
TYPE Review

PUBLISHED 31 May 2023

DOI 10.3389/fcomp.2023.1156064

OPEN ACCESS

EDITED BY

Chintha Tellambura,

University of Alberta, Canada

REVIEWED BY

Fan Jiang,

Xi’an University of Posts and

Telecommunications, China

Ali Reza Heidarpour,

University of Alberta, Canada

*CORRESPONDENCE

Di Wu

di.wu1@samsung.com

RECEIVED 01 February 2023

ACCEPTED 03 April 2023

PUBLISHED 31 May 2023

CITATION

Wu D, Li J, Ferini A, Xu YT, Jenkin M, Jang S,

Liu X and Dudek G (2023) Reinforcement

learning for communication load balancing:

approaches and challenges.

Front. Comput. Sci. 5:1156064.

doi: 10.3389/fcomp.2023.1156064

COPYRIGHT

© 2023 Wu, Li, Ferini, Xu, Jenkin, Jang, Liu and

Dudek. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Reinforcement learning for
communication load balancing:
approaches and challenges

Di Wu1*, Jimmy Li1, Amal Ferini1, Yi Tian Xu1, Michael Jenkin1,

Seowoo Jang2, Xue Liu1 and Gregory Dudek1

1Samsung Artificial Intelligence (AI) Center, Montreal, QC, Canada, 2Samsung Electronics, Seoul,

Republic of Korea

The amount of cellular communication network tra�c has increased dramatically

in recent years, and this increase has led to a demand for enhanced network

performance. Communication load balancing aims to balance the load across

available network resources and thus improve the quality of service for network

users. Most existing load balancing algorithms are manually designed and tuned

rule-based methods where near-optimality is almost impossible to achieve.

Furthermore, rule-based methods are di�cult to adapt to quickly changing tra�c

patterns in real-world environments. Reinforcement learning (RL) algorithms,

especially deep reinforcement learning algorithms, have achieved impressive

successes in many application domains and o�er the potential of good adaptabiity

to dynamic changes in network load patterns. This survey presents a systematic

overview of RL-based communication load-balancing methods and discusses

related challenges and opportunities. We first provide an introduction to the load

balancing problem and to RL from fundamental concepts to advanced models.

Then, we review RL approaches that address emerging communication load

balancing issues important to next generation networks, including 5G and beyond.

Finally, we highlight important challenges, open issues, and future research

directions for applying RL for communication load balancing.

KEYWORDS

reinforcement learning, wireless communication load balancing, 5G networks and

beyond, WiFi network load balancing, real-world challenges

1. Introduction

Wireless communication networks have revolutionized the world, providing reliable
high-bandwidth low latency communication through a variety of different technologies from
WiFi networks to 5G and beyond. With the ongoing development and acceptance of these
technologies, the number of mobile users and high data demanding mobile applications
have also been increasing very quickly. As reported in Ericsson (2022), total global mobile
data traffic was expected to reach 90 EB/month by the end of 2022 and to grow to around
115 EB/month by 2028. The number of mobile data users also shows a significant increase. In
2022 there were around 7.3 billion wireless data devices, a number that is expected to grow
to over 9.2 billion devices by 2028.

Wireless cellphone network coverage is provided through a collection of radios and
associated antennae that provide coverage over a given region in a given range of frequency
bands. A group of antennae is ganged together to provide coverage over a sector over a
small number of frequency bands, and sectors are grouped together to provide coverage
over a wide range of orientations around a given point in space. A LTE base station in
Canada, for example, might be comprised of three partially-overlapping sectors, equally

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1156064
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1156064&domain=pdf&date_stamp=2023-05-31
mailto:di.wu1@samsung.com
https://doi.org/10.3389/fcomp.2023.1156064
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1156064/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

spaced in orientation, with antennas at the 850 and 1,900 MHz
frequencies. Generally, lower frequencies have a poorer data
capacity but a longer range. A given UE is normally capable
of communicating with more than one (frequency, sector pair)
associated with a given base station (BS) and with more than one
base station. Somewhat confusingly from a notational standpoint,
the BS and the corresponding (frequency, sector pair) to which the
user equipment (UE) is associated is known as the BS associated
with the UE.

Each UE in the network communicates with the network
through a single BS and is either active (it is actively consuming
network resources), or it is inactive (it is said to be camping). As
each individual UE consumes communication resources, and the
capacity of the corresponding base station is limited, balancing the
actual assignment of UEs to base stations is a fundamental problem
in wireless network systems. The computational task associated
with load balancing is complicated by a range of factors related to
the dynamic nature of the network traffic including; the difficulty in
estimating the future load associated with a given UE, the difficulty
in estimating the future mobility of a given UE which impacts the
availability of base stations to service the load from this UE, the
predictability of new UEs requiring service, and the predictability
of existing UEs departing the network.

Although it might be attractive to consider load balancing
in a network as a global process, with access to all network
properties including the number of UEs assigned to each base
station along with their anticipated future load, this is not possible
in practice. Practical load-balancing algorithms operate based
on local properties of individual UEs (e.g., the UEs current
signal strength associated with possible BSs) and BSs, rather
than on global network properties, and balancing takes place at
computational infrastructures which are associated with the BS.
Practical algorithms must be computationally efficient as there may
be 100’s of millions of active UEs in a given network, and network
data can be updated 100’s to 1000’s of times per second.

Early approaches to wireless network load balancing focused
primarily on using rule-based methods, adaptive rule-based
methods, and optimization based methods. To take but one
example here, the A3-RSRP handover algorithm (see Hendrawan
et al., 2019 and Figure 1), is based upon comparing Reference Signal
Received Power (RSRP) between the currently serving BS and a
competitor BS known as the target. Handover is controlled by three
parameters; a hysteresis value, a cell individual offset (CIOi,j) and a
time to trigger timer. Different rule-based approaches can be used
to set these parameters. More generally, the local load balancing
process may use Reference Signal Received Quality (RSRQ) a
measure of the quality of the underlying signal. RSSI and RSRQ are
terminology related to LTE networks. Similar measures exist for 5G
networks. For simplicity, we concentrate on load balancing for LTE
(4G) networks here. We review load balancing in cellular networks
in more detail in Section 2.

In recent years, machine learning techniques including
reinforcement learning (RL) have been applied to the
communication load balancing problem and achieved promising
results. RL aims to learn a control policy via interaction with the
environment (Sutton and Barto, 1998). But RL-based approaches
also introduce their own complications. RL typically requires

repeated interactions with the operating environment to learn an
appropriate policy, and requires a well-crafted reward function in
order to obtain the desired performance. How can we apply state
of the art RL-based algorithms to wireless network load balancing
so as to obtain the desired improvements in load balancing? The
remaining of this paper is organized as follows. Section 2 describes
the load balancing problem in cellular networks. Section 3 provides
a review of RL, including the underlying concepts for both single
agent RL and multi-agent RL. These concepts are expanded upon
in Section 4 for single agent RL algorithms. Section 5 examines
RL-based load balancing in cellular networks. Section 6 reviews
RL-based load balancing for related problems in other wireless
network systems. Section 7 reviews future challenges and suggests
opportunities for RL in load balancing tasks.

2. Load balancing in cellular networks

The goal of load balancing in communication networks is to
reduce the load imbalance among the cells1, while minimizing
any additional overhead on the service quality. In Section 2.1,
we review standard load balancing mechanisms, in which various
controllable parameters can be tuned to optimize load balancing.
In Section 2.2, we review the metrics that are commonly used
to assess the performance of a load balancing algorithm. It is
worth noting that different papers may have different descriptions
for load balancing mechanisms. Here, we only consider downlink
communication scenarios as downlink communications is typically
more significant than uplink.

2.1. Load balancing mechanisms

There are two main approaches to load balancing: Mobility
Load Balancing (MLB), which redistributes the UEs through
mobility mechanisms, such as handover and cell-reselection; and
coverage-based load balancing, which extends or shrink the cell
coverage by, for example, controlling the transmission power of the
cells. Load balancing can be optimized by tuning the controllable
parameters in these mechanisms. In the remainder of this section,
we first briefly introduce the concept of MLB, and present the
different control parameters for MLB and coverage-based load
balancing.

MLB was introduced in LTE, and it is an important feature
of self organizing networks (SON) (Jorguseski et al., 2014). MLB
aims to offload UEs from an overloaded cell to a neighboring
cell by adjusting handover and cell-reselection parameters. This
mechanism is enabled by measurement reports from the UEs of
their signal quality received from the serving and neighboring cells.
These measurement reports are commonly described in terms of
the Reference Signal Received Power (RSRP) and Reference Signal
Received Quality (RSRQ) reports, and are reported periodically
within the network. Each wireless network specification includes

1 We use the term “cell” to refer to the smallest unit in a network that

has an access point, to cover di�erent base station structures studied in the

literature, ranging from single to multiple sectors and/or sub-carriers.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

FIGURE 1

A3 RSRP rule-based handover algorithm. A UE receives RSRP reports from both the currently serving base station as well as a potential target base

station. When the RSRP report for the target exceeds the currently serving station for a su�ciently long period of time (time to trigger) by a su�cient

amount (hysteresis—HIST) less the cell individual o�set (CIOi,j) handover takes place. Setting the time to trigger, hysteresis and cell individual o�set

values controls the handover process.

a predefined set of measurement report mechanisms. In the LTE
standard, for example, the UE reports events A1 through A6 which
are defined for intra-LTE mobility and events B1 and B2 for
inter-radio access technology (RAT) mobility (Addali et al., 2019).

