
Mesh Compression

Dissertation
der Fakultät für Informatik

der Eberhard-Karls-Universität zu Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt von
Dipl.-Inform. Stefan Gumhold

aus Tübingen

Tübingen
2000

Tag der mündlichen Qualifikation: 19.Juli 2000
Dekan: Prof. Dr. Klaus-Jörn Lange
1. Berichterstatter: Prof. Dr.-Ing. Wolfgang Straßer
2. Berichterstatter: Prof. Jarek Rossignac

iii

Zusammenfassung

Die Kompression von Netzen ist eine weitgefächerte Forschungsrichtung mit Anwen-
dungen in den verschiedensten Bereichen, wie zum Beispiel im Bereich der Hand-
habung extrem großer Modelle, beim Austausch von dreidimensionalem Inhalt über
das Internet, im elektronischen Handel, als anpassungsfähige Repräsentation für Vo-
lumendatensätze usw. In dieser Arbeit wird das Verfahren der Cut-Border Machine
beschrieben. Die Cut-Border Machine kodiert Netze, indem ein Teilbereich durch das
Netz wächst (region growing). Kodiert wird die Art und Weise, wie neue Netzele-
mente dem wachsenden Teilbereich einverleibt werden. Das Verfahren der Cut-Border
Machine kann sowohl auf Dreiecksnetze als auch auf Tetraedernetze angewendet wer-
den. Trotz der einfachen Struktur des Verfahrens kann eine sehr hohe Kompression-
srate erzielt werden. Im Falle von Tetraedernetzen erreicht die Cut-Border Machine
die beste Kompressionsrate von allen bekannten Verfahren. Die einfache Struktur der
Cut-Border Machine ermöglicht einerseits die Realisierung direkt in Hardware und ist
auch als Implementierung in Software extrem schnell. Auf der anderen Seite erlaubt die
Einfachheit eine theoretische Analyse des Algorithmus. Gezeigt werden konnte, dass
für ebene Triangulierungen eine leicht modifizierte Version der Cut-Border Machine
lineare Laufzeiten in der Zahl der Knoten erzielt und dass die komprimierte Darstellung
nur linearen Speicherbedarf benötigt, d.h. nicht mehr als fünf Bits pro Knoten.

Neben der detaillierten Beschreibung der Cut-Border Machine mit mehreren Ver-
besserungen und Optimierungen, enthält die Arbeit eine Einführung zu Netzen und
geeigneten Datenstrukturen und entwickelt mehrere Kodierungsverfahren, die im Bere-
ich der Netzkompression Anwendung finden. Eine breite Übersicht verwandter Ar-
beiten gibt Einblick in des Forschungsgebiet. Weiterhin wird die Effizienz mehrerer
in der Literatur beschriebener Verfahren verbessert. Insbesondere konnte die algorith-
misch erzielte obere Schranke für die Kodierung ebener Triangulierungen bis auf zehn
Prozent oberhalb der theoretischen unteren Schranke verbessert werden. Das ist bis jetzt
das beste Resultat, das erzielt werden konnte.

iv

Abstract

Mesh Compression is a broad research area with applications in a lot of different areas,
such as the handling of very large models, the exchange of three dimensional content
over the internet, electronic commerce, the flexible representation of volumetric data
and so on. In this thesis the mesh compression method of the Cut-Border Machine
is described. The Cut-Border Machine encodes meshes by growing a region through
the mesh and encoding the way, in which the mesh elements are incorporated into the
growing region. The Cut-Border Machine can be applied to triangular and tetrahedral
meshes. Although the method is not too complicated, it achieves very good compression
rates. In the tetrahedral case the Cut-Border Machine performs best among all known
methods. The simple nature of the Cut-Border Machine allows on the one hand for
a hardware implementation and performs also as software implementation extremely
well. On the other hand the simplicity allows for a theoretical analysis of the Cut-
Border Machine. It could be shown, that for planar triangulations a slightly modified
version of the Cut-Border Machine runs in linear time in the number of vertices and that
the compressed representation only consumes linear storage space, i.e. no more than
five bits per vertex.

Besides the detailed description of the Cut-Border Machine with several improve-
ments and optimizations, the thesis gives an introduction to meshes and appropriate
data structures, develops several coding techniques useful for mesh compression and
gives a broad overview of related work. Furthermore the author improves the encoding
efficiency of several other compression techniques. In particular could the algorithmi-
cally achieved upper bound for the encoding of planar triangulations be improved to ten
percent above the theoretical limit, what is the best known result up to now.

Contents

Preface xiii

I Introduction 1

1 Basics on Meshes 5
1.1 Mesh Concept . 5

1.1.1 Point-Set Models . 5
1.1.2 Surface-Based Models . 6
1.1.3 Connectivity . 7
1.1.4 Geometry . 10

1.2 Application Areas . 11
1.3 Triangular and Tetrahedral Meshes . 12
1.4 Basic Relations . 13
1.5 Data Structure . 14

1.5.1 Halfedge Data Structure . 15
1.5.2 Computing Halfedge Adjacencies 16
1.5.3 Handling Mesh Attributes . 17
1.5.4 Tetrahedral Mesh Data Structure 18

2 Related Work 21
2.1 Mesh Compression . 22

2.1.1 Acceleration of Rendering . 22
2.1.2 Single Resolution Mesh Compression 23
2.1.3 Graph Encoding Theory Related Results 25
2.1.4 Tetrahedral Mesh Compression 26

2.2 Mesh Simplification . 26
2.3 Progressive Mesh Compression . 27
2.4 Remeshing . 28

3 Coding Techniques 31
3.1 Huffman Coding . 31
3.2 Arithmetic Coding . 32

v

vi CONTENTS

3.2.1 Index Coding . 34
3.2.2 Flag Encoding . 34
3.2.3 Adaptive Arithmetic Coding 34
3.2.4 Sparse Flag Coding . 35

3.3 Variable Length Coding . 36

II Triangle Mesh Compression 39

4 Bounds on Triangle Mesh Compression 43
4.1 Planar Triangulations . 43
4.2 Planar Triangulations with Holes . 44
4.3 Non Planar Triangle Meshes . 45

5 The Cut-Border Machine 47
5.1 Cut-Border Operations & Compressed Representation 48
5.2 Implementation . 52

5.2.1 Cut-Border Data Structure . 52
5.2.2 Compression Algorithm . 53
5.2.3 Decompression Algorithm . 55
5.2.4 The Models . 57
5.2.5 Traverse Order and Cut-Border Size 57
5.2.6 Performance . 61

5.3 Extensions . 62
5.3.1 Non Orientable Triangle Meshes 62
5.3.2 Corner Attributes . 63

6 Optimized Cut-Border Machine 65
6.1 Arithmetic Coding . 65

6.1.1 Adaptive Frequencies . 65
6.1.2 Conditional Probabilities . 66

6.2 Optimized Border Encoding . 67
6.3 Linear Time Cut-Border Data Structure 69
6.4 Linear Space Limit for Planar Triangulations 73

6.4.1 Upper Bound on Index Coding 73
6.4.2 Coding of Operation Symbols 77

7 Edgebreaker 81
7.1 From the Cut-Border Machine to the Edgebreaker 81
7.2 Spirale Reversi Edgebreaker Decoding 82
7.3 Towards Optimal Planar Triangulation Coding 83

7.3.1 3.557 Bits per Vertex Encoding of Edgebreaker String 83
7.3.2 Using More Constraints for 3.552 Bits per Vertex Encoding . . 86

CONTENTS vii

8 Conclusion & Directions for Future Work 89

III Tetrahedral Mesh Compression 93

9 Introduction to Tetrahedral Meshes 95
9.1 Basic Definitions and Notations . 95
9.2 Basic Equations and Approximations 97

10 Generalization of the Cut-Border Machine 99
10.1 From Triangular to Tetrahedral Cut-Border Machine Compression . . . 99
10.2 Cut-Border Operations and Situations 100
10.3 Compressed Representation . 102
10.4 Traversal Order . 103
10.5 Mesh Border Encoding . 104
10.6 Cut-Border Data Structure . 104
10.7 Results . 107

11 Encoding Mesh Attributes 109
11.1 Vertex Locations . 109
11.2 Scalar and Vector Valued Attributes 111

12 Other Compression Methods 113
12.1 Grow & Fold Compression . 113

12.1.1 Growing the Spanning Tree 113
12.1.2 Folding the Spanning Tree . 114
12.1.3 Results . 115

12.2 Implant Sprays . 115
12.2.1 Split Vertices Specification . 115
12.2.2 Skirt Encoding . 116
12.2.3 Implementation & Results . 116
12.2.4 Improved Implant Sprays Encoding 117

12.3 Progressive Simplicial Complexes . 119

13 Conclusion & Directions for Future Work 123

viii CONTENTS

List of Figures

1.1 Meshes with border and non manifold spots 6
1.2 Subdivision of torus into four patches 7
1.3 Non orientable meshes . 9
1.4 Mesh relations . 15
1.5 Halfedge data structure . 16
1.6 Halfface data structure . 18

2.1 Mesh simplification operations . 26

3.1 Arithmetic flag encoding . 35
3.2 Arithmetic sparse flag encoding . 36
3.3 Variable length coding schemes . 36

4.1 Planar Triangulation . 43
4.2 Filling holes with triangle strips . 45
4.3 Permutation as non planar triangle mesh 45

5.1 Snapshot during Cut-Border Machine compression 47
5.2 Cut-Border Machine encoding of a sample mesh 48
5.3 “Split cut-border”- and “cut-border union”-operation 49
5.4 Meshes for performance measurements 58
5.5 Choice of gate . 59
5.6 Extension to non orientable meshes 63
5.7 Corner attributes . 64

6.1 Non manifold mesh border . 68
6.2 Constant time update cut-border data structure 70
6.3 Constant time updates of improved cut-border data structure 71
6.4 Planar triangulation encoded with Cut-Border Machine 73

9.1 Typical tetrahedral meshes . 96
9.2 Extreme cases of tetrahedral meshes 97

10.1 Manifold tetrahedral cut-border situations 100
10.2 Non manifold tetrahedral cut-border situations 100

ix

x LIST OF FIGURES

10.3 Face adjacency around non manifold edge 105

11.1 Distribution of coordinates . 110

12.1 Vertex split operation . 116
12.2 Different edge cycles in skirt encoding 118
12.3 Split codes for Progressive Simplicial Complex encoding 120
12.4 Example of generalized vertex split . 120
12.5 Average case vertex split operation . 121

List of Tables

1.1 Halfedge adjacency hashing speed . 17

5.1 New mesh elements introduced by cut-border operation 51
5.2 Test set of models . 57
5.3 Fixed bit codes for real-time encoding 60
5.4 Maximum cut-border sizes . 60

6.1 Measurements of Cut-Border Machine with arithmetic coding 67
6.2 Improvement with the optimized border encoding. 69
6.3 Linear coding bit assignments . 78

7.1 Translations between cut-border and Edgebreaker symbols 81
7.2 Bit assignments for Edgebreaker cases 84
7.3 Conditional unities for two most important constraints 85
7.4 Improved Edgebreaker coding results 86
7.5 Conditional unities in reverse decoding 87
7.6 Better results for reverse decoding . 87

9.1 Basic quantities of tetrahedral meshes 97

10.1 Analysis of tetrahedral Cut-Border Machine 104
10.2 Results of tetrahedral Cut-Border Machine 107

xi

xii LIST OF TABLES

Preface

Mesh compression is young research area. It has been inspired by the 3D graphics hard-
ware acceleration community. The foundation has been laid by the work of Michael
Deering [Dee95] on triangle mesh compression. His goal was to reduce the data traf-
fic between the main memory of a 3D visualization system and the graphics hardware
accelerator. Before his innovative work the only way to reduce this data traffic had
been the use of triangle strips, which allow to specify one triangle with only slightly
more than the vertex data of one vertex, but still the vertex data of each vertex has to
be transmitted twice. Deering could overcome this problem and reduce the vertex data
repetition rate to only 6%. Other papers [AHMS94, BG96, ESV96] in the area also
concentrated on the acceleration of the rendering of three dimensional surfaces. The
work of Rossignac and Taubin [TR96] established triangle mesh compression as inde-
pendent research area. This work was inspired by the MPEG forum. At the same time
Hoppe published his work on the progressive encoding of triangle meshes [Hop96].
The so called Progressive Mesh representation allows to transmit a triangle meshes pro-
gressively over a connection with low bandwidth. In the year 1998 three very efficient
methods had been developed to a publishable ripeness. The best compression rates
achieves the method by Touma and Gotsam [TG98]. The fastest but still very efficient
method – called the Cut-Border Machine – had been proposed by the author of this the-
sis together with Straßer [GS98]. Rossignac [Ros98] reported a very similar method but
could bridge triangle mesh compression to the theory of graph encoding. He showed
that his encoding consumes in the case of planar triangulations no more than four bits
per vertex for the encoding of the neighbor relations. The four bits per vertex encoding
was the best known at the time and could also be achieved in the graph encoding com-
munity by Chuang, Garg, He and Kao [CGHK98]. The theoretical lower limit of 3:245
bits per vertex to encoding a planar triangulation had already been established in 1962
by Tutte [Tut62], who had counted all different planar triangulations for a given num-
ber of vertices. The algorithmicly achieved upper bound of four bits per vertex could
later on be improved by King and Rossignac [KR99] to 3:67 bits and finally by the au-
thor [Gum00] to 3:552 bits per vertex. The generalization of triangle mesh compression
to polygonal mesh compression has only been started this year [IS00, KG00b].

The generalization from surface meshes to volume meshes has been performed ba-
sically at the same time by Szymczak and Rossignac [SR99] with their Grow & Fold
method and by the author together with Guthe and Straßer [GGS99] with the generaliza-

xiii

xiv PREFACE

tion of the Cut-Border Machine. There are only two more tetrahedral mesh compression
approach up to now. The generalization of Hoppe’s the progressive meshes to the pro-
gressive simplicial complexes [PH97], which has not been implemented for tetrahedral
meshes yet and the Implant Sprays of Pajarola [PRS99]. The Implant Sprays is a pro-
gressive compression method for tetrahedral meshes with compression rates better than
the Grow & Fold method. The author could significantly improve the compression rates
of the Implant Sprays method. The single resolution method of the author’s Cut-Border
Machine still performs twice as good.

The thesis is structured in three parts. The first part gives a broad introduction to
meshes, discusses related work and develops several encoding methods, which are of-
ten used in mesh compression. The second part describes the contributions of the author
to triangle mesh compression and finally the last part constitutes the tetrahedral mesh
compression work. Concluding remarks and future research directions are stated inde-
pendently for triangle and tetrahedral mesh compression at the end of the corresponding
parts.

Part I

Introduction

1

3

The first part not only familiarizes the reader with the area of mesh compression
but also gives a complete overview of the research area and of related areas. Chapter 1
introduces the basic concepts about meshes and a data structure appropriate for our pur-
poses. The problem treated in this thesis is discussed in chapter 2. A broad view of
solutions presented in literature is compiled. In the last chapter 3 of the first part dif-
ferent coding techniques are introduced and applied to several coding problems, which
arise very often in mesh compression.

4

Chapter 1

Basics on Meshes

This chapter introduces the concept of a mesh. Firstly, in section 1.1, the term mesh
is defined based on a brief introduction of geometrical models. The next section 1.2
describes and motivates the usage of meshes. The performance of most compression
methods can be estimated quite accurately with the help of relations between the num-
bers of different mesh elements and the average counts of mesh element neighbors. The
most important relations are introduced in section 1.4. At the end of this chapter we
introduce a simple and efficient data structure for triangle and tetrahedral meshes in
section 1.5.

1.1 Mesh Concept

In the first part of this section we expose ideas on geometrical models similar to [Man88]
with slightly different terminology. We first define a sensible notion of a solid in sec-
tion 1.1.1, then we go over to express solids by their surface (section 1.1.2). In order
to handle arbitrary solids we split the surface of the solid into smaller parts which are
topologically equivalent to polygons consisting of edges and vertices. The incidence
of the vertices, edges and polygons define the connectivity (section 1.1.3). Finally, we
define the geometry of the mesh in section 1.1.4.

1.1.1 Point-Set Models

Most applications handle three-dimensional solid objects in the Euclidean space R 3 . In
the most general form a solid is defined as follows.

Definition 1.1 (solid) A solid is a bounded, closed subset of R3 .

The class of objects captured by this definition is by far too large. Also the restriction
to rigid objects, that makes objects invariant under rigid transformations (i.e. rotations
and translations) does not restrict the class of objects far enough.

5

6 CHAPTER 1. BASICS ON MESHES

Definition 1.2 (rigid object)
A rigid object is an equivalence class of point sets of R 3 spanned by the following
relation Æ: 8A;B � R

3 : A ÆB $ A = R(B) ^ R is a rigid transformation.

Our intuitive notion of solid does not allow isolated points and line segments. This
requirement can be easily captured with the help of the closure operation c : A � R

3 7!
closure of A and the interior operation i:

Definition 1.3 (regular, r-set)

� a set A � R
3 is regular, iff it satisfies: A = c(i(A))

� a bounded regular set is termed an r-set

By restricting ourselves to r-sets we ensure that all isolated points and curves are torn
away and that the skin of the object is complete. This will also ensure that the solid
can be reduced to its surface, which is used in computer graphics most often to render
solids.

1.1.2 Surface-Based Models

The surface-based characterization of solids looks at the boundary of a solid object and
composes it into a collection of faces, which are glued together such that they form a
complete, closed skin around the object.

A surface can be seen as a two-dimensional subset of R3 . Each surface point
is surrounded by a ”two-dimensional” region of surface points. The inherent two-
dimensionality of a surface means that we can study its properties through a two-
dimensional model. The notion of a 2-manifold gives a more abstract notion of a surface.

a) b) c) d)

Figure 1.1: a) manifold surface mesh, b) manifold with border, c) non manifold because
of edge with more than two incident faces, d) non manifold because of vertices with
more than one connected face loop.

Definition 1.4 (2-manifold)
A 2-manifold is a topological space, where every point has a neighborhood topologi-
cally equivalent to an open disk of R2 .

1.1. MESH CONCEPT 7

In figure 1.1 a) a manifold surface mesh is shown. In computer graphics it is quite
common to handle also surfaces with boundaries as for example the lamp shade in fig-
ure 1.1 b). Thus one also allows points with a neighborhood topologically equivalent
to a half disk and calls these surfaces manifold with boundary. But there are also quite
common surface models, that are not manifold as the other two examples in figure 1.1
show. In c) the two cubes touch at a common edge, which contains points with neigh-
borhood not equivalent to a disk nor a half disk and in d) the tetrahedra touch at points
with non manifold neighborhood.

1.1.3 Connectivity

a) b)

Figure 1.2: a) torus subdivided into four patches, b) planar embedding of patches with
identified edges and vertices.

In order to analyse and represent complex surfaces, which represent solids, we sub-
divide the surfaces into polygonal patches enclosed by edges and vertices. Figure 1.2 a)
shows the subdivision of the surface of a torus into four patches p1; : : : ; p4. Each patch
can be embedded into the Euclidean plane resulting in four planar polygons as shown
in figure 1.2 b). The embedding allows to map the Euclidean topology to the interior of
each patch on the surface. The collection of polygons can represent the same topology
as the surface if the edges and vertices of adjacent patches are identified. In figure 1.2 b)
identified edges and vertices are labelled with the same specifier. The topology of the
points on two identified edges is defined as follows. The points on the edges are param-
eterised over the interval [0; 1], where zero corresponds to the vertex with smaller index
and one to the vertex with larger index. The points on the identified edges with the same
parameter value are identified and the neighborhood of the unified point is composed of
the unions of half-disks with the same diameter in both adjacent patches. In this way
the identified edges are treated as one edge. The topology around vertices is defined
similarly. Here the neighborhood is composed of disks put together from several pies
with the same radius of all incident patches.

We are now in the position to split the surface into two constitutes the connectivity
and the geometry. The connectivity C defines the polygons, edges and vertices and their
incidence relation. The geometry G on the other hand defines the mappings from the

8 CHAPTER 1. BASICS ON MESHES

polygons, edges and vertices to patches, possibly bent edges and vertices in the three di-
mensional Euclidean space. The pairM = (C;G) defines a polygonal mesh and allows
to represent solids via their surface. In this section we discuss the connectivity, which
defines the incidence among polygons edges and vertices and which is independent of
the geometric realisation.

Definition 1.5 (polygonal connectivity)

� the polygonal connectivity is a quadruple (V;E; F; I) of the set of vertices V , the
set of edges E, the set of faces F and the incidence relation I, such that

� each edge is incident to its two end vertices

� each face is incident to an ordered closed loop of edges (e1; e2; : : : ; en) with ei 2
E, such that e1 is incident to v1 and v2, 8i = 2 : : : n � 1 : ei is incident to vi and
vi+1 and en is incident to vn and v1

� in the notation of the previous item the face is also incident to the vertices v1; : : : ; vn

� the incidence relation is reflexive

The collection of all vertices, all edges and all faces are called the mesh elements. We
next define the relation adjacent, which is defined on pairs of mesh elements of the same
type.

Definition 1.6 (adjacent)

� two faces are adjacent, iff there exists an edge incident to both of them

� two edges are adjacent, iff there exists a vertex incident to both

� two vertices are adjacent, iff there exists an edge incident to both

Up to now we defined only terms for very local properties among the mesh elements.
Now we move on to global properties.

Definition 1.7 (edge-connected) A polygonal connectivity is edge-connected, iff each
two faces are connected by a path of faces such that two successive faces in the path are
adjacent.

As the connectivity is used to define the topology of the mesh and the represented
surface, one can define the following criterion for the surface to be manifold.

Definition 1.8 (potentially manifold) A polygonal connectivity is potentially manifold,
iff

1. each edge is incident to exactly two face

1.1. MESH CONCEPT 9

2. the non empty set of faces around each vertex form a closed cycle

Definition 1.9 (potentially manifold with border) A polygonal connectivity is poten-
tially manifold with border, iff

1. each edge is incident to one or two faces

2. the non empty set of faces around each vertex forms an open or closed cycle

A surface defined by a mesh is manifold, if the connectivity is potentially manifold and
no patch has a self-intersection and the intersection of two different patches is either
empty or equal to the identified edges and vertices. All the non-manifold meshes in
figure 1.1 are not potentially manifold.

In order to determine whether a potentially manifold mesh can be embedded with-
out self-intersections in three dimensional Euclidean space, the orientability plays the
crucial role. The orientation of each face has been defined with the connectivity in the
order of the edges and vertices. From the face orientation each incident edge inherits an
orientation as illustrated in figure 1.2 b). With the inherit orientation of the edges, the
orientability of a mesh can be defined.

Definition 1.10 (orientable) A polygonal connectivity is orientable if the face orien-
tations can be chosen in a way that for each two adjacent faces the common incident
edges inherit different orientations from the different faces.

Figure 1.3: Two non orientable objects. On the left the well known Möbius strip and on
the right the Klein bottle.

The orientation of a face in a polygonal mesh can be used to define the outside of
a mesh or to calculate the surface normal. It is also important during the navigation
through the mesh, which is essential for most connectivity compression techniques.
The problem with non orientable meshes is that one cannot choose the orientation of
the faces consistently. Thus surface normals can not be calculated consistently and no
inside or outside relation makes sense. Further more it complicates the navigation in
the mesh as one must know during the traversal between two adjacent faces, whether
the orientation of the face changes. Figure 1.3 shows two examples of non orientable
meshes. One can easily check their non orientability as one can move on the surface
from one point always staying on the same side of the surface in a loop and arrive back
at the same point but on the other side of the surface.

10 CHAPTER 1. BASICS ON MESHES

So far we restricted the definitions of a mesh to the two dimensional case. We want
to describe also volumetric meshes and in particular tetrahedral meshes. The vertices are
zero dimensional mesh elements, the edges one dimensional and the faces two dimen-
sional. The embedding of a three dimensional mesh element is a subset of the Euclidean
space with non zero volume. For this we define the topological polyhedron

Definition 1.11 (topological polyhedron)
A topological polyhedron is a potentially manifold and edge-connected polygonal con-
nectivity.

Based on the definition of a topological polyhedron, we can define the polyhedral con-
nectivity as a quintuple (V;E; F; P; I) of vertices, edges, faces and polyhedra. Each
polyhedron is incident to a set of oriented faces, that form a topological polyhedron.
The local and global relations adjacent, face-connected, manifold and manifold with
border are direct generalizations of the corresponding attributes in a polygonal connec-
tivity. We do not want to define all these terms in detail, but want to mention that the
roll of the face orientation is taken by the outside relation of the topological polyhedron.
Please notice that in a pure polyhedral connectivity the border is always a closed polyg-
onal connectivity and therefore the number of faces incident on an edge always larger
than two. Polyhedral meshes embedded self-intersection free in the three dimensional
Euclidean space are always orientable as polygonal meshes in the plane.

1.1.4 Geometry

It is now time to add some geometry to the connectivity. We want to describe this
procedure only for the typical case of polygonal and polyhedral geometry in Euclidean
space. Similarly, meshes with curved edges and surfaces could be defined.

Definition 1.12 (Euclidean polygonal/polyhedral geometry)
The Euclidean geometry G of a polygonal/polyhedral meshM = (C;G) is a mapping
from the mesh elements in C to R3 with the following properties:

� a vertex is mapped to a point in R3

� an edge is mapped to the line segment connecting the points of its incident vertices

� a face is mapped to the inside of the polygon formed by the line segments of the
incident edges

� a topological polyhedron is mapped to the sub-volume of R 3 enclosed by its inci-
dent faces

Here arises a problem that also often arises in practice. In R3 the edges of a face often
do not lay in a plane. Therefore the geometric representation of a face is not defined
properly and also a sound two dimensional parameterization of the polygon is not easily

1.2. APPLICATION AREAS 11

defined. In practice this is often ignored and the polygon is split into triangles for which
a unique plane is given in Euclidean space.

Often further attributes like physical properties of the described surface/volume, the
surface color, the surface normal or a parameterization of the surface are necessary.
These attributes are typically stored as constant values at the vertices and interpolated
along the edges and faces. Or higher order interpolation schemes are exploited by fur-
ther attribute values given at the edges and or faces. But again the interpolation over ar-
bitrary polygons or polyhedra is difficult. Therefore in practice one often simplifies the
problem to the most simple types of mesh elements, the simplices. The k-dimensional
simplex or for short k-simplex is formed by the convex hull of k + 1 points of the Eu-
clidean space. A 0-simplex is just a point, a 1-simplex a line segment, a 2-simplex is a
triangle and the 3-simplex forms a tetrahedron. For simplices the linear and quadratic
interpolation of vertex and edge attributes are simply defined via the barycentric coor-
dinates.

In some applications the handling of mixed dimensional meshes is necessary. In this
case singleton vertices, singleton one dimensional and in case of polyhedral meshes also
singleton two dimensional meshes are allowed. As the handling of mixed dimensional
polygonal/polyhedral meshes becomes very complication, one often gives up polygons
and polyhedra and restricts oneself to simplicial complexes, which allow for singleton
vertices and edges and non-manifold mesh elements. A simplicial complex is defined
as follows.

Definition 1.13 (simplicial complex) A k dimensional simplicial complex is a (k+1)-
tuple (S0; : : : ; Sk), where Si contains all i-simplices of the complex. The simplices
fulfill the condition, that the intersection of two i-simplices is either empty or equal to a
simplex of lower dimension.

As a simplex and therefore a simplicial complex is only a geometric description, we have
to define the connectivity of a simplicial complex, which is easily done by specifying the
incidence relation among the simplices of different dimensions. A i-simplex is incident
to a j-simplex with i < j if the i-simplex forms a sub-simplex of the j-simplex.

1.2 Application Areas

There are several important application areas for meshes. One of the most important
ones is in Finite Element simulations. Here a surface/volume is split into a polygo-
nal/polyhedral mesh and attributed with physical quantities of the underlying material.
The equations of motion are written in terms of the mesh elements and equation solvers
are used to find solutions for different starting conditions. The flexible structure of a
mesh allows to model arbitrary geometries. The Finite Element Method (FEM) has
been successfully applied to simulate all types of materials including fluids and cloth.
Therefore the FEM is widely used in all industrial branches. One common task in FEM
is the generation of appropriate meshes from boundary data only. The mesh elements of

12 CHAPTER 1. BASICS ON MESHES

the produced meshes must fulfill certain quality criteria. More information on this topic
can be found in [Geo91].

The second main application of meshes is the boundary representation of objects.
Here polygonal and triangular meshes come into operation. The meshes are typically
attributed with the surface normal, surface material information and a parameterization
together with some textures specifying fine variations of the surface color, surface nor-
mal or of the surface offset in direction of the surface normal. Simple triangle meshes
are very common because of their hardware accelerated rendering with all the men-
tioned attributes1. The boundary representation of objects is used in computer aided
design, in virtual worlds, in the game industry, for terrain modeling and gains more
and more importance in electronic commerce. New objects are often scanned with 3D
scanners producing very fine and large meshes, which demand for compression.

Scientific visualization is also a broad application area for meshes. Not only the
finite element meshes are directly visualized, but new surface meshes are generated to
represent and visualize isosurfaces in volume datasets.

Finally, meshes are also used as algorithmic tool for spatial hashing and to build
hierarchical structures for point location queries.

1.3 Triangular and Tetrahedral Meshes

A lot of algorithms that deal with meshes are restricted to the simple case of triangular or
tetrahedral meshes. This is easily justified from the much simpler handling of triangles
and tetrahedra in terms of intersection calculation, attribute interpolation, line up of
physical equations, rendering and so on. But in real world data a lot of meshes are not
triangular or tetrahedral.

For this reason a whole area of research has tackled the problem of efficiently subdi-
vide a polygon, into triangles. A simple but efficient method searches for a intersection
free diagonal in the polygon. This must always exist as the following lemma shows (the
lemma is cited from [BE92]).

Lemma 1.14 Every polygon with more than three sides has a diagonal.

Proof: Let b be the vertex with minimum x-coordinate and ab and bc be its two incident edges. If
ac is not cut by the polygon, then ac is a diagonal. Otherwise there must be at least one polygon
vertex inside the triangle abc. Let d be the vertex inside abc furthest from the line through a and
c. Now the segment bd cannot be cut by the polygon, since any edge intersecting bd must have
one endpoint further from line ac. �

The triangulation algorithm cuts the polygon at the diagonal into two parts and re-
cursively proceeds with the remaining two polygons until only triangles are left over.

