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Abstract. Multisine signals are commonly used in the
measurement of dynamic systems and wireless channels. For
optimal measurements with a high dynamic range, a low
Crest Factor (CF) excitation signal is required. In this pa-
per, a modified approach to optimize the crest factor for
complex-valued multisine signals is presented. The approach
uses a nonlinear optimization method where the real and
imaginary parts can also be optimized for low CF. Further-
more, extensions of the real-valued multisine CF optimiza-
tion methods are presented for complex-valued cases. The
proposed methods are validated and compared using simu-
lations. Based on the results it is shown that the novel ap-
proach can lead to more optimal signal design and lower CF
compared to other techniques for complex-valued multisine
signals.

Keywords
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1. Introduction
The optimal design of test and measurement signals is

a key factor for analyzing and identifying mechanical sys-
tems, biomedical systems, batteries, or for measuring wire-
less transmission channels. Identification of the plant model
is the first step before a suitable control algorithm can be
developed. In the case of wireless communication, the es-
timation of the radio channel is essential before a channel
equalization method can be applied to reconstruct the trans-
mitted data.

To identify the time-domain impulse response, and
frequency-domain transfer function of a system under ob-
servation certain excitation signals have to be applied. Fur-
thermore, the identification of nonlinearities present in the
system might also be a preferable task. Restrictions in both

time- and frequency-domain lead to constraints that are not
straightforward to fulfill during the design process of the
excitation signal.

An ideal Dirac impulse is not realizable in practical sys-
tems. Applying such an impulse-shaped function might also
be destructive for the system under observation. Such exci-
tation signals are commonly used in mechanical or acoustic
systems using impact hammers [1]. Another commonly used
excitation function in system identification is the Heaviside
step function. It is also hard to approximate, and it might
not be the best choice in the case of bandlimited systems.
Depending on the limitation posed by the system on the input
signal, other signals can also be applied: in case of binary
input systems pseudorandom binary sequence [2] or in case
of bandlimited systems, chirp [3] or multisine [4] signals can
be used.

In this paper, we focus on multisine excitation signals
as they have flat and well-localized spectra, and they are
especially suitable for frequency domain identification pur-
poses [5]. The generation and processing of such signals can
be efficiently performed by applying Fast Fourier Transform
(FFT) and Inverse FFT (IFFT).

Multisine test signals are used in various applications,
such as testing of analog integrated circuits [6], electric driv-
etrains [7], impedance spectroscopy [8], [9], battery diagno-
sis [10], vibration analysis of bridges [11], or even wireless
channel estimation [12], [13].

Multisine signals can be designed in a comfortableman-
ner to measure the dedicated bandwidth of the system with
constant amplitude spectra. As the time-domain signal is
a sum of many sinusoids, it has a noise-like amplitude distri-
bution. This phenomenon can be controlled by selecting the
phase values of the components to minimize the amplitude
fluctuation of the resultant signal.

Numerous techniques have been proposed for deter-
mining or optimizing the phase values of the frequency
components to achieve a low amplitude fluctuation of the
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time-domain signal, i.e. Crest Factor (CF). A closed-form
expression for the phase values was introduced in [14],
which results in moderate CF values. Various iterative
time-frequency-domain swapping algorithms were proposed
by [15–18]. An optimization technique, namely using
the nonlinear Chebyshev approximation method, was given
in [19]. An application of the Artificial Bee Colony (ABC)
algorithm was presented by [20]. Recently, a nonlinear
optimization method [4] was proposed, which can achieve
the best performance among the compared methods. This
method is based on the algorithm presented in [19] using
an interior-point solver, then improves the result by utilizing
a slack variable.

The relevance of examining complex-valued multisines
is mainly applicable to Orthogonal Frequency Division Mul-
tiplexing (OFDM) signals used for wireless communication,
for which a low CF of the real and imaginary parts and for the
modulated signal is desired. In the past decades algorithms
for CF reduction have been proposed [21], [22].