The control parameters for MLB depends on the mode of the
UE. Active UEs can be reassigned through a handover mechanism,
while idle UEs are reassigned through cell-reselection. An UE is
in idle mode when it is switched on, but does not have a Radio
Resource Control (RRC) connection (Puttonen et al., 2009). Idle
mode UEs receive limited or discontinuous reception, as a mean
to save power consumption. For example, an idle UE wakes up
occasionally to monitor incoming calls and measure for mobility,
but it is soon allowed to sleep again, and it remains inactive for
most of the time. Compared to UEs in active mode, idle mode
UEs consume a negligible amount of network resources. Yet, they
are expected to become active eventually to initiate requests and to
increase the load of the cell that they are “camped on”. Therefore,
proper distribution of the active and idle UEs help to balance the
current and expected load, respectively.

2.1.1. MLB via handover for active UEs
A commonly used event in the load balancing literature is

the A3 event illustrated in Figure 1. Using this event, handover
is triggered when an UE’s signal strength (measured by its RSRP
value) received from a neighboring cell is stronger than that from
the serving cell (3GPP, 2011). An A3 event is triggered if the
following condition is met

A3: Xj − Xi > Hyst − TCIOi,j
, (1)

where Xi and Xj are the signal quality measured from the serving
and neighboring cell, respectively, TCIOi,j

is the Cell Individual
Offset (CIO) between cells i and j, and Hyst a hysteresis parameter
that is used to discourage frequent handovers, and is usually a fixed
value. By increasing TCIOi,j

, the service area of cell i shrinks while
that of cell j expands as UEs are more encouraged to be handed over
from cell i to cell j.

Although A3 event-based handover is straightforward, it does
not necessarily balance the load over the network. UEs are assigned
to the cell with the highest signal strength, regardless of the
capability of the given cell to serve the UE. Consequently, there
exist a large number of other event-based handover mechanisms.
For example, some load balancing approaches utilize the A4 event
threshold (Munoz et al., 2011), which ensures a minimum level of
signal quality (measured by RSRQ) from a neighboring cell, as in
the following condition.

A4: Xj > Hyst + TA4j , (2)

where TA4j is the controllable threshold for cell j. For example,
Addali et al. (2019) uses the A4 event to select a neighboring cell
for a potential early handover of edge UEs. It is also possible to
use combinations of different events to drive the load balancing
process. For example, Feriani et al. (2022) considers a combination
of A2 and A5 events. Specifically, if the following two conditions
are satisfied, then a handover is triggered.

A2: Xi + Hyst < TA2,i , (3)

A5: Xi + Hyst < TA5i,j and Xj > Hyst + T′
A5i,j

, (4)

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

where TA2i , TA5i,j , and T′
A5i,j

are controllable thresholds. The A5

thresholds, TA5i,j and T′
A5i,j

are pairwise for each source-neighbor

cell pair.

2.1.2. MLB via cell-reselection for idle UEs
Load balancing of idle mode UEs is realized by modifying

the cell-reselection parameters, which control the selection of
a “camping” cell. Cell-reselection is triggered if the quality of
the RSRP/RSRQ measurements to the camping cell fall below a
threshold. To select an alternative cell to camp on, CRS threshold
values TCRSi,j are used. Each TCRSi,j is a pairwise threshold
between i the cell currently camped on, and each potential
alternative cell j. Once cell-reselection is triggered, the UE will rank
the cells j that satisfy the condition (5)

Xj > TCRSi,j (5)

according to the signal quality and a preference parameter wj

associated with cell j. The cell with the highest ranking is selected as
the “camping” cell. Feriani et al. (2022) control cell-reselection by
tuning TCRSi,j , while Wu et al. (2021) achieve this by tuning wj.

2.1.3. Coverage-based load balancing
The data sent by cells is transmitted using radio signals with

a controllable power level Pi ∈ [Pmin, Pmax] dBm. Stronger
transmission power results in higher signal quality measurements
from the UEs at the cost of higher energy cost. While transmission
power can be used for load balancing alone, it can also be used
in concert with MLB parameters. As discussed in Alsuhli et al.
(2021a), increasing the transmission power of a cell increases the
signal quality of the non-edge UEs at that cell, but also increases
the signal interference of the edge UEs at neighboring cells. While
tuning Pi can be effective at controlling all the edge UEs of cell i
simultaneously, MLB parameters can be used to control the UEs
only at the common boundary between cells i and j.

2.2. Load balancing metrics

There exist a large number of metrics that seek to quantify
the Quality of Service (QoS) provided to UEs in the network.
Interestingly, providers are often more interested in their Quality
of Experience (QoE), which is much more difficult to quantify. Let
U be the set of UEs in the network. For simplicity, assumeU to be a
fixed set throughout the entire lifespan of the network. Let C be the
set of cells in the network, and Uc(1t) ⊆ U be the set of UEs that
are connected to cell c ∈ C any time within a period of time in 1t,
which can be the number of time transmission intervals (TTI).

2.2.1. Utilization based
The load in a cell is commonly expressed as a percentage

of allocated physical resource blocks (PRB—the smallest resource
block allocated by the network), or the PRB utilization ratio.
The amount of PRB needed to allocate to a request depends on
the signal-to-interference-plus-noise (SINR) ratio (Afroz et al.,

2015). Let ρc(1t) be the average percentage PRB used during
1t. A straight-forward way to quantify the performance of load
balancing is to measure the fairness of the utilization between
cells. Examples of such metrics include the maximum load over
all cells, average deviation and standard deviation of load over
all cells. Minimizing these measures can serve as the objective
function to optimize a load balancing algorithm. But there are other
approaches. For example, in Asghari et al. (2021), the minimization
of over-utilization is used instead by employing a penalty function
that take effect when individual cell load exceeds a configurable
threshold.

2.2.2. Throughput based
Throughput is the data transmitted per unit of time, expressed

as bits per second (bps). More precisely, it is the rate at which
packets arrive at their destination successfully, without counting
those lost in transit. This metric quantifies the speed of the network.
Let fu,c(1t) be the total number of packets transmitted to the UE
u from the cell c, and du,c(1t) be the total delay experienced by
the UE u when receiving packets from cell c during 1t. Then the
throughput is defined as

Tputu,c(1t) =
fu,c(1t)

du,c(1t)
, (6)

The throughput is 0 when fu,c(1t) = 0. As cell congestion causes
more delays, the throughput from a cell decreases when the load
on that cell approaches its maximum capacity. The sum or average
throughput over all UEs and cells is considered as the overall
performance of the network, and can be used as the objective to
maximize for load balancing.

Similar to utilization-based metrics, fairness between cells can
be measured in terms of the minimum and the standard deviation
of throughput from the cells. The throughput from a cell c can be
expressed as:

Tputc(1t) =

∑

u∈Uc(1t) fu,c(1t)
∑

u∈Uc(1t) du,c(1t)
, (7)

and Tputc(1t) = 0 if |Uc(1t)| = 0. A penalty on cells with low
throughput can also be formulated as in Wu et al. (2021), that has a
similar functionality as a penalty on over-utilized cells.

2.2.3. Other performance metrics
The signal to interference plus noise ratio (SINR) and the

channel quality indicator (CQI) can be used to construct metrics
that are more tailored to the QoE. Examples include the average
SINR and the ratio of UEs out of coverage. The CQI is a discretized
measurement of the signal quality as measured by the UE. Low
values indicate that the UE is out of coverage, and higher value
correspond to better signal quality, and hence better modulation
and coding scheme (MCS) assignment (Alsuhli et al., 2021a;
Aboelwafa et al., 2022). In Mwanje and Mitschele-Thiel (2013),
the number of unsatisfied UE is used to evaluate the performance,
where an UE is unsatisfied if it is served with fewer PRB than
requested, resulting in a data rate lower than the Guaranteed

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

Bit Rate (GBR). The requested PRB to match a certain data rate
depends on the SINR.

Other key performance indicators that are often used in the
load balancing literature and that may not be accountable in
utilization-based or throughput-based metrics include the call drop
rate, call block rate, handover failure ratio, ping-pong ratio and
outage ratio. An admission control mechanism in the network
can block calls or handovers based on the availability of the
resource (Kwan et al., 2010). Intuitively, overloaded cells have a
higher call block rate, and UEs handed over to those cells are more
likely to be blocked and have their calls dropped, or handed back to
the original cell, potentially resulting in a ping-pong effect. When
a cell cannot serve its connection due to the lack of resource or
low SINR, this can be measured by the outage ratio. Some settings
of the load balancing parameters can also cause inappropriate
configuration of cell coverage, resulting in the deterioration of
the aforementioned performance indicators. Given the range of
different indicators, the optimization of load balancing is often
approached from a multi-objective perspective.

3. RL preliminaries

This section provides a brief overview of single agent andmulti-
agent RL. We present the mathematical frameworks commonly
used to model sequential decision making for single and multiple
agents. For a more detailed review of RL the interested reader is
directed to one of the classical texts on RL (e.g., Sutton and Barto,
1998) or a recent review paper such as Nian et al. (2020).

Reinforcement learning is commonly formalized as a Markov
Decision Process (MDP). Assuming the environment is fully
observable, a MDP is defined as a tuple (S ,A,P ,R, γ , κ0), where
S is the state space; A is the action space; P(s′|s, a) is a transition
probability function which outputs the probability of transiting to
s′ from the current state s after executing the action a;R :S ×A×

S 7→ R is a scalar reward function; γ ∈ [0, 1] is the reward discount
factor; and κ0 is the initial state distribution (Puterman, 1994).

In RL, the agent aims to learn a policy π , a mapping from states
to actions, such that the expected cumulative discounted reward
J (π) of the policy in the MDP is maximized:

π∗ = argmax
π∈5

J (π)

= argmax
π∈5

E

[

∞
∑

t=0

γ tR(st , at , st+1)

∣

∣

∣

∣

∣

at

∼ π(at|st), st+1 ∼ P(st+1|st , at), s0 ∼ κ0
]

; (8)

where π∗ is the optimal policy and 5 is the set of all possible
policies. The learning objective in (8) assumes an infinite-horizon

MDPwhere the agent continuously interacts with the environment.
This is in contrast to episodicMDP where the interactions between
the agent and the environment terminate after a bounded number
of steps. Note that the learning objective can be adjusted to the
episodic case by considering a finite horizon.