1for material properties see [Pho75, BW86, DWS+88, Cla89, KB89], for color textures see [Hec83,
Wil83, Cro84, Gla86, SKS96, H9̈9], for surface normal textures see [Bli78, EJRW96, PAC97, Kug98]
and for surface offset [GH99, GVSS00, LMH00]

1.4. BASIC RELATIONS 13

The expensive operation is the intersection test of the diagonal segment and the poly-
gon. In 1991 Chazelle [Cha91] came up with a solution to the polygon triangulation
problem that can be computed in linear time in the number of edges in the polygon.
Two other papers [KKT90, Sei91] give simpler solutions with only slightly worse run-
ning time. Held [Hel98] developed a very robust implementation, that always succeeds
also on polygons with self-intersections and degenerated edges.

In the case of tetrahedral meshes the problem is more severe as there exist polyhedra
without any tetrahedrization. Therefore new vertices – so called Steiner points – must
be inserted to the polyhedron. A Solution that minimize the number of inserted Steiner
points is described by Sapidis [SP91]. Another solution with application to collision
detection is presented by Held [HKM96].

1.4 Basic Relations

For a polygonal connectivity C = (V;E; F; I) with v = jV j vertices, e = jEj edges and
f = jF j faces the following Euler equation holds

v � e+ f = �
(closed;manifold)

= 2(s� g); (1.1)

where � is the Euler characteristic. For a closed manifold connectivity the Euler charac-
teristic depends on the number of edge-connected components s and the genus g of the
mesh. The genus of a closed surface is the number of handles of the described solid. The
surface of a cup has for example one handle, i.e. one hole in the circumscribed solid.
A sphere has no handle, a torus has one handle and the surface of a solid eight has two
handles. The mesh in figure 1.1 a) has genus five. The genus of a mesh can be derived
from the number h1 of closed curves that can be drawn on the mesh without dividing it
into two or more separate pieces. The genus is just h1 divided by two. A torus can for
example be cut with two closed curves into a rectangle, which is still connected and no
more closed curve can be drawn onto it without cutting it apart. Thus h1 would be two
and the genus is one.

As we will primarily deal with triangular meshes we can also consider the special
characteristic of triangular meshes to derive a much simpler equation. For this we enu-
merate in a closed manifold triangle mesh all incidences between edges and triangles.
In terms of edges there are 2e incidences as each edge is incident to two faces. In terms
of triangles there are 3f incidences resulting in

2e = 3f:

Substitution of this relation in the Euler equation yields

2v � f
(tgl;closed;manifold)

= 2(s� g); (1.2)

and for edge-connected triangle meshes with genus one, we get

f
(g=1;tgl;closed;manifold)

= 2v: (1.3)

14 CHAPTER 1. BASICS ON MESHES

Although the number of conditions to this relation is large, it is a good approximate
statement for meshes, that describe the surface of a solid. The Euler characteristic � is
typically small compared to the number of vertices and triangles. For completeness we
want to incorporated the number of border edges b into the equations. As each border
edge has only one incident face, the number of incidences between edges and face edge
in terms of the edges must be corrected to 2e� b resulting in

2v � f � b
(tgl;manifold)

= 2(s� g): (1.4)

Often the compression rate of an encoding method depends on the average number
of vertices adjacent to a vertex or on the average number of faces incident upon a vertex.
We introduce the notation

Definition 1.15 (element-element order) Let �; � 2 fv; e; fg, then we define the av-
erage �-� order (i.e. the vertex-vertex, vertex-edge, edge-vertex,: : :) as

�o�!�

def
=

total number of �-� incidences/adjacencies

�

Thus in a closed triangle mesh the average number of faces incident to a vertex – the
average vertex-face order – is

�ov!f

tgl

= 3f=v
(g=1;closed;manifold)

= 6; (1.5)

what is again a quite general applicable statement for triangle meshes with low genus,
low non manifold spot count and low border fraction. Relations for tetrahedral meshes
are derived in section 9.2.

1.5 Data Structure

A polygonal mesh has vertices, edges and faces as mesh elements. For navigation in the
mesh the incidence and the adjacency relations are important. Figure 1.4 a) gathers the
possible relations. The arrows between the sets of different mesh elements represent the
incidence relations, whereas the self-pointing arrows illustrate the adjacency relations.
In order to answer all possible incidence and adjacency questions, one needs to represent
only a subset of all relations. This subset must connect all sets of equal and different
mesh elements, i.e. there need not only be a path from each mesh element set to each
other, but there also must be a path from each mesh element set back to the set in order to
answer adjacency questions. In figure 1.4 a) this means that one can eliminate arrows as
long as this condition is fulfilled. For example the relations V ! E ! F ! V would
suffice. It is often possible to represent some of the relations only partially by one or
to representatives. For example, if the relations F ! F ! V are known in a manifold
mesh with border, the relation V ! F can be stored with one face per vertex, as the
remaining faces of each vertex can be determined through the adjacency relation of the

1.5. DATA STRUCTURE 15

a) b)

Figure 1.4: Relations between the mesh elements, a) polygonal mesh, b) polygonal
mesh with halfedges

faces. It is clear that the enumeration of all faces incident on a vertex is more expensive
than if the relation would have been stored explicitly. On the other hand the update of
the explicit representation is more expensive. Ni [NB94] analyzes the different possible
data structures.

Most single resolution mesh compression techniques are region growing methods.
Here the most important relation is the face adjacency, i.e. one wants to know the ad-
jacent faces of a currently processed face. For coordinate compression the incidence
relation F ! V is the second most important relation. Only in case of non manifold
mesh compression the inverse relation V ! F is necessary. The edges are seldom ex-
plicitly represented. The halfedge data structure [Man88] turned out to be very suitable
for polygonal meshes [Ket98]. Other edge based data structures such as the winged
edge data structure [Bau75] are discussed in [Wei85].

1.5.1 Halfedge Data Structure

For the halfedge data structure a new mesh element type is introduced – the halfedge.
A halfedge represents one incidence between an edge and a face. In figure 1.5 a) the
halfedges are illustrated with solid arrows. For each halfedge five pointers next, prev,
adjacent, face and vertex are stored. The first three pointers represent halfedge adjacen-
cies, where prev and next correspond to edge adjacent halfedges and adjacent to the face
adjacent halfedge. For each halfedge the incident vertex and the incident face are stored.
In figure 1.4 b) the mesh element relations in a mesh with halfedges are illustrated. The
central role of the halfedges becomes clear. The relation H ! H is represented by next,
prev and adjacent, H ! V by vertex and H ! F by face. For each face one halfedge
and if needed one halfedge per vertex is stored to represent the relations F ! H and
V ! H .

If the number of edges in a face does not change frequently, the halfedges can be
aligned face after face in the order they appear in the faces. After the halfedges of each

16 CHAPTER 1. BASICS ON MESHES

a) b)

Figure 1.5: a) illustration of the halfedge data structure and b) the linkage of the adjacent
pointer at non manifold edges

face a dummy halfedge is introduced storing the number of halfedges in the previous
face. In this way the prev and next pointers can be saved.

In the special case of a pure triangle mesh the dummy halfedges are not needed as
all faces have exactly three incident edges. Furthermore as described in [CKS98] the
relations F ! H and H ! F can easily be computed by an integer division with three
and a multiplication with three (see also figure 1.4 b)). Thus the typical halfedge data
structure for triangle meshes only consumes the two pointers adjacent and vertex for
each halfedge and if needed one pointer per vertex for the relation V ! F . As there are
3f halfedges in a triangle mesh, this sums up to

Stgl;halfedge = 6f [+v] pointers.

For non orientable meshes one additional flag is needed per adjacent pointer to specify
whether the orientation changes when moving to the adjacent face. Also non mani-
fold edges can be handled by the halfedge data structure. The adjacent pointers of the
halfedges around a non manifold edge are linked in a closed cycle as shown in fig-
ure 1.5 b). If needed the relation V ! F needs to be stored explicitly. An ordered set
data structure suggest itself to store for each vertex the incident faces.

1.5.2 Computing Halfedge Adjacencies

The relation F ! V is sufficient to define the connectivity as long as there are no
singleton vertices or edges. Therefore most polygonal meshes are stored as a list of
vertex indices with a invalid index of -1 as separator between successive faces. From
this information one can instantly generate the halfedges in a way that the prev and next
pointers are implicit in the halfedge order and one can also instantly derive the relations
F $ H ! V . The only pointer that consumes some computing power is the adjacent
pointer. All halfedges incident upon a certain edge must be linked together. For this the

1.5. DATA STRUCTURE 17

genus5 2388
quader 1768
crocodile 1247
porsche 1973
helicopter 1871
monster 1502
bunny 1467
jaw 1434

average 1706

Table 1.1: The speed for calculating the adjacent pointer in a halfedge data structure in
thousand triangles per second determined on a Pentium II 300.

vertex indices of the halfedges incident edge are available. The halfedges of one edge
can be found by hashing over the set of two vertex representing the edge. A standard
hash map is normally much slower than a simple approach with linked lists. For each
vertex a linked list of hash entries is kept. A hash entry contains the larger vertex index
of the hashed edge, the index of the halfedge and a pointer to the next linked list element.
A hash element is searched by first determining the smaller vertex index of the edge and
then linearly searching through the linked list of hash entries attached to the smaller
vertex index. This algorithm consumes for each edge a hash entry and for each vertex a
pointer to the first hash entry, altogether 3e + v pointers. If the maximum vertex order
is limited by a constant, the running time is linear in the number of triangles. Table 1.1
gives the hashing speed for different triangle meshes in triangles per second.

1.5.3 Handling Mesh Attributes

The most important attribute of a mesh is the geometric representation of the vertices.
In nearly all applications the geometry of a vertex is stored as a two, three or four di-
mensional point in the Euclidean space. The number format depends on the application
but floating point values are most commonly used. The geometric representation of
the edges, faces and polyhedra is normally not stored explicitly but is derived from the
points of the vertices. The edges are mapped to the line segments between their end
points, the faces to the polygon interiors described by the line segments of their edges
and the polyhedra to the volume circumscribed by the polygons of their faces.

Further attributes such as surface normals, surface colors and texture coordinates, i.e.
the surface parameterization, are often available at the vertices. The vertex attributes can
simply be stored by extending the dimension of the point in order to include the normal,
color and texture coordinates. It is also no problem to treat attributes given at the faces
as the face indices are known. Interestingly is it neither a problem to handle attributes
at the corner of faces – also called corner attributes. This is often necessary, if the
represented surface has non differentiable creases. At vertices on the creases the surface

18 CHAPTER 1. BASICS ON MESHES

normal is not continuous and different normals might have to be stored for each face
the vertex is incident to. But this is no problem as there is exactly one halfedge per
vertex-face incidence and we can store the corner attributes within the halfedges.

The only problematic attributes in a halfedge data structure are edge attributes,
which occur seldom in praxis. To handle edge attributes one adds the relationH ! E to
the halfedge data structure with one edge index per halfedge. This increases the connec-
tivity storage space by one third and decreases performance slightly as the edge indices
of adjacent halfedges must be kept consistent.

1.5.4 Tetrahedral Mesh Data Structure

a) b)

Figure 1.6: a)illustration of the pointers in a halfface data structure b) relations among
the mesh elements

As mentioned in [SR99], the optimized data structure for triangle meshes can be
easily generalized to tetrahedral meshes. We name this data structure the halfface data
structure. Figure 1.6 a) shows a grey shaded halfface in a tetrahedron and the two explic-
itly represented pointers adjacent and vertex. The adjacent pointer points to the halfface
incident to the same face in the adjacent tetrahedron. vertex points to the opposite vertex
of the halfface in the tetrahedron incident to the halfface.

Figure 1.6 b) diagrams the relations between the mesh elements in a halfface data
structure. H is the set of halffaces and P the set of polyhedra and in our case the
set of tetrahedra. As in the case of the triangular halfedge data structure the halffaces
are arranged tetrahedron by tetrahedron, such that the relations H $ P can be easily
calculated from the indices with mul 4 and div 4. Each halfface h has three neighboring
halffaces in the same tetrahedron. The indices of them can easily be calculated: next1 =
(h+1)%4, next2 = (h+2)%4 and next3 = (h+3)%4, where % is the modulo operator.
With the nexti pointers, the relation H ! V can be implemented through the vertex
pointers of the adjacent halffaces. If t is the number of tetrahedra, the storage space for
the specialized halfface data structure is

Stetra;hal�ace = 8t [+v] pointers,

1.5. DATA STRUCTURE 19

where the v pointers are only necessary, if the relation V ! H ! P is used.
In the case of three dimensional polyhedral meshes, the problem of non manifold

halffaces cannot arise, if self-intersections are not allowed. Neither can the meshes be
non orientable.

20 CHAPTER 1. BASICS ON MESHES

Chapter 2

Related Work

In many of the applications described in section 1.2 the used meshes become either very
large or come in a large collection. The output of 3D scanners are often meshes with a
million triangles. In CAD modeling the meshes can become even larger and in terrain
modeling arbitrarily huge meshes can be easily produced from satellite data. In the
game industry, in electronic commerce and in 3D enhanced presentations a large data
base with a lot of different models has to be handled. In all applications the need to
shrink down the size of the meshes is obvious.

There are primarily three different approaches for reducing the size of a mesh: com-
pression, simplification and remeshing. In the compression approach, as adapted in this
thesis and discussed in section 2.1, the goal is to find an encoding of a mesh, that is as
short as possible. The mesh connectivity is encoded without loss of any information.
Most geometry compression schemes are based on a lossy quantization step somewhere
in the geometry compression pipeline. Compression is especially useful for the efficient
encoding of databases with a lot of small models, but also as encoding tool for simpli-
fication and remeshing approaches, which typically end up with a small mesh, that also
has to be encoded efficiently. Large and regular models often contain more informa-
tion than necessary or maybe even redundant information. Then it cannot be justified
anymore that the connectivity of the mesh should be preserved and mesh simplification
should be utilized as discussed in section 2.2. The most commonly adapted idea in
mesh simplification is to simplify the mesh through a sequence of local operations that
eliminate a small number of adjacent mesh elements. An important increment is the
measurement of the approximation error of the simplified mesh. The minimization of
the mesh element count for a given maximal approximation error is hard to solve opti-
mal and good heuristics consume large computation times, too. The simplification and
compression approach were recently re-unified with the idea of representing the mesh
in terms of the inverse simplification process in compressed form. This is discussed
in section 2.3. An also very interesting idea is remeshing. Here a second very regular
mesh is generated that approximates the original mesh. The regularity of the approxi-
mation allows to store the new mesh much more efficiently. See section 2.4 for a brief
discussion.

21

22 CHAPTER 2. RELATED WORK

2.1 Mesh Compression

2.1.1 Acceleration of Rendering

As mentioned in the preface, mesh compression evolved from the aim to accelerate the
rendering of triangle meshes. In the first subsection we therefore discuss representations
for triangle meshes, that are used for the efficient transmission to a graphics accelerator.
3D-hardware support is primarily based on the rendering of triangles. Each triangle
is specified by three vertices, where each vertex contains three coordinates, possibly
the surface normal, material attributes and/or texture coordinates. The coordinates and
normals are specified with floating point values, such that a vertex may contain data of
up to 36 bytes1. Thus the transmission of a vertex is expensive and the simple approach
of specifying each triangle by the data of its three vertices is wasteful as for an average
triangle mesh each vertex must be transmitted six times (compare equation 1.5).

The introduction of triangle strips helped to save unnecessary transmission of ver-
tices. Two successive triangles in a triangle strip join an edge. Therefore, from the
second triangle on, the vertices of the previous triangle can be combined with only one
new vertex to form the next triangle. As with each triangle at least one vertex is trans-
mitted and as an average triangle mesh has twice as many triangles as vertices (see
equation 1.3, the maximal gain is that each vertex has to be transmitted only about two
times. Two kinds of triangle strips are commonly used – the sequential and the gener-
alized triangle strips. In generalized triangle strips an additional bit is sent with each
vertex to specify to which of the two free edges of the previous triangle the new vertex
is attached. Sequential strips even drop this bit and impose the condition that the trian-
gles are attached in an alternating fashion. OpenGL [NDW97] which developed to the
commonly used standard graphics library allowed [Inc91] generalized triangle strips in
earlier versions, but the current version is restricted to sequential strips. Therefore, the
demands on the stripping algorithms increased. Non of the existing algorithms reaches
the optimum that each vertex is transmitted only twice. The algorithm of Evans et al.
[ESV96] produces strips such that each vertex is transmitted about 2:5 times. Xiang et
al. [XHM99] describe a faster method with similar strip lengths. As nowadays graphics
hardware accelerators still only support sequential triangle strips and triangle fans, Isen-
burg [Ise00] devised a method to encode a triangle mesh together with its stripification.
There is no overhead for the encoding of the triangle strips. The additional structural
information rather improves the encoding of the mesh connectivity.

Arkin et al. [AHMS94] examined the problem of testing whether a triangulation
can be covered with one triangle strip. For generalized triangle strips this problem is
NP-complete, but for sequential strips there exists a simple linear time algorithm. But
no results or algorithms were given to cover a mesh with several strips.

To break the limit of sending each vertex at least twice, Deering [Dee95] suggests
the use of an on-board vertex buffer of sixteen vertices. With this approach, which he

1where we assumed four bytes per floating point value and one byte per color component

2.1. MESH COMPRESSION 23

calls generalized mesh, in theory only six percent of the vertices have to be transmitted
twice. For connectivity encoding the generalized mesh consumes 15 + 0:25lbv bits per
vertex. Deering also proposes methods to quantize vertex locations, vertex colors and
vertex normals. Chow [Cho97] shows how to build generalized meshes and refines the
quantization of vertex locations to adapt the local resolution of the mesh. Bar-Yehuda
et al. [BG96] examined different sized vertex buffers. They prove that a triangle mesh
with n vertices can be rendered optimal, i.e. each vertex is transmitted only once, if a
buffer for 12:72

p
n vertices is provided. They also show that this upper bound is tight

and no algorithm can work with less than 1:649
p
n buffered vertices.

The Cut-Border Machine [GS98] as described in chapter 5 is based also on a very
simple algorithmic scheme and is therefore suitable for hardware implementation. The
software implementation allows to decompress one and a half million of triangles per
second on a Pentium II with 300 MHz. No vertex data is repeated due to the use of
a vertex buffer. It is not quite clear how large this buffer might grow, but experiments
showed that always significantly less than 12:72

p
n vertices had to be buffered. By

defining a fixed traverse order our approach minimizes the number of indices needed to
reference vertices in the buffer, which results in an additional speed up for rendering.
If these indices are Huffman-encoded, in the average only 3 bits per vertex are needed
for references. A similar but even simpler approach, that does repeat some vertices, was
proposed by Mitra [McC98].

2.1.2 Single Resolution Mesh Compression

Denny and Sohler [DS97] showed that for sufficiently large triangle meshes the connec-
tivity can be encoded in a permutation of its vertices alone. This would make all work on
connectivity coding useless. But there is a catch in it. The connectivity can be exploited
to encode the vertex locations more efficiently. With a simple delta coding technique the
connectivity information improves vertex locations encoding by about the amount of the
storage space consumed by a permutation of the vertices, which grows with O(vlbv).
The connectivity itself only consumes O(v) bits, what justifies its encoding.

Single resolution mesh compression methods are important to encode large data
bases of small objects, base meshes of progressive representations or for fast transmis-
sion of meshes over the internet. In practice a lot of meshes are non manifold, but
typically only at a few spots. On the other hand most mesh compression methods are
restricted to manifold meshes with border. As commonly used remedy to this grievance
the non manifold meshes are cut apart at non manifold mesh elements by duplicating
them. In order to avoid the replication of the attributes for the duplicated mesh elements,
Gueziec et al. [GTLH98] describe a method to efficiently represent the reverse of the
cutting process, such that the non manifold connectivity can be reconstructed before the
geometry is mapped to the connectivity.

The first single resolution mesh compression method, that focuses on maximum
compression has been the Topological Surgery by Taubin and Rossignac [TR98]. The
mesh is first cut along a vertex spanning tree into a simple polygon. The simple polygon

24 CHAPTER 2. RELATED WORK

is encoded as triangle spanning tree and with the help of the encoded vertex spanning
tree the simple polygon can be glued together again. The encoding of both trees con-
sumes approximately four bits per vertex and can be bound to consume no more than
six bits per vertex for simple meshes.

For the encoding of the vertex locations Taubin proposes a predictive delta-coding
scheme. In predictive delta-coding as first action the vertex coordinates are quantized
according to the bounding box of the mesh to an appropriate number of bits. The num-
ber of bits should be chosen such that the edge of minimal length can be represented
appropriately in the quantization grid. Sometimes the user has to specify the number
of significant bits. To avoid the propagation of the quantization error one has to take
care that for vertex location prediction the compression algorithm has only access to the
quantized locations as also the decompression algorithm does.

After the quantization step the vertex locations are typically encoded in an order
corresponding to the order in which the mesh elements are traversed during connectivity
encoding. The first vertices are encoded without any delta-coding. Afterwards, each
time a new vertex is inserted to the so far compressed mesh, the location lnew of the
new vertex is predicted from the quantized vertex locations, of the so far compressed
vertices. The difference �l between the predicted location lpred and the actual location
lnew is encoded with any coding technique. Adaptive arithmetic coding (see section 3.2)
normally produces the best results.

The different vertex location encoding approaches differ mainly in the way they
calculate lpred from the already compressed vertices. Taubin [TR98] uses a probably
large but fixed number K of ancestors in the vertex spanning tree and predicts the new
vertex location as a linear combination

lpred
def
=

KX
i=1

�ili

The coefficients �i are chosen by least square minimization of the produced delta vec-
tors. For twelve bit quantization the vertex locations of a typical CAD model compresses
to about 14 bits per vertex.

The Cut-Border Machine [GS98], the Edgebreaker [Ros98] and the triangle mesh
compression method of Touma and Gotsman [TG98] are region growing methods. The
connectivity is traversed in a breadth-first like order starting with an initial triangle or
with the mesh border. Encoded is how new operations are incorporated into the grow-
ing region. The Cut-Border Machine and its improvement [Gum99] are discussed in
chapter 5 and 6. The Edgebreaker is described and improved for maximum compres-
sion in chapter 7. Thus we only briefly explain the method of Touma. In this method the
addition of only two kinds of triangles to the growing region are explicitly encoded. Tri-
angles that introduce new vertices and much more seldom triangles that split the border
of the current region into two parts. This is possible because the vertex-triangle order
of each newly introduced vertex is encoded and the number of triangles incident upon
each vertex in the growing region is counted. If this number is only one less than the

2.1. MESH COMPRESSION 25

vertex-face order, the triangle fan around the vertex can be closed without the need of
an operation symbol. As most triangle meshes have a lot of vertices with six incident
faces, a run-length encoding scheme of the degrees achieves connectivity compression
to an average of only 2 bits per vertex. Touma also proposes a simple and very efficient
vertex predictor. Each triangle that introduces a new vertex vnew is adjacent to a triangle
t = (v1; v2; v3) of the growing region. The triangle t is extended to a parallelogram and
the fourth vertex is the predicted location of the new vertex. If we assume that (v1; v2)
form the interior edge of the parallelogram, the predicted locations can be computed
very efficiently from

lnew
def
= l1 + l2 � l3:

In order to incorporate knowledge about the surface curvature, a crease angle at the edge
(v1; v2) is estimated from the so far known crease angles of the other two edges incident
to the triangle t. The vertex locations can be encoded to about 12 bits per vertex if
quantized to ten bits.

Two further triangle mesh compression techniques were proposed by Isenburg [IS99a]
and Bajaj [BPZ99a]. Li et al. [LK98a] were the first to come up with a connectivity en-
coding scheme for polygonal meshes. The scheme encodes the dual graph in a manner
very similar to the Cut-Border Machine. Recently, the Edgebreaker has been general-
ized by Kronrod and Gotsman [KG00b] and in a different way by Isenburg [IS00] to
polygonal meshes. Isenburg shows that the knowledge about the planarity and the con-
vexity of the polygons improves the vertex location encoding. He also describes a very
efficient coding scheme for a partitioning of the polygonal mesh into patches. Finally,
we want to mention the work of Karni and Gotsman [KG00a] on the encoding of vertex
locations. They used spectral methods on triangular meshes, that allow for very high
vertex location compression rates and progressive transmission.

2.1.3 Graph Encoding Theory Related Results

The Edgebreaker of Rossignac [Ros98] bridged the endeavors in the area of mesh com-
pression with the coding theory of planar triangulations. Rossignac can show that the
Edgebreaker encoding does not consume more than four bits per vertex. The same re-
sults have been achieved by Itai et al. [IR82] and recently by Chuang et al. [CGHK98].
Already in 1962 Tutte [Tut62] had enumerated all planar triangulations and it turned out
that at least 3:245 bits per vertex are needed to encoded an arbitrary planar triangulation.
More bounds on the encoding of triangle meshes are discussed in chapter 4. The upper
bound of four bits per vertex could be improved by King [KR99] to 3:667 bits per ver-
tex and later on by the author [Gum00] to 3:552 bits per vertex. The latter result will be
expatiated in chapter 7. In the same work the author could show an upper bound of no
more than five bits per vertex for a slightly modified version of the Cut-Border Machine
as described in section 6.4.

26 CHAPTER 2. RELATED WORK

2.1.4 Tetrahedral Mesh Compression

In the area of tetrahedral mesh compression two single resolution methods have been
proposed so far. The Grow & Fold method by Szymczak and Rossignac [SR99] is a gen-
eralization of the topological surgery method and is described in section 12.1. It allows
to encode tetrahedral connectivity with slightly more than seven bits per tetrahedron.
The Cut-Border Machine has also been generalized to the tetrahedral case [GGS99]
and is described in detail in chapter 10. It only consumes two bits per tetrahedron for
connectivity coding. Up to know the Cut-Border Machine is the only encoding tech-
nique for tetrahedral meshes that has compression schemes for vertex data and vertex
attributes as described in chapter 11.

2.2 Mesh Simplification

a) b)

Figure 2.1: The most often used primitive simplification operations in mesh simplifica-
tion: a) vertex elimination, b) edge collapse

A lot of mesh simplification algorithms are based on the successive application of lo-
cal simplification operations such as the vertex elimination [SZL92, KLS96, CCMS97]
and the edge collapse [HDD+93, Hop96, RR96, GH97, Gué99] as shown in figure 2.1.
Gieng [GHJ+98] uses the more seldom triangle collapse operation. The successive ap-
plication of simplification operations yields a sequence of meshes from the original
meshMn to the coarsest meshM0.

Mn

edge collapse! Mn�1
edge collapse! � � �M1

edge collapse! M0

To ensure the quality of the simplified mesh an error measurement is defined. For all
possible local simplification operations the produced error is determined by virtually
performing the operation. The operations are entered into a priority queue sorted ac-
cording to the produced error. As long as the error of the current mesh is smaller than
the allowed error, the simplification operation, that produces the smallest error, is ex-
tracted from the queue and applied. New possible simplification operations will be pos-
sible in the surrounding of the performed operation. These will be virtually performed
to determine the error produced by them and then the new operations are entered into
the priority queue.

The methods differ primarily in the used error measurement, which significantly in-
fluences the performance of the simplification process. For a discussion of the different
methods see [PS97].

2.3. PROGRESSIVE MESH COMPRESSION 27

The simplification approach has also been generalized to the tetrahedral case [ZCK97,
CMPS97, SG98, THJW98]. All methods are based on edge collapse as other simplifi-
cation operations are very difficult to implement for tetrahedral meshes.

2.3 Progressive Mesh Compression

The idea of progressive mesh compression is to encode a mesh through the inverse of the
simplification process. The mesh in the coarsest resolution is encoded followed by a se-
quence of refinement operations, which are the inverse of the simplification operations.
The inverse of the vertex elimination (compare figure 2.1 a)) is the vertex insertion and
the inverse of the edge collapse operation (figure 2.1 b)) the vertex split operation. In
the notation of above the decompression of a progressively compressed meshes can be
described as a sequence of meshes

M0
vertex split! M1

vertex split! � � �Mn�1
vertex split! Mn:

This representation is ideal to stream meshes, as the mesh can be viewed in a coarse
resolution before all vertex split operations have been transmitted. This feature is also
known as progressive transmission.

Hoppe [Hop96] was the first to come up with a progressive representation – the
progressive mesh representation –, which is based on vertex split operations. If viewed
from right lo left, figure 2.1 b) shows a vertex split operation. The dashed edges on
the right are split into new triangles. For update of the connectivity during a vertex split
operation it is sufficient to specify the two edges, which have to be split. Thus the vertex
split can be specified by the index of the split vertex and an index into an enumeration
of all possible edge pairs from the edges incident to the split vertex. As there are about
six edges incident upon a vertex (compare equation 1.5), the vertex split can be encoded
with lb(5 � 6) + lbv bits, where v is the current number of vertices. The vertex data is
compressed with a local prediction scheme and delta coding to about 21 bits per vertex.
Some improvements over the progressive mesh representation have been proposed by
Li [LK98b].

The major idea to get rid of the lbv bits per vertex was presented by Taubin in 1998
with the progressive forest split (PFS) representation [TGHL98]. Taubin generalizes the
vertex split operation to the forest split operation. In the coarse mesh a forest of edges is
specified. The refinement step splits all the edges at the same time. In this way the mesh
is generated from a coarse simplified version by successively doubling the number of
vertices. The forest split operation is encoded with one bit per edge specifying the split
edges plus the encoding of a simple polygon that fills the cuts. In this way no vertex
indices have to be encoded. The connectivity of a triangle mesh consumes in the PFS
representation about eight bits per vertex. Taubin also proposes a derivative of an edge
collapse simplification algorithm to build up the PFS representation. For the encoding
of the vertices about 25 bits per vertex are consumed.

28 CHAPTER 2. RELATED WORK

Let us extract the basic method – the level split method –, that allows to avoid the
lbv bits per reversed simplification step: gather as many split operations as possible and
encode their anchor mesh elements with flags and the additional local information, that
is necessary to specify the refinement operations, in the same way as if no level split
method would be used. Cohen-Or et al. [COLR99] applied the level split method to
mesh simplification through vertex elimination. Figure 2.1 a) shows a vertex elimina-
tion operation. The inverse is the vertex insertion operation, which is fully determined
by the set of triangles used for re-tiling the hole arising after the vertex elimination.
Thus Cohen-Or proposes a coloring scheme to define a dense set of vertex insertion
operations on the coarse mesh. Two schemes are presented a four coloring scheme and
a two coloring scheme. The later is based on a special type of re-tiling after the vertex
elimination. Very good compression rates are achieved. The connectivity is encoded
with about six bits per vertex. The compression results for the vertex locations are not
directly specified in the paper, but one can derive them from other measurements. With
about 16 bits per vertex this method achieves very good compression rates for a twelve
bit quantization.