In this paper, we propose an optimization algorithm
based onGuillaume’smethod [19], whose cost function is the
weighted sum of the CF and the CF of the real and imaginary
parts. Additionally, Yang’s method [18] has been generalized
for complex signals and can optionally be applied after each
p-norm iteration of Guillaume’s method. The algorithm has
been tested with a number of weights in the cost function,
and with or without using the swapping method. For the sim-
ulations, we have considered multisine signals with equi-flat
spectra comprising moderate (31) and high (1000) number
of tones.

The paper is organized as follows. In the next sec-
tion, the multisine excitation signal is defined and the gen-
eration steps are described. Furthermore, the metrics to
determine the amplitude fluctuations are given. Section 3
presents an overview of the most important CF minimization
algorithms found in the literature. In Sec. 4, improved CF
minimization algorithms for complex multisine signals are
described. Section 5 presents the simulation results. A sta-
tistical comparison of the proposed methods with the other
methods is shown in terms of the achievable CF. In the final
section, the conclusions are drawn.

2. Multisine Signals
The time-domain samples – with normalized sampling

time – of complex multisines are defined as

𝑥 [𝑛] =
𝐾∑︁
𝑘=1

𝐶𝑘ej2𝜋 𝑓𝑘𝑛 (1)

without a DC component, represented by the term 𝑘 = 0,
where 𝐾 is the number of complex-valued frequency com-
ponents in the multisine signal. 𝐶𝑘 and 𝑓𝑘 are the complex
amplitude and frequency of the 𝑘 th component. The complex
amplitude 𝐶𝑘 can be expressed as:

𝐶𝑘 = |𝐶𝑘 |ej𝜑𝑘 (2)

where |𝐶𝑘 | is the amplitude and 𝜑𝑘 = ∠𝐶𝑘 is the phase of the
𝑘 th tone.

In order to generate periodicmultisine signals with a pe-
riod of 𝑁 samples, the normalized frequencies should be
chosen as 𝑓𝑘 = 𝑘/𝑁 . This way the frequencies are spaced
equidistantly. Furthermore, this choice of frequencies en-
ables the synthesis and analysis of multisine signals effi-
ciently with low computational complexity using the IFFT
and FFT algorithms, respectively.

Complex-valued multisine signals are typically applied
in wireless communication systems where the transmission
is done in the passband and the radio channel is measured at
a certain transmission frequencywith limited bandwidth. Af-
ter the D/A conversion an analog low-pass filter is needed to
remove the high-frequency components inherently added by
the conversion. Then an In-phase and Quadrature-phase (IQ)
modulator is used to modulate the signal. The block diagram
of a measurement setup using complex-valued multisine sig-
nal is shown in Fig. 1. In the case of the complex-valued
multisine signals, the real and imaginary parts are created
and filtered separately before modulating it with a sine and
a cosine version of the carrier wave ( 𝑓c). After modula-
tion, the two paths are added, and a High Power Amplifier
(HPA) is applied to amplify the signal in the passband before
transmitting it using an antenna over the radio channel.

A real-valued multisine signal is a special case of (1)
when the following holds:

𝐶𝑘 = 𝐶
∗
𝑁−𝑘 (3)

where 𝐶∗ denotes the complex conjugate of 𝐶. The resulting
real-valued multisine signal may be expressed as

𝑥 [𝑛] =
𝐾∑︁
𝑘=1

𝐴𝑘 cos(2𝜋 𝑓𝑘𝑛 + 𝜑𝑘 ) (4)

where 𝐾 is the number of frequencies, 𝐴𝑘 = 2|𝐶𝑘 |, 𝑓𝑘 and
𝜑𝑘 are the amplitude, frequency and initial phase of the 𝑘 th
frequency. Note that in the case of a real-valued multisine
signal of 𝐾 tones, there are 2𝐾 non-zero components in
the spectrum, due to the complex conjugate symmetry given
by (3).
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Fig. 1. Measurement setup of a radio channel using complex-
valued multisine signal applying an IQ modulator.
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Fig. 2. Measurement setup of a system using a real-valued mul-
tisine signal.
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Fig. 3. Theoretical lower limit of the crest factor for real- and
complex-valued multisine signals.