Instead of maximizing J (π) that is a function of the policy,
one can consider other performance objectives such as the value
function Vπ

:S 7→ R that measures the expected accumulated

reward starting from a particular state and following the policy π :

Vπ (s) = E

[

∞
∑

t=0

γ tR(st , at , st+1)

∣

∣

∣

∣

∣

at ∼ π(at|st), st+1

∼ P(st+1|st , at), s0 = s
]

(9)

The state-action value function (i.e., the Q function) is defined
as the expected accumulated reward starting from a particular state,
executing and action a and following the policy π thereafter as in:

Qπ (s, a) = E

[

∞
∑

t=0

γ tR(st , at , st+1)

∣

∣

∣

∣

∣

at ∼ π(at|st), st+1

∼ P(st+1|st , at), s0 = s, a0 = a
]

(10)

= E[R(s, a, s′)+ γVπ (s′)|s′ ∼ P(s′|s, a)] (11)

MDPs assume that the agent has full access to the environment
states. However, this assumption is not always realistic. Partially
Observable MDPs (POMDP) (Åström, 1965) are a generalization
of MDPs where the agent has only access to a partial
observation of the state. Formally, a POMDP consists of a tuple
(S ,O,A,P ,R, γ , ζ , κ0) where S ,A,P ,R, γ and κ0 are as defined
above, O is the observation space and ζ :S × A × O 7→ [0, 1]
denotes the probability distribution over observations given a state
s and an action a. To overcome the partial observability, the agent
maintains an estimate of the environment state b, often called the
belief state. The belief state is defined as the conditional probability
distribution over all possible states given the history of past actions
and observations. If the dynamics of the POMDP are known, the
belief states can be updated using Bayes’ rule. Consequently, the
agent aims to learn a policy π that maps its current belief state to
action while keep updating the belief states when new observations
are received.

4. RL algorithms

The previous section reviewed the key formalisms used in RL.
Here, we briefly review key RL algorithms that are relevant to our
discussion. We focus on model-free RL, which is the predominant
RL approach used in the load balancing literature. This type of RL
algorithm aims to directly output control actions based on the state,
without building an explicit system dynamics model. Model-free
RL methods are typically categorized into two families: value- and
policy-based algorithms. In recent years, reinforcement learning,
especially deep reinforcement learning has also been applied to
solve different types of real-world problems (Wu, 2018; Fu et al.,
2022b; Li et al., 2022).

4.1. Value-based RL

Value-based algorithms estimate the agent’s value function
expressed in Equation (9) or the state-action value function in
Equation (10). The agent’s policy is then computed greedily with
respect to the approximated value function such that the selected
action is the one that maximizes the approximated value function
at a given state s.

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

The Value Iteration algorithm (Sutton and Barto, 1998), a
well-known dynamic programming method, approximates the
optimal Q∗ by iteratively applying the Bellman optimality operator
[BQ](s, a) = R(s, a) + γ

∑

s′ P(s′|s, a)maxa′ Q∗(s′, a′). However,
model-free RL assumes that the system’s dynamics (i.e., the
transition and/or reward functions) are unknown, hence it is not
possible to evaluate the Bellman operator for this category of
RL. To overcome this limitation, Temporal Difference (TD) based
methods update the estimated state-action values Q̂ as follows:

Q̂(s, a) = (1− α)Q̂(s, a)+ α
[

R(s, a)+ γ max
a′

Q̂(s′, a′)
]

; (12)

where α is a learning rate. To evaluate (12), the agent collects
experience samples through interactions with its environment.
Depending on the policy used to collect these samples, TDmethods
can be on-policy or off-policy. The State-Action-Reward-State-
Action (SARSA) algorithm (Sutton and Barto, 1998) is a well-
known on-policy TD method where samples {(s, a, r, s′, a′)} are
collected by acting greedily with respect to the learned Q function.
Alternatively, the famousQ- algorithm (Watkins and Dayan, 1992)
is an off-policy TD algorithm where any behavior policy can be
used to generate experiences. The Q-learning algorithm is the
foundation of the modern value-based algorithms where Q̂ is
learned by minimizing the Bellman error defined as:

LQ =
∑

(s,a,r,s′)

||Q̂(s, a)− (R(s, a)+ γ max
a′

Q̂(s′, a′))||2. (13)

Modern Q-learning algorithms represent the Q function as a
deep neural network with parameters θ . The pioneering Deep Q-
Network (DQN) enabled deep Q learning (Mnih et al., 2013). In
this work, two main techniques are introduced to stabilize the
learning using deep neural networks as function approximators.
To avoid using correlated samples, an experience replay buffer
D = {(s, a, r, s′)} is used and at each iteration, the Q function
is updated using experiences sampled from the replay buffer D.
DQN also uses a target network Q̄ to evaluate the targets in the
Bellman error (13). The target network parameters are a copy of
the Q function parameters θ and are updated periodically with the
most recent values. Taking into consideration these modifications,
the new expression of the Bellman error becomes:

LDQN =
∑

(s,a,r,s′)∼D

||Q̂(s, a)− (R(s, a)+ γ max
a′

Q̄(s′, a′))||2. (14)

Several variants of the DQN algorithm have been proposed
in the literature to overcome the instability and maximization
bias of the original work. For instance, double DQN (DDQN)
(Van Hasselt et al., 2016) proposed to use two target networks
Q̄1 and Q̄2 with different parameters to decouple the action
selection from the action evaluation in the targets (i.e, R(s, a) +
γ Q̄2(s′, argmaxa′ Q̄1(s′, a′))). Furthermore, prioritized experience
replay is introduced to improve the converge guarantees by
sampling rare or task-related experiences more frequently than
the redundant ones (Schaul et al., 2015). Another variant, dubbed
dueling DQN (Wang et al., 2016), computes the Q-function as the
difference between a value network and a state-dependent action
advantage network.

4.2. Policy-based RL

Unlike value-based RL methods described above where the
optimal policy is computed greedily with respect to the Q function,
policy-based RL algorithms search for the optimal policy directly.
The optimal policy is obtained by maximizing the agent’s expected
cumulative discounted rewards as in (8). The policy is often
represented as a function approximator (e.g., a deep neural
network) with learnable parameters φ. The seminal work by Sutton
et al. (2000) introduced the family of Policy Gradient (PG) methods
that learn the optimal policy parameters by applying gradient
ascent on the objective J . More specifically, the policy gradients
are estimated using sampled trajectories or rollouts collected under
the current policy as in:

∇φJ(πφ) = Eτ∼πφ

[

H
∑

t=0

∇ logπφ(at|st)Q
πφ (st , at)

]

; (15)

where τ = {st , at , rt}Ht=0 is a trajectory, H is the length of the
trajectories and Qπφ is the state-action value function under the
policy πφ .

In the well-known REINFORCE algorithm (Williams, 1992),
the Qπφ function is defined as the rewards-to-go [i.e., Qπφ (st , at) =
∑H

k=t R(sk, ak)] where the expected return at a state-action pair
(st , at) is the sum discounted rewards from time t until the end
of the trajectory. The PG methods are unbiased but they are
characterized by high variance. Thus, a state-dependent baseline
is subtracted from the Qπφ to reduce the variance and keep the
gradient estimates unbiased. A commonly used baseline is the state
value function Vπθ .

Actor-critic methods are an extension of the PG methods
where the Qπφ function is learned in addition to the policy.
Hence, actor-critic methods often learn two models. The critic
Q

πφ

θ parameterized by the parameters θ approximates the state-
action value function. Subsequently, the actor or the policy πφ is
updated based on the learned critic. Consequently, the actor-critic
methods bridge the PG methods and the value-based ones. Note
that the critic is not restricted to the state-action value function.
For instance, Advantage Actor-Critic (A2C) and Asynchronous
Advantage Actor-Critic (A3C) (Mnih et al., 2016) approximate the
advantage function Aπθ .

To improve the convergence of REINFORCE and its variants
(e.g., A3C, A2C), the Trust Region Policy Optimization (TRPO)
algorithm was proposed to constrain the difference between the
new updated policy and the old one below a certain threshold
(Schulman et al., 2015). Although this additional constraint avoids
destructive policy updates, TRPO requires additional computation
since it relies on second-order optimization. To overcome this
issue, Proximal Policy Optimization (PPO) presented a first-order
alternative to TPRO that is easier to implement and has similar
performance to the second-order method (Schulman et al., 2017).
There are two variants of PPO: PPO-penalty and PPO-clip. We will
focus on PPO-clip because it is the variant most commonly used.
PPO-clip introduced a new surrogate loss function that performs
clipping to penalize the agent when the new policy moves far from

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

the old one:

LPPO(φ) = min
φ

(

πφ(a|s)

πφk
(a|s)

Aπφk (s, a), g(δ,Aπφk (s, a))

)

; (16)

where

g(δ,A) =

{

(1+ δ) A if A ≥ 0

(1− δ) A if A < 0.
(17)

δ is a hyperparameter to determine how far the new policy can
move far from the old policy.

