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zur Erlangung des Grades eines

Doktors der Naturwissenschaften

vorgelegt von
Frithjof Lutscher
aus Göppingen

2000



Tag der mündlichen Prüfung: 20. Dezember 2000
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Zusammenfassung in deutscher Sprache

Inhalt dieser Arbeit ist die Herleitung und Untersuchung eines mathematischen
Modells für die Bildung von Fischschwärmen. Diese Schwärme zeichnen sich da-
durch aus, daß alle Individuen in einem Schwarm annähernd dieselbe Bewegungs-
richtung und Geschwindigkeit haben. Die Ränder eines Schwarms sind scharf, die
Dichte innerhalb eines Schwarms ist nahezu gleichmäßig.

Wenn alle Individuen in einer Gruppe dieselbe Ausrichtung haben, spricht
man von paralleler Orientierung oder Polarisierung. Im Gegensatz zu Schwärmen
von Fischen oder Vögeln sind Mückenschwärme i.a. nicht polarisiert. In der eng-
lischen Sprache unterscheidet man polarisierte Gruppen (schools of fish, flocks of
birds) von nicht polarisierten (shoal of fish, swarm of mosquitoes). Im folgenden
bezeichnet “Schwarm” stets eine sich bewegende polarisierte Gruppe.

In einem Schwarm gibt es in der Regel keinen Anführer, der die Richtung
vorgibt. Die Polarisierung wird erreicht, indem sich jedes Individuum parallel zu
seinen Nachbarn orientiert. Dieser Ausrichtungsvorgang wird im Englischen mit
alignment bezeichnet, und diese Bezeichnung wird hier übernommen. Außerdem
paßt sich ein Individuum an die Geschwindigkeit seiner Nachbarn an. Fische, die
hinter einen Schwarm zurückfallen, beschleunigen um aufzuholen, und ebenso ver-
langsamen Fische vor einem Schwarm ihre Geschwindigkeit.

Ausrichtungsprozesse lassen sich auch auf zellulärer Ebene finden. Aktin-Fila-
mente beispielsweise sind längliche Polymere, die, wenn sie sich berühren, inter-
agieren und aneinander ausrichten.

Man nimmt an, daß die Bildung von Fischschwärmen vor allem dem Schutz vor
Freßfeinden dient. Eine große Gruppe erkennt einen Angreifer früher. Ein großer
Schwarm schreckt Angreifer ab, weil er wie ein großes Individuum wirkt. Im Falle
eines Angriffs verwirrt die Vielzahl gleich aussehender Individuen den Angreifer.
Ein zweiter wichtiger Vorteil eines großen Schwarms scheint eine größere Effizienz
bei der Suche nach Ressourcen zu sein. Außerdem lassen sich in einem Schwarm
hydrodynamische Effekte zur einfacheren Fortbewegung ausnutzen.

In der Literatur finden sich vor allem zwei Zugänge zur Modellierung von Align-
ment mit Hilfe von partiellen Integro-Differentialgleichungen. In beiden Ansätzen
geht es nur um die Ausrichtung und nicht um die räumliche Bewegung.

In einer Folge von Artikeln entwickeln und untersuchen Edelstein-Keshet, Er-
mentrout und Mogilner (1990, 1995, 1996) mehrere Modelle für Interaktion und
Ausrichtung von Fibroblasten. Dabei wird angenommen, daß eine Partikel sich
zum einen zufällig immer wieder neu ausrichtet, zum andern nach Interaktion
mit einer anderen Partikel mit einer gewissen Wahrscheinlichkeit deren Ausrich-
tung annimmt. Ist die Rate der zufälligen Ausrichtungsänderung klein genug, so
entsteht parallele Orientierung vieler Partikel.

In einem anderen Modell von Geigant et al. (1997) wird angenommen, daß
je zwei Aktin-Filamente mit einer gewissen Rate interagieren und sich aufgrund
dieser Interaktion neu ausrichten. Sowohl die Interaktionsrate als auch die Wahr-
scheinlichkeitsverteilung der neuen Orientierung hängen vom Winkel zwischen
den beiden interagierenden Filamenten ab. Ist die Winkeldifferenz je zweier Fil-
amente nach einer Interaktion geringer als vorher und ist ferner die Varianz der
Wahrscheinlichkeitsverteilung klein, so entsteht auch in diesem Modell parallele
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Orientierung vieler Filamente.

In der vorliegenden Arbeit wird die Bewegung der Individuen im Raum von An-
fang an explizit in die Modellierung einbezogen. Die Gesamtdichte aller Individuen
ist strukturiert nach Ort und Geschwindigkeit (Richtung und Betrag). Der Bewe-
gungsprozeß im Raum wird durch die lineare Boltzmanngleichung beschrieben.
Die Interaktion wird zunächst unabhängig vom Raumpunkt mit Hilfe einer Dif-
ferentialgleichung modelliert. Dann nimmt man an, daß die Interaktion an je-
dem Raumpunkt nach denselben Regeln abläuft und verbindet die Differential-
gleichung additiv mit der Boltzmanngleichung. Dieses Vorgehen ist ähnlich dem
bei der Herleitung von Reaktions-Diffusionsgleichungen. Reaktions-Transportglei-
chungen sind allerdings besser geeignet, Interaktionen zu modellieren, die von der
Bewegungsrichtung der interagierenden Teilchen abhängen. Auch vermeiden Re-
aktions-Transportgleichungen das unrealistische Phänomen unendlicher Ausbrei-
tungsgeschwindigkeit, das für Reaktions-Diffusionsgleichungen bekannt ist.

Im ersten Kapitel wird angenommen, daß sich Individuen mit konstantem Be-
trag der Geschwindigkeit γ∗ im eindimensionalen Raum bewegen und ihre Rich-
tung zufällig mit der Rate µ∗ ändern. Die Gesamtdichte u wird in die der nach
rechts und links laufenden Individuen aufgeteilt: u = u+ + u−. Bei der Model-
lierung des Alignmentprozesses wird angenommen, daß Individuen ihre Richtung
nach der Richtung der Mehrheit wählen. Das führt zu einer weiteren, diesmal
dichteabhängigen Rate a(u)u+u−. Die Funktion a hängt von der Gesamtdichte ab
und ist positiv. Das resultierende Modell ist ein Modell für korrelierte Zufallsbe-
wegung, in dem statt der konstanten Umkehrrate die dichteabhängige Umkehrrate

µ(u+, u−) = a(u)u+u− − µ∗
2

steht, die positive und negative Werte annimmt. An dieser Umkehrrate läßt sich
ablesen, daß Alignment und zufällige Umkehr einander entgegenwirken. Schwärme
bilden sich, wenn der polarisierende Effekt des Alignments stärker ist als die aus-
gleichende Wirkung der zufälligen Bewegung. Die Modellgleichungen sind:

u+
t + γu+

x = µ(u+, u−)(u+ − u−),

u−t − γu−x = µ(u+, u−)(u− − u+).

Das hergeleitete Modell wird analytisch und numerisch untersucht. Lösungen zu
nichtnegativen Anfangswerten bleiben nichtnegativ und die Gesamtmasse aller
Individuen bleibt konstant. Die stationäre Lösung u+ = u− = const. beschreibt
die Situation, daß beide Richtungen gleich stark vertreten und konstant im Raum
sind. Ist die Umkehrrate größer als die “Alignmentrate” a(u)u+u−, so ist µ negativ
und die stationäre Lösung ist linear stabil. Ist µ positiv, so ist sie instabil. Diese
Instabilität ist das Charakteristikum von Alignment.

Mittels der Charakteristikenmethode zeigt man Existenz von Lösungen auf
der ganzen reellen Achse. Aufgrund von Fortsetzungs- und Symmetrieargumenten
erhält man daraus Lösungen auf beschränkten Intervallen mit geeigneten Randbe-
dingungen. Es wird untersucht, unter welchen Bedingungen an die Umkehrrate
diese Lösungen global in der Zeit existieren. Unter der Annahme, daß bei sehr
hohen Dichten die Tendenz zur gemeinsamen Ausrichtung schwächer ist, wird
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die Existenz eines invarianten Gebiets gezeigt. Zusammen mit einer a priori Ab-
schätzung für das Maximum der Lösung und ihrer Ableitung ergibt sich daraus
ein Beweis für globale Existenz.

Das qualitative Verhalten des Modells wird im Falle periodischer Randbedin-
gungen genauer untersucht. Der Zustand, daß beide Dichten u± räumlich kon-
stant und gleich groß sind, ist stationär. Für große Werte von µ∗ ist dieser Zu-
stand stabil, für kleine Werte dagegen instabil. Die Bifurkation ist keine Standard-
bifurkation. Alle Eigenwerte überqueren gleichzeitig die imaginäre Achse. Durch
die Einführung eines viskosen Terms kann aus dieser Bifurkation eine Reihe von
Hopf-Bifurkationen gemacht werden. Im Fall µ∗ = 0 lassen sich ω-Limesmengen
mit Hilfe einer Lyapunov Funktion beschreiben.

Schließlich wird das Modell zur Schwarmbildung mit einem einfachen Popu-
lationsmodell gekoppelt, das beschreibt, wie eine zu kleine Population ausstirbt,
eine hinreichend große Population jedoch bis zu einer gewissen Kapazität wächst.
Es kann kann analytisch und numerisch gezeigt werden, daß eine Population, die
ohne Alignment aussterben würde, sich mit Alignment erholen kann.

Im nächsten Kapitel wird das eindimensionale Modell auf zwei Raumdimen-
sionen erweitert. Dabei wird immer noch angenommen, daß der Betrag der Ge-
schwindigkeit γ∗, mit der sich Individuen bewegen, konstant bleibt. Die Dichte
u(t, x, s) hängt ab von Ort x ∈ R 2 und Geschwindigkeit s ∈ V = γ∗S1. Die
Gesamtdichte an einem Ort ist ū(t, x) =

∫
V u(t, x, s)ds. Individuen richten ihre

Geschwindigkeit an der mittleren Geschwindigkeit s̄(t, x) =
∫
V σu(t, x, σ)dσ/ū aus.

Die ortsunabhängige Reaktionsgleichung lautet:

ut = a(ū)[ss̄− |s̄|2]u.

Die Funktion a ist positiv und entspricht der Funktion a im eindimensionalen
Modell. Diese Gleichung wird mit den Modellen von Edelstein-Keshet et al. (1995)
und Geigant et al. (1997) verglichen. Dazu wird eine allgemeine Gleichung für
Gewinn-Verlust-Prozesse hergeleitet, die alle drei Modelle als Spezialfälle enthält.

Das Alignmentmodell mit räumlicher Bewegung lautet

ut + s · ∇xu = −µ∗(u−
ū

|V | ) + a(ū)[ss̄− |s̄|2]u,

wobei der erste Term auf der rechten Seite zufällige Neuausrichtung modelliert.
Dieses Modell erhält die Gesamtmasse und Positivität. Ist µ∗ klein genug, so ist
die konstante stationäre Lösung instabil wie schon im eindimensionalen Fall. Exis-
tenz von Lösungen auf ganz R 2 wird mittels des Charakteristikenansatzes gezeigt.
Numerische Simulationen runden das Kapitel ab.

Im letzten Kapitel wird ein Modell hergeleitet und untersucht, in dem Indi-
viduen ihre Geschwindigkeit an die lokale Situation anpassen. Zur Vereinfachung
wird zunächst angenommen, daß sich alle Individuen in dieselbe Richtung bewe-
gen. Die Dichte der Individuen wird mit u, ihre Geschwindigkeit mit γ bezeichnet.
Es wird eine optimale Dichte u∗ angenommen, die Individuen zu erreichen suchen,
und eine optimale Geschwindigkeit γ∗, mit der sie sich bewegen wollen. Ist die
Dichte an einer Stelle geringer als die optimale Dichte und gleichzeitig der Gradi-
ent der Dichte positiv, dann beschleunigt ein Individuum an dieser Stelle, um zu
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Stellen größerer Dichte zu kommen. Analoge Überlegungen für die drei anderen
möglichen Fälle führen zu einer “erwarteten Geschwindigkeit” E(u, ux). Setzt man
nun E = γ, so ergibt sich eine Diffusionsgleichung, in der der dichteabhängige Dif-
fusionskoeffizient das Vorzeichen wechselt. Das Problem ist also nicht wohlgestellt.
Daher nimmt man an, daß Individuen ihre Geschwindigkeit mit einer gewissen
Verzögerung und einem Fehler an die erwartete Geschwindigkeit anpassen. Man
erhält eine Differentialgleichung für die Geschwindigkeit. Insgesamt hat man also
ein System von zwei Gleichungen

ut + (γu)x = 0,

τγt = βγxx +E(u, ux)− γ.

Die Verzögerung wird durch τ gemessen, die “Varianz” des Fehlers wird durch β
bestimmt.

Um dieses System zu untersuchen, regularisiert man es zunächst, indem man
in der ersten Zeile den Term εuxx auf der rechten Seite hinzufügt. Dann entsteht
ein parabolisches System, falls τ > 0, und ein parabolisch/elliptisches System,
falls τ = 0. Wählt man für die Dichte eine konstante Funktion ū und für die
Geschwindigkeit γ∗, so ist (ū, γ∗) eine stationäre Lösung des Systems. Sie ist linear
stabil, falls ū > u∗. Gilt hingegen ū < u∗ und ist ε klein genug, so ist die konstante
Lösung instabil.

Zuerst wird gezeigt, daß für τ > 0 und auch für τ = 0 glatte Lösungen global
existieren. Im Fall τ = 0 kann man mit Hilfe der Viskositätsmethode die Exis-
tenz von Lösungen für ε = 0 zeigen. Man findet, daß die Lösungen für beliebig
lange Zeiten stetig bleiben, wenn nur die Anfangsdaten glatt sind. Dies ist bei
Erhaltungsgleichungen im allgemeinen nicht so.

Zuletzt wird der Prozeß der Geschwindigkeitsanpassung mit dem Umkehrprozeß
des Alignment verbunden. Dabei wird angenommen, daß Individuen ihre Geschwin-
digkeit nur an Nachbarn ausrichten, die sich in dieselbe Richtung bewegen wie sie
selbst. Es ergibt sich ein Modell von vier Gleichungen, zwei für die Dichten u± und
zwei für die entsprechenden Geschwindigkeiten γ±. Der Umkehrprozeß wird durch
die Umkehrfunktion µ vom Anfang beschrieben, die Geschwindigkeitsanpassung
durch die parabolische (oder elliptische) Gleichung oben. Es wird gezeigt, daß im
Fall τ = 0 die Existenzresultate von oben auf das System mit zwei Richtungen
übertragen werden können. Insbesondere existieren auch hier Lösungen, die für
beliebig lange Zeiten stetig bleiben, wenn die Anfangswerte glatt sind.

Zum ersten Mal werden in dieser Arbeit die Anpassungsprozesse in Orien-
tierung und Geschwindigkeit innerhalb eines Schwarms in einem einzigen Modell
beschrieben. Analytische Resultate und numerische Simulationen zeigen, daß das
Modell qualitativ richtige Lösungen besitzt. Es wäre nun wünschenswert, die An-
passung der Geschwindigkeit auch in zwei Raumdimensionen zu modellieren und
das Verhalten des Modells mit biologischen Experimenten zu vergleichen.
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Chapter 1

Introduction

1.1 Biological Background

Most animal species form groups at some stage during their life cycle. The struc-
ture of the group depends on and reflects the functional importance of grouping
in a certain phase and environment. Depending on the species and the shape such
groups are called packs, herds, schools, flocks, swarms etc. In this work we derive
and study a model for moving polarized groups such as schools of fish or flocks of
birds.

By movement we always denote a change of the spatial location of an individ-
ual. The mere change of the orientation is called turning. The process by which
an individual turns to adapt its orientation to that of its neighbors is called align-
ment. A group is polarized if all members have about the same orientation in space.
Keeping a common orientation, individuals can travel large distances together. On
the contrary, there are groups in which all individuals move but the group as a
whole remains stationary or drifts only slowly. Individuals in such groups are not
polarized, e.g. mosquitos. Somewhat in between is the behavior of sparrows for
example, which form moving polarized groups but the direction of group move-
ment changes frequently such that the group as a whole does not travel far. These
frequent changes of the group direction shall not be addressed here. The amount of
biological literature about moving polarized groups and fish schools in particular
is so large that we can list only some important features and give a few references
at the end.

If the overall number of individuals in a certain area is very small then no
schools form. If a school forms then its size can vary from less than ten to more
than a thousand individuals. The edges of such a group are relatively sharp and the
density within a group is nearly uniform. The distance between two neighboring
fish is approximately twice the width of the zone in which swimming movement
creates vortices in the water. Individuals tend to disperse in order to avoid over-
crowding. Individuals can move faster in a group than alone, but usually there are
no collisions even though the group as a whole may turn and swirl frequently.

In small moving polarized groups there sometimes seems to be a leader which
directs the movement of the others, e.g. in V-shaped constellations of about a
dozen birds. In larger groups however there is no apparent leader, in fact the
leading position (relative to the direction of movement) changes continuously.



2 CHAPTER 1. INTRODUCTION

Sometimes external cues may explain observed polarization, but frequently there
is no detectable external cue. The question then is how and why these groups are
formed and maintained.

Alignment can also be observed on the cellular and subcellular level. We name
a few examples. Actin filaments are rod-like polymers which are the main building
part of the cyto-skeleton. They appear as disordered loose meshwork as well as in
highly polarized arrays or in bundles with two mutually orthogonal axes of ori-
entation. Filaments in loose meshwork can reorient themselves due to interaction
with others in order to form large arrays in parallel orientation. Fibroblasts are
part of the connective tissue and play a role in wound healing. They move, come
into contact with others, align with them and adhere which leads to clusters in
parallel orientation. Alignment also occurs in purely chemical systems. In liquid
crystals, for example, areas of unordered and of parallel oriented particles can be
found as well as the transition between them.

In all these examples on the microscopic level, direct contact between particles
is essential for polarized patterns to evolve. Particles touch one another and inter-
act. They change their direction, adhere, move. On the macroscopic level visual
perception is essential for the formation of moving polarized groups. For fish the
lateral line is the most important organ for orientation: they are still able to join
a school even if they wear temporal blinders.

For some time researchers could not explain the observed behavior without
assuming a group leader or some external influence which determines the common
direction. Some authors even postulated a “group mind” and the emergence of a
“superindividual”. This situation changed in the late 1980’s when concepts from
dynamical systems theory were applied to describe individual behavior. Group
structure was understood as emerging from rules for individuals. A relatively re-
cent approach is the so called JLS-approach, according to which every individual
makes decisions whether to join a group, stay in it or leave it (JLS-decisions).
The behavior of the group is determined by the net effect of the individual JLS-
decisions.

It is now commonly agreed upon that the striking patterns which can be found
in moving polarized groups result from a twofold adaptation process: Individuals
adapt their orientation of movement to that of their neighbors, i.e. they align
with them. Within a moving group individuals also adapt their speed to that of
the others. For example, a fish lagging behind increases the number and amplitude
of tail movements. Even if there are only two fish, these two tend to swim parallel
to each other and equalize their velocities.

With this new understanding of how groups form the focus of the question
why they form shifted from the group level to the individual level. On this level,
due to evolutionary selection pressure, individuals adjust their behavior as to
maximize their evolutionary fitness. The most widely accepted explanation for
the formation of fish schools is that individuals try to avoid predation. In a larger
group there is an antipredator advantage of vigilance, i.e. an approaching predator
is detected earlier because more fish are attentive. The risk of being detected does
not increase in a large group. Hence, an individual reduces its risk of predation by
joining a group because the probability of an individual in a group to be caught
decreases as the group size increases. This effect is called the “abatement effect”.
Predators hesitate to attack large schools since the school as a whole acts as
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a single individual which is much larger than the predator. Even if a predator
attacks a school, its focus from one single prey is easily distracted and the attack
may fail. Other factors for schooling are resource exploitation (search for food),
mating or energy saving through hydrodynamic effects.

An early but very detailed treatment of fish schools is the monograph by
Radakov [55] which contains experiments, data, theories and even consequences
for industrial fishing. The most up to date and comprehensive overview of animal
grouping is the book edited by Parrish and Hamner [49] which addresses all ques-
tions from data collection and analysis to behavioral ecology and modeling and
offers an excellent bibliography. A description of the JLS-approach together with
a discussion of the advantages of schooling against predation is given by Pitcher
[52]. Okubo was one of the first who used dynamical systems to describe animal
aggregation in general and fish schooling in particular [45]. References for the be-
havior of filaments and fibroblasts can be found in the work by Geigant [13] and
Edelstein-Keshet and Ermentrout [10].

1.2 Mathematical Models for Alignment

During the last years orientation processes of animals and cells have received much
attention in mathematical modeling [4, 48]. There are two general frameworks to
approach the problem: the Lagrangian and the Eulerian [18]. In the Lagrangian
framework the state of every single individual is given by a set of characteristic
factors (location, age,...) and the evolution of each factor in time is described by
(ordinary or stochastic) differential equations [44] or by a set of local rules in
cellular automata [9, 10, 61]. These models can take into account many details of
interaction. Numerical simulations of these models show a behavior similar to the
behavior observed in nature or experiments [58, 63]. On the other hand it is often
hard, if not impossible, to treat such models analytically.

In Eulerian models the density of individuals is structured by a set of vari-
ables and the evolution of the density is described by partial (integro-) differential
equations. These models pose some challenging mathematical problems but they
cannot account for all biologically relevant details. They are only applicable for
a sufficiently large number of individuals. They are often used to find a smallest
set of rules or dependencies which describes the observed behavior. In the present
work we focus on the Eulerian approach only. The transition from Lagrangian to
Eulerian models is a delicate one [12] and shall not be addressed here.

In the existing literature, there are mainly two different approaches to model
alignment processes within the Eulerian framework. One is developed by Edelstein-
Keshet et al. [10, 41, 42] and describes the orientation and binding behavior of
fibroblasts. The other is by Geigant et al. [13, 14] to model interaction and ori-
entation of actin filaments. Both assume a spatially homogeneous distribution of
particles and neglect movement in space (for an exception see [40]). This simplifi-
cation is justified if movement happens on a much slower time scale than turning.
We describe both approaches here and compare them to the model developed later
in Chapter 3.

Three models for fibroblast behavior are presented and investigated by Edelstein-
Keshet, Ermentrout and Mogilner [10, 41, 42], henceforth abbreviated by Edelstein-
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Keshet et al. For Model I two classes of cells are considered: free cells and bound
cells. Their densities depend on the orientation angle θ ∈ [−π, π] and are denoted
by C(θ, t) for the free cells and P (θ, t) for the bound cells. Free cells turn at ran-
dom and interact with other free or bound cells. When a free cell in direction
θ interacts with any other cell in direction θ′, it can either keep its direction or
switch to θ′. If it aligns with its interaction partner at θ′ then it adheres to it
and becomes a bound cell. The probability of alignment may depend on the an-
gular difference θ − θ′ and also on whether the interaction partner is a free or a
bound cell. Bound cells break loose from aligned clusters with a rate γ. Hence, the
model equations are gain and loss equations for the two classes of particles with
parameters ε, γ, β1,2 > 0 :

Pt = β1CK ∗ C + β2PK ∗ C − γP,
Ct = ε∆θC − β1CK ∗ C − β2CK ∗ P + γP.

The one dimensional Laplacian describes random turning of free cells. Interaction
is modeled by the convolution terms, where

(CK ∗ C)(θ) = C(θ)

∫ π

−π
K(θ − θ′)C(θ′)dθ′

for instance gives the total number of free cells which turn into direction θ upon
interaction with free cells in direction θ. The exact shape of the kernel is less
important than its symmetries. Three different shapes of K are considered. The
kernel can have a single hump around θ = 0 which describes parallel orientation
of cells head-to-head only. Double hump kernels can describe head-to-head as well
as head-to-tail parallel orientation with the humps at θ = 0,±π. Finally, if kernels
have humps at θ = ±π/2 they describe bundles in which particles are parallel to
either of two mutually orthogonal lines.

Model II describes gradual rotation rather than instantaneous alignment. There
is no binding mechanism for aligned cells, only one density C(θ, t) is considered.
This density of cells induces a potential W ∗ C and particles undergo an angular
drift according to the corresponding potential field. The model equation in this
case is

Ct = ε∆θC −∇θ · (C∇(W ∗ C)).

The kernel W has a shape as the kernel K above.
In Model III, finally, turning is again instantaneous to one of the directions of

the two interaction partners. There is no binding of aligned cells and the equation
for the density C(θ, t) reads

Ct = ε∆θC − C(Q(C) ∗ C),

where the convolution term is

(Q(C) ∗ C)(θ) =

∫ π

−π
Q1(C(θ)− C(θ′))Q2(θ − θ′)C(θ′)dθ′.

The kernel Q2 has the same meaning and shape as K in Model I. The function Q1

reflects the observation that bigger clusters grow at the expense of smaller ones
when they interact. It is assumed to be monotone increasing, bounded and odd.
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The behavior of all models is similar: The total cell density is constant and
there is a homogeneous, i.e. θ-independent steady state solution. A linear stability
analysis shows that this state is stable for large random turning parameter ε and
becomes unstable as ε decreases. Which of the modes grows fastest depends on
the chosen kernel. This instability is the characteristic feature of alignment and
hence alignment behavior results from a competition between random turning and
interaction-controlled directed turning.

The situation that all cells are completely aligned is described by a δ-distribution
with respect to the angular variable θ. In the limiting case, ε = 0, when there is
no random turning, such a state of complete alignment is a (generalized) solution
and this solution is linearly stable. The situation of two δ-peaks is unstable. For
weak but nonzero angular diffusion the peaks are smoothed out. An approximate
formula for the shape of a smoothed peak is given. Also, the 3D case is investigated
by the same means. Orientation is then determined by a vector in S2 ⊂ R 3.

An extension of these models to include spatial dependence was considered in
[40]. All densities now depend on time t ∈ R +, orientation θ ∈ Sn−1 ⊂ R n and
space x ∈ R n for n = 2, 3. Particles are assumed to move randomly in space, which
is modeled by the Laplacian with respect to x. The orientation of a particle does
not influence its movement. The derivation of the interaction terms is similar to
the non-spatial case above. The convolution kernels depend on the spatial as well
as on the orientational variables. Integration takes place over Sn−1 × R n. Hence
the equations are non-local in space. Equations for Model I read:

Pt = β1CK ∗ C + β2PK ∗ C − γP,
Ct = ε1∆xC + ε2∆θC − β1CK ∗ C − β2CK ∗ P + γP.

