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Background: Anoikis is a type of apoptosis associated with cell detachment.
Resistance to anoikis is a focal point of tumor metastasis. This study aimed to
explore the relationship among anoikis-related genes (ARGs), immune infiltration,
and prognosis in colorectal cancer (CRC).

Methods: The transcriptome profile and clinical data on patients with CRC were
retrieved from The Cancer Genome Atlas and Gene Expression Omnibus
databases. Patients were divided into two clusters based on the expression of
ARGs. Differences between the two ARG molecular subtypes were analyzed in
terms of prognosis, functional enrichment, gene mutation frequency, and
immune cell infiltration. An ARG-related prognostic signature for predicting
overall survival in patients with CRC was developed and validated using
absolute value convergence and selection operator (LASSO) regression
analysis. The correlation between the signature risk score and
clinicopathological features, immune cell infiltration, immune typing, and
immunotherapy response was analyzed. The risk score combined with
clinicopathological characteristics was used to construct a nomogram to
assess CRC patients’ prognosis.

Results: Overall, 151 ARGs were differentially expressed in CRC. Two ARG
subtypes, namely, ARG-high and ARG-low groups, were identified and
correlated with CRC prognosis. The gene mutation frequency and immune,
stromal, and ESTIMATE scores of the ARG-high group were higher than those
of the ARG-low group. Moreover, CD8, natural killer cells, M1 macrophages,
human leukocyte antigen (HLA), and immune checkpoint-related genes were
significantly increased in the ARG-high group. An optimized 25-gene CRC
prognostic signature was successfully constructed, and its prognostic
predictive ability was validated. The high-risk score was correlated with T, N,
M, and TNM stages. Risk scores were negatively correlated with dendritic cells,
eosinophils, and CD4 cells, and significantly positively correlated with regulatory
T cells. Patients in the high-risk group were more likely to exhibit immune
unresponsiveness. Finally, the nomogram model was constructed and showed
good prognostic predictive power.

Conclusion: ARGs are associated with clinicopathological features and the
prognosis of CRC, and play important roles in the immune microenvironment.
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Herein, we underpinned the usefulness of ARGs in CRC to develop more effective
immunotherapy techniques.
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1 Introduction

Colorectal cancer (CRC) is one of the most common malignant
tumors worldwide, with high recurrence and mortality rates that
seriously threaten human health. In 2020, more than 1.9 million new
CRC cases and 935,000 deaths were reported (Sung et al., 2021).
Despite recent advances in multimodal methods, such as surgery,
chemotherapy, and radiation, distant metastasis, recurrence, and
death rates for CRC remain high (Yamamoto et al., 2021).
Considering the limitations to the CRC treatment, novel
therapeutic strategies are needed to improve clinical outcomes.
Therefore, reliable prognostic signatures are urgently needed to
develop more practical therapies.

Cells undergo a unique type of apoptosis termed anoikis as they
detach from the extracellular matrix or are defective in cell adhesion
(Taddei et al., 2012). Initially, anoikis was regarded as a natural
physiological process for epithelial and endothelial cells to maintain
regular developmental homeostasis by preventing the reattachment
of detached cells to the new extracellular matrix and arresting their
aberrant growth, which is an essential defense mechanism for
maintaining cellular stability in the organism (Frisch and Francis,
1994; Paoli et al., 2013). Tumor cells rapidly exhibit multiple
mechanisms to resist anoikis under the pressure of natural
selection, while dysregulated anoikis is a specific hallmark of
abnormal tumor cell proliferation and the formation of
metastatic foci in distant organs (Frisch and Screaton, 2001;
Chiarugi and Giannoni, 2008). Tumor cells can switch the
expression pattern of integrins by adapting the extracellular
matrix to the metastatic area, affecting the downstream signaling
cascade to enhance cell survival and prevent programmed cell death
(Morozevich et al., 2003). Epithelial–mesenchymal transition is a
key event in tumor progression and the acquisition of drug
resistance. Critical genes in the epithelial–mesenchymal transition
process activate specific pro-survival signals and play a key role in
escaping anoikis (Buchheit et al., 2014). Another mechanism used by
tumor cells to escape anoikis is the use of intrinsic or environmental
factors that lead to constitutive activation of pathways affecting cell
survival (e.g., Src family kinases and the PI3K-Akt pathway) (Boyer
et al., 1997; Khwaja et al., 1997). Oncogenic Ras interacts with Bcl-2
family proteins, causing downregulation of the pro-apoptotic
protein Bak and, thus, resistance to anoikis (Cheng et al., 2001).