The policy in PG methods is usually modeled as a probability
distribution with learnable parameters (i.e., the mean and the
standard deviation of a Gaussian distribution). Hence, the policy
learned by the PG methods is stochastic. As an alternative, the
Deterministic Policy Gradient (DPG) method by Silver et al. (2014)
and its deep version Deep DPG (DDPG) by Lillicrap et al. (2015)
adopt a deterministic policy that outputs the action with the
highest state-action value. Several extensions of the DDPGmethods
have been developed to improve learning speed and performance.
As an example, Twin Delayed DDPG (TD3) (Fujimoto et al.,
2018) introduced several modifications such as the clipped double
Q-learning to reduce the overestimation bias. Another example
is Soft Actor-Critic (SAC) (Haarnoja et al., 2018) that added a
maximum entropy term to improve exploration. In general, value-
based reinforcement learning algorithms are more suitable to deal
problems with discrete control actions while policy-based methods
are more suitable to deal with problems with continuous control
actions (Fu et al., 2022a,b).

5. Reinforcement learning-based load
balancing in cellular networks

The use of RL for load balancing in cellular networks has
become increasingly popular in recent years, driven both by the
growth in wireless traffic, and the rapid advancement of RL and
deep learning. Figure 2 illustrates the overall process. The RL
agent monitors the state of the communication network. When it
observes load imbalance, it selects the values for the load balancing
parameters, such as CIO, to redistribute the UEs such that the
appropriate load balancing metric(s) are optimized.

The ability of RL-based load balancing system to output
control actions without the need for wireless network engineers
to develop a system model is highly attractive in the context of
cellular networks. Manually modeling system dynamics in cellular
networks requires extensive domain knowledge, substantial human
effort, and is often highly challenging given the complexity of the
real world environments and the dynamic and ever changing nature
of traffic patterns.

In this section, we present the prominent lines of work on RL
for load balancing. Table 1 lists these lines of work, and presents key
properties regarding the MDP and RL technique for each related
group of papers. The following subsections highlight overarching
themes seen across the literature, first in terms of theMDP problem
formulation and then in terms of RL methods.

5.1. MDP formulations

RL methods require the specification of a Markov Decision
Process (MDP) as part of the problem formulation. This involves
the specification of the state space, the action space, and the reward
function. In the cellular load balancing literature, the state space
and the reward function are typically based on key performance
indicators (KPIs) that characterize the network performance.
Examples of commonly used KPIs include throughput, active
UEs, and PRB usage, and call block rate. There is often overlap
between the KPIs used to compute the state and the KPIs used
to compute the reward. This is because the KPIs useful for
evaluating load balancing performance can also be useful for
informing the next action that should be taken. For example,
Wu et al. (2021) uses cell throughput to compute both state
and reward: the throughput of each cell is included in the state
vector, and the minimum throughput among cells is used as
the reward.

The specific KPIs used to compute state and reward varies
greatly between the different lines of work, since system
performance and evenness of load distribution can be measured
by many different KPIs. Some papers gauge load balancing
performance based on the performance of the overall network.
For example, Musleh et al. (2017) computes the average cell
throughput as part of the reward without capturing the difference
in load between cells. A contrasting example is the work of
Feriani et al. (2022), which explicitly captures load distribution
by using the standard deviation of cell load as part of the
reward.

Unlike state and reward, the choice of action space is relatively
consistent among the various lines of work. Cell individual offset
(CIO) is used in almost all of the papers we review. An advantage
of this approach is that existing base stations already support A3
handovers based on CIO values, and so it is natural to integrate
into existing infrastructure. Some authors such as Wu et al. (2021)
directly use CIO values in the action space, while other authors
such as Mwanje et al. (2016) use CIO increment as the action space,
in which case the output of the RL agent is an increment that is
added to the current CIO value. Since controlling CIO only affects
actively transmitting UEs, a number of recent papers (i.e., Wu et al.,
2021; Feriani et al., 2022) use both CIO and cell reselection (CRS)
thresholds in the action space, so that both active and idle UEs
are considered during load balancing. Transmission power is used
occasionally in the action space (Munoz et al., 2013; Musleh et al.,
2017; Aboelwafa et al., 2022), which allows the RL agent to affect
the coverage area of various cells. In comparison with controlling
CIOs and CRS thresholds, directly controlling transmission power
can be more risky since changes in transmission power may result
in coverage holes.

Notably, an under-explored approach is to train the RL agent
to directly assign UEs to cells rather than relying on the handover
and cell reselection processes. The work of Ma et al. (2022) is the
only work in our review that explores this. This is a challenging
approach since the action space is much larger and dependent on
the number of UEs. For simplicity, the number of UEs is assumed
to be fixed. However, direct UE-cell assignment provides the RL
system the greatest level of control, and is a promising direction for
future work.

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

FIGURE 2

Illustration of load balancing between two cells using RL. When the RL agent observes network states that indicate load imbalance, it outputs the

action that corresponds to the load balancing parameters in the network (e.g., CIO values) which allows redistribution of the UEs from the

overloaded cell to the lightly loaded cell.

TABLE 1 Recent papers applying RL to wireless network load balancing.

State Action Reward RL method

Munoz et al. (2011),
Munoz et al. (2013)

Call block rate, outage ratio,
CIO, transmit power

CIO increment,
transmit power
increment

Call block rate, outage ratio Q-learning

Mwanje and
Mitschele-Thiel (2013),
Mwanje et al. (2016)

PRB utilization, fraction of
edge users

CIO increment Source reduction and target cell increase
in PRB utilization

Q-learning

Musleh et al. (2017) Transmission power Transmission power Average SINR, average cell throughput,
call drop rate, call block rate

Q-learning

Xu et al. (2019a), Xu
et al. (2019b)

PRB utilization, fraction of
edge users

CIO Min of max PRB utilization Off-policy actor critic

Attiah et al. (2020),
Alsuhli et al. (2021a),
Alsuhli et al. (2021b),
Aboelwafa et al. (2022)

PRB utilization, downlink
throughput, active UE count,
MCS utilization

CIO, transmission
power, MIMO on/off

Total throughput, number of blockage
events, deviation of resource block
utilization, total throughput minus
expected throughput of users without
coverage, number of cells with MIMO on

DQN (Mnih et al., 2013),
DDQN (Van Hasselt et al.,
2016), TD3 (Fujimoto et al.,
2018)

Asghari et al. (2021) Utilization level CIO Penalty on unsatisfied load Q-learning, SARSA

Kang et al. (2021), Wu
et al. (2021), Feriani et al.
(2022), Li et al. (2022)

Throughput, PRB utilization,
active UE count

CIO, CRS Minimum, average, and deviation in
throughput among cells; number of cells
with throughput below a threshold

SAC (Haarnoja et al., 2018),
PPO (Schulman et al., 2017)

5.2. RL-based methods for load balancing

As discussed in Section 4, model-free RL is the predominant RL
approach across the load-balancing literature. Notably, all papers
listed in Table 1 use model-free RL. Both value-based methods
and policy-based methods have been explored. We first discuss
load balancing techniques centered around value-basedQ-learning,
followed by those that rely on policy-gradient methods.

5.2.1. Q-learning for load balancing
The value-based Q-learning method is particularly popular

throughout the literature, especially in earlier work. Q-learning
typically requires discrete state and action spaces. However,
network metrics and load balancing control knobs are often
continuous, which necessitates a discretization scheme when
applying Q-learning. The state is often discretized into regular

intervals, and actions are often selected from a pre-defined set (i.e.,
Mwanje et al., 2016; Musleh et al., 2017).

Munoz et al. (2011) and Munoz et al. (2013) combine Q-
learning with a fuzzy logic controller (FLC), which translates
between continuous values into discrete semantic labels (i.e., high,
medium low). Continuous states are fuzzified into discrete values,
which are used as input to the RL agent; discrete actions produced
by the RL agent are defuzzified into continuous values and then
passed to the system. In this way the RL agent outputs incremental
adjustments to the CIO values and transmit power to reduce service
disruptions.

Mwanje and Mitschele-Thiel (2013) and Mwanje et al. (2016)
also use Q-learning to control incremental adjustments to CIO
values. However, unlike the typical RL setup where the learned
agent makes decisions at every step, the agent is invoked
conditionally when a cell is overloaded. The agent is rewarded for
successfully reducing source cell load and increasing the load of
neighboring target cells.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

Musleh et al. (2017) also adopts the strategy of conditionally
invoking a Q-learning agent when cell overload is detected. They
focus on a heterogeneous networks consisting of high-powered
macrocells and low-powered femtocells. When a macrocell is
overloaded, neighboring femtocells independently select power
levels using an RL agent, allowing them to increase coverage and
take load off of the macrocell.

Asghari et al. (2021) is another work that embeds a Q-learning
agent within a larger control flow framework. The system first
identifies overloaded source cells and lightly loaded neighboring
cells. Then an RL agent is used to select increments for the CIO
values until the source cell is no longer overloaded.

Deep Q-Networks relaxes the need for state discretization by
using deep network to approximate the qQfunction, leaving only
the action space to be discretized. The work of Attiah et al. (2020)
and Alsuhli et al. (2021b) are, respectively, based on DQN and
the double DQN (DDQN) method proposed by Van Hasselt et al.
(2016). Although both papers use the RL agent to control CIO
values, Attiah et al. (2020) simplifies the problem by considering
only a single CIO value for all neighboring cells, whereas Alsuhli
et al. (2021b) considers separate CIO values for each neighboring
cell. In addition to CIO, Alsuhli et al. (2021b) also includes
transmission power in the action space. Alsuhli et al. (2021a) uses
TD3, a policy gradient RL algorithm proposed by Fujimoto et al.
(2018), to address a similar problem setup. The policy gradient
approach allows for continuous action spaces, and enables the
system to output continuous control for CIO and transmission
power. Aboelwafa et al. (2022) combines both value-based and
policy-based approaches in a single framework: DDQN is used to
make discrete on/off decisions for MIMO features, and TD3 is used
to control CIO and transmission power.