A bifurcation analysis at the homogeneous stationary state, i.e. at functions con-
stant on Sn−1×R n, yields three different behaviors: If the spatial diffusion is large
and the orientational diffusion is small then particles remain evenly distributed
in space but become polarized. If the spatial diffusion is small and the orienta-
tional diffusion is large then centers of aggregation of non-aligned particles form. If
both diffusion rates are small then aligned spatially separated clusters form. The
space dependent version of Models II and III show a similar linearization behavior.

Geigant et al. [14] present a planar model for alignment of filaments due to
actin-actin interaction. It is a special case of a model for pattern formation on
S1 by Geigant [13] and describes how actin filaments form large arrays in which
all filaments are oriented in one single or two mutually orthogonal directions.
Filaments are characterized by their orientation angle θ ∈ [−π, π]. When a filament
with orientation θ′ meets another with orientation θ′′, then the two interact with a
certain rate ζ = ζ(θ′−θ′′). Upon interaction the filament with orientation θ′ turns
into a new direction θ with some probability ω = ω(θ′− θ, θ′− θ′′), which depends
on the angular difference of the interaction partners and to the new direction. The
density of filaments at time t in direction θ is denoted by f(t, θ) and the model
equation is a gain and loss equation for the different directions:

ft(t, θ) = −f(t, θ)

∫ π

−π
ζ(θ − θ′)f(t, θ′)dθ′

+

∫ π

−π

∫ π

−π
ζ(θ′ − θ′′)ω(θ′ − θ, θ′ − θ′′)f(t, θ′)f(t, θ′′)dθ′dθ′′.
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A similar equation was derived in the context of dominance in social populations
by Jäger and Segel [30]. Individuals are characterized by a value of dominance in
[0, 1] rather than by an orientation angle. Every encounter between two individuals
results in a winner and a looser and an individual’s value of dominance increases
or decreases accordingly.

The total mass of filaments is constant and the equation is rotationally invari-
ant. The homogeneous state, where f is a constant, is stationary. As above, we
speak of alignment if this situation is unstable. The stability behavior depends
on some qualitative properties of the parameter functions ζ and ω. The authors
consider several cases, we only mention a few here.

Suppose filaments at all angles interact equally, then ζ is a constant. If also the
turning is independent of the interaction angles, then ω = const. and the homoge-
neous state is stable. If the turning depends on the angular differences then ω is
called attractive if the angular difference between two filaments decreases after in-
teraction. It is called attractive/repulsive if the difference decreases at acute angles
and increases at obtuse angles. The turning probability ω is a peak around the
new direction θ and turning is more precise if the peak is narrower and sharp. If ω
is attractive and turning is precise enough, then the homogeneous state is unstable
and filaments start to align in one single direction. If ω is attractive/repulsive then
head-to-head as well as head-to-tail parallel orientation emerges.

In the limiting case where all filaments are oriented in the same direction the
density f becomes a δ-distribution with respect to the orientation angle θ. If the
turning is exact, i.e. ω is a peak in the new direction θ then such a δ-distribution
is indeed a solution to the equation. It is linearly stable. For small imprecision of
turning a narrow peak solution is expected.

Among other complex phenomena of swarm formation and aggregation, gliding
myxobacteria show behavior of alignment and movement. They form so-called
“streets” in which the rod-like bacteria have the same orientation in space and
glide either past each other or parallel to each other. They reverse their direction of
movement depending on the surrounding density of other bacteria. This behavior
was modeled by Pfistner [50]. The problem is essentially one-dimensional. Bacteria
move on the line either to the right or to the left with average speed γ∗. The density
u is split accordingly into the right and left moving fraction u±. Bacteria are
assumed to perceive the densities in a neighborhood of length 2R of their position.
They change direction with some rate µ± which depends on the densities in the
perception interval. The resulting model is the following system of hyperbolic
equations.

u+
t (t, x) + γ∗u

+
x (t, x) = −µ+u+(t, x) + µ−u−(t, x),

u−t (t, x)− γ∗u−x (t, x) = µ+u+(t, x)− µ−u−(t, x),

where the turning frequencies are defined with some function Λ and weight func-
tions α, β as

µ± = Λ

(∫ R

−R
α(r)u±(t, x± r) + β(r)u∓(t, x± r)dr

)
.
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The function Λ is assumed monotone increasing and positive. If a bacterium moves
to the right and perceives many others going to the right then its tendency to
reverse its direction is small. On the other hand, if many others move left, then its
tendency to turn increases. If both directions are equally present, bacteria usually
do not turn. This behavior is captured in the following assumptions on the weight
functions:

α < 0, β > 0, |α| > β.

The model is non-local in space. To obtain a local model, the integrals in the
definition of Λ are approximated by local Taylor series. Then the turning rates
depend on the densities u± and on the gradients u±x .

Stationary swarms are investigated in the spatially local model. They are de-
fined by the condition that the density u = u+ +u− is unchanged in time and the
flux u+ − u− vanishes identically. Then obviously u+(t, x) = u−(t, x) = u(t, x)/2.
The system now reduces to a single implicit ordinary differential equation. Condi-
tions for the existence of stationary swarms are given and their shape is computed.
A three dimensional generalization of the model in the form of a Boltzmann-like
equation is given by Pfistner and Alt but not investigated more closely [51].

Although these myxobacteria clearly show alignment behavior by the forma-
tion of streets and by the density dependent change of their direction of move-
ment, the observed stationary swarms contain bacteria moving in both directions
equally. The swarm is not polarized. It retains its shape since individuals turn as
they reach the boundary of the swarm and move back into the swarm. This is not
the behavior of schools to be modeled in the present work. But the two models by
Pfistner and Alt are special cases of so called reaction transport equations. This
type of equations shall also be the basis of the present work. We briefly recall some
important facts about them.

1.3 Review of Reaction Transport Equations

Movement in space and interaction with the environment are two fundamental
features of living organisms. Reaction transport equations are a natural approach
to describe movement and interaction processes in particular if the interaction
depends on the direction of movement [21]. At the same time reaction transport
equations avoid unwanted effects such as infinite propagation speed which occurs
in reaction diffusion equations.

Spreading in space is modeled by the linear Boltzmann equation. Particles are
characterized by their position in space x ∈ Ω ⊂ R n and their velocity s ∈ V ⊂ R n.
In the simplest case V is a sphere or a ball of some radius γ∗. Particles move in
straight lines with their respective velocity, stop according to a Poisson process
with parameter µ∗ and choose a new direction s′ according to a kernel K(s, s′).
The density u(t, x, s) satisfies the transport equation

ut(t, x, s) + s · ∇xu(t, x, s) = −µ∗u(t, x, s) + µ∗

∫
V
K(s, s′)u(t, x, s′)ds′

(1.1)

on R +×Ω× V. Integrating over all velocities we get the total density at one point
x ∈ Ω as ū(t, x) =

∫
V u(t, x, σ)dσ. Interaction processes are modeled independently
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of the spatial variable. If the interaction depends only on the total density then it
is described by an ordinary differential equation

d

dt
ū(t) = f(ū(t)) (1.2)

for some suitable function f. Similarly to the modeling approach with reaction
diffusion equations, simultaneous spread and interaction is given by the reaction
transport equation

ut + s · ∇xu = −µ∗u+ µ∗

∫
V
K(s, s′)u(s′)ds′ + f(ū). (1.3)

However, equation (1.3) does not preserve positivity of u in general. Particles can
only be deleted from the velocity class in which they are. Modeling the reaction
term as in (1.2) does not account for this fact since it does not keep track of the
velocity classes. Schwetlick [59] studied reaction equations of the form

∂

∂t
u(t, s) = f(u, ū)(t, s). (1.4)

In particular, for a birth-death process with density dependent mortality g and
fertility m, Hadeler [19] proposes the function

f(u, ū) =
1

|V |m(ū)ū− g(ū)u.

If we reduce equation (1.1) to the simplest case where particles move on the line
with constant speed, i.e. n = 1 and V = {±γ∗}, we obtain the following system of
two equations

u+
t + γ∗u

+
x = −µ∗

2
(u+ − u−),

u−t − γ∗u−x = −µ∗
2

(u− − u+),
(1.5)

where u±(t, x) = u(t, x,±γ∗) denotes the density of right and left moving particles.
This is the Goldstein-Kac model for the correlated random walk [31]. It preserves
positivity for u± jointly. Introducing the total density u(t, x) = u+(t, x) +u−(t, x)
and v(t, x) = u+(t, x) − u−(t, x) this system can be written as

ut + γ∗vx = 0,

vt + γ∗ux = −µ∗v.
(1.6)

Differentiating and substituting one can derive the following telegrapher’s equation
for the density u alone:

utt + µ∗ut = γ2
∗uxx.

Dividing this equation by µ∗ and letting µ∗, γ∗ →∞ with γ2
∗/µ∗ = D = const. we

formally get the diffusion equation

ut = Duxx. (1.7)
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This parabolic limit can also be obtained from (1.6) if we write ṽ = γ∗v for the
flux and make the same limiting process in the second equation. Then

ut + ṽx = 0,

Dux = −ṽ.
(1.8)

Holmes was the first to introduce reactions to (1.5) and realize that one can still
derive a telegrapher’s equation if the reaction depends only on the total density
[29]. The system reads

u+
t + γ∗u

+
x = −µ∗

2
(u+ − u−) +

1

2
f(u),

u−t − γ∗u−x = −µ∗
2

(u− − u+) +
1

2
f(u),

(1.9)

and leads to the telegrapher’s equation

utt + (µ∗ − f ′(u))ut = γ2
∗uxx + µ∗f(u).

Taking the same limit as above, i.e. µ∗, γ∗ → ∞ with γ2
∗/µ∗ = D = const., we

formally get the reaction diffusion equation

ut = Duxx + f(u).

These limiting processes were made analytically precise and approximation theo-
rems were derived by Hillen and Müller [26].

Equation (1.9) and several generalizations have been widely studied and used
to model biological phenomena, including birth-death, activator-inhibitor, epi-
demic spread etc. Hadeler investigated existence and speed of traveling fronts
[19], the application to disease models [20] and models for several species [21].
Hillen [22, 23, 24] introduced boundary conditions, proved existence results for
mild and classical solutions and derived an invariance principle. He used energy
methods and Lyapunov functionals. He also showed the existence of Turing pat-
terns in a system of two species. In order to model movement depending on some
external signal, the velocity γ∗ and the turning rate µ∗ can be chosen to depend
on this signal [27, 28]. A one dimensional free boundary value problem for (1.9)
was studied by Kuttler [35].

In several space dimensions, equation (1.1) was applied to cell movement by
Othmer et al. [46]. According to the underlying discrete stochastic model it was
called a velocity jump process. Hadeler gave a detailed account of the relevance
and applications of reaction transport equations in biological modeling [21]. He
discussed in particular the connections between the diffusion equation, the trans-
port equation and the Cattaneo system. Hillen and Othmer considered (1.1) with
an additional external signal to study chemotaxis in n dimensions and derived
the classical parabolic chemotaxis equations as the parabolic limit [25]. A detailed
mathematical analysis of (1.3) was done by Schwetlick [59, 60]. He generalized the
approximation results about parabolic limits to higher dimensions and studied
existence and minimal speeds for traveling fronts. Boundary conditions in higher
dimensional domains were introduced and existence of mild solutions was shown.
Regularity of stationary solutions was studied and also convergence to stationary
solutions was shown under some assumptions on f .
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1.4 Overview of the Results

The main goal of this work is to develop and investigate a mathematical model
for moving polarized groups on the basis of reaction transport equations.

In Chapter 2 this is done in one space dimension assuming constant speed.
Formally, the model equations look similar to (1.5) but the constant turning rate
µ∗ is replaced by a density dependent turning function µ = µ(u+, u−). Interaction
is purely local, i.e. the turning function depends pointwise on u±.

The most important feature of the turning function is that it changes sign.
The dispersion relation shows that the sign change of µ corresponds to a change
in the stability behavior of the homogeneous equilibrium solution. Hence the sign
change reflects the transition from dispersal to alignment and shows that random
turning and alignment are two competing mechanisms.

Using the methods of characteristics, local existence of mild and classical so-
lutions is shows and conditions for global existence are discussed. An invariance
result is used to show that solutions exist globally and are bounded for the rea-
sonable assumption that dispersal is stronger than alignment at high densities.
Then, on a bounded interval with periodic boundary conditions, the bifurcation
from the stationary state for increasing strength of alignment is investigated. This
bifurcation is not a standard bifurcation since all eigenvalues cross the imaginary
axis at the same parameter value. By introducing a viscosity term, this transition
is split into a series of Hopf bifurcations.

Finally a predator-prey system is superimposed on the model equation. Ana-
lytically and by simulations it is shown that an aligning prey may survive where
a non aligning prey would go extinct.

Then, in Chapter 3 the model is generalized to two space dimensions still as-
suming constant speed. It is investigated for a discrete set of velocities and some
simulations are shown. Again, by using the method of characteristics, existence and
uniqueness of solutions is shown. The model is compared to the alignment models
cited and explained above. A general equation is presented which comprises all
these models as special cases. From this equation one obtains an interpretation of
individual behavior in the 2D model equation. The general equation also yields an
interesting observation in the 1D case.

In the last chapter speed adaptation is included into the one-dimensional
model. It is assumed that there is a preferred density and that individuals speed
up or slow down in order to be in areas of preferred density. The resulting model
consists of altogether four equations: a conservation law with source term for each
of the densities and a parabolic or elliptic equation for the adaptation process of
their respective speeds. The coupling between the equations is highly nonlinear.

For simplicity, the speed adaptation process is first studied in one direction
only. There is one equation for the density and one for the speed. Linearization
shows that the uniform density distribution is unstable as long as the density is be-
low the preferred density. The model is regularized by introducing a viscosity term
in the equation for the density. For the resulting parabolic or parabolic/elliptic
system global existence of smooth solutions is shown. In the next step estimates for
weak solutions are shown to hold independent of the viscosity parameter. Then,
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by a compact imbedding theorem, one gets solutions for vanishing viscosity.
Finally it is shown that the vanishing viscosity method can be extended to the

system of four equations for two directions and two speeds.
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Chapter 2

Alignment in 1 Dimension

We derive and analyze a model equation for alignment in one space dimension
based on the random walk system (1.5) for constant particle speed. We get a
system of equations similar to (1.5) but with non-linear density dependent turning
function µ instead of the turning rate µ∗.Having investigated some basic properties
of the model we show existence of solutions, regularity and positivity. We discuss
the question of global (in time) solutions.

The case of periodic boundary conditions on a bounded interval is given de-
tailed attention. It is closely related to no flux boundary conditions and describes
continued interaction between particle patches. A detailed linear analysis is per-
formed and ω-limit sets are characterized.

To discuss the benefit of alignment for survival of a population we superim-
pose a simple predator–prey model and show analytically and numerically that
alignment can lead to survival of a population which would go extinct otherwise.

Since the particle speed is assumed constant throughout this chapter we sim-
plify notation and write γ = γ∗.

2.1 A Simple Model in 1D

We derive the reaction term modeling alignment in one spatial dimension with two
velocities s ∈ {±γ} and denote the corresponding densities by u±. We first discuss
the desired features of an alignment system in the absence of motion. The general
form of the reaction term is u̇± = f±(u+, u−). The alignment process is symmetric
with respect to left and right and preserves total mass. Hence the system can be
written in the following form

u̇+ = f(u+, u−),

u̇− = −f(u+, u−).
(2.1)

The symmetry condition f(u+, u−) = −f(u−, u+) has to be satisfied. In particular,

f(u/2, u/2) = 0 for u = u+ + u− ≥ 0,

hence the state where both directions are equally distributed is stationary, no
direction has an advantage over the other. The states (u+, 0) and (0, u−) represent
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complete alignment, all particles have the same direction. These states should be
stationary and hence we need

f(0, u−) = f(u+, 0) = 0 for u± ≥ 0.

This condition also implies preservation of positivity. Furthermore we require that
these two stationary states are stable. Of course we cannot achieve stability against
a change in total number of particles. We can only require stability against changes
in the relative size of the two groups. This stability is expressed as

D1f(u+, 0) < D2f(u+, 0), D1f(0, u−) < D2f(0, u−) for u± ≥ 0

where Dj denotes the partial derivative with respect to the j-th variable. We write
f in the form

f(u+, u−) = f1(u)f2(p), p = u+/u, u = u+ + u−.

Then f2, which depends on the relative density of right moving particles, models
the qualitative behavior and f1 is a positive function which depends only on the
total density. The assumptions about stationary states translate into

f2(0) = f2(1) = 0, f2(1/2) = 0,

and the stability conditions give

f ′2(0) < 0, f ′2(1/2) > 0, f ′2(1) < 0.

Given that there are no other stationary states we find

f2(p) < 0 for 0 < p < 1/2; f2(p) > 0 for 1/2 < p < 1.

An obvious candidate is

f2(p) = p(1− p)(p− 1/2).

With this choice (2.1) becomes

u̇+ =
f1(u)

u3
u+u−(u+ − u−),

u̇− =
f1(u)

u3
u+u−(u− − u+).

(2.2)

We call a(u) = f1(u)/u3 and discuss possible choices of a and hence of f1 later. We
introduce the space variable and insert the reaction term (2.2) into the correlated
random walk model to the to arrive at

u+
t + γu+

x =
µ∗
2

(u− − u+) + a(u)u+u−(u+ − u−),

u−t − γu−x =
µ∗
2

(u+ − u−) + a(u)u+u−(u− − u+),
(2.3)

where a > 0. To get a proper Cauchy problem we have to specify initial conditions

u±(0, x) = u±0 (x), x ∈ Ω ⊂ R , (2.4)
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and boundary conditions, which will be done below 2.1.2. The system can be
written in the equivalent form

ut + γvx = 0,

vt + γux = −µ∗v +
a(u)

2
(u2 − v2)v,

(2.5)

with total mass u = u+ + u− as above and v = (u+ − u−).

One cannot get a proper diffusion limit from system (2.5) as it was possible from
system (1.6). Nonetheless it is interesting to consider formally the limit process
γ, µ∗ →∞. The second equation of (2.5) written in terms of the flux ṽ = γv reads

ṽt + γ2ux = −µ∗ṽ +
a(u)

2
(u2 − ṽ2

γ2
)ṽ.

If we assume that the alignment process scales with µ∗, i.e. a(u) = µ∗ā(u), then
for γ, µ∗ →∞ with γ2/µ∗ = D we get

Dux =

(
ā(u)

2
u2 − 1

)
ṽ, (2.6)

which for a = 0 is (1.8). The expression in brackets changes sign in general. But
the minus sign on the right hand side of (1.8) is essential to get the diffusion
equation instead of backward diffusion. Formally, backward diffusion can produce
aggregation and hence we expect pattern formation in the hyperbolic model, too.

Looking at the literature about aggregation phenomena one finds many ap-
proaches which lead to ill-posed problems and are then regularized by different
techniques. For example, a thorough discussion of model derivation which leads
to ill-posed problems is given in [5, 38]. Possible regularization techniques are
discretization [38, 47], inclusion of higher order terms as in the Cahn-Hilliard
equations [7] or integral formulations [2], to name but a few.

According to the sign change in (2.6) we say that the model (2.3) or (2.5) has
a “diffusive character” if the sign of the factor

− µ∗ +
a(u)

2
(u2 − v2) (2.7)

in front of v in (2.5) is negative. The following generalization of (2.3) gives better
insight into the process.

All terms on the right hand side of (2.3) contain the factor (u+ − u−). We
introduce a density dependent turning function µ(u+, u−) and write

u+
t + γu+

x = µ(u+, u−)(u+ − u−),

u−t − γu−x = µ(u+, u−)(u− − u+),
(2.8)

which becomes (2.3) for µ(u+, u−) = a(u)u+u− − µ∗/2. Now it is clear what hap-
pens. Particles turn randomly according to the turning rate µ∗. The alignment
process enters the equations with opposite sign (a > 0). We call a(u)u+u− the
alignment rate. If it is small compared to µ∗, then particles turn from the direc-
tion of higher density to the direction of lower density. But if the aligning forces
are strong enough, then particles turn into the direction which already carries
more particles. What we observe is the competition of two processes. A diffusive
character is given if random turning is stronger than alignment, i.e. µ(u+, u−) < 0.
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2.1.1 Basic Properties of the model

Before we show existence of solutions to (2.8) we look at some properties of (2.3)
which indicate that it is a reasonable model for alignment.

We give a heuristic argument why (2.3) should preserve positivity. Suppose
that smooth solutions are positive until t0 and at (t0, x0) the density u+ has a
minimum with u+(t0, x0) = 0. Then at (t0, x0) we find

u+
t =

µ∗
2
u− > 0

and hence u+ increases. This idea will be made mathematically precise and gen-
eralized to (2.8) in Lemma 2.2.3.

From the first equation of (2.5) it is obvious that the total mass
∫
u =

∫
u++u−

is conserved. This makes sense biologically.

Dispersion Relation

The homogeneous state where both directions are equally distributed is described
by u+ = u− = const. It corresponds to constant solutions ū > 0, v̄ = 0 of system
(2.5). Looking at the dispersion relation of the corresponding linear system we see
that there are unstable modes provided that the random turning rate is small.
The linearization of (2.5) is

ut + γvx = 0,
vt + γux = [(a/2)ū2 − µ∗]v.

The ansatz u(t, x) = eλtU(x), v(t, x) = eλtV (x) gives

λU + γVx = 0,
λV + γUx = [(a/2)ū2 − µ∗]V,

which can be reduced to the single equation

−γ2Uxx = ((a/2)ū2 − µ∗ − λ)λU.

Assuming that U is a linear combination of exponentials eikx for different k we
get the dispersion relation from the quadratic equation for λ :

λ((a/2)ū2 − µ∗ − λ) = γ2k2.

The solutions are

λ1,2 =

(
a

4
ū2 − µ∗

2

)
± 1

2

√
((a/2)ū2 − µ∗)2 − 4γ2k2.

For small modes k, the discriminant is positive, for large k it is negative. In both
cases the sign of the real part <λ is determined by the sign of the first term
aū2/4− µ∗/2.

For large µ∗ all modes are stable, and they become unstable all at the same
value µ∗ = aū2/2. For smaller values of µ∗ all modes are unstable. This transition is
certainly not a standard bifurcation. It will appear again later where we investigate
it more closely by adding a viscosity term (see 2.3.3). It can also be observed in
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the telegrapher’s equation when the damping term changes sign and becomes a
forcing term [22]. There are other mathematical models in biology which have an
infinite range of unstable wave numbers, e.g. mechanical models for mesenchymal
morphogenesis [43]. The parameter µ∗ is a measure of randomness in turning in the
model. If it is small enough then the homogeneous situation is unstable. A similar
behavior is found in the models by Geigant et al. [14] and by Edelstein-Keshet et
al. [10, 40], although there only finitely many modes become unstable.

Perfect Schools

The case of complete alignment would appear as a solution where all individuals
move in the same direction. The density in the other direction is zero. Evidently
such a solution can exist only if µ∗ = 0. In that case initial data u+

0 (x) together
with u−0 (x) = 0 lead to unidirectional schools in form of a simple wave

u+(t, x) = u0(x− γt), u−(t, x) = 0. (2.9)

If u+
0 is not smooth then we can interpret (2.9) as a weak solution (in the sense

of conservation laws). The particular case where u+
0 is the characteristic function

of some interval is called a perfect school since the density within the school is
uniform and the edges are sharp.

Somewhat more interesting is the case that two perfect schools of the same
height move in opposite directions. Then even when the two schools meet neither
direction has an advantage over the other and the net effect of interaction should
be zero. The schools should move on unchanged. Consider the equations on the
real line and denote by u±(t, x) = u±0 (x∓ γt) two perfect schools with u±0 = χI±
for intervals I±. We have to show that∫ ∞

0

∫ ∞
−∞

u±φt ± γu±φx =

∫ ∞
0

∫ ∞
−∞
∓a(u)u+u−(u+ − u−)φ−

∫ ∞
−∞

u±0 φ

for all test functions φ ∈ C1(R 2) with compact support in [0,∞)× R . If u+ or u−

vanishes, then the product u+u− vanishes. But wherever both densities are nonzero
they are the same and hence the difference u+−u− vanishes. Hence the first term
on the right hand side is zero. The remaining equations for u± decouple and are
just the weak formulation for left and right moving waves. They are obviously
satisfied.

2.1.2 Boundary Conditions

We introduce boundary conditions and investigate their influence on the behavior
of solutions. Of course the 1D problem is a model problem for the more realistic
2D or even 3D case. However, the 1D boundary conditions may appear somewhat
artificial. Dirichlet boundary conditions say that particles are absorbed at the
boundary (homogeneous) or released at the boundary, always directed inward
with respect to the domain (inhomogeneous). Homogeneous Neumann boundary
conditions describe the situation where individuals turn around at the boundary.
If we identify the two endpoints of the interval we get a circle and speak of periodic
boundary conditions.

For inhomogeneous Dirichlet boundary conditions stationary solutions can be
calculated explicitly. Solutions in the case of homogeneous Neumann boundary
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conditions are a subset of solutions of the case of periodic boundary conditions,
defined by a certain symmetry condition.

Boundary conditions for reaction random walk systems on the interval [0, l]
have been discussed by Hillen [22]. They are as follows.

• u+(t, 0) = 0, u−(t, l) = 0 in the homogeneous Dirichlet case,

• u+(t, x) = u−(t, x) for x ∈ {0, l} in the homogeneous Neumann case,

• u±(t, 0) = u±(t, l) in the periodic case.

In the u, v-notation this can be expressed as

• u(t, 0) = −v(t, 0), u(t, l) = v(t, l) in the homogeneous Dirichlet case,

• v(t, x) = 0 for x ∈ {0, l} in the homogeneous Neumann case,

• u(t, 0) = u(t, l), v(t, 0) = v(t, l) in the periodic case.

The system has the general form

ut + γvx = 0,

vt + γux = g(u, v),
(2.10)

with some function g. Regardless of the boundary conditions we can make the
following observation about stationary solutions.

Lemma 2.1.1

Stationary solutions of (2.10) are constant in v and monotone in u.

Proof.

The first equation gives vx = 0, i.e. v is a constant at a stationary solution.
Then the second equation becomes a one dimensional ordinary differential equa-
tion ux = fv(u) with parameter v.