Currently, anoikis resistance correlates with a variety of
characteristic tumor processes. Du et al. revealed biological
interactions between critical elements of anoikis resistance and
angiogenesis, which promoted peritoneal metastasis in gastric
cancer and showed promise as a potential prognostic biomarker
and therapeutic target (Arif et al., 2021). Bárbara et al. demonstrated
that metabolic remodeling and antioxidant processes in breast
cancer can promote anoikis resistance, thus promoting the
survival of breast cancer cells at circulating and metastatic sites
(Sousa et al., 2020). However, the relevance of anoikis resistance to

immune escape and its potential as a biomarker for prognosis and
immunotherapy response in patients with CRC still requires further
exploration.

This study comprehensively evaluated the expression profile
of anoikis-related genes (ARGs) and used two calculation
algorithms, namely, CIBERSORT (Cell-type Identification by
Estimating Relative Subsets of RNA Transcripts) and
ESTIMATE (Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data), to provide a
comprehensive overview of the immune microenvironment
within the tumor. First, patients with CRC were classified into
two ARG subtypes, according to the expression levels of ARGs.
To further explore the biological properties of the two ARG
subtypes, we analyzed survival, functional enrichment, and
immune infiltration between the two ARG subtypes.
Moreover, based on the expression of ARGs, we established a
risk prognostic signature to predict CRC overall survival (OS)
and analyzed the immune infiltration status of CRC. Our results
may contribute to additional reference information on
prognostic biomarkers and molecular mechanisms of anoikis
in CRC.

2 Materials and methods

2.1 Data collection

The study flow is illustrated in Figure 1. CRC clinical and mRNA
expression data were downloaded from The Cancer Genome Atlas
(TCGA) (https://portal.gdc.cancer.gov/) and Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) databases’
GSE 39582 dataset. The transcriptome data in the TCGA COAD/
READ dataset include 568 tumor samples and 44 normal tissue
samples, corresponding to 540 complete clinicopathological data
points (Supplementary Table S1). The GSE39582 dataset contains
585 CRC transcriptome and clinicopathological data points
(Supplementary Table S2).

2.2 Identification of differential genes

We extracted 496 ARGs from GeneCards (https://www.
genecards.org/) (Supplementary Table S3). The “limma” package
was used to distinguish differentially expressed genes (DEGs) in
CRC with p-values <0.05.

2.3 ARG subtype identification

To categorize patients into discrete molecular subgroups based
on ARG expression, the R package “ConsensusClusterPlus” was
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used for unsupervised consensus clustering analysis. Clustering
boosted the intragroup correlation while decreasing the
intergroup correlation. The “limma” package in R was used to
find DEGs among different ARG subtypes. A fold-change of
1 and p < 0.05 were set for selected DEGs. To further investigate
the probable activities of DEGs associated with ARG subtypes, Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and Gene Set Enrichment Analysis (GSEA) were used
to analyze. The “maftools” package was used to analyze gene
mutations of the two subtypes. Computational tools, ESTIMATE
and CIBERSORT, were used to evaluate the immune
microenvironment and infiltration of immune cells. Furthermore,
we used the “limma” package to analyze the differences in the
expression of HLA-related genes and immune checkpoint-related
genes between the two ARG subtypes.

2.4 Development and validation of the ARG
prognostic signature

Univariate Cox regression analysis was used to identify DEGs
associated with OS prognosis in CRC. TCGA cohort COAD/READ
dataset was used as the training set. The GEO cohort
GSE39582 dataset was used as the testing set. The least absolute
shrinkage and selection operator (LASSO) Cox regression analysis
was conducted in the training set to build a prognostic signature of
ARG using the “glmnet” package in R. Subsequently, individualized
risk scores were obtained based on the mRNA expression of selected
genes, and their regression coefficients were estimated using the
LASSO Cox regression analysis.