Pajarola [PR00] applies the level split method directly to progressive meshes. The
resulting method is called Compressed Progressive Meshes. He specifies the split ver-
tices of a dense set of vertex split operations level by level with a flag. For each split
vertex the two edges that have to be split (compare Progressive Meshes) are encoded
as an index into an enumeration of all possible pairs of edges. The connectivity com-
presses to 7:2 bits per vertex. With the help of arithmetic coding this result could proba-
bly improved to six bits per vertex as with the method of Cohen-Or. For vertex location
encoding Pajarola inverts a butterfly subdivision scheme. With ten bit quantization the
vertex locations can be encoded with about 16 bits per vertex.

The only progressive compression method, which is not based on simple decimation
operations is the one by Bajaj et al. [BPZ99b]. Here the triangle mesh is simplified by
re-triangulation of long closed triangle strips. The method can also handle non manifold
meshes and consumes about 10 bits per vertex for connectivity coding and 30 bits for
vertex location coding.

Also in the area of tetrahedral mesh compression the level split method has been ap-
plied by Pajarola et al. [PRS99]. The method is called Implant Sprays and is described
in section 12.2. Finally, the most general progressive method – the Progressive Sim-
plicial Complex – has been proposed by Popovic et al. [PH97]. It can handle arbitrary
simplicial complexes and is described in section 12.3.

2.4 Remeshing

Remeshing an arbitrary triangle mesh is a very difficult task. A simple approach as pre-
sented in [Tur92] does not always produce high quality results as sharp edges are not
reproduced and neither any kind of error can be guaranteed. A more promising approach
is the use of subdivision surfaces [CC78, DS78]. The idea is to approximate the original

2.4. REMESHING 29

mesh by subdividing a coarse mesh of the same topology, which serves as parameter-
ization. During the subdivision process the inserted vertices are displaced such that
the original mesh is approximated better. Eck et al. [EDD+95] were the first to follow
that path. The major problem is to find a parameterization of the mesh, what has been
only recently solved by Lee et al. [LSS+98]. Based on this work two new very similar
representations for subdivision surfaces [GVSS00, LMH00] have been proposed. Both
representation allow to encode surface detail as a displacement field along the surface
normal. The difficult task is to convert an arbitrary surface into this representation, as
the original mesh must be describable by a coarse base surface and an offset in direc-
tion of the surface normal. Both approaches use a simplification procedure based on
edge collapse with some heuristics to avoid that the fine surface intersects the normal of
the coarse surface several times. Then follows an optimization step that allows to im-
prove the parameterization. Finally, the displacements along the normal are calculated
by casting a dense set of rays from the subdivision surface in the direction of the surface
normal. The resulting representation is extremely space efficient as only the coarse base
mesh needs to be stored plus a one dimensional offset to the surface and not anymore
the three coordinates for each mesh vertex.

30 CHAPTER 2. RELATED WORK

Chapter 3

Coding Techniques

Most mesh compression schemes translate the uncompressed mesh into a sequence of
symbols and indices. The efficient encoding of these two basic components is a chapter
for itself – this chapter.

The first two sections 3.1 and 3.2 describe methods for the encoding of a sequence of
symbols. All explanations assume the existence of an alphabet A over a set of symbols
f�1; : : : ; �ag. Let s = s1; : : : ; sn be the string that has to be encoded. The coding
methods exploit the frequencies f�1; : : : ; �ag of the symbols in the alphabet. If #�i

(s)

is the number of symbols �i in the string s, the frequencies are given by

�i
def
= #�i

(s)=n:

If no further knowledge about the symbols in the string is given, the optimal encoding,
that can be achieved, consumes at least as many bits as the binary entropy, which is
defined as

�(s)
def
= �

aX
i=1

#�i
(s) � lb�i: (3.1)

The entropy limit is achieved up to a fractional of a percent by arithmetic coding as
described in section 3.2. This section also describes several applications of arithmetic
coding, that arise regularly in mesh compression.

Section 3.3 describes variable length coding schemes, which can be used to encode
indices.

3.1 Huffman Coding

In 1952 Huffman [Huf52] devised a very efficient method to encode a string of symbols.
Let us assume the settings given in the introduction to this chapter with the alphabet
A, the symbols �i and their frequencies �i. For each of the symbols a binary code is
created, such that no code is a prefix of another code. The latter condition is essential
for the unique parsing of the codes in linear time. The prefix condition is automatically

31

32 CHAPTER 3. CODING TECHNIQUES

fulfilled, if the codes are generated from a binary tree with the symbols at the leaves.
The path from the root of the tree to each leaf defines the bit code. Anytime one chooses
the left child of a node the code is extended by a zero, in the right child by a one. It
remains to specify how the tree is built. Huffman showed that the following method
assigns optimal1 prefix codes for each symbol.

� form the leaf nodes as the symbol-frequency pairs (�i; �i) and insert them into a
priority queue sorted by increasing frequency

� as long as the queue contains more than one node, extract the first two nodes
(:; �i); (:; �j) with smallest frequencies, form a new node (:; �i+ �j) with children
(:; �i) and (:; �j) and insert the node into the queue.

� the last node in the queue is the binary tree describing the optimal prefix codes.

The same method of building the binary tree works also with the symbol counts #�i
(s).

Huffman coding in its simplest variant has several disadvantages. It makes all mesh
compression techniques to two pass algorithms. In the first pass the string s is generated
and the symbols are counted. Then the prefix codes are computed and encoded and
finally in the second pass the symbols are encoded with the prefix codes. The second
problem is that the prefix codes need to be encoded, what consumes additional storage
space and can decrease encoding efficiency, if the number of different symbols a is not
negligible compared to the total number of symbols n in the encoded string.

In case of the Cut-Border Machine for triangle meshes the frequencies of the dif-
ferent symbols do not vary strongly. Therefore fixed prefix codes can be generated by
averaging the symbol frequencies over a representative set of triangle meshes.

Cormack [CH84] describes algorithms for the adaptive generation of Huffman codes.
The basic idea is to start coding with some initial symbol counts, for example one or
in case of the Cut-Border Machine the standard frequencies multiplied by some initial
symbol count are used. During compression and decompression not only the symbol
counts are updated after each encoding/decoding of a symbol, but also the binary tree
defining the prefix codes. The update decreases coding performance slightly. The major
disadvantage of Huffman coding is that it does not achieve the minimal coding costs
given by the binary entropy.

3.2 Arithmetic Coding

The exciting fact about arithmetic coding is, that it approximately achieves the binary
entropy and is therefore a near optimal encoding scheme in terms of space consumption.
The idea goes back to the text book [Abr63] (see pages 61-62). The initial idea has been
evolved to a coding scheme in [Pas76, Ris76] and finally became a practical method

1a set of optimal prefix codes achieves the minimum storage space consumption for the encoding of
the string s

3.2. ARITHMETIC CODING 33

with the publication of [RL79]. A nice overview of arithmetic coding can be found
in [WNC87]. We will briefly introduce the ideas behind arithmetic coding and describe
afterwards several applications, which are important in the area of mesh compression.

In arithmetic coding the encoded symbols are not directly translated into bit codes.
Each symbol is encoded into a sub-interval of the unit interval according to its frequency.
With the notation from the introduction to this chapter, symbol � i is encoded by the sub-
interval

I(�i)
def
=

"
i�1X
j=1

�i;

iX
j=1

�i

!
;

where the sum over all frequencies �k is one. The string, which has to be encoded, is a
concatenation of symbols and will also be encoded by a sub-interval of the unit interval,
which results from an interval subdivision and can be defined in a nice formal manner
with the empty string � and the concatenation operation ”Æ”

I(�) def
= [0; 1)

I(s) = [A;B); I(�) = [a; b))
I(s Æ �) def

= [A + a � (B � A); B + b � (B � A)) : (3.2)

Now we are able to translate a string of symbols based on the symbol frequencies into
a uniquely defined sub-interval [A;B) of the unit interval. The target interval [A;B)
finally needs to be encoded with bits. This can be done through a binary fraction. On
the one hand the binary fraction :1101 specifies the fraction 13=16 but on the other hand,
if we don’t know how the binary fraction goes on after the four known digits, we can
only safely tell that a binary fraction beginning with :1101 will lay within the interval
I(:1101) def

= [:1101; :1110). The target interval [a; b) can be uniquely specified through
the shortest binary fraction fbin, that satisfies the relation

I(fbin) � [A;B) = I(s):

The typical encoding algorithm keeps a current interval and updates it according to
the subdivision formula 3.2 for each newly encoded symbol. Decoding the string s is
also very simple. One reads the binary fraction and re-does the interval subdivision by
updating the current interval according to the currently decoded symbol. As the binary
fraction is known, one can determine the next symbol by finding the sub-interval of the
symbol, in which the binary fraction is completely contained.

At first glance this approach seems to involve arbitrary precision arithmetic, but
there is a nice and simple method to perform arithmetic coding with integer arithmetic
alone. For this the integer values are interpreted as representing binary fractions of fixed
length, often 32 or 64 bits. The encoder stores the current interval as integer values. The
important observation is that if the highest bit of the lower and of the upper bound of the
current interval are equal, they cannot change any more as the encoded sub-interval only
can shrink. Thus one can shift all calculations one bit to the left and send the highest bit
to a binary stream, that represents the binary fraction.

34 CHAPTER 3. CODING TECHNIQUES

Although the arithmetic coding technique is quite sophisticated and the underlying
algorithms not too simple, Langdon[Lan84] describes how to implement the encoding
and decoding algorithms in hardware. Before we come to some applications, let us state
again the fact, that arithmetic coding achieves the binary entropy of the encoded string
up to less than a percent as described in [WNC87]. Thus it is valid to say that a symbol
consumes a fractional amount of bits. Let �i be again the frequency of the symbol �i
and S�(�i) the fractional amount of bits, the symbol �i consumes in arithmetic coding.
Then the following equation is true up to a negligible deviation

S�(�i) � �lb�i: (3.3)

3.2.1 Index Coding

The first application of arithmetic coding is the encoding of indices. The precondition
is that we know the range of each encoded index at the moment before it is encoded or
decoded. Suppose the index i falls into the range 1; ::; n. Then the unit interval of the
arithmetic coder is subdivided into n equal sized sub-intervals and the i-th sub-interval
is encoded. As the frequency of each possible index value is 1=n, the encoding of an
index consumes (see equation 3.3)

Sindex(n) � lbn (3.4)

3.2.2 Flag Encoding

A frequently arising situation is that we have to encode a flag, i.e. a one bit value, for a
whole sequence of elements. Suppose there are n flags to be encoded and the frequency
of the flag to be true is �1. Then the average consumed amount of bits per flag is

Sag(�1) = ��1lb�1 � (1� �1)lb(1� �1) (3.5)

Figure 3.1 illustrates equation 3.5. If the flag is exactly in half of the case one (�1 = 0:5),
nothing can be saved and one bit per flag is consumed. But if the frequency �1 goes to
0 or 1 a significant improvement can be achieved with arithmetic coding.

3.2.3 Adaptive Arithmetic Coding

The adaptive arithmetic coding exploits the same idea as adaptive Huffman coding (see
section 3.1). During encoding and decoding the symbol counts are incremented and the
frequencies of the symbols updated. This update process is quite expensive. Hester et
al.[HH85] describe an efficient variant of a self-organizing linear search.

In geometry coding one has to encode vertex locations, what is often done by first
quantizing the coordinates to 12 or 16 bit indices. For the use of adaptive arithmetic
coding one faces the problem of handling 65; 536 symbols and update their frequencies
all the time. To avoid this, the indices are sub-divided into packages of 4 bits, such that

3.2. ARITHMETIC CODING 35

Figure 3.1: The diagram shows the fractional storage space Sag for a bit in terms of the
frequency �1 of the flag being one.

only four times sixteen different symbols need to be handled. The encoding efficiency
does decrease only slightly with this practical approach.

3.2.4 Sparse Flag Coding

In mesh coding a common problem is the efficient encoding of the locations of the
appearances of a very rare symbol � in the symbol string s of length n, i.e. the frequency
�� is much smaller than one. Two not very efficient methods are often used. Firstly,
one can encode the locations of � with a flag consuming n bits. The obviously better
approach to this idea is the use of the flag encoding of subsection 3.2.2. Per symbol �
this approach would consume the storage space for one true valued flag plus the storage
space for (1� ��)n=��n false valued flags (compare equation 3.5)

SsparseFlag � �lb�� �
1� ��

��
lb (1� ��) = �lb

h
�� (1� ��)

1
��
�1
i
: (3.6)

The second approach is to encode the locations with indices into the string, con-
suming even with arithmetic coding lbn bits per appearance of �. This is neither very
efficient because one additionally encodes a permutation of the � symbols as the order of
the indices could be permuted arbitrarily. As there are klbk different permutations on k
symbols, the index encoding would waste lbk bits per index. These overhead of bits can
be saved by sorting the indices, encoding the first one and afterwards for each further
index only the difference to the previous index. If one applies adaptive arithmetic cod-
ing to the differences, the lbk bits can be saved. This is difficult to proof theoretically
but was shown by measurements on randomly distributed indices. Thus with k = ��n
the index encoding of a sparse flag would consume for each symbol �

SsparseIndex � (lbn� lb(��n)) = �lb��: (3.7)

36 CHAPTER 3. CODING TECHNIQUES

Figure 3.2: The diagram compares the sparse flag coding (equation 3.6) with the sparse
index coding (equation 3.7).

igure 3.2 compares the two approaches. The difference index coding is always superior,
but it is more difficult to implement and slower in performance.

3.3 Variable Length Coding

In this section we describe variable length coding schemes for signed indices. The zero
case is special because �0 is the same as +0. In our applications of variable length
coding we do not need the zero index. Therefore we exclude the zero case and assume
that it never arises. For the Cut-Border Machine we do neither need the �1 cases and
therefore we restrict the discussion in this section to signed indices with absolute values
larger than one. But we could have chosen any other minimal absolute index value.

Figure 3.3 illustrates three different simple variable length coding schemes for the
signed indices starting with �2. All three schemes begin with one bit for the sign of
the index. Coding scheme a) encodes a bit with two bits – the bit of the index and an
additional control bit specifying, whether further bits follow. In scheme a) indices �2

Figure 3.3: Three different variable length coding schemes for signed indices.

3.3. VARIABLE LENGTH CODING 37

and �3 are encoded with one sign bit, one index bit and one control bit. The indices
�4 : : :� 9 are encoded with five bits and so on. Scheme b) packs the index bits in three
bit bundles of two index- and one control-bit. Finally, the third scheme c) mixes both
approaches and simple arithmetic coding. The first three-bit bundle specifies the two
lowest significant bits of the absolute value of the index minus two or equivalently the
remainder of the index minus two when divided by four. The second bundle encodes
the remainder of a fourth of the by two decremented index divided by three. Using
arithmetic coding this bundle can be encoded with lb3 + 1 � 2:585 bits. The by two
decremented index divided by twelve is encoded with two-bit bundles as in scheme a).

For all of the three schemes in figure 3.3 the storage space I�2fa;b;cg for encoding an
index i obeys the relation

8i � 2 : I�(i) � ��lb(i+ 1) + 1; (3.8)

with the different values for �� as given on the right of figure 3.3. It is somehow arbitrary
that we wrote the term on the right side of equation 3.8 in terms of lb(i + 1). Actually,
one would have assumed no plus one but rather a minus. The plus one was chosen in
accordance to the application of the equation in the case of the Cut-Border Machine,
where the i + 1 corresponds to the number of encoded edges. The fact that index 2

implies, that already three edges have been encoded, corresponds to some extra savings,
which allow us to keep the � in equation 3.8 smaller.

Let us justify the validity of relation 3.8 exemplary for scheme c). The problematic
indices are the ones, which force the usage of a new bundle. In scheme c) these are the
indices�2;�6;�14;�26; : : : ; 12 � 2k +2; : : :. The first bundle consumes together with
the sign four bits, the second bundle lb3 + 1 bits and each following bundle further two
bits. Thus for the indices �2 one must check 4 � �clb3 + 1, for the indices �6 check
4 + lb3 + 1 � �clb7 + 1 and for the remaining problematic indices relation 3.8 is valid,
iff

8k � 0 : 4 + lb3 + 1 + 2(k + 1) � �clb
�
12 � 2k + 3

�
+ 1: (3.9)

Solving the equal case of this relation for k yields no real solution and the relation holds
true for k = 0. Therefore, it must hold true for all values of k. Similar arguments show
the validity of relation 3.8 for the variable length coding schemes a) and b).

The minimal value for � can be achieved by an arithmetic variable length coding
scheme. Again the first bit is used for the sign. To each absolute value of the indices
a sub-interval of the unit interval is assigned, the length of which corresponds to the
frequency �i of the encoded index. With equation 3.3 we can relate the frequencies
to the number of consumed bits bi = �lb�i. From relation 3.8 we assume that bi =
�minlb(i+ 1). As all frequencies of the different indices must sum up to one this yields
a condition for �min

1 =
X
i�2

2��minlb(i+1) =
X
i�2

1

(i + 1)�min
: (3.10)

38 CHAPTER 3. CODING TECHNIQUES

This equation is hard to solve for �min, but with the integral
R

1

x
�min

we could proof the
following relation

1:589 < �min < 1:59: (3.11)

An arithmetic coder that achieves �min requires arbitrary precision arithmetic and there-
fore is not able to encode and decode symbols in constant time. We did not find a simple
coding scheme to improve on �c = 2:03 but there probably is one. For the remainder
we will stick to �c.

Part II

Triangle Mesh Compression

39

41

In this part we describe the manifold triangle mesh compression technique of the
Cut-Border Machine and the Edgebreaker in detail. As also upper bounds for the meth-
ods will be presented, we start in chapter 4 with a discussion on lower and upper bounds
of the encoding of triangle meshes.

Chapter 5 describes the Cut-Border Machine in its original version with the goal to
provide compression and decompression algorithms for real-time applications. The sec-
ond chapter on the Cut-Border Machine elaborates several improvements to the encod-
ing scheme including better connectivity compression rates and provable linear bounds
on the running time and storage space consumption in the case of planar triangulations
or meshes with low Euler characteristic.

The chapter 7 on the Edgebreaker scheme reflects the work of the author to get closer
to the theoretical lower bound of a 3:245 bits per vertex encoding of planar triangula-
tions.

Finally, this part closes with a chapter on concluding remarks and directions for
future work.

42

Chapter 4

Bounds on Triangle Mesh Compression

In this chapter we describe theoretical bounds for the encoding of triangle mesh connec-
tivity. For planar triangulations there is a tight theoretical lower bound for connectivity
encoding given by the number of different triangulations.

4.1 Planar Triangulations

Tutte counts in [Tut62] the number of different planar triangulation with a fixed num-
ber of border edges. Figure 4.1 shows a sample planar triangulation with four border
edges. Tutte only counts triangulations with different connectivity, i.e. the location of
the vertices v0 to v5 is arbitrary. Tutte does not account for all kinds of symmetries of
different triangulations, but just fixes the border vertices v0 to v3. A different triangula-
tion of the one in figure 4.1 is for example generated if the border vertices are renamed
from (v0; v1; v2; v3) to (v1; v2; v3; v0). A renaming into (v2; v3; v0; v1) results in the same
triangulation, as the connectivity defines the same incidence relations.

Tutte calculates an asymptotic formula for the number of different planar triangula-
tions 	v with three border edges in dependence on the number of vertices v in the planar
triangulation

	v �
1

16

r
3

2�
v�

5
2

�
256

27

�v+1

: (4.1)

Figure 4.1: An example of a planar triangulation with four border edges.

43

44 CHAPTER 4. BOUNDS ON TRIANGLE MESH COMPRESSION

The special case of three border edges can also be interpreted as a closed triangle mesh
with the topology of a sphere. In order to determine the minimum number of bits needed
to encode a closed triangle mesh we just have to take the binary logarithm of the count
given in equation 4.1. Skipping terms of the order of lbv results in a lower bound for

connectivity encoding of closed manifold triangle meshes Lplanar
v in bits per vertex

Lplanar
v

= lb

�
256

27

�
� 3:2451125: (4.2)

And using the formula 1.2 the lower bound can be converted into bits per triangle

Lplanar
t

=
1

2
lb

�
256

27

�
� 1:62255625: (4.3)

We can conclude with the following theorem

Theorem 4.1 To encode a sufficiently large planar triangulation or a closed manifold
triangle mesh with t triangles at least 1:6225562 � t bits are needed for sufficiently large
t.

4.2 Planar Triangulations with Holes

More border edges and more border loops do not change the assymptotic behaviour of
the number of different triangle meshes significantly. For each edge-connected compo-
nent the number of border loops is bound by the number of triangles in the component.

Lemma 4.2 The number of border edges in an edge-connected closed manifold triangle
mesh with border is limited by the number of triangles plus two.

Proof: Take an arbitrary triangle of the mesh. For this triangle the lemma is true. Then we
rebuild the mesh by adding the remaining triangles at the border of the sofar rebuild mesh. This
is possible as the mesh is edge connected. Each addition of a triangle changes at least one border
edge into an inner edge and generates no more than two new border edges. Thus no more than
one border edge is added per triangle. In this way the lemma is true during the whole rebuilding
process and therefore also holds for the mesh itself. �

The holes of an edge-connected manifold triangle mesh can be easily triangulated
with consistent connectivity by a triangle strip as shown in figure 4.2, where it is not
important, whether this triangulation will produce self-intersections or not. A hole with
b border edges can be triangulated with b � 2 triangles. Thus one can extend each
encoding scheme for planar triangulations easily to planar triangulations with holes by
triangulating the holes, encoding the resulting planar triangulation and finally encoding,
which of the triangles were dummy triangles with one bit per triangle. Together with
lemma 4.2 the following theorem holds:

4.3. NON PLANAR TRIANGLE MESHES 45

Figure 4.2: Any orientable hole in a triangle mesh can be triangulated with a triangle
strip as drawn in bold style.

Figure 4.3: Representation of a permutation through a non planar triangle mesh.
a) domain and range of permutation, b) mapping and c) the resulting triangle mesh.

Theorem 4.3 An encoding scheme for planar triangulations that consumes S bits per
triangle allows to encode planar triangle meshes with holes with no more than 2S + 2

bits per triangle.

Theorem 4.3 also gives an upper bound for the number of different triangulations with
holes. With the lower bound for planar triangulations in equation 4.3 we know that there

are no more than 22t(L
planar
t +1) different planar triangulations with holes.

4.3 Non Planar Triangle Meshes

In the case of non planar triangle meshes the situation becomes worse. Figure 4.3
demonstrates how to represent a permutation of n = 7 elements through a triangle
mesh. In the first step in figure 4.3 a) the domain and the range of the permutation is
constructed with two triangle fans. The domain fan is marked with an addition triangle
such that the fans contain 2n + 1 triangles. In the second step the adjacencies of edges
in the two different fans are defined according to the permutation. And finally each
adjacency is represented by two triangles. The first triangle is always adjacent to the
domain triangle fan and the second one is attached to the range fan and the edge of the
first triangle which is incident on the upper vertex of the domain fan edge. This can be

46 CHAPTER 4. BOUNDS ON TRIANGLE MESH COMPRESSION

consistently done by choosing a fixed orientation. Thus for each domain element the
element in the range can be easily found following the two triangles representing the
adjacency.

We can conclude that a permutation of n elements can be represented through a
manifold triangle mesh with border consisting of t = 4n + 1 triangles. As there are
n! different permutations of n elements, from the Stirling’s formula follows, that non
planar manifold triangles meshes with border consume
(t log t) bits. The same holds
true for closed manifold triangle meshes of higher genus. Just imaging to blow up
the example in figure 4.3 in the third dimension. The standard representation for the
connectivity of a triangle mesh given by the relation F ! V consumes 3tlbv bits. As
v � 3t the connectivity of any triangle mesh can be encoded in O(t log t) bits. Finally,
we have the same assymptotic bounds for non manifold triangle meshes.

Theorem 4.4

� encoding of closed manifold triangle meshes with t triangles consumes �(t log t)
bits

� encoding of manifold triangle meshes with border consisting of t triangles con-
sumes �(t log t) bits

� encoding of non manifold triangle meshes with t triangles consumes �(t log t)
bits

Chapter 5

The Cut-Border Machine

We introduce the Cut-Border Machine connectivity encoding by comparison with gen-
eralized triangle strips. The latter approach utilizes a vertex buffer of only two vertices
but in turn has to encode each vertex twice. Thus the first idea is to simply increase
the size of the vertex buffer to avoid all vertex repetitions. As in the case of triangle
strips, the Cut-Border Machine encodes triangle by triangle. Thus at any time during
the encoding the triangle mesh is split into two parts, the inner part consisting of all
encoded triangles and the outer part formed by all the still to be encoded triangles (see
figure 5.1). The set of edges between the inner and the outer part is called the cut-border.
All the vertices contained in the cut-border have been encoded already, as at least one
triangle of the inner part is incident to them, and they are still needed to specify a not
yet encoded triangle from the outer part. Thus the Cut-Border Machine buffers all the
vertices on the cut-border. In order to avoid a strong fragmentation of the cut-border,
the triangle from the outer part, which is encoded next, is chosen incident to one of the
cut-border edges. This specific edge is called the gate. On the cut-border the choice for
the next gate can become quite broad. The second idea of the Cut-Border Machine is to
fix the choice of the next gate, i.e. the traversal order, in order to avoid the need for any

Figure 5.1: Snapshot during compression of a toroidal triangle mesh with the cut-border
machine.

47

48 CHAPTER 5. THE CUT-BORDER MACHINE

8

9

4
3

2 9

87

0

7

3

1516
1011
4

2

10

9

87

413

10
2

3

6

1516

10

1
0

16

6
5

15 1516

19

8
714

4

12

1
0
2

3

6

c)

f)

1 5 5

d)

5
13

a) b)

e)

12

15
6

7 8

2
5

6

13
12

0
9

12
13

1516

10
15

3
4
1011

16

10 11

14

13
11

14

6

1414

11

14

4
12

13
12

3
0
2

87

9

11

Figure 5.2: The shown sample triangle mesh is encoded in a breadth-first order. The
different cut-border operations are illustrated.

additional bits. Thus the Cut-Border Machine can encode the connectivity of a triangle
mesh by specifying for each triangle how it is incorporated at the gate into the inner part.
We also call these different ways of adding a triangle the cut-border operations. The
Cut-Border Machine starts with an arbitrary triangle as initial inner part and an arbitrary
initial gate incident to this triangle. The vertices are encoded in the order in which they
appear for the first time in the encoding process.

In the following we describe the Cut-Border Machine compression technique in
more detail. In order to find the next triangle incident on the gate during the compres-
sion of a triangle mesh, we use the half edge data structure described in section 1.5. In
section 5.1 we gather the different cut-border operations and describe the compressed
representation of a triangle mesh. Details about the implementation are given in sec-
tion 5.2. After some measurements the traversal order, which defines the choice of the
gate after each cut-border operation, is optimized in section 5.2.3. We close the first
chapter on the cut-border machine with some extensions in section 5.3.

5.1 Cut-Border Operations & Compressed Representa-
tion

Figure 5.2 illustrates the encoding of a sample triangle mesh, where all except one
cut-border operation arise. The triangle mesh is always built from an initial triangle

5.1. CUT-BORDER OPERATIONS & COMPRESSED REPRESENTATION 49

a)

split cut border

cut border
part 2

cut border
part 1

4

3
6

5

21
-1

n"

7

n=6

"

b)

cut
border
union

x

y

l" i"

z

Figure 5.3: The “split cut-border”-/“cut-border union”-operation needs one/two in-
dices to specify the third vertex together with which the current cut-border edge forms
the next triangle. The vertices of the gate are shaded dark and the newly attached triangle
light.

consisting of the first three vertices. The initial cut-border operation is not encoded
but will be denoted with the symbol “�”. Between figure 5.2 a) and 5.2 b) all of the
three initial cut-border edges 0; 1 and 2 become the gate in increasing order of their
indices and to each edge the adjacent triangle is added to the inner part. Each operation
introduces a new vertex and two new edges to the cut-border. Let us call this cut-
border operation “new vertex” and abbreviate it with the symbol “*”. The new cut-
border edges are enumerated in the order they are added to the cut-border, what causes
a breadth-first traverse order.

Between figure 5.2 b) and 5.2 c) the triangle of the outer part, which is incident to
gate 3, is added to the inner part. This time no new vertex is inserted, but edge 3 forms
a triangle with the preceding cut-border edge. This operation will be called “connect
backward” and is represented by the symbol “ ”.

Moving on to figure 5.2 d), two “new vertex”-operations arise at the cut-border
edges 4 and 5. At the cut-border edge 6 the mirror image of the “connect backward”-
operation is applied to connect the gate to the subsequent edge on the cut-border. Nat-
urally, this operation is called “connect forward” and is abbreviated with “!”. No
triangle is added to cut-border edge 9 as it is part of the mesh border. This fact has to be
encoded, too, and is called “border”-operation (“ ”).

A more complex operation arises at cut-border edge 10 in figure 5.2 e). The adjacent
triangle in the outer part is neither formed with the preceding nor with the subsequent
cut-border vertex, but with a vertex further apart. The result is that the cut-border splits
into two loops. In figure 5.2 f) the first loop is formed by the edges 11; 12 and 16

and the second loop by 13; 14 and 15. This operation will be called “split cut-border”
(“1i”), which takes the index i to specify the third vertex relative to the current cut-
border edge. Figure 5.3 a) shows another “split cut-border”-operation. The relative
indices are written into the cut-border vertices. The “split cut-border”-operation has
two consequences. Firstly, the cut-border cannot be represented anymore by a simple
linked list, but a list of linked lists is necessary. And secondly, the choice of the next

50 CHAPTER 5. THE CUT-BORDER MACHINE

cut-border loop to be processed after a “split cut-border”-operation yields a new degree
of freedom for the traverse order. To minimize the number of cut-border loops the cut-
border loop with fewer vertices is chosen.

Another operation arises in figure 5.2 f) at cut-border edge 11. The incident triangle
closes the triangle mesh and the current cut-border loop is removed. This operation
is called “close cut-border” and is denoted by “r”. As the size of the current cut-
border loop is known during compression and decompression, the “close cut-border”-
operation can also be encoded with “connect forward” or “connect backward” and the
different symbol is only introduced for didactic reasons. On the other hand if there really
is a hole in form of a triangle, the hole is encoded with three “border”-operations.

Finally, there exists a somewhat inverse operation to the “split cut-border”-opera-
tion – the “cut-border union”-operation. An example is visualized in figure 5.3 b). The
figure shows in a perspective view a cube with a quadratic hole. The so far compressed
inner part consists of the two dark shaded regions. There are two cut-border loops,
which are connected by the new light triangle, which is attached to the gate (dark ver-
tices). Therefore, this operation is called “cut-border union” or for short “

S
i

l
”. Two

indices are needed to specify the second cut-border loop l and the index i of the vertex
within the second cut-border loop. The vertices in a cut-border loop are enumerated ac-
cording to the cut-border edges. Therefore, the vertex at the beginning of the cut-border
edge with the smallest index in the cut-border loop l is labeled zero, the vertex at the
second smallest cut-border edge is labeled one and so forth.