The Dirichlet Problem

We consider stationary solutions of the inhomogeneous Dirichlet problem without
random turning, i.e. system (2.10) with the reaction term from (2.5):

g(u, v) = a/2(u2 − v2)v (2.11)

for a = const., and the following conditions on the left and right boundary of the
interval [0, l],

u+(0) = u+
l , u−(l) = u−r .

At a stationary solution, v is a constant by Lemma 2.1.1 and the boundary con-
dition for u = u+ + u− assumes the form

u(0) = 2u+
l − v, u(l) = 2u−r + v.

The second equation of (2.10) yields a Riccati equation for u,

ux =
av

γ
(u2 − v2),
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and thus by integration we get

u− v
u+ v

=
u(0) − v
u(0) + v

e(2av2/γ)x =
u+
l − v
u+
l

e(2av2/γ)x.

Using the boundary conditions, we find a transcendental equation for v:

(u+
l − v)(u−r + v)

u+
l u
−
r

= e−(2av2/γ)l.

The left hand side of this equation describes a parabola which passes through the
point (0, 1). The bell shaped curve on the right has its maximum at (0, 1). Hence
we always have the trivial solution v = 0, u+ = u− = const. We discuss the case
u+
l > u−r , the other case is obtained by symmetry. There is always a nontrivial

positive solution for v. If the curvature of the bell shaped curve at (0, 1) is large
enough, then there are also two negative solutions for v (compare the two plots
below).
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The solution corresponding to a given v can be represented as

u+(x) =
vu+

l

u+
l − (u+

l − v)e(2av2/γ)x
, u−(x) = u+(x)− v.

This solution is monotonically increasing if v > 0 and monotonically decreasing if
v < 0. The situation in case v > 0 is clear: There are more u+-particles coming
in at the left boundary than u−-particles at the right boundary. On their way
through the interval the predominance of u+ makes u−-particles turn around and
align. Increasing the length of the interval leads to increasing v which in turn leads
to decreasing the number of u−-particles that arrive at the left boundary.

For sufficiently large intervals the curvature of the bell shaped curve at 0 is
large enough such that there appear negative solutions for v. Hence we have u− >
u+ throughout the interval even though the supply of u−-particles at the right
boundary is less than the supply of u+-particles at the left boundary. It is hard
to imagine that such a solution can bifurcate from a homogeneous equilibrium.
But assume that initially particles come in only on the right, i.e. u−r > 0, u+

l = 0.
Now particles start to move in from the left. They will be turned and aligned
by the dominance of the left moving direction. Once this dominance has been
established, it is not broken if the influx of u+-particles at the left boundary is
increased continuously.

We conjecture that the stationary solution with v > 0 is stable and the one
with v = 0 is unstable. From the two solutions with negative v one should be
unstable and the other should be stable.
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Homogeneous Neumann Boundary Conditions

Because of the reflection at the boundary, homogeneous Neumann boundary con-
ditions play a similar role as the µ∗-term: they act against complete alignment.
Near the boundary there will always be particles in opposite directions which are
then again subject to alignment. Thus we have the case that the two stationary
solutions (u+, 0) and (0, u−) of the reaction differential equation are not compat-
ible with the boundary condition. As a consequence of Lemma 2.1.1 we note the
following.

Corollary 2.1.2

The stationary states of (2.8) with homogeneous Neumann boundary conditions
necessarily satisfy v = 0 and hence are of the form u+ = u− = const.

These stationary solutions are unstable for small µ∗. We expect oscillating behav-
ior. Computer simulations show the following: One starts with u+ ≡ u− ≡ 1 and
adds a small perturbation on u+, for example a narrow pulse. Then this pulse
travels to the right gaining in height constantly but the width of course remains
unchanged. At the boundary the pulse turns and continues to gain height while
the density of the other direction decreases.

Solutions for homogeneous Neumann boundary conditions are not studied ex-
plicitly because they are a subset of solutions for periodic boundary conditions.

Periodic Boundary Conditions

The case of periodic boundary conditions may be thought of as particles moving
on a circle. A detailed qualitative study of this case is done in Section 2.3. Here we
only show the connection between homogeneous Neumann and periodic boundary
conditions.

We say that two functions u+, u− on Ω = [0, l] satisfy the mirror symmetry
condition on Ω if

u+(x) = u−(l − x) for x ∈ Ω. (2.12)

Lemma 2.1.3

Suppose the initial data u±0 on Ω satisfy the mirror symmetry condition (2.12).
Then this symmetry is preserved under the flow generated by (2.3) with periodic
boundary conditions.

Proof.

Let u+
0 be given and set u−0 (x) = u+

0 (l−x) according to (2.12). Then in particular
u+

0 (l/2) = u−0 (l/2) and we can solve the Neumann problem on [0, l/2]. Let w±

denote the solutions to the homogeneous Neumann problem. We now set

u±(t, x) =

{
w±(t, x) for x ∈ [0, l/2]
w∓(t, l − x) for x ∈ [l/2, l].

Then straightforward computations show that u± satisfies the differential equa-
tions on Ω as well as the periodic boundary conditions. Uniqueness of solutions
(which will be shown along with existence in Section 2.2) now gives the desired
result.
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Corollary 2.1.4

Solutions to the homogeneous Neumann problem on [0, l/2] are in 1 to 1 corre-
spondence with solutions on [0, l] with periodic boundary conditions which are
symmetric in the sense of (2.12).

Proof.

Suppose initial conditions w±0 are given on [0, l/2] which satisfy the homogeneous
Neumann boundary condition w±0 (x) = w∓0 (x) for x ∈ {0, l/2}. Set

u±0 (x) =

{
w±0 (x) for x ∈ [0, l/2]
w∓0 (l − x) for x ∈ [l/2, l].

(2.13)

Then u±0 define initial conditions to a periodic boundary problem and satisfy
(2.12). Since this symmetry is conserved by the theorem we simply restrict the
solutions u± to [0, l/2] to get a solution to the homogeneous Neumann problem.
Uniqueness of solutions is shown in the next section.

2.2 Existence of Solutions

We show existence and uniqueness of solutions for the general system (2.8) under
mild conditions for the turning function µ(u+, u−). We then discuss positivity
and regularity of solutions. We suggest several different alignment rates which are
biologically meaningful and ensure global existence of solutions.
First we consider the case Ω = R . System (2.8) has the characteristic equations

ṫ = 1, ẋ = ±γ and u̇± = ±µ(u+, u−)(u+ − u−).

We can integrate the last equations along the characteristics x± γt = const. and
obtain

u±(z) = u±0 ±
∫ z

z0
µ(u+, u−)(u+ − u−)(y)dy. (2.14)

A pair of functions (u+, u−) ∈ L∞([0, T ) × R )2 is called a mild solution if (2.14)
is satisfied.

Theorem 2.2.1

Suppose µ : R 2 → R is locally Lipschitz continuous. Then for all initial data
(u+

0 , u
−
0 ) ∈ (L∞ ∩ L1)(R )2 there exists a unique mild solution

(u+, u−) ∈ L∞
(
[0, T ), (L∞ ∩ L1)(R )2

)
of (2.8) for some T > 0 which satisfy the initial conditions u±(0) = u±0 .

Proof.

We introduce the following notations

Ỹ : = (L∞ ∩ L1)(R ) with norm ‖u‖Ỹ = ‖u‖L∞ + ‖u‖L1

Y : = L∞([0, t0), Ỹ ) with norm ‖u‖Y = sup0≤t<t0 ‖u(t, ·)‖Ỹ

X : = Y × Y with norm ‖(u+, u−)‖X = max(‖u+‖Y , ‖u−‖Y ).
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Choose initial data u±0 ∈ Ỹ . For all w± ∈ Y with w±(0, ·) = u±0 the initial value
problem

u+
t + γu+

x = µ(w+, w−)(w+ − w−),

u−t − γu−x = µ(w+, w−)(w− − w+),

u±(0, ·) = u±0 ,

can be solved along the characteristics x ± γt = const. with the new variable
z = z0 ± γt.
We define the operator G : = (G1,G2) : X → X by (2.14):

G1(w+, w−)(z) : = u+(z) = u+
0 (z0) +

1

γ

∫ z

z0
µ(w+, w−)(w+ − w−)(y)dy

and G2(w+, w−) : = u− analogously.
We estimate the norm of G for small times t0. Choose k0 such that ‖u±0 ‖Ỹ ≤ k0,
and N > k0 + ε for some ε > 0. Then for (w+, w−) ∈ B(N,X) we find

‖G1(w+, w−)‖Y ≤ k0 +
1

γ
sup

B(N,R2)
(µ)|z − z0|

(
‖w+‖Y + ‖w−‖Y

)
.

We get the estimate

‖G(w+, w−)‖X ≤ k0 + 2t0N sup
B(N,R2)

(µ).

Choosing t0 small enough, i.e.

t0 <
ε

2N supB(N,R2)(µ)
,

gives
k0 + 2t0N sup

B(N,R2)
(µ) < −ε+N + 2t0N sup

B(N,R2)
(µ) < N

and hence G maps B(N,X) into itself. Finally we show the contraction property.
Choose (w+, w−), (w̃+, w̃−) ∈ B(N,X). Then

‖G(w+, w−)− G(w̃+, w̃−)‖X
=

∥∥∥1

γ

∫ z

z0

[
µ(w+, w−)(w+ − w−)− µ(w̃+, w̃−)(w̃+ − w̃−)

]
(y)dy

∥∥∥
Y

=
∥∥∥ 1

2γ

∫ z

z0
(µ(w+, w−) + µ(w̃+, w̃−))(w+ − w̃+ + w̃− − w−)(y)dy

∥∥∥
Y

+
∥∥∥ 1

2γ

∫ z

z0
(µ(w+, w−)− µ(w̃+, w̃−))(w+ + w̃+ − w− − w̃−)(y)dy

∥∥∥
Y

≤ t0

[
sup

B(N,R2)
(µ) +NLip(µ,N)

]
‖w± − w̃±‖X ,

where Lip(µ,N) is the Lipschitz constant of µ on B(N, R 2). Hence we get a con-
traction for

t0 <
1

supB(N,R2)(µ) +NLip(µ,N)
.
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If we choose T such that it satisfies both the conditions for t0 above, then the
operator G has a unique fixed point which by construction is the solution to the
system of equations.

Remark

1. For a nonnegative solution (u+, u−) the integral
∫
u+ + u−dx is the total

mass of particles. From the first equation of (2.5) it follows that the total
mass is conserved as long as u+−u− = v → 0 for |x| → ∞. If the initial data
have compact support, then this condition is certainly satisfied. In the proof
above we showed that if the initial data are merely integrable then solutions
are also integrable and hence the total mass is conserved also in this case.

2. An explicit representation of solutions to (1.5) in terms of Bessel functions is
given by Hadeler [21]. Discontinuities of the initial data are transported only
along characteristics (compare also Reed [56]) and solutions are as smooth as
the initial data. The proof of Theorem 2.2.1 can be modified to show that if
the initial data are in Ckb (R ) and if µ has Lipschitz continuous derivatives up
to order k then solutions of (2.8) exist locally and are n times continuously
differentiable.

Now we use Theorem 2.2.1 in order to prove existence of solutions for Ω = [0, l]
with either periodic or homogeneous Neumann boundary conditions. A mild solu-
tion is defined by (2.14) via restriction and has to satisfy the respective boundary
conditions.

Theorem 2.2.2

Let Ω as above and µ : R 2 → R be locally Lipschitz continuous. Then for all initial
data u±0 ∈ L∞(Ω) there exists a unique mild solution

(u+, u−) ∈ L∞ ([0, T )× Ω)2

of (2.8) for some T > 0.

Proof.

By Corollary 2.1.4 it suffices to prove the claim for periodic boundary conditions.
Let û±0 (x) = u±0 (xmod l), x ∈ R be the periodic continuation of the initial data
to R . The proof of Theorem 2.2.1 with Ỹ = L∞(R ) instead of Ỹ = (L∞ ∩ L1)(R )
gives a unique solution (u+, u−) ∈ L∞([0, T )× R ) for some time T > 0. We claim
that this solution is periodic with period l. Hence it can be restricted to Ω with
periodic boundary conditions. Uniqueness of solutions on R implies uniqueness of
solutions on Ω by continuation. In order to see that solutions on R remain periodic,
set w±(t, x) = û±(t, x+ l). Then

(w+
t + γw+

x )|(t,x) = (û+
t + γû+

x )|(t,x+l) = µ(û+, û−)(û+ − û−)|(t,x+l)

= µ(w+, w−)(w+ −w−)|(t,x)

and similarly for w−. Hence, the functions w± satisfy (2.8) with initial data
w±(0, x) = û±(0, x+ l) = û±0 (x). By uniqueness then w± = û±.
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If the initial data u±0 are in Ck(Ω) and satisfy the following compatibility
conditions at the boundary

∂j

∂xj
u±0 (0) =

∂j

∂xj
u±0 (l), 1 ≤ j ≤ k,

then the periodic continuation of u±0 gives functions û±0 ∈ Ckb (R ). By the remark
above, we then get solutions of (2.8) which are k-times continuously differentiable
and can be restricted to Ω with periodic boundary conditions. For homogeneous
Neumann boundary conditions the compatibility conditions for derivatives are

∂j

∂xj
u+

0 (0) = (−1)j
∂j

∂xj
u−0 (0),

∂j

∂xj
u+

0 (l) = (−1)j
∂j

∂xj
u−0 (l), 1 ≤ j ≤ k.

Lemma 2.2.3

Suppose the turning function µ ∈ C1,1 satisfies

µ(u+, 0) ≤ 0, µ(0, u−) ≤ 0. (2.15)

Then for nonnegative initial data u±0 ∈ C1
b (R ) solutions stay nonnegative as long as

they exist in C1. If nonnegative initial data on a bounded interval with periodic or
homogeneous Neumann boundary conditions are continuously differentiable and
satisfy the boundary conditions together with their derivatives, then solutions stay
nonnegative as long as they exist in C1. Condition (2.15) is in particular satisfied
for µ(u+, u−) = a(u)u+u− − µ∗/2.

Proof.

It suffices to prove the first claim. By assumption, solutions are continuously dif-
ferentiable for some positive time. Then along the characteristics, they satisfy the
characteristic equations

u̇± = ±µ(u+, u−)(u+ − u−).

The right hand side is locally Lipschitz continuous. If u+ = 0 then u̇+ ≥ 0 by
(2.15) and hence u+ cannot become negative along characteristics. A similar ar-
gument applies to u−.

2.2.1 Global Existence

We now examine under which conditions solutions exist globally in time. First we
show some numerical evidence that finite time blow-up may occur depending on
the alignment rate. Then we reconsider the reaction differential equation (2.1) and
discuss conditions on the function a in (2.3) which are biologically meaningful and
ensure global existence of solutions.

Reflection of particles at a boundary with Neumann conditions interferes with
the alignment process. We exploit this fact to numerically produce arbitrarily fast
growing solutions. Using Corollary 2.1.4, we impose periodic boundary conditions
on Ω = [0, 1] and choose initial data u±0 (x) = ±1/2 sin(2πx)+1/2 which satisfy the
mirror symmetry condition (2.12). The parameters are a = 1, γ = 1 and µ∗ = 0.
Since the symmetry between u+ and u− is preserved, we only show the profile of
u+. We plot the density every time a rotation is completed.
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We observe the following: The initial function is the one with the lowest maximum.
Each time the two peaks for u+ and u− interact they become higher and narrower.
After 5 rotations the gradients become so steep that the numerical scheme pro-
duces negative values. Simulations on finer grids show the same behavior.

Going back to the biological interpretation, we see that for a = const. the
alignment rate grows with the density. It is clear that this may lead to arbitrarily
high densities. Biological observations show that in reality the tendency to align
decreases at high densities. Individuals even try to move away from others when
the density becomes too high. We consider a few different cases.

Homogeneous Reaction Term

Still assuming µ∗ = 0 and going back to the derivation of the model (2.2), we
recall that the function a(u) contains a factor 1/u3. If we set a(u) = 1/u3 then the
right hand side of (2.8) is homogeneous of degree 0 but non-constant and hence
cannot be continuous at (0, 0). Therefore we set

a(u) =
a∗

1 + u3
, a∗ > 0, (2.16)

and thereby preserve the important feature that a → 0 as u → ∞. For small u±

(2.16) is close to the constant a∗ and for large u± it is close to the homogeneous
case.

Lemma 2.2.4

Suppose the turning function µ is locally Lipschitz and chosen such that the right
hand side of system (2.8) is bounded. Then for initial data u±0 ∈ L∞(R ) the
solution exists globally in time. This argument applies in particular to the choice
of µ as in (2.16).

Proof.

By assumption we have |µ(u+, u−)(u+ − u−)| ≤ M for some M > 0 and all u±.
Then along the characteristics we have

|u±(t, x)| ≤ |u±0 (x− γt)|+
∫ t

0
|µ(u+, u−)(u+ − u−)(τ, x∓ γτ)|dτ

≤ |u±0 (x− γt)|+Mt.
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Hence the norm of solutions grows at most linearly with t. According to Theorem
2.2.1 we can continue the solution for all times.

Homogeneous Alignment Rate

Next we consider an alignment rate which is homogeneous of degree zero. We
choose

a(u) = a∗/u
2, a∗ > 0. (2.17)

With this choice the function µ is bounded on R 2\{0} and the right hand side of
system (2.8) is locally Lipschitz.

Corollary 2.2.5

Suppose the turning function µ is bounded and the right hand side of (2.8) is locally
Lipschitz continuous. Then the L∞-norm of solutions grows at most exponentially
in time and hence solutions exist globally. This argument applies in particular to
the choice of µ as in (2.17).

Proof.

By assumption we have |µ(u+, u−)| ≤M for some M > 0 and all u±. Then

|u±(t, x)| ≤ |u±0 (x− γt)|+
∫ t

0
|µ(u+, u−)(u+ − u−)(τ, x∓ γ(t− τ))|dτ

≤ |u±0 (x− γt)|+M

∫ t

0
(|u+|+ |u−|)(τ, x − γ(t− τ))dτ.

Adding the two equations for u+ and u− we get the estimate

‖u+(t)‖+ ‖u−(t)‖ ≤ ‖u+
0 ‖+ ‖u−0 ‖+ 2M

∫ t

0
(‖u+(τ)‖+ ‖u−(τ)‖)dτ.

Hence again with Gronwall’s Lemma we see

‖u+(t)‖ + ‖u−(t)‖ ≤ (‖u+
0 ‖+ ‖u−0 ‖)e2Mt,

which completes the proof.

Numerical simulations show the contrast to the previous situation. The pa-
rameters are the same as above except that now a(u) = 1/(1 + u3) for the left
figure and a(u) = 1/u2 for the right figure. The solution is plotted every time 5
rotations were completed. Note also the different scales on the vertical axis.
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Dispersal at high densities

If the density of animals in a school or a flock becomes too high or the distance
between individuals becomes too small they spread out again. This effect has been
modeled e.g. by Grünbaum [17], who assumed a “target density”. If the density
is lower than the target density then individuals aggregate and align whereas if
the density is higher than the target density then individuals spread out again.
This spreading process is more or less random and parallel orientation is, at least
momentarily, destroyed. Other models assume a “target distance” which has a
similar effect (for references see [17]).

It has also been observed that no schools or flocks can form if the overall
density of individuals is too low. Individuals then do not meet others sufficiently
often to form a school.

However, there is some discussion whether such concepts as target density and
target distance are biologically realistic. In particular it is not clear how to measure
these quantities.

If we resume the idea of alignment and random turning as two competing
factors for the formation of moving polarized groups then we can find both of the
observed behaviors without assuming a target density (compare [10]). We take
a(u) = a∗/(1 + u3) and µ∗ > 0. The turning function

µ(u+, u−) =
a∗u+u−

1 + u3
− µ∗

2
(2.18)

is smooth and bounded on R 2
+. We choose 2a∗

3
√

4 > 3µ∗ such that supµ > 0. We
observe that µ < 0 for (u+, u−) close to (0, 0) as well as for large values of u±.

Lemma 2.2.6

Choose µ as in (2.18). Then there exist thresholds 0 < Σ1 < Σ2 < ∞ such that
[0,Σj ]

2, j = 1, 2 is invariant for the system of equations (2.8), i.e. if the initial data
are continuously differentiable on [0, l] and satisfy 0 ≤ u±0 ≤ Σj then solutions
satisfy 0 ≤ u±(t) ≤ Σj as long as they exist in C1(Ω).

Proof.

Fix u− > 0. Then µ(u+, u−) as a function of u+ ≥ 0 has exactly two zeros, denote
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by z = z(u−) the larger one. Now set

Σ2 = sup
u−>0

z(u−) <∞.

Then µ(Σ2, u
−) ≤ 0 for all u− ∈ [0,Σ2]. By symmetry we also have µ(u+,Σ2) ≤ 0

for all u+ ∈ [0,Σ2]. To apply the invariance principle [24] we have to show that
the vector field points inward at the boundaries of [0,Σ2]2. There are four parts of
the boundary. The outer normal on {(u+, 0) : 0 ≤ u+ ≤ Σ2} is (0,−1), and the
condition that the vector field points inward at (u+, 0) translates into µ(u+, 0) ≤ 0.
If one of its arguments vanishes, then µ is negative and hence the condition is
satisfied. By symmetry, the vectorfield also points inward on {(0, u−) : 0 ≤ u− ≤
Σ2}. The outer normal on {(Σ2, u

−) : 0 ≤ u− ≤ Σ2} is (1, 0). The condition

µ(Σ2, u
−)(Σ2 − u−) ≤ 0

is satisfied by the definition of Σ2 on 0 ≤ u− ≤ Σ2. By symmetry, the condition is
also satisfied on the last part of the boundary, {(u+,Σ2) : 0 ≤ u+ ≤ Σ2}. Hence
the region [0,Σ2]2 is invariant for the system (2.3). The same arguments work for
Σ1, defined as the infimum over the smaller zero.

The two thresholds Σ1,2 emerge from the competition between aligning forces
and random turning. Densities below Σ1 are too low for schools to form. Aligned
groups are torn apart by random movement. Densities above Σ2 are too high. As
an aligned group reaches this critical density it disperses again.

The two effects can be seen in the following simulation. For the same initial
values as above we choose parameters µ∗ = 0.1 and a∗ = 5 such that u±0 < Σ2.
Initially the peak grows, but then it becomes wider and forms a plateau as the
maximal density is reached. Outside the peak a low but nonzero uniform density
is established.
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For parabolic equations local existence results together with existence of in-
variant domains are frequently used to show global existence of solutions. Since
hyperbolic operators do not have similar regularization properties, this method
does not carry over to system (2.3). Instead, we have to show a-priori bounds for
the derivatives independently of the invariant domain.
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We show global a-priori estimates for u± and u±x on R . If the initial data satisfy
the compatibility conditions at the boundary then these estimates carry over to
the case of periodic boundary conditions by continuation arguments.

Theorem 2.2.7

Choose µ as in (2.18). Suppose u±(t) ∈ C1(R ) are solutions to system (2.3) for
t ∈ [0, t0). Then the C1-norm of u± is bounded exponentially in time and hence
solutions can be continued until infinity.

Proof.

We use the representation of solutions obtained by integration along characteris-
tics, i.e.

u±(t, x) = u±0 (x− γt) +

∫ t

0
µ(u+, u−)(u± − u∓)(τ, x∓ γ(t− τ))dτ.

(2.19)

The function µ is bounded and hence by Corollary 2.2.5 we get

‖u+(t)‖+ ‖u−(t)‖ ≤ (‖u+
0 ‖+ ‖u−0 ‖)e2‖µ‖t.

Differentiating (2.19) with respect to x gives

u±x (t, x) = u±0,x(x− γt) +

∫ t

0

{
D1µ(u+, u−)u+

x (u+ − u−)

+D2µ(u+, u−)u−x (u+ − u−)

+µ(u+, u−)(u+
x − u−x )

}
(τ, x− γ(t− τ))dτ,

where Dj denotes the derivative with respect to the j-th variable. From the choice
of µ we see that Djµ(u+, u−)u± is bounded independently of u±. The third term
under the integral can be estimated as above. Altogether we find

‖u+
x (t)‖ + ‖u−x (t)‖ ≤ ‖u+

0,x‖+ ‖u−0,x‖+ 6

∫ t

0
‖µ‖C1(‖u+

x (τ)‖+ ‖u−x (τ)‖)dτ.

Hence again with Gronwall’s Lemma we see

‖u+
x (t)‖+ ‖u−x (t)‖ ≤ (‖u+

0,x‖+ ‖u−0,x‖)e6‖µ‖C1 t,

which completes the proof.

2.3 Periodic Boundary Conditions

In the absence of random turning, i.e. µ∗ = 0, we describe the global dynamics
of (2.3) and characterize ω-limit sets. Then we examine bifurcations from the
stationary states as µ∗ decreases from large values to zero. Finally we introduce a
viscosity term in order to investigate the bifurcation behavior where all eigenvalues
cross the imaginary axis at once.
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2.3.1 Global Dynamics for µ∗ = 0

In the following we always assume a(u) > 0, µ∗ = 0 and impose periodic boundary
conditions on Ω = [0, l]. From Lemma 2.1.1 we find the following characterization
of stationary states.

Corollary 2.3.1

At a stationary state u± are constant. Either u+ and u− are equal or one of the
two directions vanishes.

The case u+ = u− is unstable. The other stationary states are linearly stable as
we see from the following more general consideration: If all particles are aligned
in one direction, then u+ = 0 or u− = 0, which implies that the right hand side
of the system (2.3) vanishes. The nonzero direction is then a simple wave on the
circle with time period l/γ.

Lemma 2.3.2

A simple wave u+ > 0, u− = 0 (u− > 0, u+ = 0) is linearly stable with respect to
the positive cone.

Proof.

Assume u− = 0. We introduce small perturbations w± with w− ≥ 0 and linearize
(2.3) around the simple wave (u+, 0). We obtain the system

w+
t + γw+

x = a(u)u+(x)2w−,
w−t − γw−x = −a(u)u+(x)2w−.

The second equation is independent of the first and the system preserves positivity.
The total mass of w− is a Lyapunov function:

d

dt

∫
Ω
w−dx = −

∫
Ω
a(u)u+(x)2w−(x)dx ≤ 0.

Hence the total mass of w− is decreasing along trajectories until the integral on
the right hand side vanishes. This is only the case if w− = 0 a.e. The convergence
w− → 0 is also pointwise provided u+ does not vanish at any point of Ω. This can
be seen by following the characteristic of w−.