The risk score of each CRC patient was calculated with the
following formula:

FIGURE 1
Flowchart of this research.
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CRC patients in the training set were divided into high- and low-
risk groups according to the median risk score. The principal
component analysis (PCA) was used to observe the
discrimination of the patients’ samples based on the similarities
in their respective groups. Kaplan–Meier analysis was used to
evaluate the OS between the high- and low-risk subgroups of
patients in the training set. R packages “survival,” “survminer,”
and “time ROC” were used to conduct a receiver operating
characteristic (ROC) curve analysis across 1-, 3-, and 5 years.
Patients in the testing set were separated into low- and high-risk
categories based on the median risk score from the training set. The
testing set was then used to validate the anoikis-related prognostic
signature.

2.5 Relationship between the ARG
prognostic signature and
clinicopathological features

The R package “survival” was used for univariate and
multivariate analyses. In this analysis, variable factors included
age, sex, TNM stage, and risk score. Furthermore, we used
“limma” and “ggpubr” packages to analyze the relationship
between risk scores and clinicopathological features. In addition,
the “survival” and “survminer” packages were used for the stratified
analysis of the difference in OS of patients in the high- and low-risk
groups.

2.6 Analysis of the relationship among the
ARG prognostic signature and the immune
microenvironment and immunotherapy

We performed a correlation analysis of risk scores with
immune cell infiltration using the CIBERSORT algorithm.
Then, we downloaded the immunophenotyping file from the
University of California, Santa Cruz, Xena website (https://
xenabrowser.net/) and used the “limma” package to analyze
the relationship between risk scores and
immunophenotyping. Finally, we downloaded the CRC
immune escape data from the Tumor Immune Dysfunction
and Exclusion (TIDE) website (http://tide.dfci.harvard.edu/).
R packages “limma,” “plyr,” “ggplot2,” and “ggpubr” were
used to analyze the relationship between the risk score and
immune escape in CRC.

2.7 Development and validation of a
nomogram-based risk scoring system

Clinical characteristics and the risk score were used to build a
prediction nomogram using “rms” software. Each variable was
assigned a score using the nomogram scoring method, and the
overall score was calculated by summing the scores for all variables
in each sample.

3 Results

3.1 Identification of ARG subtypes in CRC

To assess ARG expression patterns in CRC, clinical information
from 540 CRC cohort (TCGA-COAD/READ) patients was collected
from TCGA database. Moreover, 150 ARGs were found to be
differentially expressed in patients with CRC (Figures 2A, B). To
gain a better understanding of the expression features of ARGs in
CRC, a consensus clustering approach was used to identify patients
with CRC using the expression patterns of 496 ARGs. Our results
showed that k = 2 was the best choice for dividing all patients into
two subtypes (Figures 2C–E). Between the two subtypes,
Kaplan–Meier analysis showed that different ARG subtypes of
CRC exhibited significant differences in OS (Figure 2F).

3.2 Characteristics of different ARG subtypes

Differential genes in ARG subtypes were identified for the first
time (Figures 3A, B). GO and KEGG enrichment analyses showed
that DEGs in ARG subtypes were significantly enriched in immune-
related pathways, including positive regulation of cytokine
production, leukocyte-mediated immunity, leukocyte migration,
leukocyte chemotaxis, cytokine receptor, chemokine signaling
pathway, antigen processing and presentation, Th17 cell
differentiation, and the extracellular matrix–receptor interaction
(Figures 3C, D). The DEGs in the ARG-high group were mainly
concentrated in cell adhesion molecules, cytokine–receptor
interaction, focal adhesion, and other signaling pathways, while
in the ARG-low group, they were concentrated in amino tRNA
biosynthesis non-immune signaling pathways (Figures 3E, F). We
further analyzed the gene mutations between the two subtypes and
compared them with the ARG-low group. The ARG-high group had
a higher gene mutation frequency (Figures 4A, B). The ESTIMATE
and CIBERSORT algorithms were used to evaluate the immune
microenvironment between the two ARG subtypes. ESTIMATE is a
tool used for predicting tumor purity and infiltrating stromal/
immune cells in tumor tissues using gene expression data
(Yoshihara et al., 2013). The findings from the ESTIMATE
analysis suggested that the immune (p < 0.001), stromal (p <
0.001), and ESTIMATE (p < 0.001) scores in the ARG-high
group were markedly higher than those in the ARG-low group,
while tumor purity was lower than that in the ARG-low group
(Figures 4C–F). CIBERSORT is a commonly used method to
calculate immune cell infiltration (Newman et al., 2019). The
results showed that CD8 T cells, activated natural killer cells,
M1 macrophages, and neutrophils in the ARG-high group were
significantly higher than those in the ARG-low group, indicating
that the ARG-high group had stronger immune activity (Figure 4G).
However, some patients in the ARG-high group showed a worse
prognosis. To determine the reason for the poor prognosis, we
explored the expression of HLA and immune checkpoints and found
that the expression of HLA antigens and immune checkpoint-
related genes in the ARG-high group was higher than that in the
ARG-low group (Figures 4H, I), indicating that this portion of the
ARG-high group was more likely to have immune escape.