Real-valued multisine signals are used in a wider area
such as mechanical, electrical, chemical or biomedical sys-
tems where the excitation signal is applied in the baseband.
After generating the signal in the frequency domain, the
time-domain data is acquired using the IFFT algorithm. Then
a Parallel-to-Series converter (P/S) feeds the data to a Digi-
tal-to-Analog (D/A) converter to acquire a time-domain sig-
nal for the excitation of the investigated system as shown
in Fig. 2.

The Crest Factor (CF) of a signal is defined as the ratio
of the maximum value and the Root Mean Square (RMS) of
the signal:

CF(x) = max ( |𝑥 |)
RMS(𝑥) =

max ( |𝑥 [𝑛] |)√︄
1
𝑁

𝑁∑
𝑛=1

|𝑥 [𝑛] |2
. (5)

In terms of complex-valued signals, such as modulated
radio transmission signals, the notion of Peak-to-Average
Power Ratio (PAPR) is often used:

PAPR = 20 log10 (CF). (6)

Note that in (1) there is no DC component present, as the DC
component would only manifest as an additional term in the
peak value and the square of the RMS, increasing the CF and
the PAPR of the signal.

In the past decades, a number of approaches have been
presented in order to minimize the crest factor, most of them
dealing with the real-valued case [4, 15–19] – which is also
relevant in the case of complexmultisine signals as the I andQ
channels are handled by separate D/A converters and mixers.

Besides generalizing an algorithm for complex-valued
multisines, Friese [17] also dealt with the lower and upper
bounds of the CF that can be achieved. It stands to reason
that in case of a flat spectrum, i.e. the amplitude of each tone
in the frequency-domain is equal, the CF is at most

√
𝐾 as

the RMS of the signal is
√
𝐾 , while the peak value is 𝐾 in the

worst case, if all tones are in phase.

Through calculations, [17] also defines a theoretical
lower bound in the case of complex multisine signals con-
taining more than one tone:

CF ≥
√︂
𝐾 + 2
𝐾

=

√︂
1 + 2

𝐾
. (7)

For a large number of tones the boundary converges to 1,
implicating that because for a smaller number of tones the
number of variables is lower, the CF can not be decreased
as much. This theoretical limit holds for any multisine sig-
nal; as a real-valued multisine is a special case, the formula
also defines a lower limit as

√︃
1 + 1

𝐾
, however, the restriction

defined in (3) is not taken into consideration. In the sequel,
we are dealing exclusively with flat spectra, which is also not
considered in [17]. Hence, it is a fair assumption that the
theoretical lower limit will not be reached in either case. The
limits for both real and complex cases are illustrated in Fig. 3.

A fast and simple approach for generating multisine
signals with low CF is to run Monte-Carlo simulations with
a set of randomly chosen phases and from the various re-
alizations, the record with the lowest CF is selected for the
measurement. In the case of 𝐾 = 𝑁 tones, the worst-case
value of the CF = 𝑁 can be reached if all phases are identical,
this way a time domain impulse is generated. Thus, for a large
number of tones finding a set of phases that result in low CF
might be computationally exhaustive. In the next section,
various methods are presented which can efficiently reduce
the CF/PAPR of multisine signals with a set of initial phases.

3. CF and PAPR Reduction Methods

3.1 Direct Calculation Methods
A closed-form formula – in case of flat spectra – for the

phase values has been presented by Schroeder [14]:

𝜑𝑘 = 𝜋
(𝑘 − 1)2
𝐾

. (8)

The main advantage of this method is that the phase values
are calculated directly. Although the attainable crest fac-
tor reduction is only moderate compared to other iterative
algorithms, it may also provide the initialization for other
optimization techniques.

Other direct methods are also present in literature, such
as the Newman multitone [23] for which the phases are given
by the same formula as (8), but a lower crest factor is achieved
by applying a non-flat amplitude spectrum. Furthermore, the
application of Shapiro-Rudin phases [24] can result in a crest
factor always lower than 2, but usually slightly higher than
what is achievable using Newman phases. The phase values
are defined as a binary sequence of the values 1 and −1,
but the method has limitations when applying it to multisine
signals with a large number of components.
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3.2 Time-Frequency-Domain Swapping
Methods
The processing steps of a heuristic method using iter-

ative time-frequency-domain swapping are described in Al-
gorithm 1.