It is clear that u+
0 > u−0 does not imply u+(t) > u−(t) for all t > 0. Using

computer simulations one can even find initial values which satisfy u+
0 (x) > u−0 (x)

for all x ∈ Ω and for which eventually u+ vanishes and all individuals move to the
left. If, however, in the beginning the minimal density in one direction is higher
than the maximal density in the other, then it is true that the lower density will
vanish eventually.

Lemma 2.3.3

Suppose max u−0 < minu+
0 . Then u− → 0 as t→∞.

Sketch of the Proof. Work along the characteristics and use the characteristic
equations for u±. We have u̇+(0, x) > 0 and u̇−(0, x) < 0 for all x ∈ R . Then for
small times t > 0 we find max u−(t) < maxu−0 < minu+

0 < minu+(t). Hence we
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can iterate the argument.

The two sets {(u+, 0)}, {(0, u−)} describing complete alignment are local at-
tractors but not all initial data lead to complete alignment. The respective basins
of attraction are separated by a basin boundary. As a consequence of Lemma 2.1.3,
a part of the basin boundary is characterized by the symmetry condition (2.12).

Corollary 2.3.4

The set XS = {(u+, u−) : u+(x) = u−(l − x)} is invariant for the alignment
system (2.3) and therefore part of the basin boundary.

Another part of the basin boundary is given by perfect schools in opposite direc-
tions.

Corollary 2.3.5

For all c ≥ 0 the set Xc = {(u+, u−) : u+(x), u−(x) ∈ {0, c}} is invariant for the
alignment system (2.3) and therefore part of the basin boundary.

Computer simulations suggest that solutions in XS which remain bounded have
their limit set in some Xc. We construct a Lyapunov functional to show this
analytically.

Lemma 2.3.6

The functional

(u+, u−) 7→
∫ l

0
ln((u+ + 1)(u− + 1))(t, x)dx

is non-negative and decreasing along trajectories of the system (2.3).

Proof.

Solutions are non-negative and so (u+ + 1)(u− + 1) ≥ 1. Then the integrand is
non-negative. Differentiating with respect to t gives

d

dt

∫ l

0
ln((u+ + 1)(u− + 1))(t, x)dx

=

∫ l

0

u+
t (u− + 1) + u−t (u+ + 1)

(u+ + 1)(u− + 1)
(t, x)dx

=

∫ l

0

−γu+
x + au−u+(u+ − u−)

u+ + 1
(t, x)dx

+

∫ l

0

γu−x − au−u+(u+ − u−)

u− + 1
(t, x)dx

=

∫ l

0
γ
∂

∂x
(ln(u− + 1)− ln(u+ + 1))(t, x)dx

+

∫ l

0
a(u)u+u−(u+ − u−)

(
1

u+ + 1
− 1

u− + 1

)
(t, x)dx

= −
∫ l

0

a(u)u+u−(u+ − u−)2

(u+ + 1)(u− + 1)
(t, x)dx ≤ 0 (2.20)
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The last equality holds since the integral over the derivative vanishes due to the
periodic boundary conditions.

Suppose that for given initial data (u+
0 , u

−
0 ) ∈ L2(Ω)2 the ω-limit set ω((u+, u−))

is nonempty. Then on the limit set the integral in (2.20) vanishes for all t. In
particular, u+u−(u+ − u−) = 0 a.e. in [t, t+ l/γ]×Ω. If for solutions u± we have
Λ′(t0) = 0 then on [t0, t0 + l/γ] these solutions are traveling waves:

u±(t0 + τ, x) = u±(t0, x∓ γτ) =: U±0 (x∓ γτ).

Suppose there are sets I± of positive measure on which U±0 do not vanish. Then by
following the characteristics we find some τ0 ∈ [t0, t0 + l/γ] such that U±0 (x∓ γτ0)
do not vanish on some common set I of positive measure. This then implies that
U± agree on this set. Hence it follows that U±0 can assume only one nonzero value.
We summarize these results in the following theorem.

Theorem 2.3.7

Consider the alignment system (2.3) with µ∗ = 0 and a > 0 on Ω = [0, l] with
periodic or Neumann boundary conditions. Then the functional from Lemma 2.3.6
decreases along trajectories. If (u+, u−) ∈ L2(Ω)2 is in some ω-limit set then the
right hand side of (2.3) vanishes a.e. Either one direction is zero or u± ∈ Xc for
some c > 0.

2.3.2 Bifurcation as µ∗ decreases

Stationary solutions of (2.3) are spatially constant, and the values of u± at a
stationary solution are given by the equilibrium points of

u̇± = ±(a(u)u+u− − µ∗
2

)(u+ − u−).

In u, v-coordinates, there always is the stationary point ū > 0, v̄ = 0. For large
values of µ∗ it is the only stationary point. As µ∗ decreases below

µb(ū) := a(ū)ū2/2. (2.21)

we observe a pitchfork bifurcation and the additional equilibrium points are given
by ū > 0, v̄2 = ū2− 2µ∗

a(ū) . The linearization of system (2.5) around a solution (ū, v̄)

ut + γvx = 0,

vt + γux = A(ū, v̄)u+B(ū, v̄)v,

can be reduced to the following telegraph equation for u:

utt −But = γ2uxx − γAux,

where

A =
a′(ū)

2
(ū2 − v̄2)v̄ + a(ū)ūv̄, B =

a(ū)

2
(ū2 − 3v̄2)− µ∗.

(2.22)

The eigenvalue problem is

γ2uxx − γAux − λ(λ−B)u = 0, (2.23)

with periodic boundary conditions u(0) = u(l).
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Linear Analysis at v̄ = 0 i.e. u+ = u−

We have A = 0 and B = a(ū)ū2/2 − µ∗. Fourier transform of (2.23) yields the
following formula for the eigenvalues λ corresponding to the modes k ∈ Z :

λ1/2(k) =
B

2
±
√
B2

4
− k2π2γ2

l2
. (2.24)

We consider only perturbations of zero mass, i.e. k 6= 0. The sign of the real part
of λ is determined by the sign of B. For µ∗ > µb(ū) we have B < 0 and hence
<λ1/2(k) < 0 for all k ∈ Z . For µ∗ < µb(ū) the coefficient B changes sign and
eigenvalues of all wavenumbers become positive simultaneously.

Global Behavior for Large µ∗

For large enough µ∗ the homogeneous state u+ = u− = const. is even globally
stable.

Lemma 2.3.8

Suppose a(u) = a∗/(1 + uk) for k = 2, 3 and set µ̄b : = supū µb(ū). Then for
µ∗ > µ̄b every solution of (2.3) in L2(Ω)2 converges to a homogeneous distribution
u+ = u− = const.

Proof.

The L2-norm is a Lyapunov function for the system:

d

dt

∫ l

0
u2 + v2dx =

∫ l

0

(
a(u)

2
(u2 − v2)− µ∗

)
v2dx ≤ (µ̄b − µ∗)

∫ l

0
v2dx < 0.

Hence
∫
u2 + v2dx decreases until

∫
v2dx = 0. Integrating the functional above

over one period in time we see that on limit sets we even have∫ l/γ

0

∫ l

0
v2(t+ τ, x)dxdτ = 0,

which implies that u+ = u− = const. This constant, however, is determined by
the total mass of the initial data and the length of the interval. Hence the ω-limit
set for each trajectory is exactly one point.

Linear Analysis at v̄ 6= 0

For values µ∗ < µb the coefficient A is real:

A =

(
a′(ū)

a(ū)
µ∗ + a(ū)ū

)√
ū2 − 2µ∗

a(ū)
.

For the eigenvalue equation (2.23) with periodic boundary conditions we make the
ansatz v = eiσx with σ ∈ R and get

σ2 + i
A

γ
σ =

λ2 −Bλ
γ2

.
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We set λ = α+ iβ and find equations for the real and imaginary part. Comparing
the coefficients we get the following equations for α, β, σ.

σ2 =
αB − α2 + β2

γ2
, σ =

βB − 2αβ

Aγ
=

2πk

l
.

We eliminate β from the equations and arrive at(
l

2πkγ

)2

=
(B − 2α)2 −A2

(B − 2α)2(αB − α2)
. (2.25)

We are interested in the sign of α. The right hand side as a function of α vanishes
as α→∞. It has poles at α = B,B/2, 0 and zeros at (B ±A)/2. If both of these
zeros are negative then the right hand side of (2.25) is negative for α > 0 and
hence there are no intersections with horizontal lines of the value l2/(2πkγ)2 for
α > 0. The situation is stable. If, on the other hand, one of the zeros is positive
then the graph of the right hand side of (2.25) intersects the lines for all k > 0
with positive α. Hence the situation is unstable. Once again, all modes become
unstable at the same time.

Lemma 2.3.9

For µ∗ < µb(ū) the constant stationary solution (ū, v̄) with v̄ 6= 0 is linearly stable
if and only if B2 > A2.

The expression B2 −A2 is a polynomial of degree 3 in µ∗ which vanishes at zero.
Depending on the derivative a′(ū) we consider several cases.

1. For 0 > a′(ū) > −a(ū)/ū we have B2 < A2 for all 0 < µ∗ < µb.

2. For a′(ū) < −a(ū)/ū there is a value µ1 < µb such that B2 > A2 for µ∗ < µ1

and B2 < A2 for µ∗ > µ1.

As a special case, consider a(u) = 1/(1 + u3). Then a′(u) < 0 and a′(ū)ū > −a(ū)
iff 2ū3 < 1. Hence if the total mass ū is too low then the situation is unstable. If
it is high enough then the situation is linearly stable if the difference of u+ and
u− is large enough (compared to µ∗). In case a(u) = 1/(1 + u2) the results are
similar, the critical value of ū being 1.

2.3.3 The System with Viscosity

We introduce a viscosity term into the equations. Looking at the homogeneous
steady state, we find a series of Hopf bifurcations as µ∗ → 0. Decreasing the
viscosity for small fixed µ∗ > 0 also leads to Hopf bifurcations. Limit sets for the
system with viscosity are compact. The system reads in u, v-notation (compare
(2.10))

ut + γvx = εuxx,
vt + γux = g(u, v) + εvxx,

(2.26)

on Ω = [0, l] with periodic boundary conditions. Linearizing at ū = const., v̄ = 0
gives

ut + γvx = εuxx,
vt + γux = Bv + εvxx,

(2.27)
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with B = a(ū)ū2/2−µ∗ as in (2.22). Decreasing µ∗ → 0 is equivalent to increasing
B. The results below are formulated in terms of B. Fourier transform of (2.27)
gives

ût + ikγv̂ = −k2εû,
v̂t + ikγû = Bv̂ − k2εv̂

(2.28)

for k ∈ Z . The eigenvalues of the system for l = π are given by

λ1,2(k) =
1

2

(
B − 2k2ε±

√
B2 − 4k2γ2

)
, (2.29)

which is the analogue of (2.24). Again, we restrict ourselves to perturbations of
zero mass, i.e. k 6= 0.

Bifurcation for fixed viscosity

We fix ε > 0 such that ε� 2γ. For B ≤ 0 all eigenvalues have negative real part.
At B = 2ε we have

λ1,2(1) ∈ iR \{0}, <λ1,2(k) 6= 0 for |k| > 1,
d(<λ1,2(1))

dB
= 1

and hence we observe a Hopf bifurcation. As we increase the value of B, the
parabola on which the eigenvalues lie is shifted to the right but retains its shape.
There is a series of Hopf bifurcations at B = 2k2ε for k = ±2,±3, ... ± n until B
has reached its maximum. We plot the eigenvalues for |k| < 8 for the parameter
values ε = 0.01 and γ = 1.
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Bifurcation for fixed turning rate

Now we fix B > 0. There is a number k1 such that λ1,2(1), ...λ1,2(k1) ∈ R and
λ1,2(k1 +j) /∈ R for j > 0. For large ε the real parts of all eigenvalues are negative.
At ε = B/2 the first mode becomes unstable as λ1(1) passes through zero. Starting
with λ1,2(k1 + 1) eigenvalues cross the imaginary axis and a Hopf bifurcation
occurs. The parabola on which the non-real eigenvalues lie becomes more straight
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as ε→ 0. We plot the first eigenvalues for the values B = 1.5 and γ2 = 0.1.
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Long Time Behavior

Solutions of (2.26) are smooth even if the initial data are not, since the parabolic
operator regularizes. To investigate limit sets of (2.26) we examine the energy
functional

d

dt

∫ l

0
u2
x + v2

xdx = −
∫
g(u, v)xvxdx− 2ε

∫
u2
xx + v2

xxdx. (2.30)

We assume that the partial derivatives gu and gv are bounded by some constant
C. Then we get

|g(u, v)xvx| ≤ |gu||uxvx|+ |gv|v2
x ≤ 1

2 |gu|(u2
x + v2

x) + |gv|v2
x

≤ 3
2C(u2

x + v2
x). (2.31)

To estimate the second integral on the right hand side we integrate the equation

ux(y)− ux(x) =

∫ y

x
uxx(s)ds

over [0, l] and use the Cauchy-Schwarz inequality to get

|ux(y)|l ≤
∫ l

0

∫ y

x
|uxx|dsdx ≤ l

∫ l

0
|uxx|dx ≤ l

√
l

√∫
u2
xx.

A similar estimate for v leads to

u2
x(x) + v2

x(x) ≤ l
∫
u2
xx + v2

xxdx.

Integrating again with respect to x and multiplying by −ε gives the inequality

− εl2
∫
u2
xx + v2

xxdx ≤ −ε
∫
u2
x + v2

xdx. (2.32)

Inserting (2.31) and (2.32) into (2.30) we get

d

dt

∫
u2
x + v2

xdx ≤
(

3Cl

2
− 2ε

l2

)∫
u2
x + v2

xdx. (2.33)
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Lemma 2.3.10

Suppose the derivatives gu and gv are globally bounded by some constant C. Then
for ε > 3Cl3/4 the energy integral is a Lyapunov functional. The limit sets of
system (2.26) consist of constant functions. This argument applies in particular
to the alignment system (2.3) with a(u) = 1/(1 + uk) for k = 2, 3 and ε > 3l3/2.

Proof.

We may assume µ∗ = 0. Then g(u, v) = u2 − v2/(2(1 + uk)) in the notation of
(2.26). We show that we can choose C = 2. Note that we always have 0 ≤ |v| ≤ u.

∂

∂u
g(u, v) =

∂

∂u

u2 − v2

2(1 + u3)
v =

2uv(1 + u3)− 3(u2v − v3)u2

2(1 + u3)2

=
−u4v + 3u2v3 + 2uv

2(1 + u3)2
≤ 4u5 + 2u2

2(1 + u3)2
≤ 2,

∂

∂v
g(u, v) =

u2 − 3v2

2(1 + u3)
≤ 2u2

(1 + u3)
< 2.

The case a(u) = 1
1+u2 is similar.

We know from the bifurcation analysis that Lemma 2.3.10 cannot hold for
arbitrarily small viscosity. But we can show that limit sets are compact for all
ε > 0 if g is bounded.

Lemma 2.3.11

Suppose g is globally bounded. Then for all ε > 0 the limit set of any solution to
the system (2.26) is compact in L2(Ω)2 as well as in C(Ω)2. This argument applies
in particular to the alignment system with a(u) = 1/(1 + u3).

Proof.

We assume |g| ≤ M. We integrate by parts the first integral on the right hand
side of (2.30) and use the Cauchy-Schwarz and Young inequality to get∫

g(u, v)vxxdx ≤M
∫
|vxx|dx ≤M

√
l

√∫
v2
xxdx ≤

M2l

4ε
+ ε

∫
v2
xxdx.

Inserting this back into (2.30) we have

d

dt

∫
u2
x + v2

xdx ≤
M2l

4ε
+ ε

∫
v2
xxdx− 2ε

∫
u2
xx + v2

xxdx. (2.34)

Finally we use (2.32) again and arrive at

d

dt

∫
u2
x + v2

xdx ≤
M2l

4ε
− ε

l2

∫
u2
x + v2

xdx. (2.35)

This inequality is of the form

φ̇(t) ≤ M2l

4ε
− ε

l2
φ(t) =: F (φ).

We know the solutions of ψ̇ = F (ψ) and hence can estimate φ by

φ(t) ≤ φ(0)e−
ε
l2
t +

M2l3

4ε2

(
1− e−

ε
l2
t
)
.



2.4. ALIGNMENT IN PREDATOR-PREY SYSTEMS 37

We get that φ, and hence
∫
u2
x + v2

x, is globally bounded. With the following
standard estimate we also get global bounds for u and v :

|v(x)| ≤ u(x) ≤ ū

l
+
√
l

√∫
u2
x + v2

xdx.

The imbeddings of H1(Ω)2 into L2(Ω)2 and C(Ω)2 are compact so that trajectories
are precompact in these spaces. Hence the limit sets are nonempty and compact.

2.4 Alignment in Predator-Prey Systems

The formation of fish schools is considered a strategy against predation. We show
analytically and numerically that an aligning prey may survive where it would go
extinct without the formation of schools.

Neglecting space for the moment, we denote by α(u) the reproduction rate of
prey in the absence of predators. In order to keep the model simple we assume
that the predator has abundant food sources besides the prey species in question
and that its density w0 can be assumed constant. Then

u̇ = α(u)u − β(u)uw0, (2.36)

where β(u) is the predation rate. We assume logistic growth for the prey in absence
of predators and a saturation functional response β. We have u̇ = 0 at u = 0. For
a suitable choice of parameters we observe an Allee effect, i.e. u̇ < 0 for very small
and very large values of u, and u̇ > 0 for intermediate values of u. Therefore we
simplify again and choose the population dynamics of the prey to be

u̇ = p(u) = p∗u(u− s1)(s2 − u), (2.37)

where 0 < s1 < s2 and p∗ > 0. The value s1 is the extinction threshold, the
capacity is denoted by s2. We insert (2.37) into (2.5) and get

ut + γvx = p∗u(u− s1)(s2 − u),

vt + γux =

(
a(u)

2
(u2 − v2)− µ∗

)
v,

(2.38)

where we always assume a(u) = a∗/(1 + u3) with a∗ > 0.

Linearization

Spatially constant stationary solutions of (2.38) are (ū, v̄) with ū ∈ {0, s1, s2} and
v̄ = 0 or v̄2 = ū2 − 4µ∗/a. Linearization of (2.38) leads to a system of the form

ut + γvx = Cu,

vt + γux = Au+Bv,
(2.39)

where A,B are as in (2.22) and C = −3p∗ū2 + 2p∗(s1 + s2)ū− p∗s1s2. Again, we
look for eigenvalues λ = α+ iβ and similarly as above we find the equation(

l2

2πkγ

)2

=
(B + C − 2α)2 −A2

(B + C − 2α)2(C − α)(α −B)
, (2.40)
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where k is the mode of the eigenfunction on the interval [0, l] with periodic bound-
ary conditions. We interpret the right hand side of (2.40) as a function Γ(α) and
look for intersections with horizontal lines of the values on the left hand side
for positive α. The function Γ has zeros for α = (B + C ± A)/2 and poles at
α = B,C, (B + C)/2. As α → ∞ it is negative and approaches zero. We discuss
only the cases with v̄ = 0 here, which implies that A = 0.

1. ū = v̄ = 0
We find B,C < 0. All zeros of Γ are negative and hence Γ(α) < 0 for α > 0.
The real part of all eigenvalues λ is negative and the situation is stable.

2. ū = s1, v̄ = 0
Now C > 0 and hence one of the poles of Γ occurs at a positive value.
The value Γ(0) is large if a∗ is small and µ∗ is large. As a∗ increases (or µ∗
decreases) Γ(0) decreases to zero. If Γ(0) < l4/(4π2γ2) then the first mode
becomes unstable. Higher modes become unstable as Γ(0) decreases further.
Finally for B + C ≥ 0 all modes are unstable.

3. ū = s2, v̄ = 0
Here C < 0. For large values of µ∗ in addition B < 0 and the situation
is stable. As µ∗ decreases B increases above zero and low modes become
unstable if Γ(0) is small enough.

To summarize, the case ū = 0 is always stable. A group of very few individuals
cannot survive even if they stay in one group. At the extinction threshold ū = s1 a
population can grow if the influence of alignment is strong enough. A population
can even grow to exceed the capacity if the aligning forces are very strong and the
influence of random turning is very small.

Recovery

If a population starting below the extinction threshold rises above it, this process is
called recovery. Recovery can be transient or permanent. If there is no alignment,
i.e. a∗ = 0 in (2.38), then the population cannot recover. But if a∗ is large enough,
then recovery is possible.

We formulate (2.38) in terms of u± on some bounded interval with periodic
boundary conditions. Since we are interested only in the behavior of u around
the threshold s1 we may use the continuously differentiable linear continuation p̃
instead of p at s2, i.e. p̃(u) = p(u) for 0 ≤ u ≤ s2 and p̃(u) = p∗s2(s1 − s2)u for
u > s2. Hence we study

u+
t + γu+

x = µ(u+, u−)(u+ − u−) +
1

2
p̃(u),

u−t − γu−x = µ(u+, u−)(u− − u+) +
1

2
p̃(u),

(2.41)

with µ(u+, u−) = a∗u+u−/(1 + u3) − µ∗. We assume nonnegative smooth initial
data which satisfy the boundary conditions such that we have smooth solutions.
If µ∗ > max{p∗s1s2, p∗s2(s2 − s1)} then positivity is preserved [24]. By Lemma
2.2.6 there are two values Σ1,2 such that alignment only occurs for densities Σ1 <
u± < Σ2. We show that recovery is possible iff the extinction threshold is in the
interval [Σ1,Σ2].
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Theorem 2.4.1

Suppose for (2.41) parameters µ∗, p∗, s1, s2 are given such that positivity is pre-
served. If we choose a∗ such that s1

2 6∈ [Σ1,Σ2] then [0, s1/2]2 is invariant. For
sufficiently large a∗ we have s1

2 ∈ [Σ1,Σ2] and there are trajectories starting in
[0, s1/2]2 for which at least one of the components u± rises above s1/2.

Proof.

We first assume s1
2 6∈ [Σ1,Σ2] and show that the vectorfield points inward on the

part of the boundary where u− = s1/2. The condition reads

− µ(u+, s1/2)(u+ − s1/2) + 1/2p(u+ + s1/2) ≤ 0. (2.42)

From the definition of Σ1,2 and the assumption on s1 it follows that µ(·, s1/2) < 0.
Hence the first term in (2.42) is non-positive for 0 ≤ u+ ≤ s1/2. Since p(u+ +
s1/2) ≤ 0 for 0 ≤ u+ ≤ s1/2 also the second term is non-positive. Hence (2.42) is
satisfied. Together with preservation of positivity we find that [0, s1/2]2 is invariant
by the invariance principle [24].

If we increase a∗ then µ increases and hence Σ2 increases and Σ1 decreases.
Hence, for a∗ sufficiently large we find s1

2 ∈ [Σ1,Σ2]. Then we choose initial data as
follows: 0 < u+

0 (x) ≤ s1/2 with at least one point x0 ∈ (0, l) where u+
0 (x0) = s1/2.

Since s1/2 ∈ [Σ1,Σ2] we can choose 0 < u− < s1/2 such that µ > 0 at x0. We
can follow the characteristics forward and backward in time such that at least
for some time τ > 0 there are solutions u±(t) to the system for −τ ≤ t ≤ τ
with u±(0) = u±0 . At x0 we have u̇+

0 > 0 along the characteristic. By continuity
this holds in a small neighborhood of (0, x0). But then for some τ1 > 0 we have
u±(t) < s1/2 for −τ1 < t < 0 and maxu+(t) > s1/2 for 0 < t < τ1.

Simulations

For simulations we choose parameters s1 = 0.5, s2 = 2, p∗ = 0.3, µ∗ = 0.3 and
γ = 1. We have periodic boundary conditions and use a rotating coordinate system
to plot the total density u = u+ + u−. Initial values are spatially constant and
equal u+ = u− = 0.2 and a small peak of maximal height 0.1 is added in u+.

The three plots show the behavior for varying strength of alignment. In the
first case a∗ = 7, and the population dies out. For a∗ = 9 in the second case, the
population recovers initially but it does not grow fast enough to survive. In the
last picture a∗ = 11 and we see that the population grows fast enough to reach
the capacity.
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Remarks

1. Splitting the reaction term equally into the two directions as in (2.41) may
lead to a modeling mistake if the reaction term is negative. Particles can only
be deleted from u+ if they are actually in u+. A more accurate model treats
the birth and death term of the population dynamics separately. Then no ad-
ditional condition for preservation of positivity is necessary. For a thorough
discussion of this question see [21].

2. Some error is made since for most species movement and reproduction hap-
pens on different time scales. There is a relatively recent discussion about
the importance of different scales in general [12].

3. This approach to aggregation and predation closely follows Lizana and Padron
[38]. Their spatially discrete model consists of a finite number of ordinary dif-
ferential equations and uses (discrete) density dependent diffusion to model
aggregation and a function similar to p(u) for the population dynamics. The
continuum analogue to the discrete model is a diffusion equation with density
dependent diffusion coefficient, which changes sign, i.e. it is ill–posed.



Chapter 3

Alignment Models in 2-D

The present chapter consists of two parts. First we generalize the one-dimensional
alignment model from Chapter 2 to two space dimensions still assuming constant
speed. A partial integro-differential equation describes the orientation process at
each point in space. Together with the transport equation (1.1) we obtain a model
in form of a semilinear reaction transport equation. We prove existence and unique-
ness of solutions, investigate the model for a discrete set of velocities and show
simulations.

In the second part we present a master equation which comprises our model as
well as models which already exist in the literature. This master equation allows
us to compare these models and to get an interpretation of our model equation on
the particle level. The application of the master equation to the one-dimensional
case gives better insight to the model from Chapter 2.

3.1 The Semilinear Model Equation

The alignment process can be viewed as a competition of different velocity classes.
To describe this competition we start from the equations for exponentially growing
and competing species. Given n types with densities yi, i = 1, . . . , n, which in-
crease exponentially at rates mi, i.e. ẏi = miyi, we form proportions pi = yi/

∑
yj.

These satisfy

ṗi = mipi −
∑
jmjpj∑
pj

pi. (3.1)

The right hand side for type i depends on its growth rate mi and on the average
growth rate. This system preserves total mass (not only if this mass is unity).
Eventually the whole mass will be concentrated in the types with the largest mi.