5.2.2. Policy-gradient methods for load balancing
Policy-based methods are gradually gaining popularity among

more recent papers, since they are naturally compatible with
continuous state and action spaces. This avoids the need to
engineer a sensible discretization scheme, and can potentially avoid
undesired human bias in this process. An additional trend in recent
papers is the integration of RL with other learning techniques such
as clustering (i.e., Xu et al., 2019b), hierarchical learning (i.e., Kang
et al., 2021), meta-learning (i.e., Feriani et al., 2022), and knowledge
distillation (i.e., Li et al., 2022). These additional techniques
complement the core RL method and address key challenges such
as scalability, adaptability, and model generalization.

Xu et al. (2019a) proposes a policy gradient method that uses
deep networks to approximate an actor and a critic, much like
the work of Lillicrap et al. (2015). The RL agent directly outputs
continuous CIO values to minimize the maximum load among
cells. Xu et al. (2019b) extends the approach by introducing a two-
layer architecture that handles large-scale deployments. The top
layer clusters base stations, using overloaded base stations as cluster
centers; the bottom layer uses an RL agent to perform intra-cluster
load balancing.

Wu et al. (2021) emphasizes the data efficiency challenge for
deep reinforcement learning and proposes the first solution to
improve the data efficiency in learning an RL-based load balancing

solution for idle mode users. The soft actor-critic (SAC) method
of Haarnoja et al. (2018) is used to optimize CRS values. The
authors proposed to first identify a suitable source policy and then
do shallow finetuning on the target domain which can help to
significantly improve data efficiency.

In Kang et al. (2021), the authors propose a hierarchical policy
learning framework for load balancing for both active users and
idle users. Proximal policy optimization (PPO) of Schulman et al.
(2017) is the RL algorithm used for this work. A higher level PPO
policy determines CIO control actions for active users and a lower
level PPO policy determines the CRS control actions for idle users.

Feriani et al. (2022) addresses conflicting objectives that arise
during load balancing. As an example, the authors show that
increasing the throughput of the most under-utilized cell can
conflict with reducing the standard deviation of throughput among
cells. In other words, the RL control policy should be trained
to accommodate the preferences toward various key performance
indicators (KPIs). The authors propose an approach based onmeta-
learning, inspired by the work of Finn et al. (2017), where a generic
model is trained with the ability to quickly adapt to changes in KPI
preferences. This work uses PPO as the core RL method, which
controls both CIO and CRS values.

Li et al. (2022) focuses on the construction of a concise RL
policy bank that can cope with a large variety of traffic patterns. This
approach aims to improve the scalability of deploying RL policies
across a many sites. In the next section, we describe this work
in more detail as an example to showcase the use of RL for load
balancing.

5.3. Sample application of RL to network
load balancing

Here, we present the work of Li et al. (2022) as an example
to showcase the use of RL for communication load balancing. In
addition to presenting a RL formulation for load balancing, this
work also investigates practical challenges regarding the scalable
deployment of RL policies across a large geographic region.
Notably, training a single RL policy for every base station across a
large geographic region is often not feasible due to traffic variations,
while maintaining separate RL policies for every base station
overlooks similarities between some of the base stations. Thus, the
authors propose a clustering-based approach: a set of task-specific
RL policies are first trained on a diverse set of traffic scenarios
or tasks; then, knowledge distillation is used to recursively merge
together similar RL policies that exhibit similar behaviors. This
approach produces a concise policy bank and reduces the overhead
of maintaining a large number of policies when deploying across a
large geographic region.

The MDP formulation used by Li et al. (2022) to train task-
specific policies is shown below. PPO is used to train RL policies
using this MDP.

• Each state vector st ∈ S consists of the number of active UEs
in each cell, the PRB utilization of each cell, and the average
throughput of each cell.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

• Each action vector at ∈ A consists of the CIO values TCIOi,j

that trigger active UE handover as described in Section 2.1,
as well as thresholds βi,j and TCRSi,j such that cell reselection
between cells i and j is triggered when RSRPi < βi,j and
RSRPj > TCRSi,j .

• The reward rt ∈ R is a weighted average of several metrics
presented in Section 2.2, including the minimum throughput
Tputmin among cells, the average Tputavg throughput among
cells, the standard deviation Tputstd among cells and the
number of cells Tput<χ whose throughput is below a
threshold χ . Specifically, rt = µ1Tputavg + µ2Tputmin +

µ3(1+Tputsd)
−1+µ4(C−Tput<χ), where C is the number of

cells. Note that under this formulation, maximizing the reward
minimizes Tputsd and Tput<χ . The coefficientsµi are selected
using grid search to maximize performance.

Once a set of task-specific RL policies are trained, the policies
are clustered recursively. At each clustering step, the two most
similar policies are identified and merged. The similarity between
two policies is measured using the L2 distance between action
vectors produced by the policies given the same input state. Policies
are merged using knowledge distillation, where a student policy is
trained to mimic the output of two teacher policies, as proposed by
Hinton et al. (2015).

The clustering method is compared with five baselines listed
below.When evaluating the clustering-basedmethods, the policy of
each cluster is evaluated on all the tasks that belong to its cluster.

• Fixed: The same hand-crafted control parameters are used for
all tasks at all time steps.

• J-Multitask: One RL agent is trained jointly on all tasks
simultaneously. This is a form of multitask learning similar
to the work of Pinto and Gupta (2017), which capitalizes on
positive transfer between tasks.

• Task-specific: A separate RL agent is trained for each task
and no clustering is performed. Since this approach does
not require policies to generalize across multiple tasks, the
performance of this method can be considered as an upper
bound for the clustering methods.

• EM: An approach proposed by Ackermann et al. (2021)
that clusters policies using an expectation maximization(EM)
scheme: In the expectation step, each task is assigned to the
cluster whose policy maximizes performance on the task. In
the maximization step, the RL policy of each cluster is trained
jointly on all tasks in its cluster using J-Multitask.

• Kmeans: A method in which the Fixed method is used to
interact with the various tasks, and the states collected from
these interactions are used to cluster the tasks via Kmeans. For
each cluster, we train one RL policy for all tasks in the cluster
using J-Multitask.

All methods are evaluated using a system-level simulator for
4G/5G communication networks. The simulator’s parameters are
tuned to mimic real-world traffic data at various sites to emulate
different tasks. Two sets of traffic scenarios are used: the “Hex 1"
scenario set consists of 10 relatively simple scenarios in which a
single base station is simulated; the “Hex 7" scenario set consists
of 32 relatively congested traffic scenarios in which a center base
station is surrounded by six additional base stations that introduce

interference. In all cases, each base station has three sectors, and the
RL agent is expected to perform inter-cell load balancing within the
one of the sectors in the center base station.

Experimental results are shown in Figure 3 and Table 2. Since
the traffic scenarios vary greatly in traffic load, the attainable
performance (i.e., absolute values of rewards and metrics) is
highly dependent on the traffic scenario on which a method
is evaluated. Thus, all results are expressed as relative values
with respect to the Fixed method. Figure 3 shows the spread
of absolute improvement in reward across tasks and Table 2
shows the percentage improvement in individual metrics that
make up the reward. Overall, the proposed clustering method
is able to outperform the other clustering methods, and closely
match the performance of the task-specific method with only a
small number of policies. This demonstrates that a concise policy
bank constructed with the proposed method can generalize across
diverse traffic scenarios.

6. RL-based load balancing in other
communication domains

6.1. Load balancing for mobile edge
computing

With the increase in the number of IoT devices, Mobile Edge
Computing (MEC) has emerged as an infrastructure to provide
cloud computing services at the network’s edge, thereby enabling
low latency and high bandwidth applications. IoT devices can
benefit from resources associated with edge servers and send edge
servers requests when the IoT device lack the processing capacity
to execute a specific task locally. To increase capacity and decrease
processing delays, load balancing plays a crucial role in MEC
networks.

Load balancing between mobile devices and edge servers
involves offloading tasks or computations from the devices to the
edge servers. This is known in the literature as task or computation
offloading. Depending on the task offloading strategies of the
devices, some edge servers may receive more requests than others
which can result in an unbalanced load at the edge server level.
In this context, load balancing between edge servers involves
evenly distributing the load between the network’s available edge
servers. By offloading requests from overloaded MEC servers to
less crowded ones, the processing capacity and computational
latency can be improved across the whole network. Finally, since
the edge servers have reduced processing capacities compared to
cloud servers, edge servers can also decide to offload time-sensitive
requests to be executed at the cloud server.

DRL has been applied to task offloading problems. For instance,
a DDPG-based task offloading algorithm shows better performance
improvement compared to traditional offloading strategies (Chen
et al., 2021). The joint binary task offloading and resource allocation
is also studied where a parameterized policy is learned to map
channel gains to offloading decisions (Huang et al., 2020). Partial
task offloading has also been addressed using DRL. For instance,
a cooperative multi-agent DRL framework was proposed where
one agent selects the target server and the second decides the
amount of data to be transferred (Lu et al., 2020). We refer the
interested reader to Shakarami et al. (2020) for a comprehensive

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

FIGURE 3

Reward across tasks achieved by each method relative to using fixed control parameters. Each box and whisker indicate quartiles, with the mean

indicated by x and median indicated by a line in the box. Each clustering method is run with di�erent numbers of clusters, shown in parentheses. The

proposed method closely matches the task-specific models and achieves a higher mean than the other methods.

TABLE 2 Performance metrics (KPIs) achieved by all methods on Hex1 (left) and Hex7 (right) scenarios, relative to using fixed control parameters.