Algorithm 1. Time-frequency-domain swapping algorithm
𝑖 = 0
while CF(𝑥) > CFtarget && 𝑖 ≤ 𝑖max do
𝑥 ′[𝑛] = amplitude_manip(𝑥 [𝑛])
𝐶 ′
𝑘
= FFT(𝑥 ′[𝑛])

𝐶𝑖
𝑘
=
��𝐶0
𝑘

�� ej∠𝐶′
𝑘

𝑥 [𝑛] = IFFT
(
𝐶𝑖
𝑘

)
𝑖 = 𝑖 + 1

end while
Require: 𝑥 [𝑛], 𝐶0

𝑘
, CFtarget, 𝑖max

return 𝑥 [𝑛]

First, initial values 𝐶0
𝑘
for the complex amplitude values of

the multisine tones are selected. The IFFT is applied to form
the time domain samples 𝑥 [𝑛]. Then, an iterative process
starts, and this loop is repeated until the maximum number
of iterations 𝑖max are reached or the desired CF limit CFtarget
is achieved. In each iteration, a new signal 𝑥 ′[𝑛] with ma-
nipulated time domain samples is formed. The FFT is used
to calculate the modified complex amplitude values 𝐶 ′

𝑘
. The

phase values of this signal are kept and the amplitude values
are restored to the original values. Finally, using the new
complex amplitude values 𝐶𝑖

𝑘
, a new time-domain signal is

generated using the IFFT.

In general, the problemwith such algorithms is that their
convergence is hard to prove and the required number of iter-
ations is hard to determine. In the following part, the various
amplitude manipulation functions found in the literature are
discussed briefly.

Following the observation that the signals with binary
values haveminimalCF, van denBos [15] described amethod
to obtain better CF than the previously used Schroeder’s
method. The sign function is proposed as a time domain
manipulation function, i.e.:

𝑥 ′[𝑛] = sign(𝑥 [𝑛]). (9)

As a result, the signal 𝑥 ′[𝑛] will have only the amplitude
values of −1 or 1. An additional stop criterion is proposed to
the algorithm: if the phases do not change from one iteration
to the next, the iterative process should stop.

Another amplitude manipulation method was proposed
by van der Ouderaa [16]. In his algorithm, the time-domain
signal is limited to a constant value of

𝐴L = 𝑎L ·max( |𝑥 [𝑛] |) (10)

with 𝑎 < 1. The resulting amplitude manipulation function
can be expressed as

𝑥 ′[𝑛] =
{
𝑥 [𝑛], if |𝑥 [𝑛] | ≤ 𝐴L

𝐴L, if |𝑥 [𝑛] | > 𝐴L
. (11)

Based on experimental validation the optimal value for 𝑎L
lies between 0.75 and 0.95. Smaller values of 𝑎L may cause
divergence of the algorithm, while higher values of 𝑎L lead
to undesirably slow convergence.

Yang [18] proposed further improvement to the previ-
ous method by iteratively changing the value of 𝑎 in (10) over
the number of iterations. The best results have been found
with a limit changing in a logarithmic manner as

𝑎L (𝑖) =
log10 (𝑖 + 𝑏1)
log10 (𝑏2)

(12)

where 𝑖 is the iteration number, 𝑏1 and 𝑏2 are constants de-
pendent on the desired CF.

3.3 Optimization Methods
The general aim of optimization is to find a set of phases

minimizing (5) systematically instead of the heuristic meth-
ods described by Algorithm 1.