Frontiers in Genetics frontiersin.org04

Xiao et al. 10.3389/fgene.2023.1186862

https://xenabrowser.net/
https://xenabrowser.net/
http://tide.dfci.harvard.edu/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1186862


3.3 Construction and validation of the ARG
prognostic signature

We used univariate Cox regression to examine the prognostic
significance of 496 differentially expressed ARGs in CRC and
eliminated 49 genes associated with OS (p < 0.05) for subsequent
analysis (Figure 4J). Then, we conducted a LASSO regression
analysis on 49 ARGs, resulting in the identification of 25 genes
(CTNNB1, BAD, ANGPTL4, TIMP1, BDNF, DAPK1, ABHD4,
CCAR2, NAT1, SERPINA1, INHBB, KDM3A, VPS37A, PPP2R2A,
PPP2R2D, CDC25C, PDPK1, HOTAIR, INSR, HSPB1, CTNNA1,
OGT, NOS2, SLC2A2, and SNAI1) (Figures 5A, B). We obtained a
risk score using the following formula (−0.1308 × expression of
CTNNB1) + (0.4366 × expression of BAD) + (0.1013 × expression
of ANGPTL4) + (0.0373 × expression of TIMP1) + (0.6776 ×
expression of BDNF) + (0.0382 × expression of DAPK1) +
(0.2201 × expression of ABHD4) + (−0.1146 × expression of
CCAR2) + (−0.0984 × expression of NAT1) + (−0.021 ×

expression of SERPINA1) + (0.2488 × expression of INHBB) +
(0.6136 × expression of KDM3A) + (−0.0589 × expression of
VPS37A) + (−0.0592 × expression of PPP2R2A) + (0.4398 ×
expression of PPP2R2D) + (−0.2158 × expression of CDC25C) +
(−0.4807 × expression of PDPK1) + (0.0346 × expression of
HOTAIR) + (0.0721 × expression of INSR) + (0.1197 × expression
of HSPB1) + (−0.3851 × expression of CTNNA1) + (0.2927 ×
expression of OGT) + (−0.0320 × expression of NOS2) +
(−1.4427 × expression of SLC2A2) + (0.0382 × expression of
SNAI1). Subsequently, all patients with CRC in the training set
were divided into high- and low-risk groups based on the median
risk score. PCA analysis revealed the discrimination of the
patients’ samples based on the similarities into high- and low-
risk groups (Figure 5C). In addition, we ranked the patients’ risk
scores and analyzed their distribution in the training set. The
survival status of CRC patients in the training set is shown as a
dot plot (Figures 5D, E). The OS of patients with high-risk scores
was significantly worse than that of patients in the low-risk group