Method Tputmin Tputsd Tputavg Tput<χ Method Tputmin Tputsd Tputavg Tput<χ

J-Multitask +14% −10% +9% −20% J-Multitask +23% −22% +12% −12%

EM (2) +12% −7% +7% −21% EM (5) +26% −25% +10% −20%

Kmeans (2) +13% −9% +8% −20% Kmeans (5) +24% −24% +10% −16%

Ours (2) +15% −11% +9% −21% Ours (5) +30% −27% +11% −34%

EM (4) +12% −9% +8% −18% EM (10) +27% −23% +10% −26%

Kmeans (4) +12% −8% +9% −18% Kmeans (10) +27% −25% +11% −24%

Ours (4) +15% −11% +9% −21% Ours (10) +31% −27% +11% −34%

EM (6) +11% −6% +6% −12% EM (20) +27% −25% +11% −27%

Kmeans (6) +13% −8% +8% −23% Kmeans (20) +29% −25% +11% −27%

Ours (6) +16% −11% +9% −21% Ours (20) +31% −27% +12% −33%

Task-specific +16% −11% +9% −22% Task-specific +31% −27% +12% −33%

Numbers in parentheses indicate the number of clusters used. We bold the best result achieved for each cluster number.

survey on machine learning based computation offloading in
MEC environments.

Task offloading and load balancing between edge servers is also
examined to minimize the computational costs for all users (Lyu
et al., 2022). The joint optimization problem is decomposed into

two subproblems: a task offloading control scheme and a server
grouping subproblem. The latter is solved using a value-based DRL
algorithm. In a similar vein, Gao and Li (2022) studied the joint
optimization of task offloading and load balancing. In this work,
the task offloading problem is solved using the DDPG algorithm

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

and particle swarm optimization is adopted to balance the load
between the edge servers. Furthermore, Li et al. (2020) introduces
an adaptive approach for joint load balancing and task scheduling
in mobile fog computing networks.

A DRL-based solution for load balancing between MEC edge
servers and the cloud is proposed by Tahmasebi-Pouya et al. (2022)
where each MEC server is considered a separate agent. A Q-
learning-based approach is adopted in which the agent decided
either to offload requests to neighboring MEC servers or the
cloud server. This work presented a fully decentralized solution
where each MEC server is an independent learner relying on its
local information only without any explicit information exchange
between the edge servers. More recently, load balancing between
edge servers in communication, computation and caching enabled
heterogeneous MEC networks is studied using MARL (Ma et al.,
2022). The problem is formulated as a user association problem
where a separate agent decides the association action for each user.

6.2. Load balancing for WiFi (802.11)
networks

Load balancing for WiFi networks involves distributing
load across multiple access points and across the available
frequency bands. The original 802.11 wireless standards
were designed for uncoordinated access points. This limits
performance in terms of handover, a critical component of
load balancing. The actual process of handover is described
in Pack et al. (2007). See also Mishra et al. (2003). Unlike
the situation found in cellular network load balancing, the
load balancing problem in 802.11 networks is complicated
by the original design of the 802.11 network structure
and the heterogeneous nature of the wireless network
infrastructure.

The basic process of load balancing in 802.11 networks is
described in Yen and Chi (2009). Depending on the strategy, load
balancing in 802.11 networks can either be mediated by either
the access point to which the device is connected, possibly in
concert with other network-based resources, or by the device itself.
For wireless device-based load balancing approaches, the wireless
devices typically apply a rule-based approach to trigger handover to
select a new access point independently. Even if such handovers are
informed by centrally-managed network performance information,
this approach typically does not result in effective network-wide
load balancing (Yen and Chi, 2009).

An access point-based approach provides better centralized
control of the network, possibly resulting in better load
balancing. Individual AP’s can control their load through
adjusting their signal strength (coverage adjustment), rejecting new
connections at heavily loaded access points (admission control),
and disconnecting connected clients from their current access point
(associationmanagement). The process of adjusting these processes
is controlled by a rule-based system [as in Papanikos and Logothetis
(2001) and Krishnan and Laxmi (2015)]. Szott et al. (2022) provides
a broad survey of the use of machine learning (ML) approaches to
the load balancing problem for WiFi networks. A range of different
ML approaches exist in the literature including deep reinforcement
learning-based approaches (e.g., Ali et al., 2019; Zhang et al., 2020).

7. Challenges, opportunities, and
potential future directions

Reinforcement learning, especially deep reinforcement
learning, has shown its effectiveness and superior performance
in a range of different domains including load balancing in
different wireless communication domains. In contrast to classical
rule-based solutions, RL-based solutions can adjust the agents’
behaviors dynamically in reaction to different system states and
thus adapt quickly to optimal solutions. Given the current and
anticipated future demand on the wireless network infrastructure,
the previous rule-based approach to load balancing is no longer
sufficient. RL-based load balancing appears to be a likely successor
to previous approaches and play a more important role on
optimizing network performance.

In spite of these advantages, there are still several challenges
that hinder the applicability of reinforcement learning based LB
solutions for real-world applications such as data efficiency, the lack
of suitable simulator for simulation-based training and evaluation,
safety, and explainability. Here, we briefly discuss these main
challenges, offer some potential solutions and suggest potential
directions for future research.

7.1. Data e�ciency

Most deep reinforcement learning algorithms require a large
number of interactions with the environment, i.e., more than one
million interactions are often required to learn a reliable control
policy. In the real world, such a large number of interactions, even
if possible, will require a long training time. Meanwhile, real-time
interactions with the networks can also introduce safety concerns.
Data efficiency is one of the main challenges of bringing the
RL-based solutions for real-world problems. There are a number
of different types of methods that can be used to help improve
data efficiency via using a certain type of prior, including transfer
learning (Zhuang et al., 2020), meta learning (Finn et al., 2017),
and data augmentation (Laskin et al., 2020). These and other
approaches aim to reuse learned models, representations, and
even the source samples to help improve the learning efficiency.
Furthermore, it has also been shown that batch reinforcement
learning (Wu et al., 2018; Fu et al., 2022a) and model based
reinforcement learning (Huang et al., 2021) can also help future
improve the data efficiency.

7.2. Safety

A critical concern related to deploying RL-based solutions
for real-world applications relates to safety. Actions suggested by
RL agents may bring an operating real-world system into some
undesirable or even dangerous state. There two main aspects to
such safety concerns. The first involves exploration in the model
training phase. In order to learn a high-performance control
policy, the RL agent needs to explore the environment, typically
by taking random exploratory actions which can be dangerous in
the real world. The other safety concern relates to distribution
drift when operating. Though a trained RL agent may perform

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

very well for a the task for which it was trained, if the properties
of the task change, the performance of the RL agent may drop
significantly. A number of potential solutions have been proposed
to address safety concerns i.e., reward engineering (Dai et al., 2019),
constrained optimization (Kamri et al., 2021), integrating with
prediction (Krasowski et al., 2020). However, how to design a RL-
based controller to efficiently and quickly adapt to distribution drift
and manage a good trade off between safety and efficiency is still
very challenging.

7.3. Simulation

Learning a reliable control policy requires the agent to interact
with either the real environment or a simulator that can mimic
the real world to a sufficiently high level of fidelity that results
using the simulator apply in the real world (Mashaly, 2021; Lv
et al., 2022). High simulator fidelity is typically associated with high
computational cost and it can be extremely difficult to tune and
validate the simulator. Unfortunately, today’s simulators are either
too slow or insufficiently precise. If the simulation is too slow, the
RL model training process may take weeks or even months. On the
other hand, if the simulation is far from the real world, the RL agent
trained on the simulator may not perform well in the real world
due to the well-known concerns, Sim2Real gap. The development
of high performance, well-validated simulators is a key direction for
future research. Furthermore developing reinforcement learning
algorithms that can achieve better generalization will also be of
critical importance.

7.4. Explainability

Another main obstacle of bringing RL based solutions to the
real world is the lack of good explainabilities. Compared with the

rule-based solutions, RL based solutions, especially for deep RL
base solutions are mostly viewed as black boxes for the senior
managers of telecom companies. To enable RL-based LB solutions
easily adopted in real world, we need make the training process
and the behavior logic easily to understand for the managers
and domain experts. There are several recent works aiming
to address the explainability concerns for deep reinforcement
learning. However, for communication load balancing, this concern
is not yet well-studied. As a summary, reinforcement learning
based methods have already showcased impressive performance for
communication load balancing. Meanwhile, there are still several
aspects are still not well-studied.

Author contributions

DW, JL, AF, YX, and MJ wrote the main parts of this survey.
SJ, XL, and GD participated the discussions and helped revised the
submission.

Conflict of interest

SJ was employed by Samsung Electronics.
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Åström, K. J. (1965). Optimal control of markov processes with incomplete state
information. J. Math. Anal. Appl. 10, 174–205.

3GPP (2011). Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource
Control (RRC); Protocol Specification (Release 8). Technical report, 3GPP.

Aboelwafa, M., Alsuhli, G., Banawan, K., and Seddik, K. G. (2022). “Self-
optimization of cellular networks using deep reinforcement learning with hybrid action
space,” in 2022 IEEE 19th Annual Consumer Communications &Networking Conference
(CCNC) (Las Vegas, NV), 223–229.

Ackermann, J., Richter, O., and Wattenhofer, R. (2021). “Unsupervised task
clustering for multi-task reinforcement learning,” in Joint European Conference
on Machine Learning and Knowledge Discovery in Databases (Bilbao: Springer),
222–237.