Local minimum search algorithms solve an optimiza-
tion problem using a gradient-based method, for which a dif-
ferentiable cost function is required. The state-of-the-art
method for crest factor minimization is that of Guillaume
et al. [19]. As the Chebyshev-norm (ℓ∞-norm) is a non-
differentiable function, the presented method approximates
the peak value by an ℓ𝑝-norm. In the case of flat spectra,
the ℓ2-norm is constant, hence minimizing the peak value
minimizes the CF as well. The method iteratively solves
the optimization problem of minimizing the ℓ𝑝-norm, in-
creasing the value of 𝑝, which is chosen as powers of 2,
after each solve. The main advantage of the method is the
improved reduction of the CF compared to time-frequency
swapping algorithms; the disadvantage is that as in the case
of any gradient-based method, it is not guaranteed that the
global minimum is found. The algorithm presented in [4]
enhanced Guillaume’s method by subsequently solving an-
other optimization problem, where the elements of a slack
variable vector are minimized, while the absolute value of
the time-domain samples of the signal are required to be less
than the slack variable via an inequality constraint.

Global minimum search is possible using e.g. genetic,
Particle Swarm Optimization (PSO) or Artificial Bee Colony
(ABC) algorithms. An example of the latter was presented
by Janeiro et al. in [20]. In the ABC algorithm, a number
of candidate solutions are present, which are perturbed (i.e.
the sets of initial phases are modified), then evaluated to de-
termine whether the change resulted in a reduction of CF. At
certain intervals, candidate solutions that were not improved
are abandoned to be replaced by the currently best candidate
(to improve chances of finding a local minimum by perturb-
ing that candidatemore times in an iteration) and new random
candidates (to improve the chances of initialization close to
another local minimum). A disadvantage of these global
methods is the memory requirement, computational load and
slow convergence in case of a large number of harmonics.
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4. Proposed Methods for CF Optimiza-
tion of Complex-Valued Multisines
In order to minimize the crest factor of complex-valued

multisines, in addition to giving a theoretical lower bound,
Friese [17] also developed a generalized time-frequency-
domain swapping method overcoming the lack of definition
of relations for complex numbers by defining a complex error
signal to be subtracted from the signal in each iteration. To re-
duce the PAPR of OFDM signals, notable contributions were
developed by Armstrong [22], whose method includes clip-
ping the absolute value of the complex time-domain values,
then applying time-dependent frequency-domain filtering to
keep the transmitted data on a symbol-by-symbol basis; as
well as by Tellado and Cioffi [21], who developed an opti-
mization algorithm for determining a time-domain vector to
be added to the signal in order to reduce PAPR, and also
optimizing some carriers that are not transmitting data.

We suggest modifications to time-frequency-domain
swapping algorithms and Guillaume’s method for com-
plex-valued multisines which optimize CF using all tones,
i.e. in terms of OFDM signals we ignore data and rather
acquire relative phase shifts between the tones in order to
reduce PAPR.

A heuristic and simple approach is to clip the absolute
value of the complex values in the time-domain while keep-
ing the phase. As a result, the clipping algorithms presented
in (11) have to be modified to keep the phases for complex
signals as:

𝑥 ′c [𝑛] =
{
𝑥 [𝑛], if |𝑥 [𝑛] | ≤ 𝐴L

𝐴Lej∠𝑥 [𝑛] , if |𝑥 [𝑛] | > 𝐴L
. (13)

In wireless applications using complex multisine sig-
nals for measurement, the real and imaginary parts of the
complex baseband signal are handled separately as shown in
Fig. 1. As a result, it is worthwhile to minimize the crest
factors of the I and Q components (𝑥I [𝑛] = <{𝑥 [𝑛]} and
𝑥Q [𝑛] = ={𝑥 [𝑛]}) and not only reduce the PAPR of the
resultant complex signal after modulation.

During the investigations, two versions of Yang’s
method are used. In the first case, the swapping algorithm
is applied to the absolute value of the complex time domain
signal. In the second case, the method is applied to the real
and imaginary parts, separately.