It can be shown that the number of “cut-border union”-operations is exactly the
genus of the compressed triangle mesh. Seen from a different angle, the operations “r”,
“!/ ”, “1i” and “

S
i

l
” provide the possibility to connect the current cut-border edge

to any possible vertex in the cut-border, whereas the operations “�” and “*” utilize
new vertices.

The encoding of the sequence of cut-border operations uniquely defines the con-
nectivity of a triangle mesh. The connectivity of the sample mesh in figure 5.2 can be
encoded by the following sequence of operations:

*** **! 12!

The symbols for the different operations can be encoded with Huffman Codes to achieve
good compression rates. Therefore, the mesh connectivity is sequentially stored in a bit
stream.

The geometry and material data must be supplied additionally. For each vertex this
data can include the vertex position, the surface normal at the vertex and the texture
coordinates or some material information. We will refer to all this data with the term
vertex data. The material of the surface can also be given for each triangle. Similarly,
data can be supplied for the inner edges and the border edges of the mesh. We will
collect the different kinds of data in the terms triangle data, the inner edge data and the
border edge data. Thus for each type of mesh element, data can be supplied with the
connectivity of the mesh. We refer to the collection of all additional data with the term
mesh data.

5.1. CUT-BORDER OPERATIONS & COMPRESSED REPRESENTATION 51

op.: vertex inner edge border edge triangle
� 3 0 0 1
* 1 1 0 1
!/ 0 2 0 1

0 0 1 0
1i 0 1 0 1
r 0 3 0 1S
i

l
0 1 0 1

Table 5.1: The table shows for each cut-border operation, which mesh elements are
newly introduced to the inner part. Inner edges are introduced after both of their trian-
gles have been incorporated to the inner part in order to distinguish them from border
edges.

Depending on the application there exist two approaches to combine the connectiv-
ity and the mesh data of a compressed triangle mesh. If an application has access to
sufficient memory for the complete mesh data, the bit stream for the connectivity can be
stored separately. For each type of mesh element the specific data is stored in an array.
While the triangle mesh is traversed a vertex, triangle, inner edge and border edge index
is incremented after each operation, such that the current mesh elements can be found
in the corresponding arrays with the suitable indices. Table 5.1 shows the increments
for each index after the different operations. For example after a “connect forward”-
operation the inner edge index is incremented by two and the triangle index by one. The
advantage of this representation is that the mesh data can be processed without travers-
ing the compressed connectivity representation, for example to apply transformations to
the coordinates and normal vectors.

If the compressed triangle mesh is passed to the graphics accelerator or if the mesh
data is encoded with variable length values, no random access to the vertex data is
possible. Then the mesh data is inserted into the bit stream of the mesh connectivity.
After each operation symbol in the stream, the corresponding mesh data is encoded to
the stream appropriately. For example after a “split cut border”-symbol the mesh data
for one inner edge and one triangle is transmitted (see table 5.1). If we only assume
vertex and triangle data to be present and denote the vertex data for the ith vertex with
vi and the triangle data for triangle j with tj , the extended bit stream representation of
the mesh in figure 5.2 would be:

v0v1v2t0*v3t1*v4t2*v5t3 t4*v6t5*v7t6!t7 12t8!t9

Remember that the initial triangle is implicitly stored without symbol and introduces the
vertices v0; v1; v2 and the triangle t0. If the triangle mesh consists of several unconnected
components, the compressed bit stream representation consists of the concatenation of
the bit streams of the different components.

52 CHAPTER 5. THE CUT-BORDER MACHINE

5.2 Implementation

All algorithms, which process the compressed representation, are based on the imple-
mentation of the data structure for the cut-border as introduced in the next paragraph.
This data structure implements the rules, which define the traverse order. All other al-
gorithms such as the compression and decompression algorithms presented later on in
this section use this implementation. Further algorithms such as homogeneous trans-
formations of the mesh geometry would also use the cut-border data structure to iterate
through the compressed representation

The data structures and algorithms in this section are given in a C++-like syntax.
For readability and brevity indentation and additional keywords replaced parentheses.

5.2.1 Cut-Border Data Structure

Data Structure 1 cut border
struct Loop

int rootElement, nrEdges, nrVertices;
struct Element

int prev, next;
Data data;
bool isEdgeBegin;

struct CutBorder
Loop *parts, *loop;
Element *elements, *element;
Element *emptyElements;

CutBorder(int maxLoops, int maxElems);
bool atEnd();
void traverseStep(Data &v0, Data &v1);

void initial(Data v0, Data v1, Data v2);
void newVertex(Data v);
Data connectForward/Backward();
void border();
Data splitCutBorder(int i);
Data cutBorderUnion(int i, int l);

bool findAndUpdate(Data v, int i, int l);

The data structure for the cut-border is a list of doubly linked lists storing the vertex
data of the buffered vertices. All elements in the doubly linked lists of the different

5.2. IMPLEMENTATION 53

loops are stored within one homogeneous buffer named elements. The maximum num-
ber of vertices in the buffer during the compression or decompression defines its size.
The maximum buffer size is known once the triangle mesh is compressed and can be
transmitted in front of the compressed representation. For the first compression of the
mesh the maximum number of vertices can be estimated by 10

p
v (see section 5.2.5),

where v is the number of vertices in the triangle mesh. With this approach a simple
and efficient memory management as described in [Mey97] is feasible. Only the pointer
emptyElements is needed, which points to the first of the empty elements in the buffer.
Any time a new element is needed, it is taken from the empty elements and the deleted
elements are put back to the empty elements. On the one hand the memory management
avoids dynamic storage allocation which is not available on graphics boards and on the
other hand it speeds up the algorithms by a factor of two if no memory caches influence
the performance.

The different loops can be managed with an array loops with enough space for the
maximum number of loops which are created while the mesh is traversed. Again this
number must be estimated for the first compression and can be transmitted in front of
the compressed representation. Thus the constructor for the cut-border data structure
takes the maximum number of loops and the maximum number of cut-border elements.

loop and element point to the current loop and the current element within the current
loop respectively. Each loop stores the index of its root element, the number of edges
and the number of vertices. These numbers may differ as each loop is not simply a
closed polygon. Any time a “border”-operation arises, one cut-border edge is elimi-
nated but the incident cut-border vertices can only be removed if they are incident to
two removed edges. Therefore, each cut-border element stores in addition to the indices
of the previous and next element and the vertex data, a flag which denotes whether the
edge beginning at this cut-border element belongs to the cut-border or not.

The cut-border data structure provides methods to steer the traversal via a bit stream
or with the help of a triangle mesh. The methods atEnd() and traverseStep(v0, v1) are
used to form the main loop. The method traverseStep(&v0, &v1) steps to the next edge
in the cut-border data structure and returns the vertex data of the two vertices forming
this edge. If no more edges are available, atEnd() becomes true.

During decompression the operations are read from the bit stream and the cut-border
data structure is updated with the corresponding methods initial, newVertex, connect-
Forward/Backward, border, splitCutBorder and cutBorderUnion. For compression ad-
ditionally the method findAndUpdate is needed to localize a vertex within the cut-border
data structure. The loop and vertex indices are returned and can be used to deduce the
current building operation. If the vertex has been found by the findAndUpdate-method,
it is connected with the gate.

5.2.2 Compression Algorithm

Besides the cut-border we need two further data structures for the compression algo-
rithm — a random access mesh with access to the third vertex of an edge and a permu-

54 CHAPTER 5. THE CUT-BORDER MACHINE

Algorithm 1 compression

Input: RAM : : : random access representation
Output: bitStream : : : compressed representation

perm : : : permutation of the vertices

vertexIdx = 3;
RAM.chooseTriangle(v0, v1, v2);
perm.map((v0.idx, 0), (v1.idx, 1), (v2.idx, 2));
bitStream << v0 << v1 << v2;
cutBorder.initial(v0, v1, v2);
while not cutBorder.atEnd() do

cutBorder.traversalStep(v0, v1);
v2 = RAM.getVertexData(v1.idx, v0.idx);
if v2.isUndefined() then

bitStream << “ ”;
cutBorder.border();

else
if not perm.isMapped(v2.idx) then

bitStream << “*” << v2;
cutBorder.newVertex(v2);
perm.map((v2.idx, vertexIdx++));

else
cutBorder.findAndUpdate(v2, i, l);
if p > 0 then bitStream << “

S
i

l
” ;

else if i == �1 then bitStream << “!/ ”;
else bitStream << “1i”;

5.2. IMPLEMENTATION 55

tation. The random access mesh provides two methods:

1. the chooseTriangle(v0; v1; v2)-method returns the vertex data v0; v1; v2 of the
three vertices in an initial triangle

2. the getVertexData(i0; i1), which takes the vertex indices i0 and i1 of a halfedge
h = (i0; i1) and returns the vertex data of the third vertex of the triangle containing
the oriented halfedge h

The random access mesh can be easily implemented with a halfedge data structure as
described in section 1.5.1. The permutation is used to build a bijection between the ver-
tex indices in the random access representation and the vertex indices in the compressed
representation. It allows to map an index of the first kind to an index of the second kind
and to determine whether a certain vertex index in the random access representation has
been mapped.

Given a random access triangle mesh, the compression algorithm computes the men-
tioned permutation and the compressed representation of the mesh, which is sent to a
bit stream. The current vertex index of the compressed representation is enumerated in
the index vertexIdx. After the initial triangle has been processed, the cut-border data
structure is used to iterate through the triangle mesh. In each step the vertex data v0
and v1 of the gate is determined. From the vertex indices the vertex data of the third
vertex in the triangle incident to the gate is looked up in the random access triangle
mesh. If no triangle is found, a “border”-operation is sent to the bit stream. Other-
wise it is determined whether the new vertex has already been mapped, i.e. sent to the
cut-border. If not, a “new vertex”-operation is sent to the bit stream and the vertex in-
dex is mapped to the current index in the compressed representation. If the third vertex
of the new triangle is contained in the cut-border, the findAndUpdate-method is used
to determine the loop index and the vertex index within that cut-border loop. If the
loop index is greater than zero, a “cut-border union”-operation is written. Otherwise a
“connect forward/backward”-operation, “split cut-border”-operation or a “cut-border
union”-operation is written dependent on the loop and vertex indices.

5.2.3 Decompression Algorithm

The decompression algorithm reads the compressed representation from an input bit
stream and enumerates all triangles. The triangles are processed with the subroutine
handle(v0,v1,v2), which for example renders the triangles. As in the compression algo-
rithm, firstly, the initial triangle is processed and then the mesh is re-built with the help
of the cut-border methods atEnd and traversalStep. In each step the next operation is
read from the bit stream and the corresponding method of the cut-border data structure
is called such that the third vertex of the new triangle is determined in order to send it to
the subroutine handle. Performance & Cut-Border Traverse Order In this section we
analyze our software implementation of the compression and decompression algorithm.

56 CHAPTER 5. THE CUT-BORDER MACHINE

Algorithm 2 decompression

Input: bitStream : : : compressed representation
Output: handle : : : processes triangles

bitStream >> v0 >> v1 >> v2;
handle(v0, v1, v2);
cutBorder.initial(v0, v1, v2);
while not cutBorder.atEnd() do

cutBorder.traversalStep(v0, v1);
bitStream >> operation;
switch (operation)

case “!/ ”:
handle(v1, v0,

cutBorder.connectForward/Backward());
case “1i”:

handle(v1, v0, cutBorder.splitCutBorder(i));
case “

S
i

l
”:

handle(v1, v0, cutBorder.cutBorderUnion(i,l));
case “*”:

bitStream >> v2;
cutBorder.newVertex(v2);
handle(v1, v0, v2);

case “ ”:
cutBorder.border();

5.2. IMPLEMENTATION 57

triangle mesh compr decom storage
name t v jbdj k�=s k�=s bits=t

genus5 144 64 0 386 782 4.23�5.7%
vase 180 97 12 511 796 2.15�6.0%
club 515 262 6 541 857 2.09�3.5%
surface 2449 1340 213 490 790 1.87�0.8%
spock 3525 1779 30 496 820 1.97�0.7%
face 24118 12530 940 430 791 1.81�0.3%
jaw 77692 38918 148 332 809 1.62�0.5%
head 391098 196386 1865 321 796 1.71�0.1%

Table 5.2: The basic characteristics of the models, the compression and decompression
speed on an O2 R10000 175MHz and the storage needs per triangle.

Firstly, we introduce the test set of models. Then we examine the influence of the tra-
verse order on the compression ratio and the size of the cut-border and come up with
Huffman codes, which are independent of the compressed mesh. And finally we gather
the important results on the performance of the presented algorithms.

5.2.4 The Models

The measurements were performed on the models shown in figure 5.4. All models are
edge-connected manifold meshes and differ in their size. From top left: genus5, vase,
club, surface, spock, jaw, face, head. The detail of the head model is hidden in the small
interior structures. Therefore, we present in figure 5.4 a view into the inside of the head.

The basic characteristics of the models are shown in the left half of table 5.2. Here
the number of triangles t, the number of vertices v and the number of border edges jbdj
are tabulated for each model.

5.2.5 Traverse Order and Cut-Border Size

In section 5.1 we defined a simple breadth-first traversal order. The degrees of freedom
in the traversal order are the choice of the initial triangle and the next gate after each
cut-border operation. To study the influence of the initial triangle we measured the stor-
age needs for the compressed connectivity of each model several times with randomly
chosen initial triangles. Then we computed for each model the average value and the
standard deviation as tabulated on the very right of table 5.2. The influence of the initial
triangle vanishes with increasing size of the model and is still less than ten percent for
the smallest models. With the same measurements the fluctuation of the cut-border size
was determined as shown in table 5.4. Here the fluctuation is higher and reaches up to
twenty percent for the jaw and the club models.

There are a large number of enumeration strategies for the choice of the gate. For

58 CHAPTER 5. THE CUT-BORDER MACHINE

Figure 5.4: The models used to analyze the compression and decompression algorithms.

5.2. IMPLEMENTATION 59

a) “new vertex”: * b) “connect forward”:! c) “connect backward”:

d) “split cut-border”: 1i e) “close”: r def
=! e) “cut-border union”:

S
i

l

Figure 5.5: The choice of the gate after each of the cut-border operations. The current
gate is shaded dark, the next triangle also dark and the next gate(s) light.

performance reasons and the simplicity of the implementation, we favored the enu-
meration strategies, which can be implicitly handled with the cut-border data structure
introduced in section 5.2. Therefore a newly introduced cut-border edge may either be
delayed until all present edges have become gate or the new edge will become the next
gate. These two strategies apply to the “connect forward/backward”-operations and
correspond to attaching the next highest and the next smallest edge index respectively to
the new edge. In the case of a “new vertex”-operation two new edges are introduced to
the cut-border. In this case three possible strategies are feasible. Either the first/second
new edge is chosen as gate next or both edges are delayed. The “split cut-border”-
and “cut-border union”-operations arise much more rarely and therefore were excluded
from the analysis of the traversal strategy. Thus we were left with twelve strategies,
three choices for the “new vertex”-operation and for each “connect”-operation two
choices. Luckily, it turned out that the strategy, where the new edge is processed next
after both “connect”-operations and where the second edge is processed next after a
“new vertex”-operation, is superior over all others. This strategy achieved best com-
pression ratios, if we used standard Huffman coding, and kept the cut-border smallest
for all models.

Figure 5.5 illustrates the choice of the gate after each cut-border operation. The

60 CHAPTER 5. THE CUT-BORDER MACHINE

operation code bits
* 0 1
! 10 2
12 110 3
 ,13, 11100: : :11110 5
1�3:::�2,14:::8 11111000: : :11111110 8
1�4:::�7,19:::18, 111111110000: : :

1i,
S

i

l
111111111111 12

Table 5.3: Fixed bit codes for real-time encoding of the cut-border operations.

name loopmax vertmax prop

genus5 3.21�12.7% 32.75�15.4% 5.35
vase 2.30�24.2% 22.56�10.2% 2.99
club 3.11�11.9% 44.24�21.0% 4.45
surface 3.10� 9.7% 83.16�12.1% 3.10
spock 3.24�13.2% 120.10� 4.5% 3.23
face 3.40�15.6% 329.08�14.5% 4.22
jaw 4.76�10.7% 564.42�19.7% 4.55
head 9.00�11.1% 1255:20� 8.6% 3.56

Table 5.4: The maximum number of loops and the maximum number of buffered
vertices needed for mesh traversal. The last column gives the quantity prop =

(vertmax + 6 � svert)/
p
n.

current gate is the bold dark arrow. The next triangle is darkly shaded and the new
gate or in case of the “cut-border split”-operation the two new gates are drawn as light
arrows. After the “cut-border split”-operation one gate is pushed together with its loop
onto a stack and popped back after a “close”-operation.

The relative frequencies of the different cut-border operations are very similar for
common triangle meshes. The “new vertex”-operation arises with a probability of 50%
and the “connect forward”-operation with 45%. This can be explained from the fact
that the best traversal strategy favors to cycle around the current vertex and close the
neighborhood of the current vertex with a “connect forward”-operation. Thus we came
up with the fixed Huffman codes in table 5.3, which are independent of the encoded
triangle mesh and allow for a single pass encoding. “Cut-border split”-operations with
index larger than 18 and less than -7 are encoded with the symbol “1i” followed by a
16 bit index. Similarly, the “cut-border union”-operations are encoded with the symbol
“
S

i

l
” followed by a 4 bit loop index and a 16 bit vertex index. The choice of the gate

in the smaller cut-border loop after a “cut-border split”-operation limits the maximum
number of cut-border loops to the binary logarithm of the maximum number of cut-
border edges in one loop. Therefore, four bits are sufficient for 16 bit vertex indices.

Table 5.4 shows for each model the maximum number of loops and the maximum

5.2. IMPLEMENTATION 61

number of buffered vertices needed for mesh traversal. The values are averaged over
several random choices of the initial triangle. As the values fluctuate significantly we
add three standard deviations to the values such that 99.73% of the values are smaller
than our estimation if we suppose a normal distribution. The maximum number of
cut-border loops is comparably small and can safely be estimated by 100 for the first
compression of a triangle mesh. To show that the maximum number of buffered vertices
increases with

p
v we divide the measured values plus three standard deviations by

p
v

and get values between three and six independent of the size of the model. Thus a save
estimation for the size of the vertex buffer in a first compression of a triangle mesh is
10
p
v.

5.2.6 Performance

The last column of table 5.2 shows that our approach allows compression of the con-
nectivity of a triangle mesh to two bits per triangle1 and less. The theoretical lower
limit is 1:5 bits per triangle, which is achieved with uniform triangle meshes. To under-
stand this fact let us neglect the “split cut-border”- and “cut-border union”-operations.
Each “new vertex”-operation introduces one vertex and one triangle, whereas each
“connect”-operation only introduces a triangle to the mesh. To arrive at a mesh with
twice as many triangles as vertices, equally many “new vertex”- and “connect”-opera-
tions must appear. The Huffman code for the “new vertex”-operation consumes one
bit and the “connect”-operations are encoded with two and three bits as still other op-
erations must be encoded. If both “connect”-operations are equally likely, we get a
compression to 1:75 bits per triangle. If on the other hand one “connect”-operation is
completely negligible a compression to 1:5 bits is feasible. The optimal traversal strat-
egy found in the previous section avoids “connect backward”-operation and therefore
allows for better Huffman-encoding than the other strategies.

Table 5.2 also shows the compression and decompression speed in thousands of
triangles per second measured on a 175MHz SGI/O2 R10000. The decompression al-
gorithm clearly performs in linear time in the number of triangles with about 800,000
triangles per second. But the performance of the compression algorithm seems to de-
crease with increasing n. Actually, this impression is caused by the 1 MB data cache
of the O2 which cannot keep the complete random access representation of the larger
models, whereas the small cut-border data structure nicely fits into the cache during
decompression. On machines without data cache the performance of the compression
algorithm is also independent of n. The compression algorithm is approximately half as
fast as the decompression algorithm. About 40% of the compression time is consumed
by the random access representation of the triangle mesh in order to find the third vertex
of the current vertex. The other ten percent are used to determine the loop and vertex
index within the cut-border.

1The genus5 model consumes more storage as its genus forces five “cut-border union”-operations
and the model is relatively small.

62 CHAPTER 5. THE CUT-BORDER MACHINE

If our compression scheme is used to increase the bandwidth of transmission, stor-
age or rendering, we can easily compute the break-even point of the bandwidth. The
total time consumed by our compression scheme is the sum of the times spent for com-
pression, transmission and decompression. The total time must be compared to the
transmission time of the uncompressed mesh. Let us assume for the uncompressed rep-
resentation an index size of 2 bytes, such that each triangle is encoded in 6 bytes. If
we further use the estimation that the triangle mesh contains twice as many triangles as
vertices, the break-even point computes2 to a bandwidth of 12MBit/sec. Thus the com-
pression scheme can be used to improve transmission of triangle meshes over standard
10MBit Ethernet lines. As our approach allows us to compress and decompress the tri-
angle mesh incrementally, the triangle mesh can also be compressed and decompressed
in parallel to the transmission process. Then even the transmission over a 100MBit
Ethernet line could be improved.

5.3 Extensions

In this section we describe how to extend our method on non orientable triangle meshes.
Additionally, we show how to encode attributes which are attached to vertex-triangle
pairs.

5.3.1 Non Orientable Triangle Meshes

As we restricted ourselves to manifold triangle meshes, the neighborhood of each vertex
must still be orientable even for non orientable meshes. From this follows that each
cut-border loop must be orientable at any time: a cut-border part is a closed loop of
adjacent edges. The orientation of one edge is passed on to an adjacent edge through
the consistent orientation of the neighborhood of their common vertex. Therefore, only
the “split cut-border”- and “cut-border union”-operations need to be extended as they
introduce or eliminate cut-border parts. Both operations connect the current cut-border
edge to a third vertex in the cut-border, which is either in the same or in another cut-
border loop. The only thing, which can be different in a non orientable triangle mesh, is
that the orientation of the cut-border around this third vertex is in the opposite direction
as in the orientable case. Therefore, only one additional bit is needed for each “1i”-
and “

S
i

l
”-operation, which encodes whether the orientation around the third vertex is

different. During compression the value of the additional bit can be checked from the
neighborhood of the third vertex. Previously a “split cut-border”-operation produced a
new cut-border loop. In the new case with different orientations around the third vertex,
the orientation of one of the new loops must be reversed and the loops are concatenated
again as illustrated in figure 5.6. In a “cut-border union”-operation the cut-border loop
containing the third vertex is concatenated to the current cut-border loop and in the

2with a compression rate of 400,000 triangles per second and a decompression rate of 800,000 trian-
gles per second

5.3. EXTENSIONS 63

Figure 5.6: After some “split cut-border”-operations of a non orientable manifold half
of the cut-border (drawn in dashed style) must be re-oriented and no new loop is gener-
ated.

new case the orientation of the cut-border loop with the third vertex is reversed before
concatenation.

5.3.2 Corner Attributes

A lot of triangle meshes contain sharp creases that force the attachment of certain ver-
tex attributes to triangle corners. See for example the genus5 model in figure 5.4, which
contains a lot of creases. For each vertex on a crease exist two or more different nor-
mal vectors, which must be attached to the same vertex, which is contained in different
triangles. Thus for models with creases it must be possible to store several different
vertex normal vectors for different corners. Similarly, discontinuities in the color at-
tribute force storage of several RGBA values within the corners. A simple solution to
support corner attributes is to encode these attributes with every appearance of a trian-
gle corner. This implies that the same corner attribute for one vertex may be replicated
several times. On the other hand if we duplicated these vertices, which lay on creases,
the vertex coordinates would be replicated.

With a small overhead we can do better and encode each vertex location and each
corner attribute exactly once. Let us denote the collection of all vertex specific data as
for example its coordinates with v and the different collections of the corner data with
vt1 ; vt2 ; : : :. As an example let us describe the encoding of vt in the case of creases as
illustrated in figure 5.7. The neighborhood of each vertex is split by the creases into
several regions. Within each region there is exactly one corner attribute valid for the
vertex and all triangles in this region. On the right side of figure 5.7 a cut-border vertex
is shown during compression or decompression. We see that at any time it is sufficient to

64 CHAPTER 5. THE CUT-BORDER MACHINE

Figure 5.7: Creases divide the neighborhood of a vertex into regions. Each region
contains the triangles with one corner attribute.

store besides the vertex data v two corner attributes vtleft and vtright for each vertex within
the cut-border. When a new triangle is added to the cut-border, the corner attributes of
a vertex can only change, if the vertex is part of the gate and if the gate is a crease. If
one of the corner attributes for example vtleft changes after an operation which adds a
triangle, there are two possible cases. Either a new corner attribute is transmitted over
the bit stream or the new attribute is copied from v tright .

To encode when a new corner attribute has to be transmitted we transmit one or
two control bits after each operation, which adds a triangle to the gate. Two control
bits are needed only for the “connect”-operations as the new triangle contains two cut-
border edges. The control bits encode whether the affected cut-border edges are creases.
Afterwards, for each cut-border vertex on a cut-border edge, which is a crease, we
transmit one further bit which encodes whether a new corner attribute is transmitted or
the attribute should be copied from the other corner attribute stored in the cut-border. If
we denote the total number of inner edges with e and the total number of crease edges
with ec this approach results in an overhead of less than e+ 2ec bits if encoded with the
arithmetic flag encoding of section 3.2.2.

Chapter 6

Optimized Cut-Border Machine

In this section we describe four optimizations of the Cut-Border Machine. First we ap-
ply arithmetic coding to the Cut-Border Machine to allow for a more adaptive symbol
encoding. We also describe how to use information from the inner part to improve the
compression rates (see subsection 6.1). As the encoding of the mesh border is rather
inefficient with the standard cut-border machine, subsection 6.2 describes how to de-
crease the consumed storage space for border operations and how to include non man-
ifold borders. The third optimization addresses the running time of the compression
and decompression algorithms. In subsection 6.3 a data structure is described, which
allows to detect and perform all cut-border operations except of the “cut-border union”-
operation in constant time during compression and decompression, respectively. This
implies a linear running time in the number of triangles1 for families of triangle meshes
with a genus limited by a constant. Finally, we describe a modified version of the Cut-
Border Machine with variable length encoding of the split indices in subsection 6.4
and prove that this scheme does not consume more than five bits per vertex for planar
triangulations.

6.1 Arithmetic Coding

For maximum storage space compression arithmetic coding suggests itself. Firstly, we
describe a very simple approach and show afterwards how to use conditional probabili-
ties to improved the encoding further.

6.1.1 Adaptive Frequencies

The encoding with fixed Huffman Codes in table 5.3 is only optimal for certain relative
frequencies of the symbols, i.e. when the “new vertex”-symbol arises in fifty percent of
all cases, the “connect forward” in twenty five percent,12 in 12:5% and so on. But the
“connect forward”-symbol arises in more than forty percent of all cases. The relative

1actually in the number of triangles plus the number of border edges

65

66 CHAPTER 6. OPTIMIZED CUT-BORDER MACHINE

frequencies also differ slightly for different triangle meshes. If no further information is
known, the relative frequencies are equivalent to the probabilities of the symbols.

We used adaptive arithmetic coding as described in section 3.2. As initial symbol
count we used 32 and distributed the counts among the most frequent symbols according
to the frequencies of the symbols in a set of standard meshes. In order to introduce new
symbols an additional dummy symbol is kept with a constant counter of one. In table 6.1
on page 67 column “Arith.” shows the compression results for this simple approach with
adaptive frequencies. The resulting storage space is near to the entropy of the symbols.

6.1.2 Conditional Probabilities

Adaptive frequencies are only optimal if no further information besides the relative
frequencies is given. But during compression with the cut-border machine we can use
some information of the inner part - the so far decompressed mesh. The gate is incident
upon two cut-border vertices. We want the connectivity compression scheme to be
independent of the vertex locations and as simple as possible such that we can still
achieve very fast compression and decompression. Therefore, we use only the order
of the vertex onto which the oriented gate points (see figure 5.1), which we call the
end vertex. The order of the end vertex is the number of incident triangles, which have
already been encoded. This can easily be determined with a simple counter for each
vertex.

The higher the order of the end vertex is, the higher is also the probability of a “con-
nect forward”-operation and the lower is the probability of the “new vertex”-operation.
To include this knowledge into the arithmetic coder, we make the probabilities of the
symbols dependent on the order of the end vertex. For each order i and each symbol s
we keep a counter cs;i. With a counter c for the total number of symbols we can compute
the probabilities P (s\ i) = cs;i=c. By summation over all symbols we can also compute
the probabilities P (i) =

P
s
P (s \ i).

Before encoding the next symbol, the cut-border machine determines the order i of
the end vertex. The arithmetic coder subdivides the current interval according to the
conditional probabilities P (sji) = P (s \ i)=P (i). Afterwards c and the counter of the
encoded symbol for end vertex order i is incremented. In practice we unify all counters
with i > 8 into one counter. Additionally, it turns out that the frequencies of all symbols
besides the “new vertex” and the “connect forward” symbols are too small to allow
efficient adaptive frequencies for the probabilities P (s \ i). Therefore, we only use
for the “new vertex” and the “connect forward” symbols the conditional frequencies,
where as we use for the remaining symbols only one counter which represents P (s).

Table 6.1 compares the storage space consumption of the new approach with the
IBM compression scheme [TR98] in column “IBM”, the method proposed by Touma
[TG98] in column “Touma” and with the original Cut-Border Machine from chapter 5
in column “fixed”. In column “Arith.” the arithmetic coder with adaptive frequencies is
used and in column “Conditional” also the conditional probabilities are exploited. We
can see that adaptive frequencies reduce the storage space consumed by the compressed

6.2. OPTIMIZED BORDER ENCODING 67

Model IBM Touma fixed Arith. Conditional
Vertices bits

vtx

bits

vtx

bits

vtx

K�
sec

bits

vtx

bits

vtx

K�
sec

blob 8036 4.8 2.4 3.1 613 2.5 1.9 176
tricerotops 2832 4.3 2.2 3.3 678 2.8 2.5 181
eight 766 3.8 0.6 3.3 710 2.8 1.2 179
shape 2562 2.2 0.2 3.0 706 2.2 0.3 198
beethoven 2655 4.8 2.4 3.6 664 2.9 2.7 169
engine 2164 3.8 1.2 4.3 653 3.0 2.3 158
dumptruck 11738 3.4 0.8 3.2 627 2.5 1.4 182
cow 3066 4.6 2.0 3.6 680 2.8 2.5 173
average 3.8 1.4 3.4 666 2.7 1.9 177

Table 6.1: Comparison of the storage space consumed by the connectivity in bits per
vertex for the different approaches and the compression speed measured on a Pentium
with 300MHz.

representation of the Cut-Border Machine with fixed codes to about 75%. The condi-
tional probabilities improve especially the meshes with high regularity as for example
the shape, the engine and the eight models. For the fixed and the conditional encoding
also the compression speed in thousands of triangles per second are shown in table 6.1.
Primarily the arithmetic coding and not the computation of the vertex orders decreases
the compression speed by a factor of about 3:5. But even the monster model could be
compressed in a quarter of a second.

