laziness, 153
lazy evaluation, 88
least upper bound, 129
lifting, 147
light
back, 34
corrective, 37
down, 33
from below, 34
front, 32, 33
side, 34
light choreography, 50
light fade, 178
light source, 15
light-fade event, 69
lighting
balanced, 35
composite, 34
indoor, 36
outdoor, 36
lighting console, 45
lighting design, 31
linear floodlight, 18
Linear Time Code, 29
little language, 119
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look, 37, 48, 111

look construction, 48, 53, 65
look cue, 114

look modification, 48, 53
look preparation, 51
look storage, 48

looping (an effect), 50
LTP, 55, 115

Lula 2000, 8

Lula DMX, 9, 28

Lulal, 7, 76, 169
luminaire, 15

MA GrandMA, 58

MA Scancommander, 58
manual control, 16, 42, 43
manual fader, 71

manual intervention, 50, 51
Martin Case, 58

master, 113

master fader, 56

memory management, 196

memory management, automatic, 87

merger, 27

message network, 97

message queue, 99
message-passing style, 90
metainformation, 26, 29, 45, 56
MIDI, 29, 50, 202

MIDI Show Control, 29

MIDI Time Code, 29

mirror ball, 23

mixin, 92

ML, 172
model-view-controller, 98
modelling, 7, 31, 32, 34, 36, 195
monad, 88, 172

mood, 32, 36

motorfader, 51, 58

mouse, 51

moving head, 21

moving light, 21, 42, 43
moving mirror, 22

MrEd, 98

MSC (MIDI Show Control), 29

multi-parameter fixture, 16, 75, 130

multiplexed protocol, 26

non-linearity

color, 36

dynamic, 47

static, 46
non-occurrence, 151, 156

INDEX

observer pattern, 99
Obsession, 57
occurrence, 146, 157
odd streams, 152
outdoor lighting, 36

pacing, 32
page (of a cue), 74
painting, 32, 42
palette, 54
pan, 21
pan/tilt, 21, 25, 47, 114, 131, 174
pan/tilt-set transformation, 117
par lamp, 18
parallel playback, 50, 57
parallelizer, 77
parameter, 15, 25
indirect, 47
static, 15
parameter control problem, 25
parameter control, 45
parameter view, 51
parametric inheritance, 91, 198
parcan, 18
partial order, 129
patching, 46, 65
pattern, 86
PC, 19, 41
persistence, 89
persistent devices, 28
placeholder, 101, 158
placement, 39
plano-convex spot, 19, 41
playback, 50, 70, 77
parallel, 50, 57
playback control, 26, 29
playback master, 57, 77
playing area, 38, 112
practical, 37
predicate event, 148
preemption, 93
preparation for looks, 51
preset, 54, 97, 113, 139
hierarchical, 54
preset behavior, 175, 182
preset console, 56
priority, 55, 57
profile
variable-beam, 20
zoom, 20
profile spot, 20, 41
projection, 23, 37
shadow, 37

proscenium, 41
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protocol, 25 Smalltalk-80, 98
analog, 26 smoke, 37
fully-mapped, 26 SMPTE, 29
multiplexed, 26 softpatching, 46
pull architecture, 97, 99 sound playback, 202
purely functional programming, 88 source, 55, 97
push architecture, 97, 99 incandescent, 16, 36
pyrotechnics, 23 space leak, 87, 99, 154, 197
speech control, 202
R2-D2, 57 splitter, 27
reactive network, 97 sports event, 43
recursive behavior, 166 spot, 19
referential transparency, 89 follow, 20
relative control, 51 fresnel, 19, 41
relative transformation, 130 plano-convex, 19, 41
remote control, 16 profile, 20, 41
remote control, 202 spread, 16
representation, 31 stage, 37
resource allocation, 28 stage fixture, 15
resource sharing, 28 stage modelling, 55
responsibility, 201 start time (for sampling), 146
restriction, 74, 115, 122, 136, 175 static non-linearity, 46
RGB, 47 static parameter, 15
rigging plan, 39 Status Cue, 58
rotary encoder, 51 step (in effect, 50
routine, 185 stratified design, 97, 119, 195
routines, 203 stream, 151
even, 153
sampling, 182, 184 odd, 152
Sapphire, 57 strobe, 23, 37
saturation, 15 structural modelling, 7
Scancommander, 58 subcue, 66, 73, 138
scanner, 22 submaster, 53, 113
scatter light, 41 subscription, 75
Scheme, 85 Swing, 98
script, 69 synchronicity, 150
selectivity, 16, 19 synchronization, 26, 29, 89
semantics for cues, 121 synchronized, 29
semaphore, 100 synchronous event, 162
sequence assembly, 48, 57 synchrony, 156
sequence effect, 55 syntax, 197
sequencer, 57, 77
sequential-memory console, 56 task, 76, 172, 176, 181
setting, 134 texture, 37
shadow, 33, 34, 37, 41 theatrical fixture, 18
shadow projection, 37 thread, 93
shape, 16, 50 threads, 203
shape effect, 55 tilt, 21
show control, 202 time, 147
ShowNet, 28 absolute, 29
shutter, 19-21, 41 time transformation, 147
side light, 34 topology (of control networks), 27
sink, 97 touchpad, 51

slot, 27 touchscreen, 52
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trackball, 51

tracking console, 54

TRAFO2, 131

transformation, 117, 130, 138
absolute, 130
color-set, 117
intensity change, 117
pan/tilt-set, 117
relative, 130
X /Y /Z-offset, 117
X/Y/Z-set, 117

transition, 32, 41

triggering, 57

tube, fluorescent, 17, 21

tungsten source, 16

tuple, 172

types, 172

under cue, 102
upstage, 38
user-interface control, 51

Vari-Lite Virtuoso, 58
variable-beam profile, 20
variety show, 43

venue independence, 71, 113
Virtuoso, 58

volatile devices, 28

wall, 37

weak pointer, 99
wearable computer, 202
WholeHog, 58
wild-goose chase, 28

X /Y /Z-offset transformation, 117
X /Y /Z-set transformation, 117

Zodiac, 180
zoom profile, 20
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