FIGURE 2
Expression of ARGs in CRC and ARG subtype identification. (A,B) ARGs are differentially expressed in CRC. (C) Two ARG subtypes in CRC were
identified by consensus clustering analysis. (D) Relative changes in the areas under the CDF curve for k = 2–9. (E) Consensus clustering CDF for k = 2–9.
(F) Survival prognostic analysis of ARG subtypes in CRC. Abbreviations: ARG, anoikis-related gene; CDF, cumulative distribution function; CRC, colorectal
cancer.
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(p < 0.001) (Figure 5F). The areas under the curve of the risk
signature were 0.750, 0.780, and 0.814 for the 1-, 3-, and 5-year
periods, respectively (Figure 5G). Additionally, the predictive
ability of the risk model was verified using a testing set. The
survival score and status of CRC patients in the testing set are
shown as dot plots (Figures 5H, I). Patients in the testing group
were divided into two groups based on the PCA analysis
(Figure 5J). The Kaplan–Meier survival curve showed that the
OS of high-risk patients in the validation set was lower than that
of the low-risk patients (p < 0.001) (Figure 5K). The areas under

the curve of the testing set were 0.628, 0.613, and 0.600 for the 1-,
3-, and 5-year periods, respectively (Figure 5L).

3.4 Correlations between
clinicopathological characteristics and the
risk score

We analyzed the association between risk scores and
clinicopathological characteristics and found that the risk score

FIGURE 3
Identification and functional enrichment analysis of DEGs of ARG subtypes. (A,B) ARG subtypes’DEG identification. (C)GO and (D) KEGG analysis of
DEGs of ARG subtypes. (E,F) GSEA functional enrichment analysis of ARG subtypes. Abbreviations: ARG, anoikis-related gene; DEGs, differentially
expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis.
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was an independent predictor of OS (Figures 6A, B; p < 0.001). In
addition, high-risk scores were more likely to be associated with
higher T-, N-, and M staging and total staging, regardless of age or
sex (Figures 6C–H). The relationship between the risk score and
clinicopathologic information in TCGA cohort is shown in
Supplementary Table S4. In addition, the hierarchical analysis
found that patients with high-risk scores tended to have poorer
OS in the age, sex, and TNM stage subgroups (Figures 7A–J).

3.5 Relationship among the immune
microenvironment, immunotherapy, and
risk score

Immune cell infiltration analysis revealed that the risk score was
positively correlated with regulatory T cells and negatively
correlated with activated dendritic cells, resting memory
CD4 T cells, and eosinophils (Figures 8A–D). Risk scores were

FIGURE 4
Comprehensive analysis of differences between ARG subtypes. (A,B)Genemutation in ARG subtypes. Differences in stromal (C), immune (D), tumor
purity (E), and ESTIMATE (F) scores between ARG subtypes. (G) Differences in immune cell infiltration between ARG subtypes. Differential expression
analysis of (H) HLA and (I) immune checkpoint-related genes between ARG subtypes. (J) Prognostic features of ARGs in colorectal cancer. *p < 0.05,
**p < 0.01, and ***p < 0.001. Abbreviations: ARG, anoikis-related gene; ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data; HLA, human leukocyte antigen.
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significantly different in wound healing (Immune C1) and
inflammation (Immune C3) (Figure 8E). TIDE (http://tide.dfci.
harvard.edu/) represents Tumor Immune Dysfunction and
Exclusion (Jiang et al., 2018). In our study based on TIDE,
patients with high-risk scores were more prone to non-response
to immunotherapy (p = 0.021) (Figure 8F).

3.6 Development of a nomogram to predict
survival

Considering that the clinical application of the risk score in
predicting the OS prognosis of patients with CRC is not convenient,
we established a nomogram containing the risk score and

FIGURE 5
Construction and validation of the ARG prognostic signature for CRC. (A,B) LASSO regression analysis of prognostic ARGs. PCA analysis of CRC
patients in the (C) training and (J) testing sets. Risk score analysis in the (D) training and (H) testing sets. Survival status of each patient in the (E) training and
(I) testing sets. OS of patients in high- and low-risk groups in the (F) training and (K) testing cohorts. ROC curve analysis for risk scores in the (G) training
and (L) testing cohorts. *p < 0.05, **p < 0.01, and ***p < 0.001. Abbreviations: CRC, colorectal cancer; PCA, principal components analysis; OS,
overall survival; ROC, receiver operating characteristic; ARG, anoikis-related gene; LASSO, least absolute shrinkage and selection operator.
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clinicopathological characteristics to predict OS (Figure 9A).
Predictors included risk score, patient age, sex, and stage. In
predicting the 5-year survival prognosis of patients, the
nomogram ROC AUC (0.850) was better than that of the risk
score and stage alone (Figure 9B). Calibration curves of the
nomogram for predicting 1-, 3-, and 5-year OS in the training
set suggested that the performance of the proposed nomogram was
similar to the ideal model (Figure 9C).