We have to admit that our approach only beats the compression rates of Touma in
case of the blob model. Compared to the IBM algorithm on the other hand only about
half the storage space is consumed.

6.2 Optimized Border Encoding

The standard cut-border machine encodes each border edge of the mesh by a border
symbol. In most triangular meshes the amount of border edges is rather small compared
to the total number of encoded symbols. If the ratio of border edges increases, the
standard approach of border encoding is rather inefficient. Two solutions have been
proposed. Touma [TG98] connects the border edges of each border loop with a triangle
fan to a dummy vertex and thus eliminates all border edges. Rossignac [Ros98] proposes
to initialize the cut-border to the border loops and for this transmit the border loops at the
beginning of the compressed representation, which can be done very space efficiently
in L � lbb bits, where L is the number of border loops and b the maximum number of
border edges in one loop.

We present a different approach, which does not need any preprocessing and natu-
rally allows for encoding of non manifold borders. During compression the Cut-Border
Machine stores for each cut-border edge a flag, which tells whether this edge is an

68 CHAPTER 6. OPTIMIZED CUT-BORDER MACHINE

encoded border edge or not. Any time a “border”-operation has to be encoded, the
cut-border machine checks whether the next edge on the cut-border is marked as border
edge. In this case the border operation is encoded with a “connect forward”-symbol.
Similarly, the “connect backward”-symbol can be used if the previous edge is marked
as border. As the “connect forward”-symbol is much more frequent than the “border”-
symbol this approach reduces the consumed storage space from five bits per border edge
to about two bits.

BA

Figure 6.1: Non manifold borders. On the left: edge-connected component and on the
right: vertex-connected components.

In order to allow for non manifold borders, we only have to modify the Cut-Border
Machine slightly. Figure 6.1 shows on the left a triangle mesh with non manifold border,
which is edge-connected. This kind of non manifold borders are handled by the Cut-
Border Machine without any modifications. The non manifold connections are just
encoded with connect and union operations.

The example on the right of figure 6.1 shows non manifold borders of a triangle
mesh with components which are only connected through vertices. So far the Cut-
Border Machine did cut the different components apart by doubling the non manifold
vertices. Therefore the vertex data of these vertices also was doubled and some prox-
imity information was lost. To avoid these drawbacks, two modifications of the Cut-
Border Machine are required. Firstly, the Cut-Border Machine keeps the border edges
of all processed edge-connected components. In this way non manifold connections be-
tween edge-connected components can be encoded with union symbols. The remaining
problem arises at the initial triangles of each edge-connected component. Recall the
triangle mesh on the right of figure 6.1. Let us assume that the Cut-Border Machine
encodes the triangle labeled A first, followed by triangle B. Each triangle constitutes
a complete edge-connected component of the mesh and is encoded with one bit telling
that a further edge-connected component follows, an implicit initial triangle operation
and a sequence of three border operations. The initial triangle of component B has to
be connected to a vertex of component A. As each of the three vertices of the initial

6.3. LINEAR TIME CUT-BORDER DATA STRUCTURE 69

triangle can be connected to another edge-connected component, we introduce three
new symbols: initial triangle with one non manifold vertex denoted by the symbol �1,
initial triangle with two non manifold vertices �2 and correspondingly �3. For each of
the non manifold vertices a loop index and a vertex index is encoded as in the case of
a union operation. The first vertex of the initial triangle is always chosen, such that the
non manifold vertices of the initial triangle are at the end.

border total bits

tgl

Model Vertices total encoded percent fixed border conditional
beethoven 2655 274 12 4% 3.6 3.4 2.7
helicopter 1972 743 140 19% 4.3 3.5 3.1
monster 25118 272 37 14% 3.3 3.3 2.2

Table 6.2: Improvement with the optimized border encoding.

The optimized border encoding reduces the consumed storage space of the original
Cut-Border Machine especially for models with high border fraction as shown in ta-
ble 6.2. The table shows the total number of border edges in column “total”, the number
of border edges explicitly encoded with the border symbol in column “encoded” and
the resulting percentage. In the column “fixed” the storage space consumed without the
border optimization is tabulated. Column “border” gives the storage space only with the
border optimization and column “conditional” the storage space for border optimization
and conditional probabilities. In case of the helicopter model even 0:8-bits per vertex
can be saved just by applying the border optimization.

6.3 Linear Time Cut-Border Data Structure

So far the data structure for the cut-border has been implemented as linked lists and
the “cut-border split”-operation could neither be encoded nor decoded in linear time
yielding a worst case running time of at least O(n lnn). The advantage of the linked list
data structure has been that the gate could be updated after each operation arbitrarily.
In this section we have to give up the strategy that always the smaller cut-border loop
is encoded next. But this was only important to keep the number of cut-border loops
small. In terms of compression rates we only loose in the encoding of the rare “cut-
border union”-operations as we need the same number of bits to encode the loop index
as for the vertex index. We present a new data structure, which ensures constant time
detection and updates after each operation except of the “cut-border union”-operation.
For the “cut-border union”-operation this cannot be possible as the minimal storage
space consumption for non planar meshes is of the order O(v ln v) (compare section 4.3)
and therefore the running time must at least be evenly bad.

Figure 6.2 shows the new data structure. It consists of a vertex stack, a loop stack
and two markers. The vertex stack is extended by the markers ps and pe defining the
current loop. On the loop stack marker pairs of loops, which have been pushed during

70 CHAPTER 6. OPTIMIZED CUT-BORDER MACHINE

Figure 6.2: Cut-border data structure for constant time updates consists of two stacks
and two pointers.

a split operation, are stored together with the split vertex. The current gate is always
the edge between the vertex before the pe marker and the vertex after the ps marker.
In figure 6.2 the different loops on the vertex stack are visually separated with black
blocks, just for the convenience of the reader.

Figure 6.3 shows how the data structure is updated after each of the five operations
with constant update time.

new vertex: There are two possible updates of the cut-border data structure in case of
a “new vertex”-operation. The first update in figure 6.3 a) is always possible. The new
vertex X is just appended to the vertex stack and the pe marker incremented. With this
update the new gate is implicitly chosen to be XB as in the optimal traversal strategy
(see figure 5.5). The only reason for the second update after the “new vertex”-operation
is that the vertex stack might become fragmented with the exclusive use of the first
update, as the frequent “connect forward”-operations delete cut-border vertices at the
beginning of the current loop, i.e. at the ps marker. With alternating “new vertex”- and
“connect forward”-operations the current loop moves to the right of the vertex stack.
This movement is no severe problem, as the number of vertices limits the maximum
size of the vertex stack because the “new vertex”-operation is the only one, which in-
creases the vertex stack. But if the size of the cut-border data structure should be kept
small, one can also use the second update in figure 6.3 b). Here the empty places at the
beginning of the current loop are filled with the new vertices. This implicitly forces the
new gate to the other free edge of the newly added triangle and therefore might cause
worse compression rates. The second update should only be used if the cut-border data
structure needs to be kept as small as possible. If used, it is applied whenever the place
before the ps marker is empty.

connect forward: During the “connect forward”-operation (figure 6.2 c) the vertexB
is removed from the beginning of the current loop by moving the ps marker one position
to the right. The empty vertex location can be filled during the next new vertex operation
if the second update is used. The gate is implicitly chosen to be AC as in the optimal
traversal strategy.

6.3. LINEAR TIME CUT-BORDER DATA STRUCTURE 71

connect backward: The “connect backward”-operation (figure 6.2 d) just pops one
vertex from the stack, moves pe one position to the left and implicitly chooses the gate
to be AC.

a) *: append b) *: insert

c)!: delete previous d) : delete next

e)1: push loop f) r: pop loop

Figure 6.3: Update of the optimized data structure after the five cut-border operations
with constant update time.

72 CHAPTER 6. OPTIMIZED CUT-BORDER MACHINE

split cut-border: During a “split cut-border”-operation (figure 6.2 e) the current
loop is split into two loops by setting ps to p0

s
and introducing two new markers p0

e
and

ps before the split vertex X . The primed markers together with the split vertex X are
pushed onto the loop stack such that the pushed loop can be restored after the right loop
has been encoded. In order to find X in constant time we store with each mesh vertex a
pointer to the corresponding cut-border vertex. This works as no operation except of the
“cut-border union”-operation invalidates any of the pointers, i.e. as long as a cut-border
vertex exists, it is at the same vertex stack location. The gate location of the right loop
after the split operation is AX and the pushed gate location of the other loop is XB.

close: The “close”-operation (figure 6.2 f) eliminates the current loop of three vertex
indices from the vertex stack. If the loop stack is empty, the triangle mesh has been
completely encoded / decoded. Otherwise the top loop on the loop stack is popped to-
gether with the corresponding split vertex, which is inserted after the popped pe marker
and the marker is moved once to the right. Please notice, that the X vertex will be on
the same vertex stack location as during the encoding of the removed loop and therefore
the pointer from the mesh vertex to the cut-border vertex needs no update.

Finally, the computation of the split indices can be performed by simple pointer
arithmetic in constant time2. The “cut-border union”-operation can be detected in con-
stant time as the location of the union vertex on the stack is stored with the mesh vertex
and can be compared to the current ps and pe. The update of the “cut-border union”-
operation basically adds the loop containing the third vertex to the current loop and is
performed in three steps. Suppose the current loop consists of the vertices BCDEFGA
with gate AB and the third vertex X of the next triangle is in the loop IJXKLMNH

with gate HI . Then the update is performed as follows:

� The loop IJXKLMNH is temporarily stored in a buffer. All vertices on the
vertex stack between the last vertex H of the loop IJXKLMNH and the first
vertex B of the current loop are moved 8 = length(IJXKLMNH) spaces to
the left. All of the pointers stored with the mesh vertices, which correspond to
one of the moved vertices, are decremented by 8.

� The freed 8 places on the vertex stack before the current loop are filled with
KLMNHIJX . The corresponding pointers in the mesh vertices are updated
accordingly.

� Finally, a duplicate of X is pushed onto the vertex stack.

The resulting current loop is KLMNHIJXBCDEFGAX with gate XK, what cor-
responds to the unified cut-border loops. The duplication of the vertex X forces the
extension of the pointers in the mesh vertices to lists of pointers. As this extension is

2Here we assume that the number of vertices in the mesh can be represented by the pointer/integer
format of the used computer. This must be the case as we need to store the mesh itself somehow.

6.4. LINEAR SPACE LIMIT FOR PLANAR TRIANGULATIONS 73

only needed if “cut-border union”-operations arise, i.e. if the genus of the encoded
mesh is larger than zero, we can state the following theorem:

Theorem 6.1 Planar triangulations without holes and triangle meshes with genus zero
can be encoded in linear time in the number of triangles with the Cut-Border Machine.

6.4 Linear Space Limit for Planar Triangulations

The results in this section are valid for planar triangulations as introduced in section 4.1
as well as for triangle meshes of genus zero. In both cases no “cut-border union”-
operation can arise. The main problem in achieving a linear storage space for the cut-
border operation symbols is the encoding of the split indices in linear space. There
are two important ideas to tackle this problem. Firstly, the indices are encoded with
variable length, such that an index i is encoded with no more than a constant number
times the binary logarithm of i. The second idea is that split indices defining vertices
on the current cut-border loop before the gate are encoded with negative indices. In this
way all split operations, which cut away small parts of the current loop also consume
few bits.

6.4.1 Upper Bound on Index Coding

Theorem 6.2 For any planar triangulation or triangle mesh of genus zero with v ver-
tices the indices of the split operations in the cut-border representation can be encoded
with less than � = 1:87v bits.

a) b)

Figure 6.4: a) Example for a planar triangulation with three border vertices. The initial
gate is the bottom boundary edge. The gate(s) in each triangle are depicted with an
arrow. b) Planar triangulation for rearranged cut-border symbols.

74 CHAPTER 6. OPTIMIZED CUT-BORDER MACHINE

Proof: The proof is performed for planar triangulations only but is in principle the
same for triangle meshes of genus zero as they become planar triangulations with three
border edges if one triangle is removed. We do also avoid all border symbols by initial-
izing the cut-border with the border loop of the planar triangulation. For this only the
length of the border loop is transmitted in advance.

For the coding of the indices of the1-symbols we want to use the coding scheme of
section 3.3 figure 3.3 c). The index coding does not depend on the order of the encoded
symbols. Therefore we can rearrange the symbols in the following manner. Let us take
the example in figure 6.4 a). The cut-border is initialized to the three border edges of
the triangulation and the initial gate is the bottom boundary edge. The gate after each
operation is shown as arrow in the newly added triangle. Split triangles are shaded white
and contain two new gates. The pushed gate is shown as dashed arrow. Loop closing
triangles are shaded dark and contain no further gate. The cut-border string is

****!****!*1�4*!**13 r! r**!*!!!!r:

Then we rearrange it by extracting all *-symbols to the front:

***************!!1�4!13 r! r!!!!!r:

By going through the cut-border symbols in reverse order, we can keep track of the
lengths of the cut-border loops and determine new indices for the “split cut-border”-
operations. At a “close”-operation the current length is pushed on a stack and a new
length of three is generated. At a “connect forward”- and a “connect backward”-
operation the current loop length is increased by one. At each “split cut-border”-
operation a new split index is determined for the operation symbol. The absolute value
of the new index is the smaller length among the current length and the latest pushed
length minus one. It is positive if the current length is smaller, negative otherwise. The
split operation is reversed by popping one length, decrementing it by one and adding it
to the current length. Finally, each new vertex operation decreases the current length by
one, such that if the beginning of the rearranged cut-border symbol sequence is reached,
exactly one length remains, which is equal to the length of the border loop of the planar
triangulation. Thus the cut-border sequence with the new split indices is

***************!!1�7!13 r! r!!!!!r:

By construction of the new split indices the resulting sequence is a valid traversal de-
scription for the cut-border machine. Furthermore the absolute values of the new indices
of each split symbols can only be greater or equal to the original indices as during the
reverse tracking of the lengths the missing “new vertex”-operations can only increase
the tracked lengths.

There actually exists a planar triangulation producing the rearranged sequence as
shown in figure 6.4 b), but this is not important for this proof and requires in general
further mathematical techniques. It is though important that we can now restrict our con-
siderations to the situation when at the beginning of the encoding one cut-border loop

6.4. LINEAR SPACE LIMIT FOR PLANAR TRIANGULATIONS 75

with all vertices is built, which is recursively split. Let L(v) be the maximal storage
space consumed by the indices of “split cut-border”-operations arising during the en-
coding of a cut-border loop with v vertices. Then all possible split operations performed
on the loop yield the recursive formula for L(v)

L(v) =
i=d v2e�1
max
i=2

fIc(i) + L(i+ 1) + L(v � i)g : (6.1)

L(v) is the maximum storage space of all possible split operations. The absolute value
of the split index i runs from two to

�
v

2

�
� 1 and can be encoded with I(i) bits. Addi-

tionally, the maximum storage space of the two remaining loops L(i+ 1) and L(v � i)

have to be included. These are the same for positive and negative split indices. A loop
with three or four vertices cannot be split further, for the split of a loop with five vertices
there is only one possibility and a loop with six vertices can be split with12 or1�2.
Therefore, it holds

L(3) = L(4) = L(5) = 0 L(6) = 1: (6.2)

To proof the theorem we have to show the validity of the relation L(v) � � � v for all
v. It is obviously true for v < 7 if � � 1. As equation 6.1 contains the storage space
for the index i, we have to prove for the remaining values of v an even stronger upper
bound

U(v) def
= � � v � (�lbv +) ; (6.3)

i.e. we want to prove the relation

8v � 7 : L(v) � U(v): (6.4)

To abbreviate the proof we just guess the values of �; � and to be 1:87; �c = 2:03 and
4:92. The values were chosen in a way that U(6) = 1. But we still have to consider all
special cases where i assumes the values 2; 3 or 4 and the loop length v the values 3; 4
or 5.

Cut-border loops of length six to nine can be split into two loops of length less
than six. For the 6; 7; 8 and 9-vertex loops we introduce special coding schemes for the
indices of split operations performed on these loops. This is possible, as the cut-border
machine knows the length of the current loop during encoding and decoding. For a split
operation on a loop with l � 6 vertices, there are l � 4 different split indices. Using
arithmetic coding the different indices can be encoded with lb(l � 4) bits. A seven-
vertex loop can be split in three different ways (12;1�2 and13). The three cases can
be encoded with lb3 < 1:585 bits. The resulting loops are of length less or equal five
and therefore L(7) < 1:585 as no further indices need to be encoded. The eight-vertex
loop has four possible splits, which can be encoded in two bits. As the eight-vertex loop
can be split into a three-vertex and a six-vertex loop, an additional bit might be needed.
Thus L(8) = 2 + L(6) = 3. Finally, the nine-vertex loop split index consumes lb5 bits

76 CHAPTER 6. OPTIMIZED CUT-BORDER MACHINE

and we get L(9) = lb5 + L(7) < 3:91. Gathering these cases we state

L(7) < 1:585 < U(7) > 2:4

L(8) = 3 < U(8) > 3:8

L(9) < 3:91 < U(9) > 5:3

Next we consider the inductive step for the cases, where i is less or equal four in
equation 6.1 and show

8i 2 f2; 3; 4g : Ic(i) + L(i+ 1) + L(v � i) � U(v) (6.5)

In the following we apply equations 3.8, 6.2 and 6.3 as denoted above the less or equal
signs

8i 2 f2; 3; 4g :
Ic(i) + L(i+ 1) + L(v � i)

(3.8,6.2)
� �clb(i+ 1) + 1 + L(v � i)

(6.4,6.3)
� �clb(i+ 1) + 1 + � � (v � i)� (�clb(v � i) +)

(6.3)
= U(v)� i� + �clb(i + 1) + 1 + �clb

v

v � i
:

From the last expression we learn that equation 6.5 holds true, iff anything in the last
expression besides U(v) is less or equal zero

(6:5) ()
8i 2 f3; 4; 5g : i� � �clb(i+ 1) + 1 + �clb

v

v � i
()

8i 2 f2; 3; 4g : v � i=
�
1� (i+ 1)=2

i��1
�c

�
(=

v > 9:

The last step was performed by plugging in the values for �; �c and i and proves equa-
tion 6.5.

With all the preliminaries we can finally attack equation 6.4 and prove it by induc-
tion. That is we validate equation 6.4 for v under the assumption that equation 6.4 holds
true for all v0 < v. We start with equation 6.1:

L(v) =
i=d v2e�1
max
i=2

fIc(i) + L(i+ 1) + L(v � i)g

(6:5)

� max

(
U(v);

i=dv2e�1
max
i=5

fIc(i) + L(i+ 1) + L(v � i)g
)

6.4. LINEAR SPACE LIMIT FOR PLANAR TRIANGULATIONS 77

If U(v) is the maximum, equation 6.4 holds true and therefore we do neglect the outer
maximum in what follows. We can now plug in the inductive assumption:

L(v)
(6:4)

�
i=d v2e�1
max
i=5

fIc(i) + U(i + 1) + U(v � i)g

(3:8;6:3)

� U(v) + 1 + �� + �c
i=d v2e�1
max
i=5

�
lb

v

v � i

�
:

We skipped some simple algebra in the second step. The term inside the logarithmic
function evaluates always to a value greater one and less than two, because i is always
less than v=2. Therefore the logarithmic expression is always less than one and we get

L(v) � U(v) + 1 + �� + �c � U(v);

what proves equation 6.4 and together with equation 6.2 the theorem.
�

For a better variable length index coding scheme with � = �min theorem 6.2 can be
improved to 1:54 bits per vertex with only one change in the proof: the special coding
must also be applied to ten-vertex loops.

6.4.2 Coding of Operation Symbols

Now that we know how to encode the split indices we describe the encoding of the
operation symbols, which allows for an encoding of planar triangulations with less than
five bits per vertex. There are t = 2v � b � 2 triangles in a planar triangulation with
b border edges and the same number of symbols to be encoded. The “new vertex”-
operation is encoded with one bit. The total number of v � b *-symbols contribute less
than v bits to the overall storage costs. There are two further constraints, which can be
exploited.

1. If the current cut-border loop has three vertices only the “new vertex”- and the
“close”-operations are possible.

2. After a new vertex operation no “connect backward”-operation may follow.

As the “close”-operation may only arise in the situation of the first constraint, it can be
encoded with one bit, i.e. if the current cut-border loop contains only three vertices, one
bit encodes whether a “close”- or a “new vertex”-operation follows.

To fully exploit both constraints, we define the constant � as the number of bits,
which are consumed for encoding a triangle not introduced by a new vertex operation.
With this definition the operation symbols without the split indices are encoded with
less than (� +1)v bits. Table 6.3 shows all possible cases of subsequent symbols, which
might arise at the current gate, and the number of bits, that may be consumed by each
case in the column ”bound”. Here we included the observation that each1-operation

78 CHAPTER 6. OPTIMIZED CUT-BORDER MACHINE

forces one r-operation, which can be encoded with one bit. Thus each 1-operation
may consume 2� � 1 bits.

From the maximum number of bits b in the column ”bound”, the frequency � of each
case can be computed from 2�b (compare equation 3.3 on page 34). The frequencies of
all cases in table 6.3 must sum up to one. This condition yields an equation for � and
� computes to 2, which is rather an accident but simplifies the encoding of symbols.
In table 6.3 the cases are arranged in rows, such that each row contains all cases with
the same number of bits, which is denoted in the first column of table 6.3. For each bit
number starting with two bits, there are exactly two cases. Thus each case is encoded
in two parts. First the row r is encoded with r � 1 one bits followed by a zero bit and
then one bit selects the column. Together with theorems 6.1 and 6.2 we can conclude
the whole discussion with the following theorem.

Theorem 6.3 Planar triangulations and closed triangle meshes of genus zero with v
vertices can be encoded with the cut-border encoding scheme in linear time in v with
less than 4:92v bits.

If a better variable length index coding scheme is found an upper bound of 4:54 bits per
vertex can be shown.

As the coding of the symbols without the split indices consumes only 3 bits per
vertex and an optimal coding consumes at least 3:245 bits, it is worth while to check,
whether the split indices can be encoded even better. The best coding scheme we can
imaging, which does not allow for a linear time coding algorithm, exploits the knowl-
edge of the current loop length: we use the loop storage space L(3 : : : 6) from equation
6.2. For the loop of length v > 6 we assume L(v) is the same for all possible split
operations. We distinguish the split operation with index i = 2 : : : v � 3, such that we
do not need to handle a sign. Finally, we calculate L(v) recursively from the arithmetic
coding equation, which sets the sum of the frequencies of all possible split operations

bits case bound case bound

2 � ! �

3 1 2� � 1 *! � + 1

4 *1 2� **! � + 2

5 **1 2� + 1 ***! � + 3
...

...
...

...
...

Table 6.3: Assignment of bit consumption for all possible combinations of subsequent
symbols.

6.4. LINEAR SPACE LIMIT FOR PLANAR TRIANGULATIONS 79

for one loop length v to one:

8v > 6 : 1 =

v�3X
i=2

2�(a�L(i+1)�L(v�i)):

We calculated the fraction L(v)=v for v = 3 : : : 100 and the resulting plot converges to
1:15 and crosses 1. Thus it seems to be impossible to encode a planar triangulation with
less than four bits per vertex with the Cut-Border Machine encoding scheme.

80 CHAPTER 6. OPTIMIZED CUT-BORDER MACHINE

Chapter 7

Edgebreaker

In this section we describe the Edgebreaker connectivity encoding scheme, which was
developed by Rossignac [Ros98] independent of the Cut-Border Machine, and is quite
similar to the Cut-Border Machine encoding. Therefore we only briefly illustrate the
differences between the Edgebreaker and the Cut-Border Machine in section 7.1. As
the decoding of the encoded Edgebreaker strings is not trivial and quite different to the
Cut-Border Machine decoding, section 7.2 describes a simple and fast reverse decoding
technique developed by Isenburg [IS99b]. Finally, we improve in section 7.3 the Edge-
breaker encoding in case of planar triangulations to come closer to the theoretical limit
of 3:245 bits per vertex.

7.1 From the Cut-Border Machine to the Edgebreaker

cut-border edgebreaker
name symb. name symb.

new vertex * C
connect forward ! right R
connect backward left L
split cut-border 1 split S
close cut-border r end E
cut-border union

S
merge M, M’

Table 7.1: Translations between the cut-border and the Edgebreaker symbols.

The edgebreaker encoding scheme is very similar to the cut-border machine and
differs in the following three aspects:

� The initial cut-border for compression is initialized to the set of boundary loops
of the encoded mesh. This avoids all “border”-operations.

81

82 CHAPTER 7. EDGEBREAKER

� The split indices are not encoded but instead the “close”-operation is encoded
with a unique symbol.

� There are two different operation symbols for the “cut-border union”-operation.
The M operation encodes the union of the current cut-border loop with a mesh
boundary loop and the M’ operation represents the union of the current loop with
a different cut-border loop.

Table 7.1 gives a complete list of translations between the cut-border symbols and the
Edgebreaker symbols. Thus the cut-border string for the planar triangulation in fig-
ure 6.4 a) would transform to the following edgebreaker string:

****!****!*1�4*!**13 r! r**!*!!!!r 7!
CCCCRCCCCRCSCRCCSLERLECCRCRRRRE

By encoding the C-symbol with one bit and all other symbols except the M symbols
with three bits, the Edgebreaker scheme allows to encode any planar triangulation with
no more than four bits per vertex1. In [KR99] the upper bound for the storage space is
improved to 3.67 bits per vertex.

7.2 Spirale Reversi Edgebreaker Decoding

The decoding of the Edgebreaker strings is not obvious in a forward traversal of the
string as the split operations cannot be performed without further computations. Rossig-
nac proposed two different methods for the decoding with a lookahead method in [Ros98]
and a two pass decoding in [JR99]. But the simplest method has been developed by
Isenburg in [IS99b]. The Edgebreaker string is interpreted in reverse order. For this the
tailing E-symbol is deleted from the string, an S-symbol is added to the beginning and
the string is reversed. The string representation of the sample in figure 6.4 a) is mapped
to

CCCCRCCCCRCSCRCCSLERLECCRCRRRRE 7!
RRRRCRCCELRELSCCRCSCRCCCCRCCCCS:

The tailing S-symbol marks the end of the string representation.
The decoding algorithm knows, that the encoding ended with anE-operation. There-

fore, it recreates the triangle encoded by the tailing E-operation and initializes the cut-
border to one single loop surrounding this triangle. The gate location is chosen arbitrar-
ily and dummy vertex indices are used for all newly introduced vertices.

Then the decoding algorithm iterates through the symbols of the string representa-
tion and performs all encoded operations in an inverse fashion. This is clear for the C-,
R- and L-operations: in figure 5.5 on page 59 interpret the white triangles as the so far
decoded triangles, the dark triangle as the currently decoded triangle, the light arrow

1Each symbol introduces one triangle. There are no more than twice as many triangles as vertices.
Each vertex corresponds to exactly one C symbol. This sums up to v + 3v = 4v bits.

7.3. TOWARDS OPTIMAL PLANAR TRIANGULATION CODING 83

as the current gate location and the dark arrow as the new gate location after the next
triangle has been decoded. After each C-operation the neighborhood of the new vertex
is completely decoded and a new final vertex index is assigned to this vertex. In this way
the vertices are assigned indices in the reverse order in which they have been encoded.

For planar triangulation coding it only remains to explain the decoding of the E-
and S-operations2. Each time an E-symbol is encountered, the current loop is pushed
onto a stack together with the current gate location and a new loop is generated with
a single triangle and an arbitrary gate location. When an S-symbol is found, one loop
together with its gate location is popped from the stack and is merged together with the
current loop at the current gate location inserting a triangle as depicted in figure 5.5 d).
In figure 5.5 d) the left light arrow represents the gate of the popped loop in the decod-
ing algorithm and the pushed loop in the encoding algorithm. During the merging the
two dummy vertices of the different loops, where the two gates touch, are identified in
all incident triangles. The new gate location is set according to the dark arrow in fig-
ure 5.5 d). If an S-symbol is found, when the stack of loops is empty, this S-symbol is
the marker of the end of the string and decoding is complete. This decoding algorithm
can easily be implemented in linear time and we can state the following theorem.

Theorem 7.1 The connectivity of planar triangulations with v vertices can be encoded
with a unique string of length 2v over five different symbols in linear time in v, from
which the original connectivity can be decoded also in time linear in v.

7.3 Towards Optimal Planar Triangulation Coding

The optimal encoding of planar triangulations is strongly correlated to the optimal en-
coding of triangle meshes with low genus. But in practical applications the triangle
meshes are quite regular such that compression results can be achieved that lay below
the theoretical limit as shown in section 6.1. But in the coding theory of planar graphs
the optimal encoding of planar triangulations is very important. In the next subsection
we describe an improved encoding of the edgebreaker strings that exploits constraints
in a forward traversal of the edgebreaker strings and in the second subsection in this
section we exploit constraints in a reverse traversal.

7.3.1 3.557 Bits per Vertex Encoding of Edgebreaker String

In this subsection we use two constraints of the edgebreaker strings to improve the 4v
bit encoding to lb3 + 2 � 3:586 and then to 3:557 bits per vertex.

The first constraint is that after a C-symbol neither an L- nor an E-symbol may
follow, as otherwise the two successive symbols would encode the same triangle twice.
We can use this constraint in the following manner. First we notice that the C-symbols
constitute half of all the symbols and therefore should be encoded with one bit or in an

2For the decoding of the M and M 0-operations please refer to the original work [IS99b]

84 CHAPTER 7. EDGEBREAKER

arithmetic setting with a frequency of 1
2
. Next we assume that all other symbols may

consume the same number of bits � and therefore correspond to the same frequency
�� = 2�� 2 [0; 1]. Table 7.2 shows the different possible cases (compare table 6.3
for the Cut-Border Machine cases), when the first constraint is exploited. If we use
arithmetic coding, the frequencies for the different cases must sum up to one, what
results in the following equation:

1 = 4�� + 2��
X
i�1

1

2i
= 6�� : (7.1)

From this �� computes to 1
6

and � to lb6 < 2:585. As there are v C-symbols and v
symbols of other type and the C-symbols consume 1 bit and the others � bit, we end
up with less than 3:585 bits per vertex. Coding and decoding of the symbols is also
very simple. The unit interval is subdivided into 6 equal sized sub-intervals assigned to
the cases R;L; S; E; C+R;C+S. In the C+-cases the number of C-symbols is encoded
with the same number of one bits followed by a zero bit.