Now we let V = γS1 be the set of velocities, interpret i above as a continuous
variable s ∈ V and write m(s) instead of mi. The alignment process leads to
a concentration in the direction of the average velocity. Hence we assume the
coefficient m(s) = s · s̄ to be the inner product of the velocity of an individual
with the average velocity s̄, and also write m(s) = ss̄ for short. Note that the
coefficients mi in (3.1) are constants whereas the coefficients m(s) are functions
of s.
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Denote by u(t, s) the density at time t with respect to the velocity s ∈ V . The
total density is

ū(t) =

∫
V
u(t, σ)dσ, (3.2)

where the integral is taken over all velocities, and the average velocity is

s̄(t) =
1

ū(t)

∫
V
σu(t, σ)dσ ∈ R 2. (3.3)

With this notation the continuum analogue of (3.1) is

∂

∂t
u(t, s) = a

[
(ss̄)u(t, s)−

∫
V σs̄u(t, σ)dσ∫
V u(t, σ)dσ

u(t, s)

]
,

where a is some constant or a function of ū and has a similar meaning as a(u) in
(2.3). This equation can be written in a simpler form as

ut(t, s) = A(u)(t, s) : = a(ū)[ss̄− s̄s̄]u(t, s). (3.4)

By construction, this equation preserves the total mass ū (3.2). The function A(u)
gives the net rate of change in direction s. Given some average velocity s̄ 6= 0
the following picture shows which directions gain particles (A > 0) and which
directions loose particles (A < 0).

s A>0A<0

V

Finally we introduce the space variable x ∈ Ω ⊂ R 2. The full alignment transport
equation for the function u(t, x, s) reads

ut + s · ∇xu = A(u)(t, x, s) = a(ū)[ss̄− s̄s̄]u(t, x, s), (3.5)

where ū and s̄ = s̄(u) are given by (3.2) and (3.3). We are not interested in the
behavior at the boundary and therefore we assume either Ω = R 2 or Ω = [0, 1]2

with periodic boundary conditions.

The equations for u along the characteristics are of the form u̇ = Ã(u)u and
hence the model preserves positivity. If all individuals are oriented in the same
direction we speak of total alignment. This is a limiting case in which u is a δ-
distribution with respect to s. In the sense of distributions such a situation is
stationary for the reaction differential equation (3.4) and gives a traveling profile
in (3.5).



3.1. THE SEMILINEAR MODEL EQUATION 43

Reduction to one Dimension

In the special case V = {±γ} and x ∈ R the system reduces to the one-dimensional
model introduced in Chapter 2 when integrals are replaced by sums. This can be
seen as follows. We have s = ±γ, ū = u+ + u− and

s̄ =
(+γ)u+ + (−γ)u−

ū
=
γv

ū
,

where as always v = u+ − u−. Thus (3.5) becomes for s = +γ

u+
t + γu+

x = a(ū)

[
γ
γv

ū
− γ2v2

ū2

]
u+

=
γ2a(ū)

ū2

[
vū− v2

]
u+

=
γ2a(ū)

ū2

[
(u+ − u−)(u+ + u−)− (u+ − u−)2

]
u+

=
2γ2a(ū)

ū2
[(u+)2u− − (u−)2u+]

= ã(ū)u+u−(u+ − u−).

The computation for s = −γ is analogous and we get system (2.3). Therefore (3.5)
is a generalization of the one-dimensional model (2.3).

Conservation of Mass

Integrating ū over a spatial domain we get the overall number of particles in this
domain. This number is invariant for the reorientation process. Suppose u is a
nonnegative smooth solution of (3.5) which has compact support in R 2. Then for
the overall number we have

d

dt

∫
R2

∫
V
u(t, x, s)dsdx =

∫
R2

∫
V
−s · ∇u+A(u)dsdx

= −
∫
V

∫
R2
s · ∇u(t, x, s)dxds +

∫
R2

∫
V
a(s · s̄− |s̄|2)udsdx.

The first integral vanishes by Green’s theorem. The second integral is zero by the
definition of the average velocity. Hence the overall number is constant in time.

Linearization

Any function which is constant in Ω×V is a stationary solution to equation (3.5)
since in this case the average velocity is zero at each point. We set u = M + w,
where w is a small perturbation of the constant M > 0, and let M̃ = 2πγM. For
w we find

A(u) = a(ū)(s · s̄− |s̄|2)u

=
(
a(M̃) + a′(M̃)w̄

)(
s · 1

M̃

∫
σw(x, σ)dσ

)
(M + w) + h.o.t.(w)

=
a(M̃)

2πγ

(
s ·
∫
σw(x, σ)dσ

)
+ h.o.t.(w).
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Hence the linear equation for w reads

wt + s · ∇xw = ā s ·
∫
σw(x, σ)dσ, (3.6)

where ā = a(M̃)/(2πγ). Equivalently we write x = (x1, x2) and s = γ
(cosϕ

sinϕ

)
with

ϕ ∈ [−π, π] and obtain the equation

wt + γ(cosϕwx1 + sinϕwx2) = γā

∫ π

−π
cos(ϕ− ψ)w(t, x, ψ)dψ. (3.7)

The subspace of spatially constant functions u(t, x, s) = u(t, s) is invariant for
equations (3.5) and (3.6). The convolution operator on the right hand side of (3.7)
acts only on the orientation variable ϕ. With respect to this variable the operator
has rank one and hence is compact on L2(S1). Its only nonzero eigenvalue is λ1 = π
with corresponding eigenfunction we = eiϕ.

Using we we can construct spatially constant eigenfunctions for (3.7): The
function

w(t, x, ϕ) = eλtw(x,ϕ) = eλtwe(ϕ)

is an eigenfunction of (3.7) to the eigenvalue

λ =
a(M̃)

2
.

Hence the constant solution is linearly unstable.

Allowing Random Turning

Like in the one dimensional case (2.3) we add a random reorientation process to
the alignment interaction. Equation (3.5) becomes

ut + s∇xu = −µ∗u(t, x, s) + µ∗(Ku)(t, x, s) +A(u), (3.8)

where µ∗ > 0 is the rate at which particles choose a new direction and Ku =∫
V Ks,s′u(s′)ds′ gives the distribution of new directions (see (1.1)). In the simplest

case particles choose the new direction without any preference, i.e. Ks,s′ = 1/|V |.
Repeating the linearization procedure from above we get that

w(t, x, ϕ) = eλtwe(ϕ)

solves the linearized equation with

λ =
ā

2γ
− µ∗. (3.9)

Hence we get the same threshold behavior as in the one dimensional case.

Discrete Sets of Velocities

We consider the non-spatial reaction differential equation (3.4), where we may
assume a = 1, and hence the equation reads

ut(t, s) = (s · s̄− |s̄|2)u(t, s), s ∈ S1. (3.10)
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We observe that u(0, s) = 0 for some s ∈ S1 implies u(t, s) = 0 for all t ≥ 0.
Individuals turn only into directions in which there are already some individuals.
If we assume that initially individuals are oriented in finitely many directions, then
we can reduce (3.10) to a system of finitely many ordinary differential equations
as follows: We denote by s1, ..., sn ∈ S1 the set of directions and by ui(t) =
u(t, si), i = 1, ..., n the number of individuals in each direction. In the definition
of ū, s̄ we have to replace the integrals by sums, i.e.

ū =
n∑
i=1

ui, s̄ =
1

ū

n∑
i=1

siui.

Then we obtain the system

u̇i = fi(u1, ..., un) = (si · s̄− |s̄|2)ui, i = 1, ..., n. (3.11)

The same procedure was used in [42] to approximate the solution of the alignment
model presented there by a set of infinitely sharp peaks. Therefore the method is
called the peak ansatz.

We investigate stationary solutions of (3.11) and their stability. If all individu-
als are concentrated in one direction, then u1 > 0, ui = 0 for i = 2, ..., n. Hence we
have s̄ = s1 which implies that fi = 0 for all i = 1, ..., n, i.e. we have a stationary
solution.

Next, for two nonzero directions we have u1,2 > 0, ui = 0 for i = 3, ..., n. This
situation is stationary if

(s1 − s̄) · s̄ = 0, i = 1, 2, (3.12)

where ūs̄ = u1s1 + u2s2. Obviously the condition is satisfied if s̄ = 0, i.e. s1 =
−s2, u1 = u2. Equally many individuals are oriented in two opposite directions.
Now suppose s̄ 6= 0. If we subtract the two equations in (3.12) we get

(s1 − s2) · (u1s1 + u2s2) = 0.

Using |si| = 1 we get

(u1 − u2)(1− s1 · s2) = 0.

By assumption, the two directions are different, i.e. s1 · s2 6= 1. Necessarily then
u1 = u2 as above for s̄ = 0. Hence, the situation with u1 = u2 > 0, ui = 0 for
i = 3, ..., n is stationary.

For more than two nonzero directions, i.e. u1, ..., uk > 0, uk+1, ..., un = 0, k ≥ 3,
stationary solutions are given by the condition s̄ = 0. Individuals in the directions
s1, ..., sk must be distributed such that the average velocity is zero. Note that
a stationary solution for a given set of directions is not unique, not even up to
scalar multiple, if k ≥ 4. To see that there are no stationary solutions with s̄ 6= 0
consider again (3.12) which now has to be satisfied for i = 1, ..., k. If 0 < |s̄| < 1
then the equation (si − s̄) · s̄ = 0 together with |si| = 1 determines exactly
two different directions s1,2. Hence (3.12) cannot be satisfied for more than two
different directions si.
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Lemma 3.1.1

For 1 ≤ k ≤ n assume that u1, ..., uk > 0, uk+1, ..., un = 0. Then the stationary
states of (3.11) are given by

1. u1 > 0 for k = 1.

2. u1 = u2 > 0 for k = 2.

3. s̄ = 0 for k ≥ 3.

We now investigate the stability of the stationary solutions of (3.11). The
Jacobian of (3.11) is J = (∂fi/∂uj)i,j where

∂fi
∂uj

=
ui
ū
si · sj +

(
1− ui

ū

)
si · s̄−

2ui
ū
sj · s̄+

(
2ui
ū
− 1

)
s̄ · s̄.

(3.13)

The corresponding linear system ξ̇ = Jξ, ξ = (ξ1, ..., ξn), reduces to

ξ̇i =
1

n
si
∑

sjξj

in the case ui = ū/n and s̄ = 0, which is the discrete non-spatial analogue of (3.6).

We first consider the case k = 1, i.e. u1 > 0, ui = 0 for i = 2, ..., n. Then ū =
u1, s̄ = s1 and hence

J =


0 a2 a3 ... an
−a2 −a2 −a2 ... −a2

−a3 −a3 −a3 ... −a3
...

...
...

...
−an −an −an ... −an

 ,

where ai = 1− s1 · si > 0, i = 2, ..., n. We determine the eigenvalues of J. To this
end we write (a2, a3, ..., an) = gT , where gT denotes the transpose of the vector g,
and set eTn−1 = (1, ..., 1), a vector of length n− 1. Then J can be written as

J =

(
0 gT

−g −geTn−1

)
,

and the eigenvalue problem J
(x
y

)
= λ

(x
y

)
becomes

gT y = λx,

−gx− geTn−1y = λy,
(3.14)

where x is a scalar and y is a vector of length n− 1.
Multiplying the second equation of (3.14) by eTn−1 from the left gives

eTn−1y = − eTn−1gx

λ+ eTn−1g
. (3.15)

Multiplication of the same equation by gT from the left gives

− gT gx− gT geTn−1y = λgT y. (3.16)
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Now we insert (3.15) and (3.16) into the first equation of (3.14) and get

λ2x = −gT gx+ gT g
eTn−1gx

λ+ eTn−1g
.

Substituting G1 = eTn−1g =
∑
k>1 ak and G2 = gT g =

∑
k>1 a

2
k and multiplying

by λ+G1 leads to

λ(λ2 +G1λ+G2) = 0,

where we assumed x 6= 0. We have seen above that G1 is a sum of positive numbers
and hence it is positive. Obviously G2 is positive as well. The nonzero eigenvalues
λ1,2 are given by

λ1,2 = −G1

2
± 1

2

√
G2

1 − 4G2.

We see that either λ1,2 are real and negative or they are complex conjugate with
negative real part. In any case, the situation is stable.

Next we consider the case k = 2 and follow the same steps as above for k = 1.
The Jacobian is

J =


α α a3 ... an
α α b3 ... bn
c3 c3 c3 ... c3
...

...
...

...
cn cn cn ... cn

 ,

where α = (1 − s1 · s2)/4 > 0. The other coefficients are aj = (|s̄| − sj · s2)/2,
bj = (|s̄| − sj · s1)/2 and cj = sj · s̄− |s̄| = −(aj + bj). Similarly as above we write

gT =

(
a2 a3 ... an
b2 b3 ... bn

)

and ek for the vector of length k with all entries equal to one. Then

J =

 αe2e
T
2 gT

−ge2e
T
2 −ge2e

T
n−2

 .
The eigenvalue problem J

(x
y

)
= λ

(x
y

)
can be treated as above, except that now x

is a vector of length 2 and y is a vector of length n− 2. Setting

G1 = eTn−2ge2 =
∑
k>2

(ak + bk) and G2 = eT2 g
T ge2 =

∑
k>2

(ak + bk)
2

we find the following characteristic equation for λ:

λ2 + (G1 − α)λ+G2 − αG1 = 0,

and hence

λ1,2 =
α−G1

2
± 1

2

√
(G1 − α)2 − 4(G2 − αG1).
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We consider the special case of n equally spaced directions, i.e. sj =
(cosϕj

sinϕj

)
with

einϕj = 1. Then we can compute a−G1 simply as

α−G1 =
1

2
−
(

1

4
+
n

2

)
(1 + s1 · s2).

We observe the following: In the limiting case s1 = s2 the value α−G1 is negative
and α = 0. Therefore the real part of both eigenvalues is negative and the situa-
tion is stable. In the other limiting case s1 = −s2 we have α −G1 > 0 and hence
there is at least one eigenvalue with positive real part. The situation is unstable.
By continuity we find that the situation of two nonzero directions is unstable if
the two directions are far apart and stable if they are close together.

Finally we consider the case of k ≥ 3 nonzero directions. We know that at a
stationary solution, we necessarily have s̄ = 0. Then the entries of the Jacobian
simplify to

∂fi
∂uj

=
ui
ū
si · sj

and hence the rank of the Jacobian is at most k. The nonzero eigenvalues are the
eigenvalues of the upper left k × k submatrix. We consider only the two special
cases k = 3 and k = 4 with k equally spaced nonzero directions. We can order the
directions to get sj = e2πi/j for j = 1, ..., k. Then the characteristic polynomial of
the k × k submatrix is

λ3 − 3λ2 +
9

4
λ− 3

4
= 0 for k = 3,

(1− λ)4 + 1 = 0 for k = 4.

In the first case we use Descartes’ rule of signs to see that there is a root with
positive real part and hence the situation is unstable. In the second case we see
that (1 − λ) is of the form e2πil/8 for l = 1, 3, 5, 7. Hence the real part of λ is
positive and the situation is unstable.

The NEWS-System

We now fix the four velocities V = {e ikπ2 : k = 0, .., 3} ⊂ S1 and consider the
two-dimensional alignment model with spatial movement. The four directions are
called North, East, West and South and the corresponding densities are denoted
by E(t, x1, x2) = u(t, x1, x2, e

0), W (t, x1, x2) = u(t, x1, x2, e
iπ) and so on.

This choice of V is very convenient for numerical simulations. It was first intro-
duced by Broadwell [6] to approximate the plane non-linear Boltzmann equation.

Equation (3.8) with constant kernel K = 1/|V | = 1/4 is rewritten as a hyper-
bolic system of the four densities as

Nt +Nx1 = −µ∗N + µ∗U/4 + a(U)[S2 − S2
1 − S2

2 ]N,

Et +Ex2 = −µ∗E + µ∗U/4 + a(U)[S1 − S2
1 − S2

2 ]E,

Wt −Wx2 = −µ∗W + µ∗U/4 + a(U)[−S1 − S2
1 − S2

2 ]W,

St − Sx1 = −µ∗S + µ∗U/4 + a(U)[−S2 − S2
1 − S2

2 ]S,

where U = N +E + S +W and s̄ = (S1, S2) = 1
U (E −W,N − S).
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In the simulation below we take a = const. = 1 and µ∗ = 0.005 such that the
homogeneous solution is unstable. Initial values are equal and spatially constant
in all four directions and a small peak is added in the North-direction on a lit-
tle square within the domain. We impose periodic boundary conditions, plot the
solution every time the peak has completed one round and compare the snapshots.

The peak moves parallel to the East-West axis and grows in height as particles
from the other directions align with the majority that moves North. Until round
13, the density where the peak has passed is lower than where it did not pass.
Then from round 14 on, the density in the track of the peak is higher than outside
of it.

The following happens: The aligning forces at the location of the peak are
strongest for the South-direction. At the peak, most of the South going particles
turn into the North-direction and align with the majority in the peak. Then also
behind the peak the average velocity points North and hence the North-direction
slowly gains particles although the peak has moved on. From round 14 on this
gain is higher than the loss in the other directions and the total density in the
trace rises above that outside the trace.

Total Density U of the NEWS System
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3.2 Existence of Solutions

There are several possibilities to choose appropriate function spaces for the model
equation (3.5) and to show existence of solutions. Below we show existence and
uniqueness of global in time solutions which are integrable on R 2× V. We use the
method of characteristics and assume a = 1.

If one chooses a = aδ(ū) = ū2/(δ + ū2) for some δ > 0 then the proof below
can be adapted to show existence and uniqueness of global in time solutions in
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the space of bounded functions, L∞(R 2 × V ).
Working on bounded space domains Ω ⊂ R 2, one could impose boundary

conditions as described in [59]. If one chooses again a = aδ as above, then the
conditions of Theorem 4.5 in [59] are satisfied and local existence of solutions
follows.

To show existence of solutions in L1(R 2 × V ) we now assume a = 1 and set

Y : = L∞([0, T ], L1(R 2 × V ))

with the usual norm. A function u ∈ Y is called a mild solution of (3.5) if it
satisfies the equation after integration along characteristics (compare (2.14)). For
given u0 ∈ L1(R 2 × V ) and w ∈ Y we define the operator

G(w)(t, x, s) : = u0(x− st, s) +

∫ t

0
A(w)(τ, x − s(t− τ), s)dτ

(3.17)

by integration along the characteristics. We show that G is a contraction in the
space Y for sufficiently small T. The resulting fixed point is the unique mild
solution of (3.5) in Y.

Lemma 3.2.1

The operator A from (3.5) is homogeneous of degree 1. We set A(0) = 0. Then
the reaction term A : Y → Y is well defined and Lipschitz.

Proof.

Suppose ū(t, x) > 0. Then the average velocity does not exceed the particle speed:

‖s̄(u)(t, x, s)‖R2 =
1

|
∫
V u(t, x, s)ds|

∥∥∥∥∫
V
σu(t, x, σ)dσ

∥∥∥∥
R2

≤ γ

‖u(t, x, ·)‖L1

∫
V
|u(t, x, σ)|dσ ≤ γ.

The function s̄ is homogeneous of degree 0. We may set s̄(0) = 0 to get an ev-
erywhere defined bounded function. The function A maps Y into itself and is
sublinear. Pick w ∈ Y and compute

‖A(w)‖Y = sup
0≤t≤T

∫
V

∫
R2

∣∣∣s · s̄− |s̄|2∣∣∣ |w(t, x, s)|dxds

≤ 2γ2 sup
0≤t≤T

‖w(t)‖L1(R1×V ) = 2γ2‖w‖Y .

The function A is globally Lipschitz on Y. Write

A(w) = A1(w)w with A1(w) = s · s̄(w)− |s̄(w)|2 ≤ 2γ2.

Then for 0 6= w, w̃ ∈ Y we compute

‖A(w) −A(w̃)‖Y ≤ sup
0≤t≤T

∫
V

∫
R2
|(A1(w) −A1(w̃))w| + |A1(w̃)(w − w̃)|dxds.
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The second term can be estimated by 2γ2‖w−w̃‖ since A1 is bounded. To estimate
the first term we write s̄w = s̄(w), keeping in mind that the function s̄ is not linear
in w. We also neglect the t-dependence for the moment.

∫
V

∫
R2
|(s · s̄w − |s̄w|2 − s · s̄w̃ + |s̄w̃|2)||w|dxds

=

∫
V

∫
R2
|[s− (s̄w + s̄w̃)] · (s̄w − s̄w̃)| |w|dxds

≤
∫
V

∫
R2

3γ|s̄w − s̄w̃||w|dxds

= 3γ

∫
R2

(∣∣∣∣ 1w̄
∫
σwdσ − 1

¯̃w

∫
σw̃dσ

∣∣∣∣ ∫
V
|w|ds

)
dx

≤ 3γ

∫
R2

(∣∣∣∣ 1w̄
∫
σ(w − w̃)dσ

∣∣∣∣+

∣∣∣∣( 1

w̄
− 1

¯̃w
)

∫
σw̃dσ

∣∣∣∣) ‖w(x, ·)‖L1dx

≤ 3γ

∫
R2

∣∣∣∣∫ σ(w − w̃)dσ

∣∣∣∣ dx+

∫
R2

∣∣∣∣∣ ¯̃w − w̄
w̄ ¯̃w

∫
σw̃dσ

∣∣∣∣∣ ‖w(x, ·)‖L1dx

≤ 4γ2‖w − w̃‖L1(R1×V )

Taking into account the dependence on t again and putting the two estimates
together we get

‖A(w) −A(w̃)‖Y ≤ 6γ2‖w − w̃‖Y .

This estimates also holds in the case w̃ = 0. By sublinearity we find

‖A(w) −A(w̃)‖Y = ‖A(w)‖Y ≤ 2γ2‖w‖Y ≤ 6γ2‖w − w̃‖Y .

Theorem 3.2.2

For all nonnegative initial data u0 ∈ L1(R 2×V ) there exists a unique mild solution
u ∈ L∞([0,∞), L1(R 2 × V )) to equation (3.5) with u(0) = u0.

Proof.

To show local existence we adapt the proof of Theorem 2.2.1. Suppose ‖u0‖L1(V ×R2) ≤
k0 and choose N = k0 + ε for some ε > 0. The operator G from (3.17) leaves the
ball B(N) ⊂ Y of radius N invariant. Take w ∈ B(N) with ‖w‖Y ≤ N. Then

‖G(w)‖Y ≤ ‖u0‖L1 +

∥∥∥∥∫ t

0
A(w)(τ)dτ

∥∥∥∥
Y

≤ ‖u0‖L1 + sup
0≤t≤T

∫ t

0
‖A(w)‖Y dτ

≤ ‖u0‖L1 + 2γ2T‖w‖Y .
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Hence for T < ε/(2γ2N) the norm of G(w) is less than N. To show that G is a
contraction we make use of the Lipschitz property of A.

‖G(w) − G(w̃)‖Y =

∥∥∥∥∫ t

0
(A(w) −A(w̃))(τ)dτ

∥∥∥∥
Y

≤ sup
0≤t≤T

∫ t

0
4γ2‖w − w̃‖Y dτ

≤ 4γ2T‖w − w̃‖Y

For T < 1/(4γ2) we get a contraction. By construction the unique fixed point
u ∈ Y is the solution of the equation. Using again equation (3.17) for u we find
that

‖u(t)‖L1 ≤ ‖u0‖L1 +

∫ t

0
2γ2‖u(τ)‖L1dτ.

An application of Gronwall’s lemma finishes the proof.

3.3 General Models for Orientation Processes

We compare the alignment model presented here with the two approaches de-
scribed in the introduction. To that end we formulate a general (non-spatial)
model equation for orientation processes. Then we show that for suitable choices
of parameter functions we get as special cases the model equation (3.4) or the
Model III of Edelstein-Keshet et al. for ε = 0, i.e.

ut(t, ϕ) = u(t, ϕ)

∫ π

−π
Q1(u(ϕ) − u(ϕ1))Q2(ϕ− ϕ1)u(ϕ1)dϕ1,

(3.18)

or the model of Geigant et al., which reads

∂

∂t
u(t, ϕ) = −u(t, ϕ)

∫ π

−π
ζ(ϕ− ϕ1)u(t, ϕ1)dϕ1 (3.19)

+

∫ π

−π

∫ π

−π
ω(ϕ0 − ϕ,ϕ0 − ϕ1)ζ(ϕ0 − ϕ1)u(t, ϕ1)u(t, ϕ0)dϕ1dϕ0.

(For a detailed description of the models see the introduction.)

We observe that (3.19) contains only quadratic terms of the density. The in-
teraction rate ζ and the turning probability ω are independent of the density. On
the contrary, (3.4) and (3.18) contain terms of third order. Furthermore, suppose
that there is a direction ϕ∗, say, in which there are no particles initially. Then in
the models (3.4) and (3.18) no particles turn into this direction, i.e. u(t, ϕ∗) = 0
for all t > 0. To the contrary, in model (3.19) particles can turn into intermediate
angles and hence in general u(t, ϕ∗) 6= 0, depending on ω.

We generalize (3.19) for some given (compact) state space V. First, like in
the population dominance model [30], we let ζ, ω depend on the different angles
instead of the differences only. Second, we let ζ, ω depend on the particle density.
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In the most general case, the turning probability and the interaction rate depend
on the whole density distribution u(·), and hence we write

ω = ωu(ϕ,ϕ0, ϕ1) = ω(u(·), ϕ, ϕ0, ϕ1) (3.20)

for the probability that a particle in state ϕ0 upon interaction with a particle in
state ϕ1 ends up in state ϕ. And the interaction rate of a particle in state ϕ with
another one in state ϕ1 is

ζ = ζu(ϕ,ϕ1) = ζ(u(·), ϕ, ϕ1). (3.21)

We require that ζ and ω are nonnegative and that ω satisfies∫ π

−π
ωu(ϕ,ϕ0, ϕ1)dϕ = 1.

Then the following general model equation preserves the total mass
∫
udϕ :

ut(ϕ) = −u(ϕ)

∫
V
ζu(ϕ,ϕ1)u(ϕ1)dϕ1 (3.22)

+

∫
V

∫
V
ωu(ϕ,ϕ0, ϕ1)ζ(ϕ0, ϕ1)u(ϕ0)u(ϕ1)dϕ0dϕ1.

This formulation for a gain-loss process is too general for most applications. Usu-
ally the process to be modeled imposes natural restrictions. For example, a model
for a reorientation process on V = S1 ∼= [−π, π], which is independent of external
influences, should be rotationally invariant. If the interaction rate is independent
of the density, then it should be symmetric with respect to interchanging its ar-
guments, i.e.