Addali, K. M., Melhem, S. Y. B., Khamayseh, Y., Zhang, Z., and Kadoch, M. (2019).
Dynamic mobility load balancing for 5G small-cell networks based on utility functions.
IEEE Access 7, 126998–127011. doi: 10.1109/ACCESS.2019.2939936

Afroz, F., Subramanian, R., Heidary, R., Sandrasegaran, K., and Ahmed, S. (2015).
SINR, RSRP, RSSI and RSRQ measurements in long term evolution networks. Int. J.
Wireless Mobile Netw. 7, 113–123. doi: 10.5121/ijwmn.2015.7409

Ali, R., Shahin, N., Zikria, Y. B., Kim, B.-S., and Kim, S. W. (2019).
Deep reinforcement learning paradigm for performance optimization of channel
observation-based Mac protocols in dense WLANs. IEEE Access 77, 3500–3511.
doi: 10.1109/ACCESS.2018.2886216

Alsuhli, G., Banawan, K., Seddik, K., and Elezabi, A. (2021a). “Optimized power and
cell individual offset for cellular load balancing via reinforcement learning,” in 2021
IEEE Wireless Communications and Networking Conference (WCNC) (Las Vegas, NV),
1–7.

Alsuhli, G., Ismail, H. A., Alansary, K., Rumman, M., Mohamed, M., and Seddik,
K. G. (2021b). “Deep reinforcement learning-based cio and energy control for lte
mobility load balancing,” in 2021 IEEE 18th Annual Consumer Communications &
Networking Conference (CCNC) (Las Vegas, NV), 1–6.

Asghari, M. Z., Ozturk, M., and Hämäläinen, J. (2021). “Reinforcement learning
based mobility load balancing with the cell individual offset,” in 2021 IEEE 93rd
Vehicular Technology Conference (VTC2021-Spring) (Helsinki), 1–5.

Attiah, K., Banawan, K., Gaber, A., Elezabi, A., Seddik, K., Gadallah, Y., et al. (2020).
“Load balancing in cellular networks: A reinforcement learning approach,” in 2020
IEEE 17th Annual Consumer Communications & Networking Conference (CCNC) (Las
Vegas, NV), 1–6.

Chen, M., Wang, T., Zhang, S., and Liu, A. (2021). Deep reinforcement learning for
computation offloading in mobile edge computing environment. Comput. Commun.
175, 1–12. doi: 10.1016/j.comcom.2021.04.028

Dai, C., Xiao, L., Wan, X., and Chen, Y. (2019). “Reinforcement learning with
safe exploration for network security,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (Brighton: IEEE),
3057–3061.

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://doi.org/10.1109/ACCESS.2019.2939936
https://doi.org/10.5121/ijwmn.2015.7409
https://doi.org/10.1109/ACCESS.2018.2886216
https://doi.org/10.1016/j.comcom.2021.04.028
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

Ericsson (2022). Ericsson Mobility Report Data and Forecasts. Available online at:
https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts.

Feriani, A., Wu, D., Xu, Y. T., Li, J., Jang, S., Hossain, E., et al. (2022).
Multiobjective load balancing for multiband downlink cellular networks: a meta-
reinforcement learning approach. IEEE J. Select. Areas Commun. 40, 2614–2629.
doi: 10.1109/JSAC.2022.3191114

Finn, C., Abbeel, P., and Levine, S. (2017). “Model-agnostic meta-learning for
fast adaptation of deep networks,” in International Conference on Machine Learning
(Sydney: PMLR), 1126–1135.

Fu, Y., Wu, D., and Boulet, B. (2022a). “A closer look at offline Rl agents,” in
Thirty-Sixth Conference on Neural Information Processing Systems (NeurIPS 2022), eds
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (New Orleans,
LO), 8591–8604.

Fu, Y., Wu, D., and Boulet, B. (2022b). “Reinforcement learning based dynamic
model combination for time series forecasting,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 6639–6647.

Fujimoto, S., Hoof, H., and Meger, D. (2018). “Addressing function approximation
error in actor-critic methods,” in International Conference on Machine Learning
(Stockholm: PMLR), 1587–1596.

Gao, Y., and Li, Z. (2022). “Load balancing aware task offloading in mobile edge
computing,” in 2022 IEEE 25th International Conference on Computer Supported
Cooperative Work in Design (CSCWD) (Hangzhou), 1209–1214.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290. doi: 10.48550/arXiv.1801.01290

Hendrawan, H., Zain, A., and Lestari, S. (2019). Performance evaluation of A2-
A4-RSRQ and A3-RSRP handover algorithms in LTE network. Jurnal Elektronika dan
Telekomunikasi 19, 64–74. doi: 10.14203/jet.v19.64-74

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531. doi: 10.48550/arXiv.1503.02531

Huang, L., Bi, S., and Zhang, Y.-J. A. (2020). Deep reinforcement learning for online
computation offloading in wireless powered mobile-edge computing networks. IEEE
Trans. Mobile Comput. 19, 2581–2593. doi: 10.1109/TMC.2019.2928811

Huang, X., Wu, D., Jenkin, M., and Boulet, B. (2021). Modellight: model-based
meta-reinforcement learning for traffic signal control. arXiv preprint arXiv:2111.08067.
doi: 10.48550/arXiv.2111.08067

Jorguseski, L., Pais, A., Gunnarsson, F., Centonza, A., and Willcock, C. (2014). Self-
organizing networks in 3GPP: standardization and future trends. IEEE Commun. Mag.
52, 28–34.

Kamri, A. Y., Quang, P. T. A., Huin, N., and Leguay, J. (2021). “Constrained policy
optimization for load balancing,” in 2021 17th International Conference on the Design
of Reliable Communication Networks (DRCN) (Milan: IEEE), 1–6.

Kang, J., Chen, X., Wu, D., Xu, Y. T., Liu, X., Dudek, G., et al. (2021).
“Hierarchical policy learning for hybrid communication load balancing,” in ICC
2021-IEEE International Conference on Communications (Montreal, QC: IEEE), 1–6.

Krasowski, H., Wang, X., and Althoff, M. (2020). “Safe reinforcement learning for
autonomous lane changing using set-based prediction,” in 2020 IEEE 23rd international
conference on Intelligent Transportation Systems (ITSC) (Rhodes: IEEE), 1–7.

Krishnan, R., and Laxmi, V. (2015). “IEEE 802.11 WLAN load balancing for
network enhancement,” in 3rd Int. Conf. on Recent Trends in Computing (Ghaziabad).

Kwan, R., Arnott, R., Paterson, R., Trivisonno, R., and Kubota, M. (2010). “On
mobility load balancing for LTE systems,” in 2010 IEEE 72nd Vehicular Technology
Conference-Fall (Ottawa: IEEE), 1–5.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and Srinivas, A. (2020).
“Reinforcement learning with augmented data,” Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, eds H. Larochelle, M. Ranzato, R. Hadsell, M. -F. Balcan, and
H.-T. Lin. p. 19884–19895.

Li, J., Wu, D., Xu, Y. T., Li, T., Jang, S., Liu, X., et al. (2022). “Traffic scenario
clustering and load balancing with distilled reinforcement learning policies,” in ICC
2022-IEEE International Conference on Communications (Seoul: IEEE), 1536–1541.

Li, X., Qin, Y., Zhou, H., Chen, D., Yang, S., and Zhang, Z. (2020). An
intelligent adaptive algorithm for servers balancing and tasks scheduling over
mobile fog computing networks. Wireless Commun. Mobile Comput. 2020, 1–16.
doi: 10.1155/2020/8863865

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., et al. (2015). Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971. doi: 10.48550/arXiv.1509.
02971

Lu, H., Gu, C., Luo, F., Ding, W., and Liu, X. (2020). Optimization of lightweight
task offloading strategy for mobile edge computing based on deep reinforcement
learning. Future Gen. Comput. Syst. 102, 847–861. doi: 10.1016/j.future.2019.07.019

Lv, Z., Chen, D., Feng, H., Wei, W., and Lv, H. (2022). Artificial intelligence
in underwater digital twins sensor networks. ACM Trans. Sensor Netw. 18, 1–27.
doi: 10.1145/3519301

Lyu, F., Dong, Z., Wu, H., Duan, S., Wu, F., Zhang, Y., et al. (2022). “Mobility-aware
computation offloading with adaptive load balancing in small-cell MEC,” in ICC 2022
- IEEE International Conference on Communications (Seoul), 4330–4335.

Ma, M., Wu, D., Xu, Y. T., Li, J., Jang, S., Liu, X., et al. (2022). “Coordinated load
balancing in mobile edge computing network: a multi-agent DRL approach,” in ICC
2022 - IEEE International Conference on Communications (Seoul), 619–624.

Mashaly, M. (2021). Connecting the twins: a review on digital twin
technology & its networking requirements. Proc. Comput. Sci. 184, 299–305.
doi: 10.1016/j.procs.2021.03.039

Mishra, A., Shin, M., and Arbaugh, W. (2003). An empirical analysis of the IEEE
802.11MAC layer handoff process.ACM SIGCOMMComp. Commun. Rev. 33, 93–102.
doi: 10.1145/956981.956990

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016).
“Asynchronous methods for deep reinforcement learning,” in International Conference
on Machine Learning (New York, NY), 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et al.
(2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
doi: 10.48550/arXiv.1312.5602

Munoz, P., Barco, R., de la Bandera, I., Toril, M., and Luna-Ramirez, S. (2011).
“Optimization of a fuzzy logic controller for handover-based load balancing,” in 2011
IEEE 73rd Vehicular Technology Conference (VTC Spring) (Budapest: IEEE), 1–5.

Munoz, P., Barco, R., Ruiz-Aviles, J. M., de la Bandera, I., and Aguilar, A.
(2013). Fuzzy rule-based reinforcement learning for load balancing techniques
in enterprise LTE femtocells. IEEE Trans. Vehicular Technol. 62, 1962–1973.
doi: 10.1109/TVT.2012.2234156

Musleh, S., Ismail, M., and Nordin, R. (2017). Load balancing models based on
reinforcement learning for self-optimized Macro-Femto LTE-advanced heterogeneous
network. J. Telecommun. Electron. Comput. Eng. 9, 47–54.

Mwanje, S. S., and Mitschele-Thiel, A. (2013). “A Q-learning strategy for LTE
mobility load balancing,” in 2013 IEEE 24th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC) (London), 2154–2158.