The second constraint, which has not been considered yet, makes use of the knowl-
edge of the length of the cut-border. The observation is that during encoding the current
cut-border loop is at least of length three. Thus two successive C symbols increase the
length to at least five and a following R will reduce the length to not less than four,
what prohibits a following E symbol, as this can only appear if the current cut-border
loop has exactly length three. To take this constraint into account, we introduce the
concept of the conditional unity. Let us introduce this concept with the example of the
first constraint. For the first symbol there are the five possibilities C;R; L; S or E. But
after a C-symbol has been encoded, only three possibilities are left (C;R and S). Thus
under the condition of a preceding C-symbol the unity is split into the frequencies for
the symbols C;R and S. We can re-formulate the said as follows

1 = 4�� +
1

2
1C (7.2)

case bits freq. case bits freq.

L � �� E � ��

R � �� S � ��

CR � + 1 1
2
�� CS � + 1 1

2
��

CCR � + 2 1
4
�� CCS � + 2 1

4
��

CCCR � + 3 1
8
�� CCCS � + 3 1

8
��

...
...

...
...

Table 7.2: Different cases of possible the edgebreaker sequences considering the con-
straint, that no E- nor L-symbol may follow upon C.

7.3. TOWARDS OPTIMAL PLANAR TRIANGULATION CODING 85

1C = 2�� +
1

2
1C : (7.3)

In these equations 1C denotes the conditional unity for the condition that a C symbol
is preceding. Solving the system of equations yields the same result �� = 1

6
. With the

concept of the conditional unity all equations look just like a partitioning of the unit
interval.

With all this preliminaries we can attack the second constraint. Here we not only
want to account for preceding C-symbols but also for the minimal length of the current
cut-border loop. If the minimal length is for example known to be at least four, the con-
ditional unity is denoted by 14;C if a C-symbol is preceding and 14 otherwise. For each
condition we just have to enumerate all possible succeeding symbols and the resulting
post-conditions and can easily write down the corresponding equation as shown in ta-
ble 7.3. The first column contains the known minimal length of the current cut-border
loop. The second column tells whether a C-symbol is preceding. The third column
enumerates all symbols which can appear under the precondition in the same order they
are accounted for in the equations in the last column. Let us explain the equation for
the conditional unity if no C is preceding and the minimal loop length is six. Then the
symbols R;L; S or C may follow, not E as the current loop is too long. The symbols
R and L each yield the post-condition of no preceding C and a minimal loop length of

cond: follow equation

3 RLSEC 1 = 4��+
1
2
14;C

4 C RSC 14;C= 2��+
1
2
15;C

5 C RSC 15;C= (14 + 1) ��+
1
2
16;C

6 C RSC 16;C= (15 + 1) ��+
1
2
17;C

...
...

...
...

...
...

i C RSC 1i;C= (1i�1 + 1) ��+
1
2
1i+1;C

...
...

...
...

...
...

4 RLSC 14 = 3��+
1
2
15;C

5 RLSC 15 = (2 � 14 + 1) ��+
1
2
16;C

6 RLSC 16 = (2 � 15 + 1) ��+
1
2
17;C

...
...

...
...

...

i RLSC 1i =(2 � 1i�1 + 1) ��+
1
2
1i+1;C

...
...

...
...

...

Table 7.3: Conditional unities including first and second constraint.

86 CHAPTER 7. EDGEBREAKER

lmax � �� 14;C 15;C 16;C

5 2:56256 :169275 :645798 :614494

6 2:55779 :169846 :641316 :603290 :591385

7 2:55677 :169955 :640358 :600895 :586446

9 2:55651 :169986 :640111 :600277 :585172

lmax 17;C 18;C 19;C 14 15

5 :815073

6 :811152 :741053

7 :581919 :810313 :738612
9 :579478 :5773922 :576739 :810098 :737983

lmax 16 17 18

5

6

7 :711977
9 :710618 :700273 :696429

Table 7.4: Results for different restrictions lmax for the precondition on the current loop
length.

five as both of them eliminate one vertex from the cut-border. This is represented by the
term 2 � 15 � �� . After a split symbol nothing about the length of the current cut-border
loop is known, which is accounted for by the term �� . Finally, a new vertex operation
C will increase the loop length by one and therefore the right side of the equation also
contains the term 1

2
17;C , where the 1

2
represents the frequency of the C-symbol.

We solved the set of equations with a computer algebra program for different restric-
tions lmax of the minimal loop length. If we for example restrict the minimal loop length
to six, we replace in the equation for 16;C the 17;C on the right side with 16;C . This is
valid as if the loop length is at least of length seven then it is also longer than six. Table
7.4 gives the results for different values of lmax and also the values for the conditional
unities, which allow to build an arithmetic coder. � converges very fast to 2:557 and we
conclude this section with the following theorem.

Theorem 7.2 With the encoding scheme described in this section a planar triangulation
with v vertices can be encoded and decoded in linear time to less than 3:557v bits.

7.3.2 Using More Constraints for 3.552 Bits per Vertex Encoding

If we apply the techniques of the previous section to the reverse decoding, we can con-
sider more constraints. During reverse decoding each E operation starts a cut-border
loop with three vertices. Each new vertex operation C decreases the current cut-border
loop by one vertex and the R and L operations increase the loop by one. A C operation

7.3. TOWARDS OPTIMAL PLANAR TRIANGULATION CODING 87

Table 7.5: Conditional unities accounting for the constraints induced by two successive
loops.

lmax llmax � ��
7 4 2:55197 0:17052

11 5 2:55122 0:17061
17 6 2:55102 0:17063

Table 7.6: Results for different restrictions lmax for the precondition on the current loop
length and llmax for the precondition on the length of the previous and the current loop.

is never allowed, when the current cut-border loop is of length three or if the previous
operation was an L operation. Thus in order to keep track of the current cut-border loop
length we define two types of conditional unities. For all i � 3 : 10

i
is the unity under

the condition that the current cut-border loop is of length i and 1
0
i;L

is the unity under
the additional condition that the previous symbol was L. Finally, we define 1 0

L
to be the

unity when nothing about the loop length is known except that L has been the previous
symbol. Using these unities to built a system of equations similar to the one in table 7.3
we can achieve again a value of � = 2:557.

After a split operation during reverse decoding the last two cut-border loops are
merged and we do not know anything about the loop length with the so far described
approach. But it is actually feasible to keep track of the lengths of two successive cut-
border loops as long as they are short and we define the conditional unities 10

j;i
and 10

j;i;L

for all i; j � 3. The index i represents the loop length of the current cut-border loop
and j of the previous loop. With the new unities a sub-sequence of EESCCC can be
correctly excluded as the first two E operations would create two loops of length three
each, the split concatenates these two loops to one loop of length five and the three new
vertex operations C would reduce the loop length to two what is not possible.

Table 7.5 gives the different kinds of equations parametrized over the loop lengths of
the current loop with length i and the previous loop with length j. In order to calculate
the different conditional unities and the value for �� we restricted the maximal loop
length for 10

i
to i � lmax and the loop lengths for 10

j;i
to i � llmax. The resulting values

for �� and � are shown in table 7.6.

Theorem 7.3 With the encoding scheme described in this section a planar triangulation
with v vertices can be encoded and decoded in linear time to less than 3:552v bits.

88 CHAPTER 7. EDGEBREAKER

Chapter 8

Conclusion & Directions for Future
Work

Connectivity compression for triangle meshes is not yet perfect, but probably not far
from perfect. A lot of methods are available, that exploit the regularity of meshes to
encode the connectivity to even better than the theoretical limit would allow for arbitrary
irregular planar meshes. An interesting question is an appropriate measurement for the
regularity of the mesh connectivity and how the regularity can be exploited optimal.

Newer efforts have generalized the best triangle connectivity encoding methods for
polygonal meshes and also achieve convincing results. Here might be some more work
to be done. Also do most methods not support non manifold meshes, which are quite
common. Although the solution of Gueziec [GTLH98] can be combined with most
encoding schemes, it is not optimal, as all non manifold spots are completely cut apart. It
would be interesting to examine the minimal number of cuts needed to produce manifold
connectivity and encode only these cuts. The Cut-Border Machine can be generalized
quite easily to non manifold meshes by adding cut-border operations, that handle the non
manifold spots in a mesh. The minimization of the number of performed cuts would be
steered by the traversal order. One could also introduce markers of non manifold spots
onto which the non manifold cut-border operations could reference later on in order to
minimize the size of the to be encoded vertex indices.

Very interesting in terms of practical relevance of mesh connectivity encoding is
the work of Isenburg [Ise00, IS00], who began to encode other incidence relations, like
triangle strips or a partitioning of the mesh, in an interwoven fashion with the mesh
connectivity at small or no additional cost.

In the progressive coding of mesh connectivity the level split method has established
itself as most efficient approach. For the most important simplification operations exist
very compact representations. An interesting question is, how much information is
included in the different levels of detail in terms of connectivity and whether the current
methods are optimal in a similar sense as the single resolution connectivity encoding
methods are optimal for the special case of planar triangulations.

In the research field of the optimal encoding of planar triangulations new results

89

90 CHAPTER 8. CONCLUSION & DIRECTIONS FOR FUTURE WORK

could be achieved in the last years. The theoretical lower bound of a 3:245 bit per vertex
encoding could be achieved up to ten percent by the author as illustrated in section 7.3.
It is not clear whether the researchers are motivated to make an effort to get closer to
the theoretical limit. But if this was so, the Edgebreaker encoding would probably be
the best method to promote the research in this direction. Firstly, one could examine,
whether the constraints of the Edgebreaker strings described in section 7.3 are complete
or if further constraints can be found. The completeness of a set of constraints can be
checked by building for each constraint string a unique planar triangulation. The fact
that each planar triangulation corresponds to one unique constraint string would prove
the equivalence of the set of planar triangulations and the set of constraint strings. An
induction over the length of the string suggest itself to build the planar triangulations
from the constraint strings. A basic ingredient to this induction would be the fact, that
for any planar triangulation with bent edges exists a planar triangulation with straight
edges. If a complete set of constraints is found, one has to explore for each constraint,
whether it is exploited in an optimal fashion. Clearly, this is only a vague research plan,
that could end in several dead ends. There might be no complete set of constraints, what
is rather improbable. The proof of completeness could be too difficult or even more
frustrating some of the constraints might be too complex to be exploited optimal, what
is most probable of all dead ends. But there is also the chance, that a different encoding
scheme can achieve the theoretical lower bound.

The encoding of the vertex locations is not satisfactory yet. The quantization in most
methods leads to visual artifacts in the meshes. Predictive delta-coding seems to be ex-
hausted. Current and still unpublished work on vector quantization applied to vertex
location encoding suggest a slight improvement over predictive delta-coding. Also the
progressive schemes should lead to significantly better results compared to the single
resolution methods, but still do not do. The work of Karni [KG00a] allows to per-
form a frequency analysis on the full connectivity of a mesh. No sampling locations
of the surface have to be encoded explicitly. Thus this method is very convincing. In
future work the method must be made hierarchical, such that also the connectivity can
be refined progressively. The other approach of avoiding the explicit encoding of sam-
ple locations is to remesh a given mesh with a new mesh of subdivision connectivity
[GVSS00, LMH00], that automatically defines new and different sampling locations.
The compression rates for vertex locations are very high but the new approach has prob-
lems in the modeling of sharp creases. We propose a different strategy of transforming
mesh connectivity into subdivision connectivity. The idea is to change the connectivity
of a given mesh only slightly by some local operations as for example edge flips in order
to produce a connectivity, that allows at least one inverse subdivision step. By applying
this inverse subdivision the mesh is transformed to a coarser level. The same coarsening
process is repeated until only a very small and efficiently to be encoded mesh remains.
The mesh can now be compactly represented through the coarse mesh and an efficient
encoding of the performed edge flips on each level. This method would be very efficient
on regular meshes, that are near to subdivision connectivity, but would also easily adapt

91

to meshes with sharp creases.
A very exciting avenue of research will open up with the development of new 3D-

scanners, that allow the acquisition of moving objects. A lot of problems must be solved:
How can the scanned surface meshes of different time frames be brought together? What
data structure can we generalize to meshes with connectivity, that can change in time?
Can we simplify these time dependent or better said morphing objects? And finally,
how do we compress the representation of the morphing object?

92 CHAPTER 8. CONCLUSION & DIRECTIONS FOR FUTURE WORK

Part III

Tetrahedral Mesh Compression

93

Chapter 9

Introduction to Tetrahedral Meshes

Tetrahedral meshes have been around in finite element simulations on volumetric do-
mains for a long time. With the growing need of visualization for the simulation data,
tetrahedral meshes established themselves also in volume visualization. There are sev-
eral beautiful properties of tetrahedral meshes which make them the natural choice for
volume data representation. The flexibility of a tetrahedral mesh is ideally suited for
an irregular sampling and for multi-resolution analysis. The convex nature of a single
tetrahedron allows for a simple visibility sorting algorithm[Wil92], which is essential in
volume visualization.

In most application areas of tetrahedral meshes some data is attached to the mesh
elements. The data can be attached to the vertices, edges, the faces, the border faces
or the tetrahedra. A density might be attached to the vertices, the intensity of a flow to
the edges or material identifiers to the tetrahedra. The tetrahedral mesh serves several
different purposes. It can be used to store nearest neighbors, to subdivide a volume into
convex primitives or to sample and, by the use of barycentric coordinates, to parame-
terize the domain of a function with volumetric domain. The function can be scalar, a
vector field or even a tensor field as for example the stress tensor of an inhomogeneous
material. The Cut-Border Machine compression algorithm can be extended in a natu-
ral way to support the compression of all three types of data functions defined on all
different types of mesh elements.

9.1 Basic Definitions and Notations

We us the notation of section 1.4 and denote the number of tetrahedra with t and the
number of border faces with b . Figure 9.1 shows six typical tetrahedral meshes, which
we used for our measurements. They differ in their sizes and their origin. The “Random”
mesh was generated by delaunay tetrahedralization of a cloud of randomly distributed
points. In order to show that the interior of this mesh is more complex than the surface,
we blended a cut through the mesh with its surface. The “Proto” mesh is a quite regular
tetrahedralization of an object with non trivial boundary. The “Bubble” is the output

95

96 CHAPTER 9. INTRODUCTION TO TETRAHEDRAL MESHES

a) Random b) Proto c) Bubble

d) Torso I e) Torso II f) Blunt Fin

Figure 9.1: Typical tetrahedral meshes. The transparent meshes were rendered with the
method of projected tetrahedra [ST90]. The “Blunt Fin”-mesh was rendered with false
colors.

of a simplification algorithm applied to a spherical symmetric scalar function. Again
the blending technique shows part of the interior. The “Torso” meshes are regularly
tetrahedralized real world meshes and the “Blunt Fin” is originally a curvy linear grid.
Table 9.1 shows the basic quantities of the different meshes and the average vertex-edge
and edge-tetrahedron order (see section 1.4.

We will denote the total amount of bits consumed by a tetrahedral mesh with S ,
where we use a right subscript to express a special representation type. Sstd denotes
for example the standard representation with a list of vertex coordinate triples, a list of
vertex index quadruples representing the relation T ! V from the set T of tetrahedra to
the vertices and additional lists for the attached data. We split the storage space S into
the bits L consumed by the locations of the vertices, C consumed by the connectivity
and D consumed by the data attached to the mesh elements. If no data is present only
the mesh consisting of connectivity and vertex locations has to be encoded in G bits. For
reasonable representations we get:

S � G +D G � C + L

The combined representation of two and more components of the tetrahedral mesh can

9.2. BASIC EQUATIONS AND APPROXIMATIONS 97

mesh v v: e: f : t vb

v
b �ov!e �oe!t

Random 2000 1:7:39:12:67:6:29 0:101 400 14:77 5:11

Proto 2896 1:5:94: 9:41:4:47 0:477 2760 11:89 4:51

Bubble 5715 1:6:89:11:63:5:74 0:150 1710 13:78 5:00

Torso I 11140 1:6:55:10:91:5:35 0:197 4380 13:10 4:90

Torso II 15164 1:6:61:11:04:5:43 0:180 5454 13:22 4:93

Blunt Fin 40960 1:5:74: 9:32:4:58 0:165 13516 11:48 4:78

average 1:6:52:10:83:5:31 0:212 13:04 4:87

Table 9.1: Basic quantities of the measured tetrahedral meshes.

be more efficient since better predictions might improve delta coding or just because the
coding mechanism can combine some fractional bits.

9.2 Basic Equations and Approximations

The basic equation for a tetrahedral mesh is also the Euler equation as in the case of
polygonal meshes (compare equation 1.1)

v � e+ f � t = �; (9.1)

where � is the Euler characteristic of the mesh and in most cases negligibly small. If we
count the halffaces (see section 1.5.4) once for each tetrahedron and once for each face
we get a second equation including the number of border faces b

f = 2t+
b

2
: (9.2)

In the case of triangle meshes the corresponding equations are sufficient to determine
the average vertex-face order and the number of triangles per vertex in a mesh with small

a)

z

y

x

2
v

v
2

b)

Figure 9.2: tetrahedral meshes with a) minimum and b) maximum vertex-tetrahedron
order 4t

v
.

98 CHAPTER 9. INTRODUCTION TO TETRAHEDRAL MESHES

Euler characteristic and few boundary edges, but not in the tetrahedral case as Figure 9.2
illustrates. The vertex-tetrahedron order might vary between one as in Figure 9.2 a)
and v for the mesh in b)1. Thus for the number of tetrahedra in an arbitrary tetrahedral
mesh we only know

v

4
� t 2
(v2): (9.3)

Non of the tetrahedral meshes of Figure 9.2 are used to sample volumetric functions
for volume visualization or finite element analysis. The tetrahedral meshes of interest
normally have a limited vertex-edge order, a small border portion and low Euler char-
acteristics of the mesh and of the border mesh, respectively. Therefore, we express
the fraction between t and v in terms of the average number of edges around a vertex
�ov!e = 2e

v
, the number of border vertices vb, � and �b the Euler characteristic of the

border. If we assume a manifold border mesh, 3b = 2eb holds true, if eb is the number
of border edges. Notice that the border mesh must be closed as it describes the surface
of a volume. With equation 1.2 for the border triange mesh and equations 9.1 and 9.2
we get

t

v
=

�ov!e

2
� 1� vb

v
+
�+ �b

v
: (9.4)

To find a basic approximation for the relation between t and v in a typical tetrahedral
mesh with small border portion and low Euler characteristics we are left with the estima-
tion of �ov!e for a regular tetrahedral mesh. Unfortunately, the Euclidean space can not
be tetrahedralized with equilateral tetrahedra. But the fraction of 4� over the steradian
occupied by an equilateral tetrahedron yields2 with 11:64 a good approximation of the
average vertex-edge order. The tetrahedralization of a cubic grid yields �ov!e

v!1�! 12

for an 1 : 5 zoning3 and �ov!e

v!1�! 14 for an 1 : 6 zoning. Considering this and the
measured average vertex-edge orders in Table 9.1, we assume in the following an aver-
age vertex-edge order of thirteen. For tetrahedral meshes with small Euler characteristic
and border portion we get in agreement with Table 9.1

v : e : f : t � 1 : 6:5 : 11 : 5:5: (9.5)

Let us use this approximation to estimate the storage consumption of a tetrahedral mesh
in the standard representation, where each vertex is given by three 32bit floating point
coordinates and each tetrahedron by four vertex indices:

Lstd = 96v; Cstd = 4t � lbv v�105

= 374v: (9.6)

For a typically sized tetrahedral mesh with a hundred thousand vertices the connectivity
consumes about four times more storage space than the vertex coordinates. With the
Cut-Border Machine compression technique the storage space for the connectivity can
be reduced to about eleven bits per vertex. This reduces the overall storage space of the
tetrahedral meshes to a quarter without loosing any information.

1The mesh is even one of the delaunay tetrahedrizations of the shown set of points.
2We applied the Euler equation for spherical triangle meshes.
3Each cube is split into five tetrahedra.

Chapter 10

Generalization of the Cut-Border
Machine

In this section we generalize the Cut-Border Machine compression method to the tetra-
hedral case. We first give a brief overview of the changes in section 10.1. After that we
describe the different cut-border operations (section 10.2) and the compressed represen-
tation (section 10.3). The best traversal strategy we found is proposed in section 10.4.
In section 10.5 we introduce an improvement for the mesh border encoding, which is
similar to the improved border coding for the triangular Cut-Border Machine as intro-
duced in section 6.2. In the triangular case the Cut-Border Machine is very simple to
implement and also extremely fast. The generalization to the tetrahedral case requires a
more sophisticated data structure for non manifold triangle meshes, which is described
in section 10.6.

10.1 From Triangular to Tetrahedral Cut-Border Ma-
chine Compression

Similar to the triangular case, the uncompressed tetrahedral mesh is transformed into a
halfface data structure.

The inner and the outer part consist of a set of tetrahedra. The cut-border is the
triangular surface between the inner and the outer part and the gate is a triangle of the
cut-border. For each face-connected component of the mesh the traversal begins with
an arbitrary tetrahedron and successively adds outer part tetrahedra, which are incident
upon the gate, to the inner part. The different cut-border operations are described in
the next section. The cut-border may become the surface of an arbitrary face-connected
tetrahedral mesh and therefore contain non manifold vertices and edges. In section 10.6
we describe an appropriate data structure. We assume that the tetrahedral mesh is em-
bedded in three dimensional space and that the tetrahedra do not penetrate each other.

As in the triangular case the traversal order highly influences the distribution of the
“connect”-operations with different offsets. Section 10.4 describes the best heuristic

99

100 CHAPTER 10. GENERALIZATION OF THE CUT-BORDER MACHINE

we could find.

10.2 Cut-Border Operations and Situations

a) “flip” b) “new vertex” c) “border” d) “top” e) “close”

Figure 10.1: The different manifold cut-border situations. The newly encoded tetrahe-
dron is viewed from top with the gate at the bottom. Additionally to the gate triangle
the bold drawn edges and the dark shaded triangles are part of the cut-border before the
cut-border operation.

There are three possibilities for the fourth vertex of a newly added tetrahedron at the
gate: the gate is a border triangle of the tetrahedral mesh, the gate forms a tetrahedron
with a new vertex or the gate is connected through a tetrahedron to another cut-border
vertex. The corresponding cut-border operations will again be called “border”, “new
vertex” and “connect” and are abbreviated with the symbols �; � and1i.

a) “nm flip” b) “join” c) “join, 1 nm” d) “join, 2 nm” e) “join, 3 nm”

Figure 10.2: The different types of non manifold cut-border situations.

Although only three different types of cut-border operations exist, we distinguish
ten different situations which describe the surrounding of the cut-border around the gate
for the different cut-border operations. All the situations are illustrated in figures 10.1
and 10.2. The diagrams show the newly added tetrahedron from above with the gate
at the bottom. Besides the gate at the bottom of the tetrahedron the bold drawn edges
and the dark shaded faces also belong to the cut-border before the cut-border operation
is performed. Figure 10.1 shows the situations which do not introduce non manifold
vertices or edges. For the “border”- and the “new vertex”-operation only one situation
exists which is depicted in figure 10.1 c) and b), respectively. The “connect” operation
comes along with a whole variety of situations. The most frequent of these is the “flip”

10.2. CUT-BORDER OPERATIONS AND SITUATIONS 101

operation illustrated in figure 10.1 a). Here the newly added tetrahedron connects the
gate to an adjacent triangle of the cut-border. The common edge of these two cut-border
triangles is kind of flipped if the two former cut-border triangles are replaced by the two
new cut-border triangles introduced by the new tetrahedron. The “top” and the “close”
operations are very similar to the “flip” operation. The only difference is that not only
two faces of the newly added tetrahedron are part of the cut-border but three of them
in the case of the “top” operation or even all in the case of the “close” operation. The
“close”-operation eliminates or closes an edge-connected component of the cut-border
triangle mesh (figure 10.1 e)).

As mentioned earlier, the cut-border can be a non manifold triangle mesh. Fig-
ure 10.2 portrays all types of situations which introduce a non manifold vertex or edge.
In figure 10.2 a) the non manifold counterpart of the “flip” situation is shown. Here
the free edge of the “flip” situation is touched by the cut-border and therefore already
belongs to the cut-border. The touched edge becomes non manifold after application
of the “connect” operation. The “join” situation in figure 10.2 b) is the non manifold
counterpart of the “new vertex” operation. The fourth vertex of the newly added tetra-
hedron is part of a region of the cut-border triangle mesh which is further apart from
the gate. This vertex becomes non manifold. Finally, in the “join” situations depicted
in figures 10.2 c), d) and e) not only the fourth vertex of the newly added tetrahedron
belongs to the cut-border but also one two or all three free edges of the “join” situation.
Thus one, two or three non manifold edges are introduced.

The situations depicted in figures 10.1 and 10.2 constitute all possible situations,
which can be easily verified by considering a newly added tetrahedron: the three trian-
gles of the tetrahedron which are unequal to the gate may all be part of the cut-border
or not be part. The same holds true for the fourth vertex and the three edges not inci-
dent to the gate. All of these seven mesh elements might be present in the cut-border or
not. The presence of one of the three triangles implies the presence of the fourth vertex
and the two incident edges. If we take such implications into account each possible
assignment of presence to the three triangles, three edges and the fourth vertex yields
exactly one of the discussed situations. Thus each face-connected component of the
tetrahedral mesh can be compressed without any vertex repetitions. Only if two com-
ponents of the tetrahedral mesh are exclusively connected through edge-adjacency and
vertex-adjacency the involved non manifold vertices are repeated. In a simple way the
“border”-operation allows for the encoding of all possible border surfaces of tetrahedral
meshes including non manifold borders.

The “connect” operation takes one index as parameter, which specifies the fourth
vertex in the cut-border. The fourth vertex is with high probability near to the gate. We
can exploit this fact for a more efficient encoding by mapping near fourth vertices to
small connect indices. This is achieved by a breadth-first traversal through the triangles
of the cut-border starting at the gate as shown in the illustration of algorithm 1. The
enumeration is not uniquely defined before one edge of the gate is specified at which
the enumeration with the zero connect index will begin. This edge will be called the

102 CHAPTER 10. GENERALIZATION OF THE CUT-BORDER MACHINE

Algorithm 1 Vertex Enumeration

fifo.pushback(gate.zeroEdge())
fifo.pushback(gate.oneEdge())
fifo.pushback(gate.twoEdge())
while not fifo.empty do

edge = fifo.popfront()
tgl = edge.rightTriangle()
if not marked(tgl) then

mark(tgl)
vtx = tgl.oppositeVtx(edge)
if not marked(vtx) then

mark(vtx)
enumerate(vtx)

fifo.pushback(tgl.nextEdge(edge))
fifo.pushback(tgl.prevEdge(edge))

zero edge and is specified by the traversal strategy (see section 10.4). Algorithm 1 gives
pseudo code for the vertex enumeration. The algorithm is similar to the cut-border
traversal in the case of a triangle mesh. In a fifo these edges of the cut-border are stored
which are adjacent both to a visited triangle and to a not visited triangle at the same time.
The zero edge is firstly placed into the fifo. Triangles are visited by extracting the next
edge from the fifo and addressing the adjacent triangle which has not been visited yet. If
the third vertex of the newly visited triangle is reached the first time, the next available
connect index is assigned to it. In this way the vertices obtain the indices illustrated in
the figure of algorithm 1.

The “flip” situation can arise for the operations10;11 and12, the “top” situation
for 10 and 11 and “close” only for 10. The different “join” situations correspond
to “connect” operations with larger index and are less frequent. The traversal strategy
described in section 10.4 optimizes the choice of the zero edge in a way that most “flip”
and “top” situations are encoded with10.

10.3 Compressed Representation

In the triangular case the “new vertex”-operation � is performed in about half the cases
and is most frequent. In the tetrahedral case the relative frequency of � is only about 1

5:5
,

whereas the connect operations with small index are most frequent. For optimal encod-
ing of the operation symbols we use arithmetic coding since the relative frequencies are
unequal to 2�k and therefore Huffman-coding is not appropriate.

The connectivity of the tetrahedral mesh is given by the sequence of cut-border
operations. As each operation adds one tetrahedron or specifies one border face, t + b

operations are encoded. The binary entropy defined in equation 3.1 gives a good lower

10.4. TRAVERSAL ORDER 103

bound

CCB
def
= E (n; ��; ��; �10

; �11
; : : :) < Cadapt

CB (10.1)

for the storage space Cadapt
CB consumed by our arithmetic coder with adaptive relative

frequencies, which are initialized to the average values given in the last row of Ta-
ble 10.1. Table 10.2 shows that our arithmetic coder almost achieves the optimum.

The vertex coordinates and the data at the vertices, edges, faces and tetrahedra are
incorporated in the arithmetic coding stream with separate coding models. Each time a
cut-border operation produces a new mesh element, the corresponding data is added to
the stream. The representation of a 1:6 zoning of a cube with vertex data v0; v1; : : : ; v7
and tetrahedral data t0; t1; : : : ; t5 might look as follows:

t0x0y0z0v0x1y1z1v1x2y2z2v2x3y3z3v3��

�t1x4y4z4v4� � t2x5y5z5v5�
�t3x6y6z6v610t4�� � t5x7y7z7v7������:

10.4 Traversal Order

The traversal strategy chooses after each cut-border operation the next gate and zero
edge. The aim is to favorite a small number of different kinds of operations. To avoid
most connect operations with large indices it turned out that a good strategy is to stay
at one cut-border vertex until all adjacent tetrahedra have been visited. The cut-border
vertices are processed in a fifo order. For the choice of the zero edge and the order in
which the triangles around a cut-border vertex are added, we tried two heuristics that
favorite the10-operation. The first one cycles around edges and tries to close up with
a10-operation by setting the zero edge of the gate to the edge around which the Cut-
Border Machine cycles. The second strategy defines the zero edge of each cut-border
triangle at the time when the triangle is created. The zero edge is set to the edge which
is shared by the gate and the new triangle. In case of a new vertex operation it is obvious
that with this choice the zero edge is the edge with the smallest angle in the outer part.
This still holds true to some extent for the other operations. The first heuristic increased
the frequency of the10-operation to 45% and the second heuristic even to 60%. Thus
we chose the second strategy, which is documented in Table 10.1. The first column
shows for each mesh the total number t + b of encoded operations. In the following
columns the relative frequencies of the different cut-border symbols are shown. 10 is
with 60% the most frequent operation, followed by �, 11 and 12. With the border
optimization described in the next section the frequency of the border symbol became
negligibly small. The last column shows the fraction of the non manifold situations in
Figure 10.2 which arose during compression. This number is important for the optimal
running time of the compression and decompression algorithms as the non manifold
operations consume more computing power.