ζ(ϕ,ϕ0) = ζ(ϕ0, ϕ).

One finds that ζ(ϕ,ϕ0) = ζ(ϕ − ϕ0) must be an even function of the difference.
Otherwise the first integral on the right hand side of (3.22) is not rotationally
invariant. If the interaction rate does depend on the density, then the equation
can be rotationally invariant even though the symmetry condition above is not
satisfied.

It is obvious that (3.19) is a special case of (3.22). In the following we show
how to derive (3.4) and (3.18) from (3.22).

Theorem 3.3.1

If one chooses

ζu(ϕ,ϕ1) =
1

2π
(1− cos(ϕ− ϕ1)) and ωu(ϕ,ϕ0, ϕ1) =

u(ϕ)∫
V u(ψ)dψ

then the general model (3.22) becomes (3.4).

Proof.

Obviously the requirements for the functions ζ and ω are fulfilled. Then equation
(3.19) conserves total mass ū. We write s =

(cosϕ
sinϕ

)
and σ =

(cosϕ1

cosϕ1

)
and find
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s · σ = cos(ϕ − ϕ1). We compute (neglecting the normalizing factor 1/2π and
defining s̄ analogously to (3.3))

−u(ϕ)

∫ π

−π
ζu(ϕ − ϕ1)u(ϕ1)dϕ1

= −u(ϕ)

∫ π

−π
u(ϕ1)dϕ1 + u(ϕ)

∫ π

−π
cos(ϕ− ϕ1)u(ϕ1)dϕ1

= −u(ϕ)ū+ u(ϕ) s ·
∫ π

−π
σu(ϕ1)dϕ1

= −u(ϕ)ū+ u(ϕ)ū s · s̄.

And the second term gives (up to a factor 1/2π)∫ π

−π

∫ π

−π
ωu(ϕ,ϕ0, ϕ1)ζ(ϕ0 − ϕ1)u(ϕ1)u(ϕ0)dϕ1dϕ0

=
u(ϕ)

ū

∫ π

−π

∫ π

−π
(1− cos(ϕ0 − ϕ1))u(ϕ1)u(ϕ0)dϕ1dϕ0

=
u(ϕ)

ū
ū2 [1− s̄ · s̄] .

Inserting these two results in equation (3.22) we get

ut = −u(ϕ)ū + u(ϕ)ūss̄+ u(ϕ)ū − u(ϕ)ū|s̄|2

= u(ϕ)ū(ss̄− |s̄|2),

which is (3.4).

Theorem 3.3.2

If one chooses

ζu(ϕ,ϕ0) = Q−1 (u(ϕ) − u(ϕ0))Q2(ϕ− ϕ0) and ωu(ϕ,ϕ0, ϕ1) = δ(ϕ − ϕ1),

where Q−1 is the negative part of Q1, then the general model (3.22) becomes (3.18).

Proof.

We write Q1 = Q+
1 −Q−1 for the positive and negative part. Since Q1 is odd, we

have Q+
1 (x) = Q−1 (−x). Then we compute, starting from equation (3.18),

ut = u(ϕ)

∫ π

−π
Q1(u(ϕ)− u(ϕ1))Q2(ϕ− ϕ1)u(ϕ1)dϕ1

= −u(ϕ)

∫ π

−π
Q−1 (u(ϕ) − u(ϕ1))Q2(ϕ− ϕ1)u(ϕ1)dϕ1

+u(ϕ)

∫ π

−π
Q+

1 (u(ϕ) − u(ϕ1))Q2(ϕ− ϕ1)u(ϕ1)dϕ1

= −u(ϕ)

∫ π

−π
Q−1 (u(ϕ) − u(ϕ1))Q2(ϕ− ϕ1)u(ϕ1)dϕ1

+

∫ π

−π

∫ π

−π
δ(ϕ − ϕ0)Q−1 (u(ϕ0)− u(ϕ1))Q2(ϕ0 − ϕ1)u(ϕ1)u(ϕ0)dϕ1dϕ0.

The last equation has the form of the general model (3.22). Note that here we have
ζu(ϕ,ϕ0) = −ζu(ϕ0, ϕ), i.e. the turning function is not symmetric with respect
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to interchanging its arguments. But the equation is rotationally invariant. To see
this, assume that u is a solution and set v(ϕ) = u(Φ + ϕ). Then

vt = u(Φ + ϕ)

∫ π

−π
Q1(u(Φ + ϕ)− u(ϕ1))Q2(Φ + ϕ− ϕ1)u(ϕ1)dϕ1

= u(Φ + ϕ)

∫ π

−π
Q1(u(Φ + ϕ)− u(Φ + ϕ0))Q2(ϕ− ϕ0)u(Φ + ϕ0)dϕ0

= v(φ)

∫ π

−π
Q1(v(ϕ) − v(ϕ0))Q2(ϕ− ϕ0)v(ϕ0)dϕ0.

Interpreting the parameter functions we see that for the model equation (3.4)
the turning probability is independent of the interaction angles. The probability
that an individual turns into some direction depends simply on the relative density
of individuals in that direction. The interaction rate increases as the angular dif-
ference between interaction partners increases. Individuals in opposite directions
interact strongly, which can be interpreted as a mechanism to avoid collisions,
whereas almost aligned individuals interact only weakly, which may account for
the fact that fish in a school are never perfectly aligned.

In deriving (3.18) it was assumed that particles can turn only into the direction
of their interaction partner. This restriction is reflected in the fact that the turning
probability for (3.18) is a delta-distribution.

The General Model Applied to 1D

The general equation (3.22) can also be applied to model alignment together with
speed adaptation in one space dimension. If we denote by V ⊂ R the set of speeds,
then the time evolution of the density u = u(t, x, s) is given by the following
equation:

ut + sux = −u(t, x, s)

∫
V
ζu(s, s′)u(s′)ds′ (3.23)

+

∫
V

∫
V
ωu(s, s′, s′′)ζ(s′, s′′)u(s′)u(s′′)ds′ds′′.

We do not discuss possible choices of parameters. Instead we show that if the
parameter functions do not depend on the density and if we only have two speeds
V = {±γ} as in Chapter 2, then one cannot model alignment with this approach.
This is why our one dimensional model (2.3) had to contain terms of order at least
three in the density.

Lemma 3.3.3

In any interaction based orientation model on the line with speeds s ∈ {±γ},
density independent parameters and without external bias, the stationary solution
u+ = u− = const. is linearly stable.

Proof.

We abbreviate ± for ±γ∗. The non bias condition that the model itself does not
prefer any direction gives some symmetry conditions for ζ and ω, namely

ζ(+,−) = ζ(−,+), ζ(+,+) = ζ(−,−),

ω(s1, s2, s3) = ω(−s1,−s2,−s3).
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We abbreviate ζs1s2 = ζ(s1, s2) and ωs1s2(s3) = ω(s1, s2, s3). The model equation for
u+ reads

u+
t + γ∗u

+
x =

= −u+[ζ+
+u

+ + ζ+
−u
−]

+ω+
+(+)ζ+

+ (u+)2 + ω+
−(+)ζ+

−u
+u− + ω−+(+)ζ−+u

+u− + ω−−(+)ζ−− (u−)2

= ζ+
+

(
ω+

+(+)− 1
)

(u+)2 + ω−−(+)ζ−− (u−)2ζ+
−
(
ω+
−(+) + ω−+(+)− 1

)
u+u−.

Now we use the symmetry conditions and the fact that ω is a probability distri-
bution, i.e.

ω(+,−,+) = 1− ω(+,−,−) = 1− ω(−,+,+),

ω(−,−,+) = ω(+,+,−) = 1− ω(+,+,+).

The factor for the mixed term u+u− is zero and setting ω̄ : = ω+
+(+)ζ+

+ we arrive
at

u+
t γ∗u

+
x = −ω̄u+2

+ ω̄u−
2

= ω̄u(u− − u+).

A similar calculation for u−t gives the system

u+
t + γu+

x = ω̄u(u− − u+),

u−t − γu−x = ω̄u(u+ − u−),

where ω̄ > 0 and u = u+ + u− > 0. Since the factor ω̄u is positive, the solution
u+ = u− = const. is linearly stable.



Chapter 4

Speed Adaptation

So far we assumed that individuals move with constant speed and change only
their direction of motion in order to form moving polarized groups.

It has long been observed and documented that fish (and other individuals
forming moving polarized groups) also adjust their speed, i.e. slow down or speed
up, in order to join a school or stay with it (cf. [55]). Some models even suggest
that constant speed in groups would lead to break up of these groups [12].

Here we derive a model for the speed adaptation process in one space dimen-
sion. Individuals move on the line to the right and to the left with speeds γ±,
respectively. They change direction according to the turning function µ in (2.8).
The speeds γ± depend on the density and the density gradient.

First we derive the model equation for a somewhat simpler situation where
all particles move in one direction. We investigate some properties of this model.
We prove existence results for a parabolically regularized version of the model
and use the vanishing viscosity approach to show existence of solutions for the
hyperbolic model as well. Finally we formulate the full system with two directions
of movement and check which of the results for the simpler equations carry over
to the full system.

4.1 The Model Equations

At the end of the previous chapter we briefly indicated one possibility how move-
ment on the line with non constant speed can be modeled. One chooses some set of
velocities V ⊂ R 2. At each point in space there may be individuals with different
velocities. These individuals interact.

Here we want to follow another approach which can also be found in reaction
random walk models for chemotaxis, for example in [27, 28]. We assume that the
conditions at each space point x determine exactly two different speeds γ±(x). All
individuals at x which move to the right have the speed γ+(x) and all individuals
at x which move to the left have the speed γ−(x).

In the first part of this chapter we consider the following simpler situation:
Suppose that, as a result of the alignment process, all individuals move in the
same direction, to the right, say. Then we may drop the superscript “+”. The
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school as a one-dimensional moving object is described by a conservation law

∂

∂t
u(t, x) +

∂

∂x
(γ(t, x)u(t, x)) = 0, (4.1)

where the speed γ is positive. The process by which individuals adapt their speed
to that of their neighbors is modeled by a partial differential equation for γ and
hence, we obtain a system of two equations for the density u and the speed γ.

To model the speed adaptation, we assume that there is an optimal or target
density u∗ and a preferred velocity γ∗ (see [39] and references therein, [18, 55]).
Individuals try to approach areas with optimal density. In order to do so, they
deviate by some amount η from their preferred speed so that the actual speed can
be written as

γ(t, x) = γ∗ + η(t, x). (4.2)

The deviation η depends on whether individuals want to reach areas of higher or
lower densities. It also depends on whether these areas of higher or lower density
can be found in front of the individuals or behind them. Mathematically this
means that η(t, x) cannot depend on the value u(t, x) alone but must incorporate
some non-local information. This information is given by the gradient of u.

In the literature about conservation laws, the speed depends on the density
but not on the gradient. As we just saw, dependence on the density alone is
not sufficient to model speed adaptation. Some directional information is needed.
These considerations are supported by a result of Flierl et al. [12]. Starting from
a stochastic model, they derive a partial differential equation for the density of a
socially aggregating population. Higher order moments are needed to describe the
density flux.

At any given time t an individual at position x perceives the given density
u(t, x) and compares it with the optimal density u∗. Suppose u(t, x) < u∗. Re-
member, all individuals are moving in the same direction. If the gradient ux(t, x)
is positive, then by speeding up the individual can reach areas in which the den-
sity is closer to u∗ than u(t, x) is. Hence we want η(t, x) > 0. If u(t, x) < u∗ and
ux(t, x) < 0 then similarly we want η(t, x) < 0. The considerations for u(t, x) > u∗
are similar. To capture this qualitative behavior we define an auxiliary function
F̃ = F̃ (u, ux) which has the following properties

F̃ is bounded, F̃ > 0 in I and III, F̃ < 0 in II and IV.

ux

u
*

u

  I

IV III

II

0

A function with these properties is for example

F̃ (u, ux) = tanh[(u∗ − u)ux]. (4.3)
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We introduce a sensitivity parameter χ > 0 and set F = χF̃ . In the simplest case
one might try to set η = F. If we substitute this into equation (4.1) and perform
the differentiation with respect to x, then we obtain the equation

ut + [F2(u, ux)u]uxx + [F1(u, ux)u+ F (u, ux)]ux = 0,

where Fj denotes the derivative of F with respect to the j-th variable. From the
properties of the function F it is clear that the coefficient in front of uxx changes
sign. Hence the problem is ill-posed. This seems to be a typical situation for
velocity dependent aggregation phenomena (compare [3, 16, 39] and also [53, 54]
in a different context).

To circumvent this difficulty we assume that individuals adjust their velocity
with a small time lag and a small error. Then η satisfies the following equation.

τηt = βηxx − η + F (u, ux), (4.4)

where τ measures the time lag and β determines the variance of the error. Now
we assume in addition some random movement of individuals which we model by
adding εuxx on the right hand side of (4.1). Then equations (4.1), (4.2) and (4.4)
form the following system which is our model problem for the first part of this
chapter:

ut + (γu)x = εuxx, (4.5)

τηt = βηxx + F (u, ux)− η, (4.6)

γ = γ∗ + η,

where ε, β > 0, τ ≥ 0 are (small) constants. Alternatively we write

E = F + γ∗ = χF̃ + γ∗

and call it the expected velocity since it is the velocity that occurs if the adjustment
process is precise, i.e. τ = β = 0. Since we model a school moving in one direction
only, we choose χ such that

E ≥ 0.

We assumed that F is bounded, and hence E is also bounded by some value Emax.
We get the following equivalent formulation of our model system.

ut + (γu)x = εuxx, (4.7)

τγt = βγxx +E(u, ux)− γ. (4.8)

We use both notations (4.5), (4.6) and (4.7), (4.8) whichever is the more con-
venient. For τ > 0 the system is parabolic. If we prescribe initial data u0, γ0 in
appropriate spaces then the initial value problem is well-posed. For τ = 0 the
second equation is an elliptic equation which has to be satisfied for all t. We can
prescribe initial data only for the density, i.e. u0. The values of γ at t = 0 are
determined by the elliptic equation. We show later that the system is well-posed
for τ = 0 in some appropriate function space.

Lemma 4.1.1

The system (4.7), (4.8) preserves positivity of u.
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Proof.

Suppose a solution (u, γ) exists up to some time T > 0 and is smooth. Suppose
also that u0 > 0. We write (4.7) as

−ut + εuxx − γux − γxu = 0

and apply the maximum principle to get u ≥ 0 [57].

Positivity of γ is not more difficult to show. We give a proof together with
other estimates on γ for the different cases τ > 0, τ = 0 later.

4.1.1 Linearization

The pair of constant functions (ū, γ∗) is a stationary solution to the system (4.7),
(4.8) for all values ū ≥ 0. We investigate the stability of this solution in both cases
τ > 0 and τ = 0. Whether this solution is stable or not depends on the differ-
ence ū−u∗. The biological reason for this dependence is clear: Suppose the actual
density ū is lower than the preferred density u∗. Then a small perturbation of ū
triggers the formation of denser patches and the formation of empty places since
individuals try to approach areas of higher densities. In contrast, if ū > u∗ then
small perturbations of ū are flattened out. Individuals seek areas of lower densities.

Case 1: τ = 0
Here and in the following we frequently use the Green’s function for 1− β∆ on R
and its Fourier transform and denote it by G and Ĝ. The explicit formulas are

G(x) =

√
π

2β
e
− |x|√

β and Ĝ(κ) =
1

βκ2 + 1
.

We write the solution of (4.8) as

γ(t, ·) = E(u, ux)(t) ∗G. (4.9)

We now let u = ū+ v and expand

E(u, ux) = E(ū, 0) +E1(ū, 0)v +E2(ū, 0)vx + h.o.t.(v), (4.10)

where subscripts of E denote partial derivatives with respect to the first and
second variable. The special choice of F̃ in (4.3) gives E(ū, 0) = γ∗, E1(ū, 0) = 0
and E2(ū, 0) = γ∗χ(u∗ − ū). The sign change for E2 at ū = u∗ is a natural
consequence of the modeling assumptions. It determines the stability behavior.
Plugging the expansion of E into the representation of γ we obtain

γ = E(ū, 0) ∗G+E1(ū, 0)v ∗G+E2(ū, 0)vx ∗G+ h.o.t.(v)
(4.11)

and

γx = E1(ū, 0)vx ∗G+E2(ū, 0)vxx ∗G+ h.o.t.(v). (4.12)

Putting this into equation (4.7) for u and retaining only linear terms in v we get
the following equation

vt = εvxx −Avx −B(vx ∗G)− C(ū)(vxx ∗G), (4.13)
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where A = E(ū, 0)
∫
G(y)dy, B = ūE1(ū, 0) and C = ūE2(ū, 0) are constants. The

Fourier transform of (4.13) is

v̂t = κ2(CĜ− ε)v̂ + iκ(A+BĜ)v̂, (4.14)

where Ĝ is real and positive. The growth of v̂ is determined by the factor of κ2.
If ū > u∗ then we know from the considerations about E2 that C is negative and
hence all modes decay and the solution is stable. On the other hand, if ū < u∗
then C > 0. Then CĜ(κ) is a positive decreasing function of κ. For small enough
ε > 0 the factor CĜ− ε is positive for small values of κ. Low modes grow and the
situation is unstable.

Case 2: τ > 0
Choosing again u = ū+v and γ = γ∗+η and expanding gives the following system
of two equations

vt = εvxx − γ∗vx − ūηx + h.o.t.(v),

τηt = βηxx − η +E1v +E2vx + h.o.t.(η),
(4.15)

where we put Ej = Ej(ū, 0). The Fourier transform of the linear part is(
v̂t
τ η̂t

)
=

(
−εκ2 + iκγ∗ iκū
E1 − iκE2 −βκ2 − 1

)(
v̂
η̂

)
. (4.16)

We investigate the real part of the eigenvalues λ of the system. In order to avoid
too complicated expressions, we assume at first τ = 1 and E1 = 0. Then the trace
of the matrix in (4.16) is

−(ε+ β)κ2 − 1 + iκγ∗ =: S1 + iS2

and its determinant is

κ2(εβκ2 + ε−E2ū)− iκ(βγ∗κ
2 + γ2

∗) =: D1 + iD2.

The characteristic polynomial λ2 − (S1 + iS2)λ + D1 + iD2 has two roots λ1,2 =
a1,2 + ib1,2. The real and imaginary parts satisfy

a1 + a2 = S1, b1 + b2 = S2,

a1a2 − b1b2 = D1, a1b2 + a− 2b1 = D2.
(4.17)

If we substitute κ 7→ −κ, then S2,D2 change sign whereas S1,D1 do not. Therefore,
from (4.17) we see that substituting κ 7→ −κ amounts to conjugating the roots.
The real parts of λ1,2 are not changed. Hence we may assume κ > 0. Then we
have the following sign pattern:

S1 < 0, S2 > 0, D2 < 0. (4.18)

For D1 we observe that

E2 < 0 =⇒ D1 > 0,

E2 > 0 =⇒ D1 < 0 for ε, κ small.
(4.19)
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Eliminating a1, b1, b2 from (4.17) we obtain a fourth order polynomial in a = a2,
namely

4a4 − 8S1a
3 + (5S2

1 + S2
2 + 4D1)a2 − S1(S2

1 + S2
2 + 4D1)a

+ S1S2D2 −D2
2 +D1S

2
2

=:α4a
4 + α3a

3 + α2a
2α1a+ α0

(4.20)

We apply Descartes’ rule of signs to find positive real solutions for a [43]: Let N
be the number of sign changes in the sequence of coefficients

(α4, α3, α2, α1, α0).

Then there are at most N positive real roots a of (4.20) and the number of positive
real roots is either N or N − 2 or N − 4.

Lemma 4.1.2

If E2 < 0 then there are no sign changes in the sequence of coefficients and hence
there are no real positive roots. If E2 > 0 then for all sufficiently small ε, κ there
is exactly one sign change in the sequence and hence there is exactly one positive
real root.

Proof.

Suppose at first E2 < 0. Then the coefficients satisfy α4, α3, α2, α1 > 0. It remains
to show that α0 > 0. The expression for α0 can be computed explicitly as

α0 = S1S2D2 −D2
2 +D1S

2
2 = 6εβγ2

∗κ+ (2ε−E2ū)γ2κ4. (4.21)

For E2 < 0 this expression is positive for all κ 6= 0. Now suppose E2 > 0. Then we
see from (4.21) that α0 < 0 for sufficiently small ε, κ. Similarly one can compute
α2,3 and find a sign change for E2 > 0 and suitably small ε, κ. Hence all but the
first two coefficients in (4.20) are negative and there is exactly one sign change.

If we now let τ vary, we find that the sign pattern of the coefficients αi is
not changed. The values of ε, κ for which the sign changes occur are different
in general. Next we observe that the eigenvalues λ1,2 depend continuously on
E1. Then for small values of |E1| we find the same behavior. We summarize the
stability behavior in the following lemma.

Lemma 4.1.3

Let ε, β > 0 and τ ≥ 0. In case τ > 0 assume in addition that ‖E1(·, 0)‖∞ is small.
Then the stationary solution (ū, γ∗) to (4.7), (4.8) is linearly stable if ū > u∗. If
on the other hand ū < u∗, then for all sufficiently small ε the solution is unstable
and the modes for a finite range of wave numbers grow.

Perfect Schools

A perfect school has a uniform density in the interior and sharp edges (compare
2.1.1). It is described mathematically by a characteristic function of some interval.
This is not a classical solution. We only expect it to arise in the absence of random
motion.
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A weak solution to (4.7) with ε = 0 is a function u ∈ L1
loc([0, T ]× R ) such that∫ T

0

∫
R

uψt + (γu)ψxdxdt = −
∫
R

u0ψdx (4.22)

for all ψ ∈ C1(R + × R ) with compact support in [0, T ) × R (cf. [37]). Under the
assumption that γ ≡ γ∗ is constant it is obvious that for u0 = χ[a,b] a weak solution
is u(t, x) = u0(x− γ∗t). We show that the converse is also true: if the density is a
traveling rectangle, then γ = γ∗.

Lemma 4.1.4

Suppose u0 = αχ[a,b] for some α > 0 and set u(t, x) = u0(x− ct) for some c > 0.
For τ > 0 assume in addition γ0 = γ∗. Then the solution to (4.8) is γ ≡ γ∗.

Proof.

Take the case τ = 0 first. We have E = γ∗ a.e. on [0, T ] × R and hence E ∈
L2

loc(R ) for almost all t ∈ [0, T ]. Then by Theorem 8.9 in [15] there is a unique

γ(t) ∈ W 2,2
loc (R ) which satisfies the elliptic equation in (4.8) for ε = 0 a.e. Since

R is one-dimensional γ(t) is continuous in x. But γ ≡ γ∗ solves (4.8) a.e. and by
uniqueness and continuity this is the solution.

Similarly for τ > 0. With E ∈ L2
loc(R ) the parabolic equation for γ has a

unique solution which satisfies γ(t) ∈ W 2,2
loc (cf. [36]). It satisfies the equation a.e.

on R . Again γ(t) is continuous in x hence γ = γ∗ is the solution.

We have not yet specified the speed of the school. From the interpretation
of the model only c = γ∗ should be admissible. The Rankine-Hugoniot jump
conditions [37] generally determine the shock speed c in a conservation law of the
form ut + f(u)x = 0 by the formula

f(ul)− f(ur)

ul − ur
= c,

where ur, ul is the density right and left from the shock. In the case at hand this
condition is satisfied for c = γ∗ only. We collect these results in the following
lemma.

Lemma 4.1.5

The system of equations (4.7), (4.8) for ε = 0 has weak solutions in the form of
traveling characteristic functions of intervals with speed γ∗.

4.1.2 Numerical Simulations

To simulate solutions of system (4.7), (4.8) we impose Neumann boundary condi-
tions on the interval [0, 1], choose F̃ as in (4.3) and parameters

γ∗ = 1, u∗ = 0.5, ε = β = 10−4, τ = 10−3, χ = 0.3.

The initial density is a pulse with compact support, the initial velocity is identically
equal to the preferred velocity. We distinguish the two cases

(1) maxu0 < u∗ and (2) maxu0 > u∗.
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Case (1): Initial data below u∗.

t = 0 t = T
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Case (2): Initial data above u∗.

t = 0 t = T
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In both cases we plot the shapes of the density u, the expected velocity E and
the actual velocity γ at the beginning t = 0 and at the end t = T of the simulation.
Then the density development is plotted for 0 ≤ t ≤ T.

We observe the following: In case (1) the pulse becomes higher and more
narrow. Individuals crowd more closely together to attain the optimal density. In
case (2) the peak spreads out and its height decreases. In both cases the velocity
at the end of the school is greater than γ∗ and in front of the school it is lower
than γ∗. Gradients of u are flattened out where the density is too high and become
more steep where the density is below the optimal density. The steep gradients
naturally poses problems for numerical schemes but we show below that smooth
solutions exist for all times.

4.2 Existence of Solutions

We show local and also global existence of solutions of the system of equations
(4.7), (4.8) in spaces of differentiable functions for ε, β > 0. The equation for γ is
parabolic for τ > 0 and elliptic for τ = 0. These two cases are discussed separately.
We always assume that 0 ≤ E ≤ Emax is Lipschitz, which is true for the special
case given above. It is clear that the total mass of u is conserved by the system.

Existence for τ > 0

Theorem 4.2.1

Let ε, τ, β > 0 and E ∈ C0,1
b . For all nonnegative initial data (u0, γ0) ∈ C1

b (R )2

there exists a unique solution (u, γ) ∈ C([0, T ], C1
b (R )2) of system (4.7), (4.8) for

some T > 0.

Proof.

We write the equations as
νt = Aν + F(ν)

with ν = (u, γ)T and A = diag(ε∆, (β/τ)∆), which generates an analytic semi-
group on X = C1

b (R )2. The nonlinearity is

F = (−(γu)x, (E(u, ux)− γ)/τ)T .