Mwanje, S. S., Schmelz, L. C., and Mitschele-Thiel, A. (2016). Cognitive cellular
networks: a Q-learning framework for self-organizing networks. IEEE Trans. Netw.
Serv. Manage. 13, 85–98. doi: 10.1109/TNSM.2016.2522080

Nian, R., Liu, J., and Huang, B. (2020). A review on reinforcement learning:
introduction and applications in industrial process control. Comput. Chem. Eng. 139,
106886. doi: 10.1016/j.compchemeng.2020.106886

Pack, S., Choi, J., Kwon, T., and Choi, Y. (2007). Fast-handoff support
in IEEE 802.11 wireless networks. IEEE Commun. Surv. Tutorials 9, 2–12.
doi: 10.1109/COMST.2007.358968

Papanikos, I., and Logothetis, M. (2001). “A study on dynamic load balance for IEEE
802.11b wireless LAN,” in Proc. 8th Intl Conf. Advances in Communication and Control
(Crete), 83–89.

Pinto, L., and Gupta, A. (2017). “Learning to push by grasping: Using multiple
tasks for effective learning,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA) (Marina Bay Sands: IEEE), 2161–2168.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. New York, NY: John Wiley & Sons.

Puttonen, J., Kolehmainen, N., Henttonen, T., and Kaikkonen, J. (2009). “On idle
mode mobility state detection in evolved utran,” in 2009 Sixth International Conference
on Information Technology: New Generations (Las Vegas, NV: IEEE), 1195–1200.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience
replay. arXiv preprint arXiv:1511.05952. doi: 10.48550/arXiv.1511.05952

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). “Trust
region policy optimization,” in International Conference on Machine Learning (Lille),
1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.
doi: 10.48550/arXiv.1707.06347

Shakarami, A., Ghobaei-Arani, M., and Shahidinejad, A. (2020). A survey on the
computation offloading approaches in mobile edge computing: a machine learning-
based perspective. Comput. Netw. 182, 107496. doi: 10.1016/j.comnet.2020.107496

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).
“Deterministic policy gradient algorithms,” in Proceedings of the 31st International
Conference on International Conference on Machine Learning (Bejing), 387–395.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning and Machine
Learning: An Introduction, 2nd Edn. MIT Press. Available online at: https://www.
worldcat.org/oclc/37293240

Sutton, R. S.,McAllester, D. A., Singh, S. P., andMansour, Y. (2000). “Policy gradient
methods for reinforcement learning with function approximation,” in Advances in
Neural Information Processing Systems, 12, eds S. A. Solla, T. K. Leen, and K. -R. Muller
(Denver, CO), 1057–1063.

Szott, S., Kosek-Szott, K., Gawlowicz, P., Gómez, J. T., Bellalta, B., Zubow,
A., et al. (2022). WiFi meets ML: a survey ion improving IEEE 802.11

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts
https://doi.org/10.1109/JSAC.2022.3191114
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.14203/jet.v19.64-74
https://doi.org/10.48550/arXiv.1503.02531
https://doi.org/10.1109/TMC.2019.2928811
https://doi.org/10.48550/arXiv.2111.08067
https://doi.org/10.1155/2020/8863865
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.1016/j.future.2019.07.019
https://doi.org/10.1145/3519301
https://doi.org/10.1016/j.procs.2021.03.039
https://doi.org/10.1145/956981.956990
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1109/TVT.2012.2234156
https://doi.org/10.1109/TNSM.2016.2522080
https://doi.org/10.1016/j.compchemeng.2020.106886
https://doi.org/10.1109/COMST.2007.358968
https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1016/j.comnet.2020.107496
https://www.worldcat.org/oclc/37293240
https://www.worldcat.org/oclc/37293240
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

performance with machine learning. IEEE Commun. Surv. Tutorials 24, 1843–1893.
doi: 10.1109/COMST.2022.3179242

Tahmasebi-Pouya, N., Sarram, M.-A., and Mostafavi, S.-A. (2022). “Load balancing
in mobile edge computing: a reinforcement learning approach,” in 2022 Sixth
International Conference on Smart Cities, Internet of Things and Applications (SCIoT)
(Mashhad), 1–6.

Van Hasselt, H., Guez, A., and Silver, D. (2016). “Deep reinforcement learning with
double Q-learning,” in Proceedings of the AAAI Conference on Artificial Intelligence
(Phoenix), 30.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas, N. (2016).
“Dueling network architectures for deep reinforcement learning,” in International
Conference on Machine Learning (New York, NY), 1995–2003.

Watkins, C. J., and Dayan, P. (1992). Q-learning.Mach. Learn. 8, 279–292.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for
connectionist reinforcement learning.Mach. Learn. 8, 229–256.

Wu, D. (2018).Machine Earning Algorithms and Applications for Sustainable Smart
Grid. Montreal: McGill University.

Wu, D., Kang, J., Xu, Y. T., Li, H., Li, J., Chen, X., et al. (2021). “Load balancing for
communication networks via data-efficient deep reinforcement learning,” in 2021 IEEE
Global Communications Conference (GLOBECOM) (Madrid), 1–7.

Wu, D., Rabusseau, G., François-lavet, V., Precup, D., and Boulet, B. (2018).
“Optimizing home energy management and electric vehicle charging with
reinforcement learning,” in 2018 ICML Workshop on Adapative Learning Agent
(Stockholm).

Xu, Y., Xu, W., Wang, Z., Lin, J., and Cui, S. (2019a). “Deep reinforcement
learning based mobility load balancing under multiple behavior policies,” in ICC
2019-2019 IEEE International Conference on Communications (ICC) (Shanghai: IEEE),
1–6.

Xu, Y., Xu, W., Wang, Z., Lin, J., and Cui, S. (2019b). Load
balancing for ultradense networks: a deep reinforcement learning-based
approach. IEEE Internet Things J. 6, 9399–9412. doi: 10.1109/JIOT.2019.29
35010

Yen, L.-H., and Chi, K.-H. (2009). Load balancing in IEEE 802.11 networks. IEEE
Internet Comput. 13, 56–64. doi: 10.1109/MIC.2009.11

Zhang, L., Yin, H., Zhou, Z., Roy, S., and Sun, Y. (2020). “Enhancing wifi multiple
access performance with federated deep reinforcement learning,” in Proc. IEEE 92nd
Veh. Technol. Conf. (VTC-Fall) (Victoria, BC), 1–6.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., et al. (2020). A comprehensive
survey on transfer learning. Proc. IEEE 109, 43–76. doi: 10.1109/JPROC.2020.
3004555

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://doi.org/10.1109/COMST.2022.3179242
https://doi.org/10.1109/JIOT.2019.2935010
https://doi.org/10.1109/MIC.2009.11
https://doi.org/10.1109/JPROC.2020.3004555
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wu et al. 10.3389/fcomp.2023.1156064

Nomenclature

TABLE 3 Summary of key notations and symbols.

Load balancing

Xi Signal quality of the i-th cell (e.g., RSRP)

C Number of cells in the network

TCIOi,j
Cell Individual Offset (CIO) between the cells i and j

Hyst Hysteresis parameter

TA4i , TA2i Controllable threshold of the i-th for the A4 and A2 events,
respectively

TA5i,j , T
′

A5i,j
Pairwise thresholds of the A5 event between the cells i and j

TCRSi,j Pairwise Cell re-selection threshold between the cells i and j

ρ Physical resource block utilization percentage

fu,i Number of packets transmitted to the UE u from the cell i

du,i Delay experienced by the UE u when served by the cell i

Tputu,i Throughput of the UE u when served by the cell i

U, Ui The set of connected UEs to the network, the subset of UEs
connected to a cell i

Reinforcement learning

S ,A,P ,R State, action spaces, transition probability function, scalar reward
function

γ , κ0 Discount factor, initial state distribution

O, ζ , b Observation space, the probability distribution over observations
given a state and an action and the belief state, respectively

π , π∗ , 5,πφ A policy, the optimal policy, the set of all possible policies, a
parameterized policy with parameters φ

J Expected cumulative discounted reward

Vπ ,Qπ ,Aπ The value function, the state-action value function and the
advantage function under a policy π

Q∗ , Q̂, Q̄,Qθ Optimal Q-function, estimated Q-function, target Q-function,
parameterized Q-function with parameters θ

α Learning rate

D Replay buffer

H Episode horizon or length of a trajectory

Here, we present a summary of the notations used in this paper,
as shown in Table 3.

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1156064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Reinforcement learning for communication load balancing: approaches and challenges
	1. Introduction
	2. Load balancing in cellular networks
	2.1. Load balancing mechanisms
	2.1.1. MLB via handover for active UEs
	2.1.2. MLB via cell-reselection for idle UEs
	2.1.3. Coverage-based load balancing

	2.2. Load balancing metrics
	2.2.1. Utilization based
	2.2.2. Throughput based
	2.2.3. Other performance metrics

	3. RL preliminaries
	4. RL algorithms
	4.1. Value-based RL
	4.2. Policy-based RL

	5. Reinforcement learning-based load balancing in cellular networks
	5.1. MDP formulations
	5.2. RL-based methods for load balancing
	5.2.1. Q-learning for load balancing
	5.2.2. Policy-gradient methods for load balancing

	5.3. Sample application of RL to network load balancing

	6. RL-based load balancing in other communication domains
	6.1. Load balancing for mobile edge computing
	6.2. Load balancing for WiFi (802.11) networks

	7. Challenges, opportunities, and potential future directions
	7.1. Data efficiency
	7.2. Safety
	7.3. Simulation
	7.4. Explainability

	Author contributions
	Conflict of interest
	Publisher's note
	References
	Nomenclature