In the case of optimization methods, as an extension of
Guillame’s method, the cost function can be altered in order
to minimize both the CFs of the channels and the overall
PAPR at the same time. Modifying Guillaume’s method, the
proposed problem to be solved in an iterative manner can be
given as

minimize
𝝋

𝑁−1∑︁
𝑛=0

(
𝑤I | |𝑥I [𝑛] | |𝑝 +𝑤Q

����𝑥Q [𝑛]����𝑝 +𝑤 | |𝑥 [𝑛] | |𝑝
)
(14)

where | |·| |𝑝 denotes the 𝑝-norm. The method is versatile, as
the weights (𝑤I, 𝑤Q, 𝑤) can be tuned, and after each solution,
minimization may be assisted by using a time-frequency-
domain swapping algorithm as well. Guillaume’s method is
considered a special case, where 𝑤I = 𝑤Q = 0.

The main differences in comparison with the algorithm
presented for real-valued multisines in [4] are the following:

• After iteratively solving (with increasing 𝑝) (14) for real
signals, the algorithmof [4] consisted of solving another
optimization problemwhich reduced time-domain fluc-
tuations by using a slack variable – this is omitted.

• Instead, there is an option to use a time-frequency-
domain swapping algorithm after each solution of the
optimization problem. For this purpose, Yang’s algo-
rithm is used.

5. Simulations

5.1 Proposed Algorithm
Both time-frequency-domain swapping and Guil-

laume’s method are implemented for MATLAB in the Fdi-
dent toolbox [5], while the best performing swapping algo-
rithm is that of Yang’s using logarithmically changing clip-
ping thresholds [18]. For flat spectra containing 31 and 100
harmonics, crest factors as low as 1.3750 and 1.3997 have
been reported. The two methods may be combined such that
after each iteration of the optimization problem, Yang’s al-
gorithm is executed, and the resulting signal is used before
the next iteration with the increased 𝑝 value. Another im-
provement of Guillaume’s algorithmwas proposed byRetzler
et al. [4] by reformulating the optimization problem in MAT-
LAB using CasADi [25] and such that instead of optimizing
the phases, each tone is expressed as a sum of a cosine and
sine signal, removing some of the nonlinearity of the cost
function; then a second optimization problem is solved, at-
tempting to lower the peak value via a slack variable. This
algorithm decreased the CF of 31 and 100 tones to 1.3513
and 1.3512, respectively. To date, this method manages to
outperform previous algorithms at the cost of increased com-
putation time, except for the computation time of the ABC
algorithm, which is the higher.

The proposed optimization algorithm for complex mul-
tisine signals (14) has been implemented in CasADi [25]
using the open-source Ipopt solver [26]. It has been tested
using a varied set of weights and three different versions with
regards to combination with a swapping algorithm. The three
investigated versions are the following:

• Version A: no swapping method is incorporated,
• Version B: Yang’s algorithm is used after each solution
of (14) with the modification shown in (13),

• Version C: after each solution of (14), Yang’s al-
gorithm is executed on both 𝑥I [𝑛] and 𝑥Q [𝑛], then
𝑥 ′[𝑛] = 𝑥 ′I [𝑛] + j𝑥

′
Q [𝑛] is constructed.
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The set of used weights is shown in Tab. 1. The reason
for this is to demonstrate how the algorithm behaves when
either the overall CF or the CF of the I-Q channels is not
taken into account, or either is over-weighted in the objective
function.

5.2 Comparison of Results
In order to gauge the performance of the proposed ver-

sions and study the effect of the choice of weights, Monte
Carlo simulations of 1024 test cases initialized with ran-
domly generated 𝜑𝑘 values (using the same sets of values for
each scenario) have been run on flat spectra containing 15,
31, and 100 equi-distant components. In all cases, to ensure
proper oversampling so that the results are not distorted, the
number of samples was 𝑁 = 4096, while 𝑝 was increased
from 4 to 128. The simulations were run on a virtual ma-
chine of 16 CPU cores (for parallelization of the test cases)
and 64GB of RAM. The bottleneck of the algorithms is the
memory requirement, as for multitone signals of 1000 carri-
ers approximately 2.5GB of RAM is required in the case of
the proposed optimization method.