The norm on X is ‖(u, γ)‖X = ‖u‖C1 + ‖γ‖C1 . Furthermore let Y = C(R )2 with
norm ‖u‖C0 + ‖γ‖C0 . Then ‖(ux, γx)‖Y ≤ ‖(u, γ)‖X . We show that F : X → Y is
locally Lipschitz. Choose k0 > 0 and (u, γ), (v, ξ) ∈ X with ‖(u, γ)‖X , ‖(v, ξ)‖X ≤
k0. The second component of F((u, γ)) −F((v, ξ)) is estimated by

τ‖(E(u, ux)− γ)− (E(v, vx)− ξ)‖C0 ≤ Lip(E)‖u − v‖C1 + ‖γ − ξ‖C0

≤ L̃‖(u− v, γ − ξ)‖X ,

where Lip(E) is the Lipschitz constant of E and L̃ = max{Lip(E), 1}. For the
first component we have

‖(γu)x − (ξv)x‖C0 ≤ ‖u‖C0‖γx − ξx‖C0 + ‖ux‖C0‖γ − ξ‖C0

+‖ξx‖C0‖u− v‖C0 + ‖ξ‖C0‖ux − vx‖C0

≤ 2‖u‖C1‖γ − ξ‖C1 + 2‖ξ‖C1‖u− v‖C1

≤ L(k0)‖(u − v, γ − ξ)‖X ,
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for some constant L which depends only on k0. The claim now follows from Propo-
sition 1.1 in [62] §15.

Theorem 4.2.2

In addition to the assumptions of Theorem 4.2.1 assume

0 ≤ γ0(x) ≤ Emax. (4.23)

Then solutions to system (4.7), (4.8) exist globally, i.e. (u, γ) ∈ C([0,∞), C1
b (R )2).

The proof of the theorem relies on several lemmas.

Lemma 4.2.3

With the assumptions of Theorem 4.2.2 let γ be a solution of (4.8). Then

0 ≤ γ(t, x) ≤ Emax,

and the gradient of γ can be estimated by

‖γ(t)‖C1 ≤ ‖γ0‖C1 +Kβ

√
t,

where Kβ = Kβ(β, τ,Emax) is independent of ε > 0.

Proof.

By assumption we have E ≥ 0, and hence the maximum principle gives γ ≥ 0.
Similarly we show that ξ = Emax − γ ≥ 0, which gives the upper bound for γ. To
estimate the gradient of γ we apply the variation of constants formula and denote
by Tβ(t) the semigroup generated by (β/τ)∆. Using the estimate (see [62])

‖Tβ(t)‖L(C,C1) ≤ Cβt−1/2

we find

‖γ(t)‖C1 ≤ ‖γ0‖C1 +
1

τ

∫ t

0
‖Tβ(t− s)(E − γ)(s)‖C1ds

≤ ‖γ0‖C1 +
1

τ

∫ t

0

Cβ√
t− s

‖(E − γ)(s)‖C0ds

≤ ‖γ0‖C1 +
2EmaxCβ

τ

∫ t

0

1√
t− s

ds

≤ ‖γ0‖C1 +
4EmaxCβ

τ

√
t.

Lemma 4.2.4

With the assumptions of Theorem 4.2.2 the maximum of u satisfies

‖u(t)‖C0 ≤ ‖u0‖C0eλt

for λ = ‖γ0‖C1 +Kβ

√
t.
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Proof.

Fix t > 0 and set λ = ‖γ0‖C1 + Kβ

√
t. Then apply the maximum principle to

v(τ, x) : = e−λτu(τ, x) and get that ‖v(τ)‖C0 ≤ ‖v(0)‖C0 on 0 ≤ τ ≤ t. This
implies in particular that ‖u(t)‖C0 ≤ ‖u0‖C0eλt.

Lemma 4.2.5

Let the assumptions of Theorem 4.2.2 be satisfied. Then for sufficiently small
T > 0 the C1-norm of u on [0, T ] can be bounded by

sup
0≤t≤T

‖u(t)‖C1 ≤ 1 + Cελe
λT
√
T

1−Kε

√
T
‖u0‖C1 ,

where λ = ‖γ0‖C1 +Kβ

√
T and Kε depends on ε but not on the initial data.

Proof.

As above we denote by Tε(t) the semigroup generated by ε∆ and use the estimate

‖Tε(t)‖L(C,C1) ≤ Cεt−1/2.

Then from the variation of constants formula and Lemmas 4.2.3 and 4.2.4 we get

‖u(t)‖C1 ≤ ‖u0‖C1 +

∫ t

0
‖Tε(t− s)(γux + γxu)(s)‖C1ds

≤ ‖u0‖C1 +

∫ t

0

Cε√
t− s

‖(γux + γxu)(s)‖C0ds

≤ ‖u0‖C1 +

∫ t

0

Cε√
t− s

(‖γ‖C0‖u‖C1 + ‖γ‖C1‖u‖C0) (s)ds

≤ ‖u0‖C1 +

∫ t

0

Cε√
t− s

Emax‖u(s)‖C1ds

+

∫ t

0

Cε√
t− s

(
‖γ0‖C1 +Kβ

√
T
)
‖u0‖C0eλT ds

≤ ‖u0‖C1 + Cελ‖u0‖C0eλT
√
t+ CεEmax

∫ t

0

‖u(s)‖C1√
t− s

ds.

Now we introduce the norm

‖u‖T : = sup
0≤t≤T

‖u(t)‖C1 .

Taking sup on both sides in the inequality above gives

‖u‖T ≤ ‖u0‖C1 + Cελ‖u0‖C0eλT
√
T +EmaxCε‖u‖T

√
T .

Putting together the terms ‖u‖T on both sides and dividing by 1 −Kε

√
T with

Kε = EmaxCε we get

‖u‖T ≤ ‖u0‖C1 + Cελ‖u0‖C0eλT
√
T

1−Kε

√
T

.
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Finally, since ‖u0‖C0 ≤ ‖u0‖C1 , the claim follows.

Proof of Theorem 4.2.2.

Choose √
T =

1

2EmaxCε
,

then with Lemma 4.2.5 we get

‖u(T )‖C1 ≤ ‖u0‖C1G(λ) := ‖u0‖C1
1 + Cελe

λT
√
T

1−Kε

√
T

.

We choose the values of u and γ at T as new initial values, i.e. u(1)(0) = u(T ),
γ(1)(0) = γ(T ) and solve the equations again. As above we get

‖γ(1)(t)‖C1 ≤ ‖γ(T )‖C1 +Kβ

√
t

≤ ‖γ0‖C1 +Kβ(
√
T +
√
t),

and set λ(1) = ‖γ0‖C1 + 2Kβ

√
T. Since Kε is independent of the initial data, we

apply Lemma 4.2.5 for the same value of T as above to get

‖u(2T )‖C1 = ‖u(1)(T )‖C1 ≤ ‖u(1)(0)‖C1G(λ(1)) ≤ ‖u0‖C1G(λ)G(λ(1)).

We can iterate this argument and find

‖u((n + 1)T )‖C1 ≤ ‖u0‖C1G(λ)G(λ(1)) · ... ·G(λ(n)) <∞,

where λ(k) = ‖γ0‖C1 + (k + 1)Kβ

√
T . This finishes the proof.

Existence for τ = 0

Suppose the adjustment to the expected velocity is instantaneous, i.e. τ = 0, but
with an error, i.e. β > 0. Then equation (4.8) is an elliptic equation which has to
be satisfied at every time t. The system reads

ut = εuxx − (γu)x

0 = βγxx − γ +E(u, ux).
(4.24)

Suppose two functions f and γ satisfy the simple elliptic equation

γ = f + βγxx. (4.25)

Then γ is in some sense “close” to f but it is “smoother”. Taking Fourier trans-
forms gives

γ̂(κ) =
1

1 + βκ2
f̂(κ), (4.26)

so that high wave numbers of f are damped out in γ. Applied to the second
equation in (4.24) we find that the velocity is not as sensitive to local variations
in the density as the expected velocity is.
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Lemma 4.2.6

For all f ∈ C1
b (R ) there is a unique function γ ∈ C2

b (R ) which solves (4.25). The
following estimates hold

‖γ‖C1 ≤ C(β)‖f‖C0 and ‖γ‖C2 ≤ C(β)‖f‖C1

for some constant C which depends on β.

Proof.

We use f and the Green’s function of β∆ − 1 to represent γ = f ∗ G. Then the
estimates are straightforward.

Theorem 4.2.7

Suppose E ∈ C1,1
b and let ε > 0. For all nonnegative initial data u0 ∈ C2

b (R ) there
exists a unique solution (u, γ) ∈ C([0, T ], C2

b (R )2) of system (4.24) for some time
T > 0.

Proof.

For any function u ∈ C2
b (R ) we have ux ∈ C1

b (R ). By Lemma 4.2.6 we can define a
continuous map u 7→ γu from C2

b (R ) to C2
b (R ), where γu is the unique solution of

the second equation in (4.24). With this notation we can write the system in the
single equation:

ut = εuxx − (γuu)x. (4.27)

We apply the semigroup approach to this equation. We have to estimate the non-
linearity u 7→ (γuu)x. Obviously u ∈ C2

b (R ) implies (γuu)x ∈ C1
b (R ). We need to

show that the map is locally Lipschitz.
Choose k0 > 0 and u, v ∈ C2

b (R ) such that ‖u‖C2 , ‖v‖C2 < k0. Then γu, γv are well
defined. The difference ξ = γu − γv satisfies an equation of the form (4.25) since
the equation for γ is linear. We have the following inequalities

‖ξ‖C1 ≤ C(β)‖E(u, ux)−E(v, vx)‖C0

≤ C(β)LE‖u− v‖C1 ,

‖ξx‖C1 ≤ C(β)

∥∥∥∥ ddxE(u, ux)− d

dx
E(v, vx)

∥∥∥∥
C0

≤ C(β)‖Eu1ux +Eu2uxx −Ev1vx −Ev2vxx‖C0

≤ C(β)‖(Eu1 +Ev1)(ux − vx) + (Eu1 −Ev1)(ux + vx)‖C0

+C(β)‖(Eu2 +Ev2)(uxx − vxx) + (Eu2 −Ev2)(uxx + vxx)‖C0

≤ C(β, k0, ‖E‖C1,1)‖u− v‖C2 ,
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whereEuj stands for the derivative of E(u, ux) with respect to the j−th component.
With this we get the Lipschitz estimate:

‖(γuu)x − (γvv)x‖C1 ≤ ‖γux − γvx‖C1‖u+ v‖C1

+‖γux + γvx‖C1‖u− v‖C1

+‖γu − γv‖C1‖ux + vx‖C1

+‖γu + γv‖C1‖ux − vx‖C1

≤ C(β, k0, ‖E‖C1,1)‖u− v‖C2 .

Now, Proposition 1.1 §15 in [62] gives the local existence result. The fact that γu

is continuous in t follows by applying Lemma 4.2.6 to ξ = γu(t)− γu(s).

The elliptic equation for γ yields stronger estimates than the parabolic equation
with τ > 0. These estimates give global in time existence for the case τ = 0.

Lemma 4.2.8

Let the assumptions of Theorem 4.2.7 be satisfied and denote by (u, γ) a solution
of (4.24). Then

0 ≤ γ(t, x) ≤ Emax.

Furthermore, γ together with its first and second derivatives is bounded indepen-
dently of u, i.e. there is a constant K > 0 such that

‖γ‖C2 ≤ K. (4.28)

Proof.

By Lemma 4.2.6 γ is bounded and smooth. From the elliptic equation for γ we see
that if γ is concave, i.e. γxx(x0) < 0, then necessarily γ(x0) ≤ Emax. Now suppose
there is some x0 ∈ R with γ(x0) > Emax. Suppose further that γx(x0) > 0. Since γ
cannot become concave as long as it exceeds Emax, it has to grow at least linearly
for x ≥ x0. But then it cannot be bounded as x → +∞. If γx(x0) < 0 then
similarly it cannot be bounded as x → −∞. Hence, γ ≤ Emax on R . Analogous
considerations with “convex” instead of “concave” give γ ≥ 0.
Going back to the equation for γ we see that

‖γxx‖C0 ≤ 1

β
‖E − γ‖C0 ≤ 2Emax

β
.

Given these two bounds and the positivity of γ we apply the interpolation estimate
3.2.9. in [34] and get

|γx(t, x)|2 ≤ Nγ(t, x)‖γxx(t, ·)‖C0 ≤ 2NEmax

β
,

for some constant N. This proves the claim.

Theorem 4.2.9

With the assumptions of Theorem 4.2.7 solutions to (4.24) exist globally, i.e.
(u, γ) ∈ C([0,∞), C2

b (R )2).
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Proof.

As in the case τ > 0 one could get an exponential bound for the maximum of
u via the maximum principle (see Lemma 4.2.4) and proceed like in the proof of
Theorem 4.2.2. Due to the estimate (4.28) we do not need this exponential bound
here and proceed differently. Later, when we work with the system of u± and γ±

an exponential bound for u± is not available. But the proof presented here can be
adapted there.
As before we denote by Tε(t) the semigroup generated by ε∆ and use the estimate

‖Tε(t)‖L(C1,C2) ≤ Cεt−1/2.

By the same arguments as in the proof of Theorem 4.2.2 we find, using (4.28)

‖u(t)‖C2 ≤ ‖u(0)‖C2 +

∫ t

0
‖Tε(t− s)(γuu)x(s)‖C2ds

≤ ‖u(0)‖C2 +

∫ t

0

Cε√
t− s

‖(γuu)x(s)‖C1ds

≤ ‖u(0)‖C2 + CεK

∫ t

0

‖u(s)‖C2√
t− s

ds.

Introducing the norm ‖u‖T = sup0≤t≤T ‖u(t)‖C2 as before, we estimate

‖u‖T ≤ ‖u0‖C2

1−CεK
√
T
,

for sufficiently small T > 0. Note that in contrast to the proof of Theorem 4.2.2
there is no dependence on γ in this inequality. A continuation argument like in
the proof of 4.2.2 gives

‖u(nT )‖C2 ≤ ‖u0‖C2

(
1

1− CεK
√
T

)n
which finishes the proof.

4.3 Solutions for ε = 0

We now show existence of (weak) solutions for the hyperbolic/elliptic system

ut + (γu)x = 0,

η = βηxx + F (u, ux),

γ = η + γ∗,

u(0, ·) = u0,

(4.29)

which was introduced above.
In conservation laws like Burgers’ equation even arbitrarily smooth initial func-

tions with small absolute values can lead to discontinuous solutions in finite time.
Interpretation and simulation suggest that also for system (4.29) gradients of u
could become arbitrarily steep. The natural function space for conservation laws
is the space of functions of bounded variation [8]. But in the equation for η the
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expression F (u, ux) must make sense. For u ∈ BV, by definition, ux is a finite mea-
sure and F (u, ux) is not necessarily well defined. Which then is the appropriate
function space to work with?

Instead of aiming for the greatest generality, we show that for sufficiently
smooth initial data there exist solutions which are continuous in x for arbitrarily
long times. After what had been said before, this claim seems surprising. There
the strong influence of the elliptic equation for η shows up.

We multiply by suitable test functions and integrate by parts to get∫ T

0

∫
R

uφt + γuφxdxdt = −
∫
R

u0φdx (4.30)

and ∫
R

−βηxψx − ηψdx =

∫
R

F (u, ux)ψdx. (4.31)

As long as γ is bounded, the first equation makes sense for u ∈ L1
loc([0, T ]× R ). In

the second equation we impose some integrability conditions on F (u, ux). Always
assuming that F is Lipschitz we get further conditions on ux. One could work with
ux ∈ L1 which implies u ∈ W 1,1 ⊂ C. Here we choose to work with u ∈ W 1,2 =
H1 ⊂ C.

The main theorem of this section is the following.

Theorem 4.3.1

Let F be in C2,1
b , T > 0 and ΩT = [0, T ] × R . Then for any nonnegative initial

datum u0 ∈ H3(R ) ∩ L1(R ) there exists a solution (u, η) of system (4.29) with
u ≥ 0 in the following sense

• u ∈ L1(ΩT ) ∩ L∞([0, T ],H1(R )) and u satisfies (4.30) for all φ ∈ C1(ΩT )
with compact support in [0, T ) × R .

• η ∈ L∞([0, T ],H2(R )) and for almost all t ∈ [0, T ] the function η satisfies
(4.31) for all ψ ∈ C1(R ) with compact support.

• initial values are assumed in the weak sense, i.e. there exists a set L ⊂ [0, T ]
of Lebesgue measure 0, such that u(t, ·), η(t, ·) are defined a.e. on R for
t ∈ [0, T ]\L and satisfy

lim sup
t→0,t∈[0,T ]\L

‖u(t, ·)− u0(·)‖H1(I) = 0

and

lim sup
t→0,t∈[0,T ]\L

‖η(t, ·) − η(0, ·)‖H2(I) = 0

for all bounded intervals I = [−ρ, ρ].

Corollary 4.3.2

Let F be in C2,1
b , and T > 0. Then for all nonnegative initial data u0 ∈ C3(R ) with

compact support there exists a solution of (4.29) such that u(t) remains continuous
in x for t ∈ [0, T ].
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The proof of this theorem, given in 4.3.2, is an adaptation of the vanishing
viscosity method. The equation for u is regularized by ε∆ and estimates on sev-
eral norms of u and η are shown to hold independently of ε provided the initial
function is sufficiently smooth. A compact imbedding argument then provides the
desired solutions. The ε-independent estimates which are needed are given in sev-
eral lemmas preceeding the proof.

The letter C always denotes a generic constant and may change its value even
within one proof. The notation C(a, b) means that C depends on a, b but not on
other quantities. As always the norm of a space X is denoted by ‖ · ‖X the only
exception being ‖ · ‖L2 = ‖ · ‖2.

4.3.1 Estimates independent of ε

The function η differs from γ only by a constant η = γ − γ∗ and hence by Lemma
4.2.8 we can assume that if η is a C2-solution of the elliptic equation in (4.29)
then also

‖η(t)‖C2 ≤ K. (4.32)

Lemma 4.3.3

Let F ∈ Cp−1,1
b and u ∈ Hp(R ) for some integer p ≥ 1. Then there exists a unique

solution η ∈ Hp+1(R ) of
βηxx − η = F (u, ux),

which satisfies
‖η‖Hp+1 ≤ C(β, ‖F‖Cp−1,1)‖u‖Hp .

In particular there is a continuous injective map Hp → Hp+1 : u 7→ ηu, where ηu

denotes the unique solution of the second equation in (4.29).

Proof.

Take Fourier transforms like in Lemma 4.26.

Now we set up the framework for the vanishing viscosity method. The equation
for u in (4.29) is regularized by ε∆. Then the equation looks like the first equation
in (4.24), where we proved existence of solutions for fixed ε > 0. Now we fix
initial values u0 and look at solutions depending on the parameter ε. We write
uε(t, x) = u(t, x, ε) and ηε instead of ηu

ε
. As always we have γε = ηε + γ∗. Then

the equation becomes

uεt − εuεxx + (γεuε)x = 0,

u(0, ·) = u0.
(4.33)

First we show local existence of solutions in Hp for p ≥ 1. Then we prove estimates
of ‖Dku

ε(t, ·)‖2 successively for 0 ≤ k ≤ 3 which are independent of ε > 0. Finally
we bound ‖Dku

ε
t (t, ·)‖2 for k ∈ {0, 1}, where Dk = ∂k/∂xk. To ease notation we

drop the superscript ε for the moment since no confusion can arise.

Lemma 4.3.4

Let F ∈ Cp−1,1
b and u0 ∈ Hp(R ) for some p ≥ 1, u0 ≥ 0. Then there exists a time

T > 0 such that there is a unique solution u ∈ C([0, T ],Hp(R )) of equation (4.33)
with η(t) ∈ Hp+1(R ) for all 0 ≤ t ≤ T.
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Proof.

Semigroup approach. To show that the map u 7→ (γu)x is locally Lipschitz we use
Lemma 4.3.3 and the fact that the equation for η is linear.

Lemma 4.3.5

Let F and u0 as in Lemma 4.3.4 with p ≥ 3. For all t ≥ 0 we have

‖u(t)‖2 ≤ eKt‖u0‖2, (4.34)

with K being the constant from (4.32).

Proof.

Since u ∈ H3(R ) we have η(t) ∈ H4(R ) ⊂ C3(R ) and so estimate (4.32) holds true.
Then

d

dt

∫
u2(t, x)dx = 2

∫
u(t, x)(εuxx(t, x)− (γ(t, x)u(t, x))xdx

= −2ε

∫
u2
x(t, x)dx− 2

∫ (
γuux + γxu

2
)

(t, x)dx.

Now we use the equality (γu2)x = γxu
2 + 2γuux. The integral of (γu2)x vanishes

since γ is bounded and u ∈ L2. The integral of u2
x is positive and γx is bounded

by K. Hence we estimate

d

dt
‖u(t)‖22 ≤

∫
|γx(t, x)|u2(t, x)dx ≤ K‖u(t)‖22.

The claim then follows.

Lemma 4.3.6

Let F and u0 as in Lemma 4.3.4 with p ≥ 3. For all T > 0 there exists a constant
C = C(T,K, ‖u0‖2) independent of ε > 0 such that

‖ux(t)‖2 ≤ C (‖u0x‖2 + 1) (4.35)

for 0 ≤ t ≤ T. The constant grows in T at most like ee
TT .

Proof.

Differentiating equation (4.33) with respect to x and setting v = ux gives

vt = εvxx − γvx − 2γxv − γxxu. (4.36)

We use the same idea as above to estimate ‖v‖2. There is an additional term in
the equation which we estimate by the Cauchy-Schwarz inequality.

d

dt

∫
v2(t, x)dx = 2

∫
v(t, x) (εvxx − γvx − 2γxv − γxxu) (t, x)dx

= −2ε

∫
v2
x(t, x)dx−

∫
(γv2)x(t, x)dx

+3

∫
(γxv

2)(t, x)dx− 2

∫
(γxxuv)(t, x)dx
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This gives the inequality

d

dt
‖v(t)‖22 ≤ 3K‖v(t)‖22 + 2K‖u(t)‖2‖v(t)‖2.

On comparing for z, ζ > 0 the differential equations ż ≤ az + b
√
z, a, b > 0, and

ζ̇ = g(ζ) with

g(ζ) =

{
a+ b, 0 < ζ ≤ 1
(a+ b)ζ, ζ ≥ 1

such that az + b
√
z ≤ g(z) for z > 0 one finds z(t) ≤ e(a+b)t(1 + z(0)). Here we

have a = 3K and b = 2KeKT . This proves the claim.

Lemma 4.3.7

Let F and u0 as in Lemma 4.3.4 with p ≥ 3. For all T > 0 there exists a constant
C = C(T,K, ‖u0‖H1 , β, ‖F‖C1) independent of ε > 0 such that

‖uxx(t)‖2 ≤ C (‖u0xx‖2 + 1) (4.37)

for 0 ≤ t ≤ T.

Proof.

Differentiating equation (4.33) twice and setting v = uxx we get

vt = εvxx − γvx − 3γxv − 3γxxux − γxxxu.

We can treat this equation as above except for the last term. Differentiating the
equation for η we can replace

ηxxx =
1

β
(ηx − F1(u, ux)ux − F2(u, ux)uxx) .

As usual, subscripts of F denote partial derivatives. We get an additional term
containing v. We arrive at the equation

d

dt
‖v(t)‖22 = −2ε

∫
v2
x(t, x)dx −

∫
(γv2)2

x(t, x)dx

−5

∫
(γxv

2)(t, x)dx −
∫ (

3γxxux −
1

β
γx +

F1

β
ux

)
uv(t, x)dx

−
∫
F2

β
uv2(t, x)dx.

Hence we estimate

d

dt
‖v(t)‖22 ≤

(
5K +

‖F2‖∞
β

eKT ‖u0‖2
)
‖v(t)‖22

+C(K,β, ‖F1‖∞)‖u(t)‖H1‖v(t)‖2.

This inequality hat the same structure as in the preceeding lemma. Here we have
a = (5K + ‖F2‖∞

β eKT‖u0‖2) and b = C(T,K, β, ‖F1‖∞, ‖u0‖H1). A similar argu-
ment as above finishes the proof.
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Lemma 4.3.8

Let F and u0 as in Lemma 4.3.4 with p ≥ 3. For all T > 0 there exists a constant
C = C(T,K, ‖u0‖H2 , β, ‖F‖C2) such that

‖uxxx(t)‖2 ≤ eCt (‖u0xxx‖2 + 1) (4.38)

for 0 ≤ t ≤ T.

Proof.

Similarly to the above lemma.

Corollary 4.3.9

Let F and u0 as in Lemma 4.3.4 with p ≥ 3. Then there exists a unique solution
u ∈ C([0,∞),H3(R )) to system (4.29) with η ∈ C([0,∞),H4(R )).

Lemma 4.3.10

Let F and u0 as in Lemma 4.3.4 with p ≥ 3. Then for all t ≥ 0 there is a constant
C = C(t) independent of 0 < ε ≤ 1 such that

‖ut(t)‖2 ≤ C‖u(t)‖H2 . (4.39)

Proof.

A simple computation and the Cauchy-Schwarz inequality give∫
u2
t (t, x)dx =

∫
(εuxx − (γu)x)2 (t, x)dx

= ε2
∫
u2
xx(t, x)dx− 2ε

∫
uxx(γu)x(t, x)dx+

∫
(γu)2

x(t, x)dx

≤ ε2‖uxx(t)‖22 + 2ε‖uxx(t)‖2‖(γu)x(t)‖2 + ‖(γu)x(t)‖22.

By Lemma 4.3.7 the norm of uxx can be bounded independently of ε > 0. For the
last term we find the estimate∫

(γu)2
xdx =

∫
γ2
xu

2 + γγxuux + γ2u2
xdx

≤ 2K2 (‖u‖2 + ‖ux‖2) ,

where we use boundedness of γ. The last two terms are bounded independently of
ε > 0 by Lemmas 4.3.5 and 4.3.6.

Lemma 4.3.11

Let F and u0 as in Lemma 4.3.4 with p ≥ 3. Then for all t ≥ 0 there is a constant
C = C(t) independent of 0 < ε ≤ 1 such that

‖uxt(t)‖2 ≤ C‖u(t)‖H3 . (4.40)

Proof.

Similarly as above.
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4.3.2 Proof of Theorem 4.3.1

From now on we write the superscript ε again. Suppose that the initial data satisfy
u0 ∈ H3 ∩ L1(R ), u0 ≥ 0.

(i) Boundedness independent of 0 < ε ≤ 1
By the preceeding Lemmas 4.3.5 through 4.3.11 we know that there is a constant
C independent of 0 < ε ≤ 1 such that on ΩT we have

‖uε‖H1(ΩT ), ‖uεx‖H1(ΩT ) ≤ C.