104 CHAPTER 10. GENERALIZATION OF THE CUT-BORDER MACHINE

10.5 Mesh Border Encoding

In order to allow for a non manifold mesh border, we explicitly encode the border opera-
tions. The border symbol can be avoided when an edge-adjacent triangle of the gate has
already been encoded as border triangle. In this case the corresponding connect symbol
can be used. This optimization helped to decrease the additional amount of storage for
the mesh border to one bit per border triangle as tabulated in Table 10.2. The same
optimization improves the border encoding in the triangular case of the Cut-Border Ma-
chine.

10.6 Cut-Border Data Structure

Data Structure 1 Cut-Border

CutBorder
CutBorderTriangle triangles[]
Fifo<CutBorderVertex>vertices
TriangleIndex gate

CutBorderTriangle
VertexIndex vertexIndices[3]
TriangleIndex adjacentTriangles[3]
TetraIndex innerTetra
Boolean meshBorder
Integer zeroEdge

CutBorderVertex
VertexIndex meshVertexIndex
Set<TriangleIndex> adjacentTriangles

Data structure 1 shows the cut-border data structure. Three relations between the
cut-border vertices and the cut-border triangles are stored: for each triangle the three
incident vertices and three edge-adjacent triangles; for each vertex all incident triangles.

mesh t+ b �� �� �10
�11

�12
�1i>2

�nm

Random 12971 0:001 0:154 0:519 0:118 0:108 0:101 0:116

Proto 15695 0:001 0:184 0:631 0:073 0:067 0:044 0:046

Bubble 34526 0:001 0:165 0:549 0:106 0:091 0:088 0:109

Torso I 64028 0:002 0:174 0:607 0:080 0:072 0:064 0:069

Torso II 87788 0:001 0:173 0:603 0:083 0:075 0:065 0:069

Blunt Fin 200910 0:000 0:204 0:707 0:045 0:044 0:000 0:000

average 0:001 0:176 0:602 0:084 0:076 0:060 0:068

Table 10.1: Total number of encoded operations; relative frequencies of cut-border op-
erations; relative frequency of non manifold situations.

10.6. CUT-BORDER DATA STRUCTURE 105

The latter relation is stored in a set data structure which allows insertion and elimination
of elements and the intersection of two sets. This relation allows for the handling of non
manifold vertices and edges. For each cut-border triangle the incident tetrahedron of the
inner part is stored in order to find the new tetrahedron if the triangle becomes the gate.
The meshBorder-flag tells us when the cut-border triangle has already been encoded
as border triangle of the mesh and therefore does not have to be visited again. With
the help of this flag the optimized border encoding is realized. As the traversal order
introduced in section 10.4 defines the zero edge for each triangle at creation time, an
index between zero and two is stored for each cut-border triangle defining the zero edge.
The cut-border vertices are organized in a fifo as demanded by the traversal strategy
chosen in section 10.4.

We generate for each vertex of the tetrahedral mesh a field which stores the index
of the cut-border vertex and initialize it before compression to minus one. In this way
we can not only map a tetrahedral mesh vertex index to a cut-border vertex index but do
also know which of the tetrahedral mesh vertices are part of the cut-border.

Figure 10.3: Face adjacency of cut-border triangles around non manifold edge.

Let us describe why it is sufficient to keep for each triangle only three edge-adjacent
neighbors even at non manifold edges. At any time the cut-border describes the surface
of a tetrahedral mesh. Thus the faces around a non manifold edge divide the space into
regions alternately belonging to the inner and the outer part. These regions around a non
manifold edge are called inner/outer regions. The faces bounding the same outer region
can be set to be edge-adjacent as illustrated in Figure 10.3. This definition correctly
reflects the proximity needed in enumerating the vertices relative to the gate. Faces of
different outer regions can not be connected through a tetrahedron without intersecting
an inner region.

Finally, we describe the updates of the cut-border data structure for the different
situations depicted in figures 10.1 and 10.2. During the “connect” operation of a man-
ifold “flip” situation (see figure 10.1 a)) the two present triangles in the cut-border

106 CHAPTER 10. GENERALIZATION OF THE CUT-BORDER MACHINE

are replaced with two new ones where the common edge is flipped. The vertices and
face-adjacent triangles of the two new triangles can be easily determined from the old
triangles. For each new triangle the zero edge is set to the edge, which is incident to the
gate. The innerTetra index of the newly added triangles is set to the newly added
tetrahedron, as in all other situations of all operations. Finally, the old triangles are
removed from the triangle sets of the vertices and the new triangles are added.

The first step during the update of the “new vertex” operation is to create a new cut-
border vertex for the fourth vertex of the newly added tetrahedron and store its vertex
index of the tetrahedral mesh in the corresponding field. Conversely, the index of the
new cut-border vertex is stored within the corresponding field of the tetrahedral mesh
vertex. Next the gate triangle is removed and three new triangles are inserted. Again
their zero edges are set to the edges incident to the gate. The “border” operation just
sets the border flag of the gate triangle. For the border optimization the border flags of
the three edge-adjacent cut-border triangles are checked and if one of them is set, the
operation is encoded with the corresponding “connect” operation. The “top” situation
is similar to the “flip” situation except that three triangles are removed and only one is
added. As last manifold situation the “close” operation eliminates all involved triangles
and these vertices for which the set of adjacent triangles becomes empty. If a cut-border
vertex is removed the index stored with the corresponding tetrahedral mesh vertex is set
to minus one again.

In order to distinguish between manifold and non manifold situations we have to
clear up how to decide whether an edge of the newly added tetrahedron belongs to the
cut-border or not. The question is trivially answered positively if an incident triangle of
the newly added tetrahedron already belongs to the cut-border. Otherwise the answer
can be determined by intersecting the set of adjacent triangles of the incident vertices
of the edge in question. If the intersection is empty no cut-border triangle contains the
edge and therefore the edge cannot belong to the cut-border. The intersection test must
be performed for all edges of the non manifold situations in figure 10.2 which are not
incident to a cut-border triangle. In case of the “nm flip” situation this is one edge and in
case of the four “join” situations these are three edges. Only if the non manifold edges
are detected, the face-adjacencies can be updated according to figure 10.3. And this is
the only difference in the update process between the “nm flip” and “flip” situations
and between the four different “join” situations and the “new vertex” operation.

The “nm flip” operation is distinguished from the “flip” situation by checking if the
edge connecting the two newly added triangles belongs to the cut-border or not. This
check can be done after the update performed for the “flip” situation, such that the face-
adjacencies of the two new triangles can be corrected if necessary. This is only possible
if we assume that the vertex coordinates are known and given in three dimensional space.
For more general tetrahedral meshes the neighbors of the newly added triangles must be
explicitly encoded. This can be done with few bits and as the non manifold situations
are much less frequent as the manifold situations, the total storage space won’t increase
significantly for typical meshes.

10.7. RESULTS 107

mesh C
adapt
CB
v

CCB
v

CCB
t

CCB,�
b

�
t

sec

�
C

L
16bit
CB
v

�
t

sec

�
G

Random 15:12 15:02 2:39 1:37 84831 34:40 73866

Proto 9:55 9:48 2:12 0:90 93603 30:86 74259

Bubble 13:52 13:43 2:34 1:11 85774 30:09 74146

Torso I 11:02 10:99 2:05 1:29 92508 30:41 76749

Torso II 11:15 11:14 2:05 1:20 92574 29:64 76992

Blunt Fin 6:00 5:99 1:31 0:54 98587 26:36 78493

average 11:06 11:01 2:04 1:07 91313 30:29 75751

Table 10.2: Cut-Border Machine: consumed storage for connectivity, border and quan-
tized vertex coordinates. Running time for connectivity alone and together with vertex
coordinates in tetrahedra per second on a Pentium II 350MHz.

The family of “join” situations is detected whenever the three triangles of the newly
added tetrahedron, which are not equal to the gate, are not part of the cut-border but the
fourth vertex is part of the cut-border. The latter condition is checked with the help of
the cut-border index field attached to the tetrahedral mesh vertices. The update of the
“join” situations is the same as in the case of the “new vertex” operation accept that
the three newly added triangles must also be inserted to the triangle set of the fourth
vertex. Finally, the three potential non manifold edges are checked for their presence in
the cut-border and the face-adjacencies of the corresponding triangles are corrected if
necessary as in the case of the “nm flip” situation.

10.7 Results

Table 10.2 illustrates different aspects of the consumed storage space and running time
for the Cut-Border Machine. The first column shows the storage space consumed by our
arithmetic coder for the connectivity. The second and third columns tabulate the binary
entropy of the cut-border operations in bits per vertex and bits per tetrahedra. Com-
parison of the first two columns shows that our arithmetic coder is near the optimum.
The Cut-Border Machine consumes on average about two bits per tetrahedron, even for
the randomly generated mesh which forces more connect operations with a high index.
CCB,� is the binary entropy of the sequence of cut-border operations, that were used to
encode the border faces. The fourth column of Table 10.2 shows that the border could be
encoded with about one bit per triangle. As the best triangle mesh compression methods
consume also about one bit per triangle, the initializing of the Cut-Border Machine with
the border of the tetrahedral mesh would not improve our border encoding described
in 10.5. The fifth column of Table 10.2 documents the compression speed in tetrahe-
dra per second for connectivity alone. The decompression speed is approximately the
same. The speed does not depend on the size but more on the frequency of non manifold
operations (compare the last column of Table 10.1). The last but one column contains
the storage space consumed by the vertex coordinates, if compressed with the technique
described in section 11.1. Finally, the last column shows that the vertex compression

108 CHAPTER 10. GENERALIZATION OF THE CUT-BORDER MACHINE

doesn’t decrease the compression speed significantly.

Chapter 11

Encoding Mesh Attributes

In this section we describe simple methods for the compression of vertex locations (sub-
section 11.1) and vertex attributes (subsection 11.2).

11.1 Vertex Locations

In a first step we quantize each vertex coordinate to 16 bits according to the diagonal
of the bounding box of all vertices. Thus the compression is lossy and for some appli-
cations not appropriate. All the meshes we received came in ASCII format with six to
eight valid digits which is equivalent to 19-26 bits. We loose some information in the
quantization step and the shape of small tetrahedra changed slightly, but no tetrahedron
changed its orientation.

To encode the 16 bit coordinates arithmetically it turned out to be economical to split
each coordinate into four packages of four bits. For each package we use a different set
of adaptive frequencies for the arithmetic coder. This strategy dramatically reduced the
storage space consumed by the arithmetic coder and increased the compression speed.

The next step in coordinate compression is delta coding. We encode the vertex coor-
dinates during the compression of the connectivity. After each new vertex operation the
difference vector from the center of the gate triangle to the new vertex is encoded. Thus
we use the proximity information given by the tetrahedralization of the vertices. We can
estimate the number of bits saved through delta coding with the following simple argu-
ment. Suppose the vertices are uniformly distributed. Then there are approximately 3

p
v

vertices per coordinate axis and it should be possible to save lb 3
p
v bits per coordinate.

Thus the storage space consumed per vertex can be estimated with 48� lbv bits, which
is about three bits above the actually achieved storage space.

A final improvement of two bits less storage space per vertex could be achieved by
rotating the coordinate system such that the z-axis is the normal of the gate and the
x-axis parallel to the zero edge. Quantization is done after changing to the new coordi-
nate system. To avoid accumulation of rounding errors it is very important that during
compression the center of the gate is computed with the same quantized coordinates

109

110 CHAPTER 11. ENCODING MESH ATTRIBUTES

which are available to the decompression algorithm. The change of the coordinate sys-
tem saved two bits in the x- and y-axes. The final storage space consumed per vertex by

the coordinates is tabulated in Table 10.2 in the column labeled
L16bit

CB
v

.

a) bits 0-3 b) bits 4-7

c) bits 8-11 d) bits 12-15

Figure 11.1: Distribution of coordinates.

Figure 11.1 shows the relative frequencies of the 16 different values of each 4 bit
package in the case of the randomly generated mesh (see figure 9.1). The yellow bars
represent the z-coordinate and the blue bars the x- and y-coordinates. The x- and y-
coordinates were united as their distributions do not differ at all. The lower eight bits
are distributed quite uniformly, whereas the higher four bits are nearly exclusively zero.
The bits 8 � 11 are especially interesting. The x- and y-coordinates frequencies have
a Gaussian fall off, whereas the z-coordinate frequencies increase to a maximum at the
value 3 and then drop of much faster than the x- and y-frequencies.

This encouraged us to predict the z-coordinate, which is the height of the new tetra-
hedron in the new vertex operation, from the height of the tetrahedron of the inner part
which is adjacent to the gate. But the distribution of the z-coordinate frequencies was
even smoothed out and the compression became worse. We also tried to predict the
x- and y-coordinates from the interior adjacent tetrahedron but with a similar failure.
All these tests were also performed on the more regular meshes of figure 9.1 with no
success. The prediction of the tetrahedron height, which is proportional to its volume,
should help in meshes where the sampling density changes significantly. But we still
have to conclude that tetrahedral meshes are too irregular to predict vertex coordinates
much better than with the proximity information of the connectivity alone.

11.2. SCALAR AND VECTOR VALUED ATTRIBUTES 111

11.2 Scalar and Vector Valued Attributes

The last section showed that tetrahedral meshes are not regular enough for a good pre-
diction of vertex coordinates. Therefore, we propose to encode data given for the mesh
elements in a different way. In this section we restrict ourselves to a scalar data function
attached to the vertices. The approach can be extended in a natural way to vertex data by
coordinate wise application. The vertex data is transmitted with each new vertex opera-
tion after the vertex coordinates. We propose delta encoding for the data function after
an appropriate quantization. This time we can additionally use the vertex coordinates to
predict the function value at the new vertex.

Let us denote the scalar data function with f and the location of the new vertex with
~vn. A linear approximation flin of the function f is of the form

flin(~v) =
~flin

T

� ~v + flin(~0): (11.1)

Thus the linear approximation must be known at four locations in order to determine
the unknowns ~flin and flin(~0). In a new vertex operation the new tetrahedron is always
adjacent to a tetrahedron of the inner part, where the function f is already known. We
can use the corner vertices of this tetrahedron ~v0; ~v1; ~v2 and ~v3 and the corresponding
values of the data function f(~vi) to determine the unknowns of the linear approximation.
The linear system of equations is

f(~vi) = ~flin
T

� ~vi + flin(~0); i 2 f0; 1; 2; 3g:

If this linear system is solved and the values are plugged into equation 11.1 with v = vn,
we get as linear prediction at the location ~vn

flin(~vn) = �~f T ��V �1 � (~vn � ~v0) + f(~v0); with

�~f
def
=

0
@ f(~v1)� f(~v0)

f(~v2)� f(~v0)
f(~v3)� f(~v0)

1
A and

�V
def
=

(~v1 � ~v0) (~v2 � ~v0) (~v3 � ~v0)

!
:

The matrix �V can be inverted, iff the tetrahedron (~v0; ~v1; ~v2; ~v3) is not degenerated.

112 CHAPTER 11. ENCODING MESH ATTRIBUTES

Chapter 12

Other Compression Methods

12.1 Grow & Fold Compression

The Grow & Fold method was developed by Szymczak and Rossignac [SR99]. It is very
similar to the Topological Surgery triangle mesh compression technique. The tetrahedral
mesh is encoded in two phases. In the first phase (grow) a tetrahedral spanning tree is
encoded with three bits per tetrahedron. And in the second phase (fold) it is encoded
how the tetrahedral spanning tree has to be folded together in order to obtain the original
tetrahedral mesh.

12.1.1 Growing the Spanning Tree

For the explanation of the growth of the spanning tree, the notion of a halfface as in-
troduced in section 1.5.4 is helpful. The halfface can also be interpreted as a pair of a
tetrahedron and one of its four faces.

The spanning tree is grown starting with a halfface, which is incident to the border
of the tetrahedral mesh, in the following frequently used recursive manner. The halfface
is pushed onto a stack. As long as the stack is not empty the top halfface is popped from
the stack. The tetrahedron of the popped halfface is marked visited. For each of the three
remaining1 faces in the current tetrahedron it is encoded with one bit, whether there is
a not visited face-adjacent tetrahedron or not. If there is one the corresponding halfface
is pushed onto the stack. This encoding strategy of the spanning tree corresponds to a
depth-first traversal and consumes 3t bits.

Decompression works in the same way. The first tetrahedron introduces four vertices
and all other tetrahedra one further vertex. Thus the decoded spanning tree contains t+3

different vertices, which are labeled in the order they are created.
Comparing this approach with the Cut-Border Machine corresponds to applying all

new vertex operations at the beginning.

1unequal to the face in the halfface

113

114 CHAPTER 12. OTHER COMPRESSION METHODS

12.1.2 Folding the Spanning Tree

The spanning tree is the result of cutting the tetrahedral mesh along the cut-faces. Each
cut-face is split into two faces one for each of its two exterior halffaces. In the second
phase the cut halffaces must be distinguished from border halffaces and the originally
face adjacent halffaces must be brought together again. This is done with two opera-
tions: the more frequent fold- and the rare glue-operation. The fold-operation unifies
two edge adjacent halffaces in the spanning tree, i.e. the so far folded tetrahedral mesh.
And the glue-operation unifies two arbitrary halffaces but in turn for its generality con-
sumes two indices to specify the halffaces in the spanning tree.

The operations are encoded in the folding string, which consists of two parts. In the
first part for each of the 2t+1 exterior halffaces2 a two bit code is encoded in altogether
4t+2 bits. A code of 0 tells that the halfface is either at the mesh border or will be glued
to its originally face-adjacent halfface. The glued pairs of halffaces are specified at the
end of the folding string with pairs of indices into the 0 labeled exterior halffaces, what
consumes 2glb d2g + be bits, where g is the number of glue operations and b the number
of border faces of the tetrahedral mesh. The fold operations are completely encodable
by specifying for both participating halffaces the common edge or folding edge. The
remaining cases 1, 2 and 3 of the two bit code for each exterior halfface are sufficient to
specify the folding edge.

During compression the halffaces are visited in the same order as their bits are en-
coded in the spanning tree encoding. An exterior halfface pair is classified as participant
in a fold operation, if it is edge-adjacent to its folding partner via an inner edge of the
original tetrahedral mesh and if the two participants are the only halffaces incident upon
this edge3. If this is the case, the corresponding folding codes for both partners are set.
If not, the halfface is delayed until it can be folded with its partner by an update in their
neighborhood caused by another folding operation. If no folding operation is possible
anymore, a glue operation is applied to the first delayed halfface. Again the changed
neighborhood of the glue operation is checked for possible folding operations. In this
way the number of glue operations is minimized.

The decompression algorithm first unifies all glue faces and then foldes edge-adjacent
folding partners. Folding is only allowed if the edge adjacent halffaces both specify the
folding edge. Again folding is delayed until this condition is fulfilled. This can be
implemented in linear running time by traversing all exterior halffaces once and check-
ing for delayed folding operations in the neighborhood after each performed folding
operation.

2the initial tetrahedron introduces three exterior halffaces and each addition of a tetrahedron removes
changes one halfface to an interior halfface and adds three exterior halffaces

3if there would be more than two, during decompression the partners could not be determined anymore

12.2. IMPLANT SPRAYS 115

12.1.3 Results

The Grow & Fold method allows to encode a single resolution tetrahedral mesh with
7t + 2glb d2g + be + 2 bits. As the glue operations are very seldom typical tetrahedral
meshes can be encoded with slightly more than 7t bits. Compression runs in O(tlbt)
time as the glue indices must be determined and the decompression algorithm is linear
in t.

The 7t bits can be improved by exploiting the fact that the spanning tree is encoded
with t ones and 2t zeros with arithmetic coding to 6:75t bits.

The most interesting question of theoretical content is whether closed tetrahedral
meshes with manifold surface can always be encoded without glue operations and there-
fore with 6:75t bits.

12.2 Implant Sprays

The tetrahedral mesh compression method called Implant Sprays was developed by Pa-
jarola and Rossignac [PRS99]. It is the generalization of the Compressed Progressive
Meshes [PR00] and therefore a level split method (compare to section 2.3). The com-
pression method is coupled to a simplification algorithm, which is based on the favorite
edge collapse operation. The tetrahedral mesh is simplified level by level. For each
level a maximal set of independent edge collapse operations is requested from the sim-
plification algorithm, which supplies them in the order of decreasing error produced by
the edge collapse according to an appropriate error measurement. In this way the sim-
plifying compression algorithm collapses level by level. The information needed for
the inverse vertex split operations is encoded. The coarsest level is then encoded with
the Cut-Border Machine or the Grow & Fold method. The information needed by the
decompression algorithm can be divided into two parts. The first part for each level is
the identification of the to be split vertices. In the second part for each split vertex the
incident triangles which have to be split into tetrahedra are specified. These triangles
are called the skirt. Figure 12.1 shows a vertex split operation. The skirt triangles are
shaded transparently in figure 12.1 a). During the split each of the skirt faces is split
into a tetrahedron. Thus in terms of encoding, it remains to explain how to specify the
split vertices and how to encode the skirts.

12.2.1 Split Vertices Specification

The split vertices are encoded with a bit stream. For each vertex in the current level
one bit specifies, whether the vertex is a split vertex or not. If we assume that at each
level each kth vertex is split, the encoding of the split vertices consumes k bits per split
vertex. As the base mesh is small one can assume that the split vertices specification
accounts for kv bits.

116 CHAPTER 12. OTHER COMPRESSION METHODS

a) b)

Figure 12.1: Vertex split operation.

12.2.2 Skirt Encoding

The problem of skirt encoding is best understood if one has a look at the triangle mesh
formed by the not on the split vertex incident faces of the incident tetrahedra. In a regular
case this triangle mesh looks like a sphere with the split vertex as center. Pajarola calls
this surface the orbital surface. The intersection of the skirt with the orbital surface is a
closed edge path on the orbital surface. Thus the brute force method to encode the skirt
optimal is to enumerate all possible closed paths on the orbital surface and then encode
the index of the actual path. As the average number of neighboring vertices of a split
vertex is about 14 this approach is not feasible. Pajarola suggest to specify the path by
the first vertex and then track the path along the orbital surface. The first path vertex is
encoded as an index to a canonically ordered list of the vertices in the orbital surface,
which consumes about lb14 < 3:9 bits. Each edge can then be selected from the edges
incident to the previous path vertex. As each vertex has about six neighbors in a triangle
mesh, an edge can be specified by about lb6 < 3 bits. As an edge in a tetrahedral mesh
has in average about 5 neighboring tetrahedra, the path and therefore the skirt can be
encoded with 4 + 5 � 3 = 19 bits.

12.2.3 Implementation & Results

For the selection of a maximal independent set of edge collapses it is important to know,
when two edge collapses are independent and what edge collapses are valid. Two edge
collapses are independent if their sets of tetrahedra, which are incident to one or two
vertices of the edge, are disjunct. Valid is an edge collapse of edge e = (v1; v2) if the
following conditions are fulfilled:

� If a vertex w is incident to v1 and v2, the triangle (w; v1; v2) must be a triangle of
the tetrahedral mesh.

12.2. IMPLANT SPRAYS 117

� If two vertices w1 and w2 form the triangles (v1; w1; w2) and (v2; w1; w2), the
quadruple (v1; v2; w1; w2) must be a tetrahedron in the tetrahedral mesh.

The precondition of the first condition is fulfilled if two tetrahedra not incident to the
collapsed edge form a roof upon an incident tetrahedron. The collapse would collapse
all three tetrahedra in one face, but the skirt decoding recovers only one tetrahedron
from this face and would produce a different tetrahedral mesh. Thus this case must be
prohibited. The second precondition arises if a large virtual tetrahedron incident upon
the collapsed edge contains a further vertex and therefore actually consists of three
tetrahedra. Again the edge collapse will collapse all three tetrahedra into one face, what
cannot be recovered by the decompression algorithm.

The restrictions on the selection of edge collapses cause a relatively large k of 12 to
16, what means that on each level only each 12� 16th vertex is split. This results in an
overall storage space consumption of about 19+14 = 33 bits per vertex. For an average
of about six tetrahedra per vertex this would result in about 5:5 bits per vertex, what
is only twice as much as the Cut-Border Machine consumes for the single resolution
encoding. The measurements of Pajarola confirm this estimations.

12.2.4 Improved Implant Sprays Encoding

It is not too difficult to improve the results of Pajarola. First of all we can simply apply
arithmetic coding to the bit stream that defines the split vertices. Let there be v vertices
on the current level and v=k split vertices. With the sparse flag encoding desribed in
section 3.2.4 the split vertex bits can be encoded with �lb1=k = lbk bits. For k = 16

the split vertices can be encoded with 4 bits per vertex and not with 16.
On can also improve the skirt encoding with a little bit more effort. As in the original

encoding we want to encode the skirt by the closed cycle of edges on the orbital surface.
We want an encoding scheme that consumes a fixed number of � bits per encoded edge.
As each encoded edge corresponds to one skirt face and as each skirt face generates
exactly one tetrahedron, we can derive at once that our coding scheme will use – for
compressed models with sufficiently small base tetrahedral mesh – � bits per tetrahedron
for skirt encoding. The idea is to encode the cycle length and use this length to encode
the last two or three edges in the edge cycle more efficiently in order to compensate the
additionally consumed storage space for the length encoding and the encoding of the
first edge.

The length l of a cycle is at least three. We use an arithmetic coding scheme that
consumes

Slength(l)
def
= a � l + b bits,

where a and b are constants, which will be determined later on. As all frequencies of
the lengths must sum up to one, a and b must fulfill the equation

1 =
X
l>2

2�Slength(l) = 2b�3a
Æ �

1� 2�a
�
: (12.1)

118 CHAPTER 12. OTHER COMPRESSION METHODS

The second condition for a and b will distribute the consumed bits equally among the
cycles with different length.

Let us now describe how we encode the edges of the cycle. The first edge is chosen
according to the strategy described below and is encoded directly by an index ranging
from 1 to the number of edges in the orbital surface. Then the cycle is built edge by edge
starting from the first edge in a canonically chosen direction as also Pajarola does. The
last two edges are encoded differently. As they must close the cycle, there are only a few
possibilities. Figure 12.2 shows in the left two cases the typical closing of a cycle. For

Figure 12.2: Different closings of cycles. The possible cases for the last two edges are
surrounded with dashed lines.

the very left cycle there are two possibilities, which can be encoded with one bit. In case
of the middle cycle the one and only possibility does not consume any bit. But there are
also cases with more than two possibilities as shown in the right cycle of figure 12.2. To
avoid these cases, we choose the first encoded cycle edge by minimizing the number of
closing cases. For this we look at each edge in the cycle and determine the number of
connections via two edges between the endings of the previous two edges, which will be
the closing edges, if this edge is chosen as first encoded edge. In this way we can also
exploit the choice of the first edge and the cost for encoding the last two edges decreases
to about one bit.

Let us analyze this encoding for the average case. We assume an average number
of �ov!v = 14 vertex-vertex neighbors. From the Euler equation for closed surfaces
applied to the orbital surface, we now that there are �e = 3(�ov!v � 2) = 42 edges in the
orbital surface. Thus we can select the first cycle edge among all edges with an index
consuming

Sedge
def
= lb�e � 5:4 bits.

The fractional bit consumption can actually be achieved by the use of arithmetic coding.
As the average number of vertex-vertex neighbors on the orbital surface is about six,
there are five possibilities for each further edge, what can be encoded in

S!edge
def
= lb5 � 2:322 bits.

12.3. PROGRESSIVE SIMPLICIAL COMPLEXES 119

Including the length encoding of the cycle and the bit for the last two edges, we end up
with the storage space consumption for a complete cycle of length l

Scycle(l)
def
= Slength(l) + Sedge + (l � 3) � S!edge + 1:

If we plug in the definition for the length encoding and divide by the cycle length we
just get the number of bits consumed per edge, i.e. per split face, i.e. per tetrahedron,
what is just �

� = Scycle(l)=l = a + S!edge +
b + Sedge � 3S!edge + 1

l
:

In order to distribute the consumed bits equally among the edges in cycles of different
length, we want this term in the previous equation, that depends on l, to vanish. Thus
we set b = 3S!edge � Sedge � 1. Substitution of b in equation 12.1 yields a and � . We
can summarize by plugging in �ov!v = 14

�ov!v = 14! a = 0:45; b = 0:55 =) 8l > 2 : � < 2:8 bits.

With an average number of six tetrahedra per vertex in a typical tetrahedral mesh,
we can conclude that the encoding of the split vertices consumes 3:9=6 � 0:65 bits per
tetrahedron. Together with the skirt encoding this sums up to 3:45 bits per tetrahedron
which is quite an improvement over the 5:7 bits achieved by Pajarola.

12.3 Progressive Simplicial Complexes

Popovic and Hoppe [PH97] realized that a lot of triangle meshes are non manifold. Fur-
ther more models can be simplified to a much coarser level with a smaller approximation
error, if one allows edge collapse operations that produce non manifold spots or even
singleton edges and vertices. Therefore they generalized the edge collapse operation and
the progressive mesh representation to arbitrary simplicial complexes in a very elegant
way. The compressed representation of the simplicial complex is called Progressive
Simplicial Complex (PSC). As tetrahedral meshes are also simplicial complexes, the
method also works for them, although Popovic did not implement this case.

The PSC representation is very similar to the progressive mesh representation. It
is built during the simplification of the simplicial complex, which is based on vertex
unification operations, i.e. two arbitrary vertices in the mesh may be collapsed. The in-
verse opration of each vertex unification the so called generalized vertex split operation
is recorded. Thus PSC representation contains the mesh in the coarsest resolution and
a sequence of generalized vertex split operations in reverse order of the corresponding
vertex unification operations. Each split operation is given by a vertex index specifying
the to be split vertex and a split code out of f1; 2; 3; 4g for all incident simplices of the
split vertex. Figure 12.3 shows the meaning of the different split codes for the simplices

120 CHAPTER 12. OTHER COMPRESSION METHODS

Figure 12.3: The different split codes for simplices of different dimensions.

of different dimensions. The 0-simplex is just the split vertex. There are only two pos-
sibilities: either the vertex splits into two separate vertices or an edge connects the two
split vertices. For all other dimensional simplices there are four possibilities. After the
generalized vertex split operation the simplex will either be incident to the first resulting
vertex (code 1), to the second (code 2) or to both (code 3). The fourth code specifies
the case, when the simplex is split into two simplices, that span a simplex of higher
dimension. For example if a triangle (2-simplex) is split with split code 4, it will be split
into two triangles incident to each of the resulting vertices and the space between them
is connected by a tetrahedron.

Figure 12.4: An example of a generalized vertex split operation together with the split
codes for all simplices.

Figure 12.4 shows a quite general example of a generalized vertex split operation
and the codes for all simplices.