4 Discussion

CRC is the third most common cause of cancer-related deaths
worldwide. Among newly diagnosed CRCs, 20% are metastatic at
presentation, and another 25% of localized disease later develops
metastases (Biller and Schrag, 2021). Anoikis plays an essential role
in various malignancies and is superior to ordinary cells in terms of
autophagy (Yu et al., 2022), metabolic regulation (Wang et al., 2018;
Raeisi et al., 2022), and tumor signaling regulation (Song et al., 2021;

Wang et al., 2022), thus influencing a multitude of tumor-related
biological processes (Taddei et al., 2012; Cao et al., 2016). Anoikis-
resistant cells do not require adhesion to the extracellular matrix for
survival and proliferation, and this ability is important during
metastasis (Chambers et al., 2002; Nguyen et al., 2009).
Consequently, anoikis resistance is a natural molecular
prerequisite for the aggressive metastatic spread of cancer.

To the best of our knowledge, this is the first study to identify a
link between ARGs and CRC. Genomic and clinical information
related to the CRC cohort (TCGA-COAD/READ) were collected
from TCGA database to further analyze the expression patterns of
ARGs. Based on the expression of ARGs, we successfully identified
two different molecular subtypes of colorectal cancer. DEG analysis
revealed that the ARG-high group was enriched in the positive
regulation of cytokine production, leukocyte-mediated immunity,
regulation of cell activation, leukocyte migration, and phagosome-
related signaling pathways. According to GSEA analysis, the ARG-
high group was mainly enriched in cell adhesion molecules, focal
adhesion, and cytokine–cytokine receptor interaction, and the ARG-

FIGURE 6
Relationship between the risk score and clinicopathological characteristics in CRC. Forest plots based on (A) univariate and (B) multivariate Cox
regression analyses for OS. Correlations of risk scores and (C) age, (D) sex, (E) T stage, (F)N stage, (G)Mstage, and (H) TNM stage. *p < 0.05, **p <0.01, and
***p < 0.001. Abbreviations: ROC, receiver operating characteristic; CRC, colorectal cancer; OS, overall survival.
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low group was mainly enriched in aminoacyl tRNA biosynthesis,
citrate cycle, peroxisome, ribosome, and other signaling pathways.
In addition, our results suggested that the frequency of gene
mutations in the ARG-high group was higher than that in the
ARG-low group. These results preliminarily suggest that the
differences between the ARG-high and -low groups may be
related to immune-related biological processes.

Multiple components, including tumor, immune, and stromal
cells, co-construct the tumor microenvironment (Hinshaw and
Shevde, 2019; Xiao and Yu, 2021). Changes in different cellular
components are involved in stromal remodeling (Arora and Pal,
2021), immune tolerance (Ostrand-Rosenberg, 2016), and immune
escape (Simiczyjew et al., 2020), which play critical roles in tumor
growth, metastasis, and treatment (Hinshaw and Shevde, 2019; Feng

FIGURE 7
Stratified analysis of survival prognosis in high- and low-risk groups. (A) > 65 years, (B) ≤65 years, (C) female, (D)male, (E) T1–2, (F) T3–4, (G)N0, (H)
N1-2, (I) M0, and (J) M1.
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FIGURE 8
Relationship among the risk score, immunemicroenvironment, and immunotherapy response in CRC. Risk score associated with (A) dendritic cells,
(B) eosinophils, (C) resting memory CD4 T cells, (D) regulatory T-cell infiltration, (E) immune subtype, and (F) immunotherapy response. *p < 0.05, **p <
0.01, and ***p < 0.001. Abbreviations: CRC, colorectal cancer.