Lemma 4.3.3 applied to η and ηx gives an ε-independent bound

‖ηε‖H1(ΩT ), ‖ηεx‖H1(ΩT ) ≤ C,

where ηε denotes the solution of the elliptic equation for η with uε, uεx on the right
hand side. Positivity of uε and the conservation law structure of the equation for
uε give ‖uε(t)‖L1(R) = const. and hence we may assume also that

‖uε‖L1(ΩT ) ≤ C.

(ii) Convergence
Given some domain Ω ⊂ R n the imbedding W k,p(Ω) ↪→ Lqloc(Ω) is compact for
kp ≤ dim(Ω) and 1 ≤ q < ∞ (see Theorem 6.2 in [1]). Here we have k = 1, p =
2,dim(ΩT ) = 2. Hence there is a sequence εn → 0 and there are functions u ∈
L1 ∩ L2(ΩT ) and v, η, ζ ∈ L2(ΩT ) such that

uεn −→ u, uεnx −→ v
ηεn −→ η, ηεnx −→ ζ

}
in L2

loc(ΩT ) as n→∞.

For all ε > 0 and all test functions ψ ∈ C1(R ) with compact support we have∫
ηεxψdx = −

∫
ηεψxdx,

and hence ζ = ηx in the weak sense and similarly v = ux. Even though the
convergence need not be in L2(ΩT ) the L2-norm of the limit is nonetheless bounded
by the L2-norm of the sequences. In particular u is measurable with respect to t
and u(t) ∈ H1(R ) for almost all t. This then gives

u ∈ L1(ΩT ) ∩ L∞([0, T ],H1(R )) and η ∈ L∞([0, T ],H1(R )).

(iii) The limit satisfies the equation
Multiplying equation (4.33) for uε with a test function φ ∈ C1(R 2) with compact
support in [0, T )× R and integrating over ΩT we get after partial integration∫ T

0

∫
uεφt + γεuεφxdxdt = −ε

∫ T

0

∫
uεxφxdxdt−

∫
u0φdx.

(4.41)

The weak convergence uεn → u as εn → 0 implies∫ T

0

∫
uεnφtdxdt −→

∫ T

0

∫
uφtdxdt.
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Convergence of the second term is obvious since the scalar product in L2 is con-
tinuous in both variables, hence∫ T

0

∫
γεnuεnφxdxdt −→

∫ T

0

∫
γuφxdxdt.

The convergence of uεnx implies the boundedness of the first integral on the right
hand side of equation (4.41). Then, as εn → 0, this term vanishes. Altogether we
have shown that in the limit∫ T

0

∫
uφt + γuφxdxdt = −

∫
u0φdx,

which means that the limit satisfies equation (4.29) in the weak sense.

The fact that η satisfies the elliptic equation for almost all t ∈ [0, T ] follows
similarly when we take into account that there are subsequences which converge
a.e. Regularity theory for the elliptic equation gives η(t) ∈ H2 for almost all
t ∈ [0, T ] and

‖η(t)‖H2 ≤ C‖u(t)‖H1 .

(iv) Initial Conditions
We define the set L ⊂ [0, T ] such that for all t ∈ [0, T ]\L and for almost all x ∈ R
the point (t, x) is a Lebesgue point of u and η. The measure of L is zero by the
regularity properties of u and η. Fix ρ > 0 and set I = [−ρ, ρ]. We show that

lim sup
t→0,t∈[0,T ]\L

‖u(t, ·) − u0(·)‖H1(I) = 0.

For all ε > 0 and t ∈ [0, T ]\L we have

‖u(t, ·) − u0(·)‖H1(I) ≤ ‖u(t, ·) − uε(t, ·)‖H1(I) + ‖uε(t, ·) − u0(·)‖H1(I).

For the first term on the right hand side we note that by passing to a subsequence,
also denoted by εn we can assume that uεn → u, uεnx → ux a.e. Hence the first
term is arbitrarily small for almost all t.

The second term can be split as

‖uε(t, ·) − u0(·)‖H1 ≤ ‖(Tε(t)− Id)u0‖H1 +

∫ t

0
‖Tε(t− s)(γεuε)x(s)‖H1ds.

Since Tε is a strongly continuous semigroup, the first term vanishes as t→ 0. The
integral can be estimated by

CεKe
CT ‖u0‖H1(R)

√
t,

which vanishes as t→ 0.

To show the initial condition for η we use that F is Lipschitz and that the equa-
tion for η is linear. With Lemma 4.3.3 and the convergence uεn → u the assertion
follows.



80 CHAPTER 4. SPEED ADAPTATION

(v) Uniqueness and Regularity
Solutions of conservation laws are not unique in general. Additional conditions
like entropy conditions have to be imposed [33]. One might be able to adapt the
entropy method to the equations here.

For initial data in H3 we get solutions in H1. This loss of differentiability is
partly due to the formulation of the problem (the explicit appearance of ux in the
equations) and partly due to the method of proof (using the compact imbedding
results). In order to achieve better regularity properties one might be able to use
different compactness results like the Fréchet-Kolmogoroff Theorem.

Remark

Probably one can show that Theorem 4.3.1 remains true if Hq(R ) = W q,2(R ) is
replaced by W q,1(R ) wherever it occurs in the theorem. To show statements like
Lemmas 4.3.5 through 4.3.11 one could use an estimate by Vol’pert (Theorem 17.2
in [64]). Lemma 4.3.3 has to be replaced by the following lemma, which ensures
solvability of elliptic equations in L1.

Lemma 4.3.12

Let f ∈ L1(R ). Then there exists a unique solution η ∈ W 2,1(R ) of the elliptic
equation (β∆ − 1)η = f and ‖η‖W 2,1 ≤ C(β)‖f‖L1 . Furthermore η ∈ C1(R ) and
‖η‖C1 ≤ C(β)‖f‖L1 .

Proof.

Suppose f ∈ L1(R ). It suffices to treat the case β = 1. Taking Fourier transforms
we get

η̂(κ) =
−1

κ2 + 1
f̂(κ),

where by the Riemann-Lebesgue Lemma f̂ ∈ Cuc(R ) and f̂(κ)→ 0 as |κ| → ∞ as
well as ‖f̂‖C0 ≤ ‖f‖L1 . Obviously η̂ is integrable and we apply the inverse Fourier
transform to get a function ˇ̂η = ζ ∈ Cuc(R ) which is the candidate for the solution.
As above we know ζ(x)→ 0 as |x| → ∞ and ‖ζ‖C0 ≤ ‖η̂‖L1 ≤ C‖f‖L1.

Claim: ζ ∈ L1(R )

∫
|ζ(x)|dx =

1

2π

∫ ∣∣∣∣∣
∫ −f̂(κ)

κ2 + 1
eiκxdκ

∣∣∣∣∣ dx
≤ ‖f̂‖∞

2π

∫
π

2
e−|x|dx ≤ ‖f‖L1

From this we conclude that η = ζ = ˇ̂η. From the equation we furthermore get that
ηxx ∈ L1(R ) with ‖ηxx‖L1 ≤ 2‖f‖L1 .

Suppose for the moment that |f̂(κ)| ≤ C
κ for large enough |κ|. Then

κη̂(κ) =
−κ

κ2 + 1
f̂(κ) ∈ L1(R ).
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We can repeat the process above to get ηx ∈ Cuc(R ) and ηx(x)→ 0 as |x| → ∞ as
well as ‖ηx‖L1 ≤ C‖f‖L1 . Furthermore we can integrate

ηx(y) =

∫ y

−∞
ηxx(s)ds ≤ ‖ηxx‖L1 ≤ 2‖f‖L1

which gives the desired C1-estimate for η.
It remains to show that actually |f̂(κ)| ≤ C

κ for large enough |κ|. To this end
consider a step function

g(x) = Aχ[a,b](x)

which has the Fourier transform

ĝ(κ) =
iA

2κ

(
eiaκ − eibκ

)
.

We can find a sequence of finite linear combinations of such step functions (on
disjoint intervals)

gm =
lm∑
n=1

Amn χ[amn ,b
m
n ]

such that gm → f in L1 as m→∞. This implies that ĝm → f̂ uniformly. We get
a bound ∣∣∣∣∣∣ lim

m→∞

lm∑
n=1

Amn (eia
m
n κ − eibmn κ)

∣∣∣∣∣∣ ≤ 2C|κ| ≤ 2πC

for κ ∈ [−π, π]. The term in absolute values is a periodic function in κ and hence
the claim follows.

4.4 The Full System for u±

Finally, we combine the speed adaptation process with the alignment process.
There are individuals moving to the right and to the left. The respective densities
are denoted by u±. Individuals change direction according to the turning function
from Chapter 2. They also adapt their speed γ± according to the equations derived
at the beginning of the present chapter. We assume that each individual adapts
its speed only to the speed of others which move in the same direction as the
individual itself. The system then reads

u±t ± (γ±u±)x = εu±xx ± µ(u+, u−)(u± − u∓),

τη± = βη±xx + F (u±,±u±x ),

γ± = η± + γ∗,

(4.42)

where µ(u+, u−) = a(u)u+u− − µ∗/2 and a(u) = a∗/(1 + uk) for k = 2, 3, a∗ > 0.
We may fix small values of ε, β, τ and consider the behavior of the system

depending on the “biological parameters” preferred density u∗, preferred speed
γ∗, strength of alignment a∗, rate of turning µ∗ and strength of speed adaptation
χ. For a∗ = χ = 0, µ∗ > 0 the system reduces to (1.5) and the stationary state
u+ = u− = const. is stable. Increasing a∗ destabilizes this stationary state. If
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a∗ = µ∗ = 0 then the equations for u± decouple and increasing χ destabilizes
the constant solution u+ = u− < u∗, γ± = γ∗. We expect that also for small µ∗
increasing χ can destabilize this stationary state.

We can conjecture what happens for µ∗ = 0. By alignment all individuals tend
to move in the same direction, by speed adaptation individuals tend to move in
patches of density u∗ in either direction. The bifurcation behavior from u+ = u− =
const. should depend on the relative strength a∗/χ.

Due to the number of parameters, analytical stability results are difficult to
obtain. Numerical simulations could give some information about possible phe-
nomena. From our point of view, model (4.42) is a good starting point for further
studies to understand the behavior of moving polarized groups. Here we show ex-
istence of solutions for τ = 0, ε > 0 and then prove that the vanishing viscosity
approach can be adapted to the system of four equations.

Under the assumption τ = 0 the second and the third equation of (4.42) can
be replaced by

γ± = βγ±xx +E(u±,±u±x ). (4.43)

Theorem 4.4.1

Let E ∈ C1,1
b , ε > 0 and τ = 0. Choose initial data u±0 ∈ C2

b (R ) with u±0 ≥ 0. Then
there exists a unique global nonnegative solution (u±, γ±) ∈ C([0,∞), C2

b (R )4) of
(4.42). The speed functions satisfy

0 ≤ γ± ≤ Emax, ‖γ±‖C2 ≤ C(β)‖u±‖C2 and ‖γ±‖C2 ≤ K.

Proof.

By (4.43) the equations for γ± decouple and Lemmas 4.2.6 and 4.2.8 apply to
both γ+ and γ−. We abuse notation and write γ± instead of γu

±
for the solution

of (4.43). Then system (4.42) can be written as a system of two equations for
the densities u±. Let X = C2(R )2 with norm ‖(u, v)‖X = ‖u‖C2 + ‖v‖C2 and
Y = C1(R )2 accordingly. We set ν = (u+, u−)T . Then (4.42) becomes

νt = Aν + F(ν) = Aν + F1(ν) + F2(ν), (4.44)

where A =diag(ε∆, ε∆) is the generator of an analytic semigroup on X. The
nonlinearities are

F1(ν) = −((γ+u+)x, (γ
−u−)x)T ,

F2(ν) = µ(u+, u−)(u+ − u−, u− − u+)T .

From Theorem 4.2.7 we know that each component of F1 is locally Lipschitz from
C2(R ) into C1(R ). Hence so is F1 from X to Y . Now consider one component of
F2. Note that µ and all its derivatives are bounded. The Lipschitz constant of µ
and its first derivative can be bounded by ‖µ‖C2 . Choose u±, ũ± ∈ C1(R ) with
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‖u±‖C1 , ‖ũ±‖C1 ≤ k0 for some k0 > 0. Then

‖µ(u+, u−)(u+ − u−)− µ(ũ+, ũ−)(ũ+ − ũ−)‖C1

≤ 1

2
‖(µ(u+, u−) + µ(ũ+, ũ−))(u+ − u− − ũ+ + ũ−)‖C1

+
1

2
‖(µ(u+, u−)− µ(ũ+, ũ−))(u+ − u− + ũ+ − ũ−)‖C1

≤ ‖µ‖C1

(
‖u+ − ũ+‖C1 + ‖u− − ũ−‖C1

)
+Ck0‖µ‖C2(‖u+ − ũ+‖2 + ‖u− − ũ−‖C1).

Hence F2 is even locally Lipschitz from C1(R ) into C1(R ). Then of course F is
locally Lipschitz and Proposition 1.1 §15 in [62] gives local existence of solutions
and uniqueness.

Suppose u±(t, ·) > 0 for 0 ≤ t < t0 and u+(t0, x0) = 0, say. Then by the
differential equation

u+
t (t0, x0) = εu+

xx + µu− > 0,

hence positivity is preserved.

To show global existence of solutions we adapt the proof of Theorem 4.2.9. We
estimate the norm of ν in X as follows.

‖ν(t)‖X = ‖u+(t)‖C2 + ‖u−(t)‖C2

≤ ‖u+
0 ‖C2 + ‖u−0 ‖C2 +

∫ t

0
‖Tε(t− s)(γ+u+ + γ−u−)x(s)‖C2ds

+2

∫ t

0
‖Tε(t− s)(µ(u+, u−)(u+ − u−))(s)‖C2ds

≤ ‖ν0‖X +

∫ t

0

Cε√
t− s

2K‖ν(s)‖Xds

+2

∫ t

0

Cεµ∞√
t− s

‖ν(s)‖Xds,

where µ∞ = supx |µ(u+, u−)|+supx |µj(u+, u−)u±|. Subscripts of µ denote deriva-
tives with respect to the j-th component. With the norm ‖ν‖T = sup0≤t≤T ‖ν(t)‖X
we have

‖ν‖T ≤ ‖ν0‖X + 2KCε‖ν‖T
√
T + 2Cεr∞‖ν‖T

√
T ,

and hence

‖ν‖T ≤ ‖ν0‖X
1− C

√
T
,

where C = 2Cε(K + µ∞) does not depend on initial data. Hence we can apply a
continuation argument to complete the proof.

Finally we show that the vanishing viscosity approach from the previous section
can be applied here also. There is a weak solution of (4.42) for ε = 0. If the initial
data are sufficiently smooth then the solution u±(t, ·) remains continuous in x for
arbitrary long times T. The analogue of Theorem 4.3.1 is the following.



84 CHAPTER 4. SPEED ADAPTATION

Theorem 4.4.2

Let F be in C2,1
b , T > 0 and ΩT = [0, T ]× R . Then for all nonnegative initial data

u±0 ∈ H3(R ) ∩ L1(R ) there exists a solution (u±, η±) which satisfies u± ≥ 0, to
system (4.42) with ε = 0 following sense

• u± ∈ L1(ΩT ) ∩ L∞([0, T ],H1(R )) and u± satisfy the weak formulation of
(4.42) for all φ ∈ C1(ΩT ) with compact support in [0, T ) × R .

• η± ∈ L∞([0, T ],H2(R )) and for almost all t ∈ [0, T ] the functions η± satisfy
the weak formulation of (4.42) for all ψ ∈ C1(R ) with compact support.

• initial values are assumed in the weak sense, i.e. there exists a set L ⊂ [0, T ]
of Lebesgue measure 0, such that upm(t, ·), η±(t, ·) are defined a.e. on R for
t ∈ [0, T ]\L and satisfy

lim sup
t→0,t∈[0,T ]\L

‖u±(t, ·) − u±0 (·)‖H1(I) = 0

and

lim sup
t→0,t∈[0,T ]\L

‖η±(t, ·) − η±(0, ·)‖H2(I) = 0

for all bounded intervals I = [−ρ, ρ].

Corollary 4.4.3

Let F be in C2,1
b and T > 0. Then for all nonnegative initial data u±0 ∈ C3(R )

with compact support there exists a solution to (4.42) with ε = 0 such that u±(t)
remains continuous for t ∈ [0, T ].

Proof.

Since the proof closely follows the one in the previous section we only give the
details where it deviate from what was done before.

(i) The equations for η±.
The equation for η+ is independent of u− and vice versa. Therefore Lemma 4.3.3
holds for η+ as well as for η− : Given u± ∈ Hp(R ) for some p ≥ 1 there exist
unique solutions η± ∈ Hp+1(R ) of the equation for η in (4.42) and

‖η±‖Hp+1 ≤ C(β, ‖F‖Z)‖u±‖Hp .

Also as before if p ≥ 3 then η± ∈ C2 and ‖η±‖C2 ≤ K.
Again, abusing notation, we denote by η± the unique solutions corresponding to
u±. With this notation system (4.42) reduces to two equations for the densities.

(ii) Local Existence in Hp(R )2

It remains to show that F2 : (Hp)2 → (Hp−1)2 is locally Lipschitz. Let u±, v± ∈
Hp with ‖u±‖Hp , ‖v±‖Hp < k0. We use that µ and all its derivatives are Lipschitz.
Furthermore Hp(R ) is a Banach algebra for p ≥ 1 with continuous multiplication.
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Then

‖F2(u+, u−)−F2(v+, v−)‖(Hp−1)2

≤ ‖(µ(u+, u−)− µ(v+, v−))(u+ − u− − v+ + v−)‖Hp−1

+‖(µ(u+, u−)− µ(v+, v−))(u+ − u− − v+ + v−)‖Hp−1

≤ Lp(µ)C1(k0)‖u± − v±‖Hp−1

+C2(‖µ‖Cp−1)‖u± − v±‖Hp−1

≤ L(µ, k0)‖u± − v±‖Hp−1 .

The different constants have the following meaning: Lp(µ) is the supremum of the
Lipschitz constants of derivatives of µ up to order p − 1, the factors Cj are just
suitable multiples of their arguments and L is the sum of LpC1 and C2.

(iii) The Estimate of ν = (u+, u−) in L2(R )2

d

dt
‖u±(t)‖22 =

∫
u±
(
εu±xx − (γ±u±)x + µ(u+, u−)(u+ − u−)

)
(t, x)dx

≤ K‖u±(t)‖22 + ‖µ‖C0‖u±(t)‖22 + ‖µ‖C0‖u+(t)‖2‖u−(t)‖2,

where the first term comes from Lemma 4.3.5. Due to the coupling, we cannot
derive a bound for u+ or u− alone from this inequality, but we can derive one for
ν = (u+, u−) with respect to the norm ‖ν‖2 = ‖u+‖2 + ‖u−‖2, namely

‖ν(t)‖22 ≤ e(K+2‖µ‖)t‖ν0‖22.

From now on we assume u±0 ∈ H3(R ), u±0 ≥ 0 and denote by ν = (u+, u−)
the unique solution of (4.42) with t ∈ [0, T ] for fixed T > 0. We show estimates of
different norms of ν which are independent of ε.

(iv) The Estimate of νx = (u+
x , u

−
x ) in L2(R )2

Like in Lemma 4.3.6 we compute

d

dt
‖u±x (t)‖22 ≤ 3K‖u±x (t)‖22 + 2K‖u±(t)‖2‖u±x (t)‖2

+

∫
|u±x

∂

∂x
[µ(u± − u∓)](t, x)|2dx.

We have to estimate the last term. First note that the derivatives of µ times the
density, i.e. µ1,2(u+, u−)u±, are bounded globally in x. Then∫

u+
x [(µ1u

+
x + µ2u

−
x )(u+ − u−) + µ(u+

x − u−x )]dx

≤
∫

[µ1u
+(u+

x )2 + µ1u
−(u+

x )2 + µ2u
+u+

x u
−
x + µ2u

−u+
x u
−
x ]dx

+A(‖u+
x ‖22 + ‖u+

x ‖2‖u−x ‖2)

≤ 3A(‖u+
x ‖22 + ‖u+

x ‖2‖u−x ‖2),

where A = max(‖µ‖0, ‖µju±‖0). A similar estimate holds for u−x and hence for the
sum of both. This gives the estimate

‖νx(t)‖22 ≤ eCt(‖ν0‖22 + 1),
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where C = 4K + 2Ke(K+2‖µ‖)T ‖ν0‖22 + 5A.

(v) Higher Order Estimates of ν
Successive differentiation and estimation give the analogue of Corollary 4.3.9.
For nonnegative initial data u±0 ∈ H3(R ) there exists a unique solution u± ∈
C([0,∞),H3(R )) to system (4.42) with η± ∈ C([0,∞),H4(R )). Furthermore there
is a constant C independent of ε > 0 such that for t ∈ [0, T ] we have

‖ν(t, ·)‖H3 ≤ C.

The estimates for νt and νxt are similar to Lemmata 4.3.10 and 4.3.11.

(vi) Boundedness of Solutions
Now we explicitly take into account the dependence on ε. We assume nonnegative
initial data u±0 ∈ H3(R ) and denote the solution to (4.42) by νε = (u+ε, u−ε).
Then the following expressions are bounded independently of 0 < ε ≤ 1.

‖νε‖2, ‖νεx‖2, ‖νεt ‖2, ‖νεxx‖2, ‖νεxt‖2,

and also with z = (η+, η−) the following

‖zε‖2, ‖zεx‖2, ‖zεt ‖2, ‖zεxx‖2, ‖zεxt‖2.

(vii) Convergence
By a compact imbedding argument as before we find functions u± ∈ L1 ∩L2(ΩT )
and η± ∈ L2(ΩT ) and a sequence εn → 0 such that for n→∞

u±εn −→ u± in L1
loc ∩ L2

loc(ΩT )

u±εnx −→ u±x
η±εn −→ η±

η±εnx −→ η±x

 in L2
loc(ΩT ).

The convergence is also pointwise convergence a.e. The rest of the proof is as in
the proof of Theorem 4.3.1.

4.5 Remarks

1. Grindrod [16] derives the following system for density dependent aggregation
due to the expected net reproduction rate E.

ut = δuxx − (wu)x + ruE(u),

0 = εwxx − w +∇E.

The term ruE(u) is a production term and the velocity w is chosen as to
maximize E. The elliptic damping for w is introduced since w = ∇E would
lead to an ill-posed problem. Simulations show aggregation phenomena and
a linear analysis is performed. No analytical results on existence of solutions
are given, the limit δ → 0 is not considered.
If the time scale for reproduction is much longer than for motion then, in
the limit r = 0, and the system is similar to (4.29) with γ∗ = 0. Due to the
different nonlinearities in the elliptic equations the results obtained here do
not easily carry over to the system there.
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2. In a series of papers the question of swarm formation is discussed, which
is closely related to the schooling model here. In particular the question is
which type of models supports traveling pulse solutions. It is shown that
purely local models are not applicable [11].
Mogilner and Edelstein-Keshet [39] derive a non-local model for swarm-
formation, assuming attractive and repulsive forces between individuals. It
has the form

ut = Duxx − (V u)x

V = aeu+ (Aa −Aru)(K ∗ u),

where the convolution kernel K is an odd kernel with compact support. The
diameter of the support can be viewed as the radius of vision of individuals.
The convolution K ∗ u acts as a generalized gradient which prevents the
equation from being ill-posed. (The approximation by Taylor series expan-
sion is ill-posed.)
Attracting forces Aa are stronger than repulsive forces Aru at low densities
but weaker at high densities. A detailed linear analysis is carried out, it is
shown that a rectangular traveling pulse is a solution to the system with
D = 0. A stability analysis for a smooth perturbation of such a pulse in case
of low diffusion D << 1 shows that traveling band solutions are only locally
stable in time.

3. Chemotaxis in another example for density dependent aggregation. The par-
ticle velocity depends on some external signal which in turn depends on the
density. Models consist of equations for the density and for the signal (see for
example [32], [27], [28]). The coupling between speed and density is some-
what indirect whereas in the model here it is direct.

4. The vanishing viscosity approach has been used to prove existence of solu-
tions to (systems of) conservation laws in one and several space dimensions
in spaces of functions of bounded variation and of bounded measurable func-
tions (cf. [64], [33]). The speed function depends pointwise on the density.
There is no dependence on the gradient of the density. In [27] a chemotaxis
model is studied with the vanishing viscosity approach. The gradient of the
density does not appear there either.

5. Formally we can interpret the ill-posed form of equation (4.1) with γu = F
as follows: As long as the density is small, i.e. u < u∗, high values become
higher and low values become lower. In other words: Contrasts are enhanced.
Contrast enhancing is an important part of image processing and one of the
methods used for it is the application of anisotropic nonlinear diffusion [53],
[54]. The basic equation reads

ut − (A(uεx)ux)x = f(u),

whereA ≥ 0 is a monotone decreasing function. If uε = u then the problem is
ill-posed since the diffusion coefficient may change sign. Hence the difficulty
is the same as in the model presented here. The function uε is an appropriate
mollification introduced in order to make the equation well-posed.
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[38] Lizana, M., Padron,V. A spatially discrete model for aggregating populations.
J. Math. Biol. 38 (1999), 79–102

[39] Mogilner, A. Edelstein-Keshet, L. A non-local model for a swarm. J. Math.
Biol. 38 (1999), 534–570

[40] Mogilner, A., Edelstein-Keshet, L. Spatio–angular order in populations of self
aligning objects. Physica D 89 (1996), 346–367

[41] Mogilner, A., Edelstein-Keshet, L. Selecting a common direction I. J. Math.
Biol. 33 (1995), 619–660

[42] Mogilner, A., Edelstein-Keshet, L., Ermentrout, G.B. Selecting a common
direction II. J. Math. Biol. 34 (1996), 811–842

[43] Murray, J.D. Mathematical Biology. Springer Verlag, Berlin, 1993

[44] Niwa, H. Newtonian dynamical approach to fish schooling. J. Theor. Biol. 181
(1996), 47–63

[45] Okubo, A. Dynamical aspects of animal grouping: swarms, schools, flocks and
herds. Adv. in Biophysics 22 (1986), 1–94

[46] Othmer, H., Dunbar, S., Alt, W. Models of dispersal in biological systems. J.
Math. Biol. 26 (1988), 263–298

[47] Padron, V. Aggregation on a nonlinear parabolic functional differential equation.
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