In the case of triangle meshes the average consumption for the split codes can be
estimated from the average vertex split operation, where the split vertex has eight neigh-
bors, what results from an edge collapse of two order six vertices (see figure 12.5). Then
there are eight edges and eight triangles incident to the split vertex. Case 4 may not ap-
pear for triangles and therefore the split codes of the average vertex split consumes
1 + 8 � 2 + 8 � lb3 � 30 bits, what is exactly what Popovic reports.

12.3. PROGRESSIVE SIMPLICIAL COMPLEXES 121

Figure 12.5: The average vertex split operation in case of triangle meshes.

There are two types of dependencies among the split codes of different dimensions.
Firstly, if a simplex has split code c 2 f1; 2g, all simplices of higher dimension, which
are incident to this simplex, have the same split code c. And secondly, if a simplex has
split code 3, none of the incident simplices of higher dimension have split code 4. Let
us apply these constraints to the coding of the average generalized vertex split operation
shown in figure 12.5. There are three edges with code 1 (fine edges), three with code 2
(middle thick edges) and two with code 4 (thick edges). All triangles are incident to at
least one edge with code 1 (light shaded triangles) or 2 (middle dark shaded triangles)
and therefore only one code is allowed and need not be encoded. Thus the average
vertex split consumes altogether 1 + 8 � 2 = 17 bits. This is slightly more than the 14
bits reported by Popovic but is still very close to the measurements. With the help of a
non-uniform probability model and arithmetic coding, the encoding can be improved to
about 8 bits per split vertex.

Now we can generalize these ideas and estimate the storage space consumed by PSC
when applied to tetrahedral meshes. Figure 12.1 shows a vertex split operation for a split
vertex with twelve neighbors. Again the split code for the split vertex can be encoded
with one bit. Then the split codes for the twelve edges incident to the split vertex need
to be encoded with two bits each. The six edges incident upon the shaded split faces
receive the split code 4 and all other edges to the front split code 1 and the ones to the
back split code 2. Thus for all faces incident to the split vertex, which are not among the
split faces, there is only one possible split code, which therefore need not be encoded.
Only the split codes for the six split faces have to be encode with two bits each. Finally,
all tetrahedra are incident to at least one edge with split code 1 or 2. Thus nothing has to
be encoded for the tetrahedra. Altogether the storage space consumption for the average
case of a generalized vertex split operation sums up to 1+12�2+6�2 = 37 bits or 43 bits
if we use an average of sixteen neighbors per vertex. It is not quite clear, how much a
non-uniform probability model could improve upon this. A reduction to the half, i.e. 20
bits, is probably a too good estimation as already the improved skirt encoding proposed
in section 12.2 consumes 15 bits per vertex split. But 25 bits per vertex seems to be
reasonable.

As the encoding of the indices of the split vertices consumes a logarithmic amount
of bits in terms of the total number of vertices, the level split approach should also be

122 CHAPTER 12. OTHER COMPRESSION METHODS

applied to progressive simplicial complexes. In a level split approach again a maximally
independent set of vertex unification operations would be applied during the simplifi-
cation process and the progressive representation would encode the indices of the split
vertices level by level with one bit per vertex on the current level. Similar coding re-
sults would be achieved as in case of the implant sprays and the split vertices could be
encoded with about five bits per vertex. Altogether the level split version of PSC would
consume 30 bits per vertex or 5 � 6 bits per tetrahedron for encoding the connectivity
of a non manifold tetrahedral mesh.

Chapter 13

Conclusion & Directions for Future
Work

The area of tetrahedral mesh compression is only about two years old. Therefore only a
few methods have been proposed yet. All of them are generalizations of triangle mesh
compression techniques. On the one hand there is a huge amount of triangle mesh com-
pression techniques which all could be generalized to the tetrahedral case but on the
other hand the existing tetrahedral mesh compression approaches already generalize the
best triangle mesh compression methods. Further more the implementation of tetrahe-
dral mesh compression techniques is significantly more complicated and therefore the
threshold for the generalization of triangle mesh compression techniques is quite high.
But it is probable that we will see a variety of tetrahedral methods in future.

The important point in tetrahedral mesh compression is that there are about six times
as many tetrahedra than there are vertices in a typical mesh. Thus the connectivity con-
sumes in a non compressed standard representation about six times more storage space
than the vertex coordinates. For this reason it is very important to encode the connectiv-
ity of a tetrahedral mesh as efficient as possible. At the moment there are methods for
single resolution tetrahedral mesh compression [GGS99, SR99], for progressive com-
pression [PRS99] and for non manifold compression [PH97]. The best single resolution
consumes about 2 bits per tetrahedron, the progressive method in the improved version
about 4 bits1 per tetrahedron and the improved2 PSC method encodes non manifold
tetrahedral meshes with about 6 bits per tetrahedron. The two bits per tetrahedron are
for typical meshes equivalent to about twelve bits per vertex, what corresponds to a
reduction rate of 30 : 1 over the standard representation in case of the connectivity.

For the geometry, i.e. the vertex locations and attributes, things look much worse.
Although the corresponding storage space is comparably small in the standard repre-
sentation, it is three times larger in the compressed representation of the Cut-Border
Machine. The Cut-Border Machine quantizes the coordinates to fifteen bits and applies

1see improvements in section 12.2
2see discussion for the tetrahedral case in section 12.3

123

124 CHAPTER 13. CONCLUSION & DIRECTIONS FOR FUTURE WORK

delta coding. But no simple strategy could be found based on the knowledge of triangle
mesh geometry coding techniques that efficiently encodes the quantized coordinates.
One is typically left with 30� 36 of the 48 bits per vertex. This can be explained from
the fact that the tetrahedral mesh does not describe a surface or hyper-surface of a higher
dimensional space as triangles meshes do. Therefore all three coordinates define sam-
pling locations, which can be chosen quite arbitrarily and the choice strongly depends
on the generation algorithm. In case of Delaunay tetrahedralized random point clouds
for example only the 36 bits per vertex could be achieved. But there might be better
encoding schemes for the point locations, the encoding of which has not been addressed
by any other approach than the Cut-Border Machine. In case of the vertex and tetra-
hedral attributes much better results should be achievable, as they normally represent
quite smooth functions defined in the three dimensional space. With the knowledge of
the vertex – i.e. the sampling – locations one can develop the function into Taylor or
other polygon basis functions and perform higher order predictions.

The theoretical aspect of tetrahedral mesh compression is not explored yet in any
detail. The major question, whether a tetrahedral mesh can be encoded in linear space
and time in terms of the number of tetrahedra, cannot be answered yet and will be a hot
area of research in the future.

Future work will also concentrate on the application of compressed tetrahedral me-
shes. Important questions are how to render tetrahedral meshes from a compressed rep-
resentation and how to integrate compressed representations into Finite Element solvers
in order to allow simulations on larger data sets. For Finite Element other cell types
than tetrahedra are important, such as hexahedra or octahedra. Mixed polyhedra meshes
are also very common. Therefore a generalization of the tetrahedral mesh compression
techniques to the general polyhedral case is important. The most suitable method for
this task seems to be the Face Fixer proposed by Isenburg [IS00].

Bibliography

[Abr63] N. Abramson. Information Theory and Coding. McGraw-Hill, New York,
1963.

[AHMS94] Arkin, Held, Mitchell, and Skiena. Hamiltonian triangulations for fast ren-
dering. In ESA: Annual European Symposium on Algorithms, 1994.

[Bau75] Bruce G. Baumgart. A Polyhedron Representation for Computer Vision. In
Proceedings of the National Computer Conference, pages 589–596, 1975.

[BE92] Marshall Bern and David Eppstein. Mesh generation and optimal trian-
gulation. Technical report, Xerox PARC, March 1992. CSL-92-1. Also
appeared in “Computing in Euclidean Geometry”, F. K. Hwang and D.-Z.
Du, eds., World Scientific, 1992.

[BG96] Reuven Bar-Yehuda and Craig Gotsman. Time/space tradeoffs for polygon
mesh rendering. ACM Transactions on Graphics, 15(2):141–152, April
1996. ISSN 0730-0301.

[Bli78] James F. Blinn. Simulation of wrinkled surfaces. In Computer Graph-
ics (SIGGRAPH ’78 Proceedings), volume 12(3), pages 286–292, August
1978.

[BPZ99a] Bajaj, Pascucci, and Zhuang. Single resolution compression of arbitrary
triangular meshes with properties. In DCC: Data Compression Conference.
IEEE Computer Society TCC, 1999.

[BPZ99b] C. Bajaj, V. Pascucci, and G. Zhuang. Progressive compression and trans-
mission of arbitrary triangular meshes. In B.Hamann D.Ebert, M.Gross,
editor, Proceedings of the Visualization ’99 Conference, pages 307–316,
San Francisco, CA, October 1999. IEEE Computer Society Press.

[BW86] Gary Bishop and David M. Weimer. Fast Phong shading. In David C.
Evans and Russell J. Athay, editors, Computer Graphics (SIGGRAPH ’86
Proceedings), volume 20, pages 103–106, August 1986.

125

126 BIBLIOGRAPHY

[CC78] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbi-
trary topological meshes. Computer-Aided Design, 10:350–355, September
1978.

[CCMS97] A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno. Multiresolution
decimation based on global error. The Visual Computer, 13(5):228–246,
1997. ISSN 0178-2789.

[CGHK98] R. C. Chuang, A. Garg, X. He, and M. Kao. Compact encodings of planar
graphs via canonical orderings and multiple parentheses. In Proceedings of
the 25th International Colloquium on Automata, Languages and Program-
ming, pages 118–129, 1998.

[CH84] Gordon V. Cormack and R. Nigel Horspool. Algorithms for adaptive Huff-
man codes. Information Processing Letters, 18(3):159–165, March 1984.

[Cha91] B. Chazelle. Triangulating a Simple Polygon in Linear Time. Discrete and
Computational Geometry, 6:485–524, November 1991.

[Cho97] Mike M. Chow. Optimized geometry compression for real-time rendering.
In Roni Yagel and Hans Hagen, editors, IEEE Visualization 9́7, pages 346–
354. IEEE, November 1997.

[CKS98] S. Campagna, L. Kobbelt, and H.-P. Seidel. Directed edges–a scalable
representation for triangle meshes. Journal of Graphics Tools, 3(4):1–12,
1998.

[Cla89] U. Claussen. Real time phong shading. In D. Grimsdale and A. Kaufman,
editors, Fifth Eurographics Workshop on Graphics Hardware, 1989.

[CMPS97] Paolo Cignoni, Claudio Montani, Enrico Puppo, and Roberto Scopigno.
Multiresolution representation and visualization of volume data. IEEE
Transactions on Visualization and Computer Graphics, 3(4):352–369,
October–December 1997. ISSN 1077-2626.

[COLR99] Daniel Cohen-Or, David Levin, and Offir Remez. Progressive compression
of arbitrary triangular meshes. In David Ebert, Markus Gross, and Bernd
Hamann, editors, Proceedings of the 1999 IEEE Conference on Visualiza-
tion (VIS-99), pages 67–72, N.Y., October 25–29 1999. ACM Press.

[Cro84] Franklin C. Crow. Summed-area tables for texture mapping. In Hank
Christiansen, editor, Computer Graphics (SIGGRAPH ’84 Proceedings),
volume 18, pages 207–212, July 1984.

BIBLIOGRAPHY 127

[Dee95] Michael F. Deering. Geometry compression. In Robert Cook, editor, SIG-
GRAPH 95 Conference Proceedings, Annual Conference Series, pages 13–
20. ACM SIGGRAPH, Addison Wesley, August 1995. held in Los Angeles,
California, 06-11 August 1995.

[DS78] D. Doo and M. Sabin. Behaviour of recursive division surfaces near ex-
traordinary points. Computer-Aided Design, 10:356–360, September 1978.

[DS97] M. Denny and C. Sohler. Encoding a triangulation as a permutation of
its point set. In Proceedings of the 9th Canadian Conference on Compu-
tational Geometry, pages 39–43, August 1997. held in Ontario, August
11-14.

[DWS+88] Michael F. Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and
Neil Hunt. The triangle processor and normal vector shader: A VLSI sys-
tem for high performance graphics. In John Dill, editor, Computer Graphics
(SIGGRAPH ’88 Proceedings), volume 22, pages 21–30, August 1988.

[EDD+95] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael
Lounsbery, and Werner Stuetzle. Multiresolution analysis of arbitrary
meshes. In Robert Cook, editor, SIGGRAPH 95 Conference Proceedings,
Annual Conference Series, pages 173–182. ACM SIGGRAPH, Addison
Wesley, August 1995. held in Los Angeles, California, 06-11 August 1995.

[EJRW96] I. Ernst, D. Jackèl, H. Rüsseler, and O. Wittig. Hardware-supported bump
mapping. Computers & Graphics, 20(4):515–521, July 1996.

[ESV96] Francine Evans, Steven S. Skiena, and Amitabh Varshney. Optimizing tri-
angle strips for fast rendering. In IEEE Visualization ’96. IEEE, October
1996. ISBN 0-89791-864-9.

[Geo91] P. L. George. Automatic Mesh Generation. John Wiley & Sons, New York,
NY, 1991. excellent coverage of current state-of-the-art in automatic mesh-
ing algorithms for finite element methods.

[GGS99] Stefan Gumhold, Stefan Guthe, and Wolfgang Straßer. Tetrahedral mesh
compression with the cut-border machine. In B.Hamann D.Ebert, M.Gross,
editor, Proceedings of the Visualization ’99 Conference, pages 51–58, San
Francisco, CA, October 1999. IEEE Computer Society Press.

[GH97] Michael Garland and Paul S. Heckbert. Surface simplification using quadric
error metrics. In Turner Whitted, editor, SIGGRAPH 97 Conference Pro-
ceedings, Annual Conference Series, pages 209–216. ACM SIGGRAPH,
Addison Wesley, August 1997. ISBN 0-89791-896-7.

128 BIBLIOGRAPHY

[GH99] Stefan Gumhold and Tobias Hüttner. Multiresolution rendering with dis-
placement mapping. In Steven Molnar and Bengt-Olaf Schneider, editors,
1999 EUROGRAPHICS / SIGGRAPH Workshop on Graphics Hardware,
pages 55–66, New York City, NY, August 1999. ACM SIGGRAPH / Euro-
graphics, ACM Press.

[GHJ+98] Tran S. Gieng, Bernd Hamann, Kenneth I. Joy, Gregory L. Schussman, and
Issac J. Trotts. Constructing hierarchies for triangle meshes. IEEE Transac-
tions on Visualization and Computer Graphics, 4(2):145–161, April 1998.

[Gla86] Andrew Glassner. Adaptive precision in texture mapping. In David C.
Evans and Russell J. Athay, editors, Computer Graphics (SIGGRAPH ’86
Proceedings), volume 20, pages 297–306, August 1986.

[GS98] Stefan Gumhold and Wolfgang Straßer. Real time compression of trian-
gle mesh connectivity. In Michael Cohen, editor, SIGGRAPH 98 Confer-
ence Proceedings, Annual Conference Series, pages 133–140. ACM SIG-
GRAPH, Addison Wesley, July 1998.

[GTLH98] Andre Gueziec, Gabriel Taubin, Francis Lazarus, and William Horn. Con-
verting sets of polygons to manifold surfaces by cutting and stitching.
In Scott Grisson, Janet McAndless, Omar Ahmad, Christopher Stapleton,
Adele Newton, Celia Pearce, Ryan Ulyate, and Rick Parent, editors, Con-
ference abstracts and applications: SIGGRAPH 98, July 14–21, 1998, Or-
lando, FL, Computer Graphics, pages 245–245, New York, NY 10036,
USA, 1998. ACM Press.

[Gué99] André Guéziec. Locally toleranced surface simplification. IEEE Transac-
tions on Visualization and Computer Graphics, 5(2), April 1999.

[Gum99] Stefan Gumhold. Improved cut-border machine for triangle mesh compres-
sion. In Erlangen Workshop ’99 on Vision, Modeling and Visualization,
Erlangen, Germany, November 1999. IEEE Signal Processing Society.

[Gum00] Stefan Gumhold. New bounds on the encoding of planar triangulations.
Technical Report WSI–2000–1, Wilhelm-Schickard-Institut für Informatik,
University of Tübingen, Germany, January 2000.

[GVSS00] I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder. Normal meshes. to
appear in Siggraph 2000, July 2000.

[H9̈9] T. Hüttner. Fast footprint mipmapping. In to appear in Proc. of Eurograph-
ics/SIGGRAPH workshop on graphics hardware 1999, 1999.

[HDD+93] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. Mesh optimization. In James T. Kajiya, editor, Computer Graph-
ics (SIGGRAPH ’93 Proceedings), volume 27, pages 19–26, August 1993.

BIBLIOGRAPHY 129

[Hec83] Paul S. Heckbert. Texture mapping polygons in perspective. TM 13, NYIT
Computer Graphics Lab, April 1983.

[Hel98] M. Held. Efficient and reliable triangulation of polygons. In Franz-Erich
Wolter and Nicholas M. Patrikalakis, editors, Proceedings of the Confer-
ence on Computer Graphics International 1998 (CGI-98), pages 633–645,
Los Alamitos, California, June 22–26 1998. IEEE Computer Society.

[HH85] James H. Hester and Daniel S. Hirschberg. Self-organizing linear search.
ACM Computing Surveys, 17(3):295–311, September 1985.

[HKM96] Martin Held, James T. Klosowski, and Joseph S. B. Mitchell. Collision
detection for fly-throughs in virtual environments. In Proceedings of the
Twelfth Annual Symposium On Computational Geometry (ISG ’96), pages
V13–V14, New York, May 1996. ACM Press.

[Hop96] Hugues Hoppe. Progressive meshes. In Holly Rushmeier, editor, SIG-
GRAPH 96 Conference Proceedings, Annual Conference Series, pages 99–
108. ACM SIGGRAPH, Addison Wesley, August 1996. held in New Or-
leans, Louisiana, 04-09 August 1996.

[Huf52] D. A. Huffman. A method for the construction of minimum-redundancy
codes. In Proc. Inst. Radio Eng., pages 1098–1101, September 1952. Pub-
lished as Proc. Inst. Radio Eng., volume 40, number 9.

[Inc91] Silicon Graphics Inc. GL programming guide. 1991.

[IR82] Alon Itai and Michael Rodeh. Representation of graphs. Acta Informatica,
17(2):215–219, June 1982.

[IS99a] Martin Isenburg and Jack Snoeyink. Mesh collapse compression. In Pro-
ceedings of the Conference on Computational Geometry (SCG ’99), pages
419–420, New York, N.Y., June 13–16 1999. ACM Press.

[IS99b] Martin Isenburg and Jack Snoeyink. Spirale reversi: Reverse decoding
of the edgebreaker encoding. Technical Report TR-99-08, Department of
Computer Science, University of British Columbia, October 4 1999. Mon,
04 Oct 1999 17:52:00 GMT.

[IS00] M. Isenburg and J. Snoeyink. Face fixer: Compressing polygon meshes
with properties. to appear in Siggraph 2000, July 2000.

[Ise00] M. Isenburg. Triangle strip compression. In Proceedings Graphics In-
terface 2000, pages 197–204. Morgan Kaufmann Publishers, May15–
17 2000.

130 BIBLIOGRAPHY

[JR99] A. Szymczak J. Rossignac. Wrap & zip: Linear decoding of planar triangle
graphs. Technical Report GIT-GVU-99-08, Georgia Institute of Technol-
ogy, August 1999.

[KB89] A. A. M. Kuijk and E. H. Blake. Faster phong shading via angular interpo-
lation. Computer Graphics Forum, 8(4):315–324, December 1989.

[Ket98] Kettner. Designing a data structure for polyhedral surfaces. In COMP-
GEOM: Annual ACM Symposium on Computational Geometry, 1998.

[KG00a] Z. Karni and C. Gotsman. Spectral compression of mesh geometry. to
appear in Siggraph 2000, July 2000.

[KG00b] B. Kronrod and C. Gotsman. Efficient coding of non-triangular meshes.
preprint, 2000.

[KKT90] D. G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan. Polygon triangulation in
o(n log log n) time with simple data-structures. In ACM-SIGACT ACM-
SIGGRAPH, editor, Proceedings of the 6th Annual Symposium on Com-
putational Geometry (SCG ’90), pages 34–43, Berkeley, CA, June 1990.
ACM Press.

[KLS96] Reinhard Klein, Gunther Liebich, and Wolfgang Straßer. Mesh reduction
with error control. In IEEE Visualization ’96. IEEE, October 1996. ISBN
0-89791-864-9.

[KR99] Davis King and Jarek Rossignac. Guaranteed 3.67V bit encoding of planar
triangle graphs. In Proceedings of 11th Canadian Conference on Compu-
tational Geometry, pages 146–149, 1999.

[Kug98] Anders Kugler. Imem: An intelligent memory for bump- and reflection-
shading. In Proceedings of Eurographics/SIGGRAPH Hardware Workshop
’98, pages 113–122. ACM SIGGRAPH, August 1998.

[Lan84] Glen G. Langdon, Jr. An introduction to arithmetic coding. IBM Journal of
Research and Development, 28(2):135–149, March 1984.

[LK98a] J. Li and C.-C. Kuo. A dual graph approach to 3d triangle mesh compres-
sion. In IEEE International Conference on Image Processing, Chicago,
1998.

[LK98b] J. Li and C.-C. Kuo. Progressive coding of 3d graphics models. In Proceed-
ings of the IEEE, Special Issue on Multimedia Signal Processing, volume
86(6), pages 1052–1063, June 1998.

[LMH00] A. Lee, H. Moreton, and H. Hoppe. Displaced subdivision surfaces. to
appear in Siggraph 2000, July 2000.

BIBLIOGRAPHY 131

[LSS+98] Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and
David Dobkin. MAPS: Multiresolution adaptive parameterization of sur-
faces. Computer Graphics, 32(Annual Conference Series):95–104, August
1998.

[Man88] M. Mantyla. An Introduction to Solid Modeling. Computer Science Press,
Rockville, Md, 1988.

[McC98] Tulika Mitra and Tzi cker Chiueh. A breadth-first approach to efficient
mesh traversal. In Stephen N. Spencer, editor, Proceedings of the Euro-
graphics / Siggraph Workshop on Graphics Hardware (EUROGRAPHICS-
98), pages 31–38, New York, August 31–September 1 1998. ACM Press.

[Mey97] Scott Meyers. Effective C++: 50 specific ways to improve your programs
and designs. – 2. ed. Addison-Wesley, Reading, MA, USA, 1997.

[NB94] X. Ni and M. S. Bloor. Performance Evaluation of Boundary Data Struc-
tures. IEEE Computer Graphics and Applications, 14(6):66–77, 1994.

[NDW97] Jackie Neider, Tom Davis, and Mason Woo. OpenGL Programming Guide
— The Official Guide to Learning OpenGL, Version 1.1. Addison-Wesley,
Reading, MA, USA, 1997.

[PAC97] Mark Peercy, John Airey, and Brian Cabral. Efficient bump mapping
hardware. In Proceedings of SIGGRAPH 97, pages 303–306. ACM SIG-
GRAPH, August 1997.

[Pas76] R. Pasco. Source coding algorithms for fast data compression. PhD thesis,
Stanford University, Palo Alto, CA, 1976.

[PH97] Jovan Popović and Hugues Hoppe. Progressive simplicial complexes. In
Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual
Conference Series, pages 217–224. ACM SIGGRAPH, Addison Wesley,
August 1997. ISBN 0-89791-896-7.

[Pho75] Bui-T. Phong. Illumination for computer generated pictures. Communica-
tions of the ACM, 18(6):311–317, June 1975.

[PR00] R. Pajarola and J. Rossignac. Compressed progressive meshes. IEEE Trans-
actions on Visualization and Computer Graphics, 6(1):79–93, 2000.

[PRS99] Renato B. Pajarola, Jarek Rossignac, and Andrzej Szymczak. Implant
sprays: Compression of progressive tetrahedral mesh connectivity. In David
Ebert, Markus Gross, and Bernd Hamann, editors, Proceedings of the 1999
IEEE Conference on Visualization (VIS-99), pages 299–306, N.Y., Octo-
ber 25–29 1999. ACM Press.

132 BIBLIOGRAPHY

[PS97] E. Puppo and R. Scopigno. Simplification, lod and multiresolution - prin-
ciples and applications. In Eurographics’97 Tutorial Notes. Eurographics
association, 1997.

[Ris76] J. J. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM
Journal of Research and Development, 20(3):198–203, May 1976.

[RL79] Jorma J. Rissanen and Glen G. Langdon, Jr. Arithmetic coding. IBM Jour-
nal of Research and Development, 23(2):149–162, March 1979.

[Ros98] J. Rossignac. Edgebreaker: connectivity compression for triangle meshes.
Technical Report GIT-GVU-98-35, Georgia Institute of Technology, Octo-
ber 1998.

[RR96] Remi Ronfard and Jarek Rossignac. Full-range approximation of trian-
gulated polyhedra. Computer Graphics Forum, 15(3):C67–C76, C462,
September 1996.

[Sei91] R. Seidel. A simple and fast incremental randomized algorithm for com-
puting trapezoidal decompositions and for triangulating polygons. Compu-
tational Geometry: Theory and Applications, 1:51–64, 1991. Seidel’s ran-
domized algorithm runs in O(n log� n) expected time and is simpler than
the deterministic O(n) algorithm due to B. Chazelle.

[SG98] Oliver G. Staadt and Markus H. Gross. Progressive tetrahedralizations. In
Proceedings IEEE Visualization ’98, pages 397–402. IEEE, 1998.

[SKS96] Andreas Schilling, Günter Knittel, and Wolfgang Straßer. Texram: A smart
memory for texturing. IEEE Computer Graphics & Applications, 16(3):32–
41, May 1996.

[SP91] N. S. Sapidis and R. Perucchio. Domain delaunay tetrahedrization of solid
models. Internat. J. Comput. Geom. Appl., 1(3):299–325, 1991.

[SR99] Andrzej Szymczak and Jarek Rossignac. Grow & fold: Compression of
tetrahedral meshes. In Willem F. Bronsvoort and David C. Anderson, edi-
tors, Proceedings of the Fifth Symposium on Solid Modeling and Applica-
tions (SSMA-99), pages 54–64, New York, June 9–11 1999. ACM Press.

[ST90] Peter Shirley and Allan Tuchman. A polygonal approximation to direct
scalar volume rendering. In Computer Graphics (San Diego Workshop on
Volume Visualization), volume 24(5), pages 63–70, November 1990.

[SZL92] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Deci-
mation of triangle meshes. In Edwin E. Catmull, editor, Computer Graphics
(SIGGRAPH ’92 Proceedings), volume 26, pages 65–70, July 1992.

BIBLIOGRAPHY 133

[TG98] Costa Touma and Craig Gotsman. Triangle mesh compression. In Wayne
Davis, Kellogg Booth, and Alain Fourier, editors, Proceedings of the 24th
Conference on Graphics Interface (GI-98), pages 26–34, San Francisco,
June18–20 1998. Morgan Kaufmann Publishers.

[TGHL98] Gabriel Taubin, André Gueziec, William Horn, and Francis Lazarus. Pro-
gressive forest split compression. In Michael Cohen, editor, SIGGRAPH 98
Conference Proceedings, Annual Conference Series, pages 123–132. ACM
SIGGRAPH, Addison Wesley, July 1998. ISBN 0-89791-999-8.

[THJW98] Isaac J. Trotts, Bernd Hamann, Kenneth I. Joy, and David F. Wiley. Sim-
plification of tetrahedral meshes. In Proceedings of the 9th Annual IEEE
Conference on Visualization (VIS-98), pages 287–296, New York, Octo-
ber 18–23 1998. ACM Press.

[TR96] Gabriel Taubin and Jarek Rossignac. Geometric compression through topo-
logical surgery. Technical report, Yorktown Heights, NY 10598, January
1996. IBM Research Report RC 20340.

[TR98] Gabriel Taubin and Jarek Rossignac. Geometric compression through topo-
logical surgery. ACM Transactions on Graphics, 17(2):84–115, April 1998.

[Tur92] Greg Turk. Re-tiling polygonal surfaces. In Edwin E. Catmull, editor,
Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pages 55–
64, July 1992.

[Tut62] W. Tutte. A census of planar triangulations. Canadian Journal of Math-
emetics, 14:21–38, 1962.

[Wei85] K. Weiler. Edge-based data structures for solid modeling in curved-surface
environments. IEEE Computer Graphics and Applications, 5(1):21–40,
January 1985.

[Wil83] Lance Williams. Pyramidal parametrics. In Computer Graphics (SIG-
GRAPH ’83 Proceedings), volume 17(3), pages 1–11, July 1983.

[Wil92] Peter L. Williams. Visibility ordering meshed polyhedra. ACM Transac-
tions on Graphics, 11(2):103–126, April 1992.

[WNC87] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding
for data compression. Communications of the ACM, 30(6):520–540, June
1987.

[XHM99] Xinyu Xiang, Martin Held, and Joseph S. B. Mitchell. Fast and effective
stripification of polygonal surface models. In Stephen N. Spencer, editor,
Proceedings of the Conference on the 1999 Symposium on interactive 3D

134 BIBLIOGRAPHY

Graphics, pages 71–78 (Color Plate: 224), New York, April 26–28 1999.
ACM Press.

[ZCK97] Yong Zhou, Baoquan Chen, and Arie Kaufman. Multiresolution tetrahedral
framework for visualizing regular volume data. In Roni Yagel and Hans
Hagen, editors, IEEE Visualization 9́7, pages 135–142. IEEE, November
1997.

Lebenslauf Stefan Gumhold

13.9.1971 geboren in Ruit auf den Fildern

9.1982-6.1991 Raichberg-Gymnasium Ebersbach/Fils

18.6.1991 Abitur

7.1991-10.1992 Zivildienst an der Medizinischen Klinik in Tübingen

10.1992-7.1995 Studium an der Eberhard-Karls-Universität Tübingen

20.9.1994 Vordiplom Physik

6.10.1994 Vordiplom Informatik

9.1995-6.1996 Auslandsstudium an der University of Massachusetts at Boston

26.12.1996 Master of Science (Department of Applied Physics)

10.1996-12.1997 Studium an der Eberhard-Karls-Universität Tübingen

1.1998-8.2000 Wissenschaftlicher Mitarbeiter im Sonderforschungsbereich 382

Teilprojekt D1 ”Objektorientierte Graphik” am Lehrstuhl für Gra-

phisch Interaktive System des Wilhelm-Schickard-Instituts für In-

formatik an der Eberhard-Karls-Universität Tübingen

31.3.1998 Diplom in Informatik ausgestellt von der Fakultät für Informatik

der Eberhard-Karls-Universität Tübingen

31.5.2000 Antrag auf Zulassung zum Promotionsverfahren beim Dekanat

der Fakultät für Informatik der Eberhard-Karls-Universität

Tübingen