FIGURE 9
Establishment of a nomogram. (A) Nomogram based on the risk score combined with clinicopathological features. (B) ROC curve analysis of the
nomogram over 5 years. (C) Calibration curves of the nomogram for predicting 1-, 3-, and 5-year OS. *p < 0.05, **p < 0.01, and ***p < 0.001.
Abbreviations: ROC, receiver operating characteristic; OS, overall survival.
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et al., 2022; Liu et al., 2022; Pei et al., 2022). Many studies have
indicated that variations in the tumor microenvironment are a
major variable in carcinogenesis (Turley et al., 2015; Seager et al.,
2017; Hanahan, 2022). In the present study, substantial changes in
tumor microenvironment abundance between the two clusters were
detected. The ESTIMATE and CIBERSORT algorithms showed that
the immune, stromal, and ESTIMATE scores were higher in the
ARG-high group than those in the ARG-low group, whereas CD8+

cells, natural killer cells, and M1 macrophages were significantly
enriched in the ARG-high group. However, CD4+ resting memory
T cells and resting dendritic cells were enriched in the ARG-low
group. CD8 T cells and natural killer cells are involved in immune
homeostasis and in the regulation of autoimmune reactivity
(Valipour et al., 2019; Guillerey, 2020; Lees, 2020), while
M1 macrophages were previously thought to have anti-tumor
effects (Boutilier and Elsawa, 2021; Gunassekaran et al., 2021).
These results indicate that the immune components of the two
subtypes were significantly different and that the ARG-high group
exhibited superior immune activity. Activated dendritic cells have
the capacity to process and perform antigen extraction through
cytosolic and vacuolar pathways (Blum et al., 2013; Segura and
Amigorena, 2015). Thus, the increased proportion of resting
dendritic cells in the ARG-low group may have led to impaired
antigen presentation. We then evaluated HLA-related genes
expressed in the two clusters and found that the expression of
HLA-related genes was significantly higher in the ARG-high
group. We also evaluated immune checkpoint-associated gene
expression in the two clusters. As expected, the expression of
immune checkpoint-associated genes was significantly increased
in the ARG-high group. These findings indicated that the ARG-
high subtype is associated with immune activation and that these
CRC patients may benefit from immune checkpoint inhibitor
therapy.

The prognostic signature of CRC was established utilizing
ARGs, and an optimized 25-gene model was successfully
constructed. The external GEO dataset was used to verify the
prognostic predictive ability of the model. We analyzed the
relationship between the model’s high- and low-risk score
groups and their associated clinicopathological characteristics.
Multivariate Cox analysis showed that the prognostic risk
signature was an independent prognostic factor, and further
analysis identified that high-risk scores were associated with
T, N, M, and TNM staging. A previous study performed
immunogenicity analysis on more than 10,000 tumor samples
from 33 cancers in TCGA and divided all tumors into six immune
subtypes including wound healing, interferon-γ-dominant,
inflammatory, lymphocyte-depleted, immunologically quiet,
and transforming growth factor-β dominant subtypes (Huang
and Fu, 2019). In our model, the C3 immune subtype had a higher
risk score than the C1 immune subtype. Furthermore, risk scores
were negatively correlated with dendritic cells, eosinophils, and
CD4 T cells and significantly positively correlated with regulatory
T cells. TIDE database-based immunotherapy scoring revealed
that patients in the high-risk group were more likely to exhibit
immune unresponsiveness. Furthermore, a nomogram model
was constructed by combining selected clinicopathological
features and risk scores, which showed good prognostic
predictive power. These results suggest that the anoikis

prognostic risk score signature can be used for individualized
treatment of patients with CRC.

This study also had some limitations. First, this was a
retrospective study with data obtained from public databases;
hence, the clinicopathological characteristics were not
comprehensive enough. Second, we only explored whether ARGs
are related to the occurrence and development of CRC. Whether
commonly used clinical treatments, such as radiotherapy and
chemotherapy, can regulate the tumor immune response by
inducing anoikis of tumor cells remains unclear. Thus, it is
necessary to further explore the specific mechanism of action of
ARGs through molecular and animal experiments.

In conclusion, we performed a comprehensive analysis based on
TCGA and GEO databases, identified two anoikis subtypes, and
revealed that both subtypes extensively influenced the immune
microenvironment of CRC. We constructed a robust and
predictive prognostic model for ARGs that are closely related to
the immune microenvironment of CRC. This study supplements
existing knowledge of the relationship between anoikis and
immunotherapy response in CRC patients, provides a novel
model for predicting the prognosis of CRC patients, and sets the
foundation for the future, personalized immunotherapy in CRC
patients.
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