The results for a multisine with 31 tones are presented
in Tab. 2. Three scenarios have been highlighted in bold:
Guillaume’s algorithm generalized for complex signals, Guil-
laume’s algorithm enforced by a swapping method between
iterations and a case when CFI and CFQ are over-weighted.
Based on the presented table, a number of conclusions can
be inferred. Firstly, the results do not vary depending on
which version of Yang’s method is used (version B or C),

𝑤I 𝑤Q 𝑤

1 1 1
1 1 0
0 0 1
10 10 1
1 1 10

Tab. 1. List of weight combinations used in (14).

Version 𝑤I; 𝑤Q; 𝑤
Mean
CFI

Mean
CFQ

Mean
CF

Avg. time
[s]

A 1; 1; 1 1.5810 1.5798 1.1655 39.7
A 1; 1; 0 1.5634 1.5617 1.2727 36.1
A 0; 0; 1 1.6098 1.6096 1.1442 33.2
A 10; 10; 1 1.5672 1.5665 1.2438 35.5
A 1; 1; 10 1.6052 1.6038 1.1483 36.6
B 1; 1; 1 1.5796 1.5787 1.1646 43.7
B 1; 1; 0 1.5611 1.5593 1.2704 42.5
B 0; 0; 1 1.6077 1.6075 1.1426 39.0
B 10; 10; 1 1.5619 1.5607 1.2387 42.5
B 1; 1; 10 1.6001 1.6004 1.1451 43.1
C 1; 1; 1 1.5807 1.5797 1.1658 37.7
C 1; 1; 0 1.5640 1.5613 1.2723 37.0
C 0; 0; 1 1.6118 1.6128 1.1461 34.1
C 10; 10; 1 1.5664 1.5660 1.2417 36.4
C 1; 1; 10 1.6022 1.6024 1.1465 37.0

Tab. 2. Mean CF values, and average computation time for 31
tones in each version with each set of weights.

as attempting tominimize theCF inherently causes a decrease
in CFI and CFQ as well. The cases with

[
𝑤I 𝑤Q 𝑤

]
=[

1 1 0
]
produce the highest CFs, as the real and imagi-

nary parts are optimized separately and no attention is given
to overall CF in the objective function. Secondly, if an ap-
plication requires low CFI and CFQ, it can be achieved by
weighting these in the objective function of the optimization
at the cost of an increase in overall CF. The difference between
the versions and weight sets is marginal, but note that the best
result occurred in the case of version B,

[
𝑤I 𝑤Q 𝑤

]
=[

10 10 1
]
. Version A,

[
𝑤I 𝑤Q 𝑤

]
=

[
0 0 1

]
is

also highlighted as this case corresponds to Guillaume’s
method.

A comparison of Yang’s algorithm, defined by Algo-
rithm 1 and (13), Guillaume’s method, Guillaume’s method
combined with Yang’s method, and a weighted optimization
is shown in Fig. 4. The boxplots represent the statistics of the
1024 test cases of theMonte Carlo simulation: the horizontal
bounds of the boxes represent the 25th and 75th percentiles:
the red line in each box represents the median, the whiskers
represent the interval in which results are not considered
outliers, while the red crosses are the outliers.
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Fig. 4. Comparison of CFI, CFQ and CF in the case of 31 tones
for different algorithms.
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In Fig. 4, comparing Guillaume’s method combined
with Yang’s and the weighted optimization illustrates the
trade-off introduced by the weights between CF and CFI
and CFQ. The boxplots illustrate the conclusions drawn
from Tab. 2:

• a significant reduction of CF is achieved by Guillaume’s
method,

• the incorporation of Yang’s method gives a slight ad-
vantage,

• overweighting CFI and CFQ results in lower CF of the
real and imaginary parts at the cost of increasing the
overall CF.

A comparison between existing methods is made dif-
ficult as in terms of complex signals, previous litera-
ture [17, 21, 22] did not impose a constraint on the shape
of the amplitude spectrum, while we deal with signals with
flat spectra. However, CFI and CFQ may be compared to CFs
acquired for real-valued multisines. For the same configura-
tion [4] achieved an average CF of 1.4041, while our result
is in the range between 1.561 and 1.562 if the CFs of the
I- and Q-components are given a higher weight. The differ-
ence is present in a smaller part because of our oversampling
(𝑁 = 4096 as opposed to 𝑁 = 2048), and in a larger part due
to the fact that we also optimize for overall CF which is not
present in the real-valued case.

To verify the relevance of the method for signals with
a larger number of tones, test cases with 1000 components
were also examined. For these signals, 𝑁 = 2048 was
used. The comparison for 1000 tones is shown in Tab. 3 for
a smaller assortment of versions and weights chosen based
on the results of the 31-tone case. Once again, the lowest CF
is achieved by using Guillaume’s algorithm, however, com-
bining it with Yang’s method decreases computation time by
about 10%, as the swapping method jump-starts each itera-
tion. As expected based on the results for 31 tones, adding
increasing weights to CFI and CFQ can decrease the CF of
the real and imaginary parts at the cost of overall CF.

Figure 5 shows a comparison between Yang’s algo-
rithm, Guillaume’s algorithm by itself or combined with
Yang’s algorithm, and a weighted optimization combined
with Yang’s algorithm. The graphs show that for a large
number of tones, the advantage of optimization over the
swapping algorithm is more pronounced due to the increased
number of optimization variables: the CF reduction of the
gradient-based methods is larger, and the variance is smaller
than in the case of only using Yang’s method. The small
variance implies that obtaining an acceptable result does not
depend on the random initialization of phases, hence the
time-consuming algorithm needs to run only once with arbi-
trary initialization to provide a desirable result.

One method of demonstrating the scalability of the al-
gorithm is analyzing the computation time. The average
computation times for the proposed combined algorithm for
different numbers of tones are shown in Tab. 4. The data

show that in the case of the time-frequency-domain swap-
ping method (Yang’s algorithm) computation time increases
linearly with the increase of 𝐾 , while for any optimization
method (either Guillaume’s, or Guillaume’s combined with
Yang’s algorithm), the increase in time is quadratic. As
a consequence, the computation time of swapping methods
scale better with the increase of tones, however, swapping
methods provide a smaller reduction of the CF.

Version 𝑤I; 𝑤Q; 𝑤
Mean
CFI

Mean
CFQ

Mean
CF

Avg. time
[min]

A 0; 0; 1 1.5316 1.5326 1.0860 625
B 1; 1; 1 1.3657 1.3679 1.2035 560
B 0; 0; 1 1.5314 1.5316 1.0860 550
B 10; 10; 1 1.3182 1.3197 1.3123 555

Tab. 3. Mean CF values for 1000 tones in selected versions.

Method
Tones 15 31 100 1000

Yang abs 0.36 s 0.48 s 1.59 s 13.31 s
Guillaume 10.84 s 33.23 s 386 s 37600 s

Weighted optimization
with swapping 20.21 s 42.52 s 400 s 33800 s

Tab. 4. Average computation time of the investigated algorithms
for different numbers of complex multisine tones.
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Fig. 5. Comparison of CFI, CFQ and CF in the case of 1000
tones for different algorithms.
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6. Conclusion
In this paper, we have suggested methods for extend-

ing existing crest factor minimization methods for com-
plex-valued multisine signals having equi-flat amplitude
spectra. In the case of time-frequency domain swapping al-
gorithms, two modifications are introduced: clipping the ab-
solute value of samples in the time-domain while keeping the
phase information, or executing the algorithm separately on
the real and imaginary parts of the complex signal. The state–
of–the–art method, Guillaume’s algorithm, was extended for
complex signals by including the options of not only optimiz-
ing for overall CF but for the CF of the real and imaginary
parts as well, which can be advantageous in certain appli-
cations. Furthermore, we combined the optimization with
a swapping algorithm.

The results show that the combination of Guillaume’s
optimization for p-norms and Yang’s swapping algorithm for
complex signals has the best results in terms of PAPR. It
was also shown, that if minimizing the CF of the real and
imaginary parts is crucial, the proposed objective function
outperforms all other algorithms in this regard at the cost
of an increase in overall CF or PAPR. Finally, it was shown
that the proposed methods are also applicable to multisine
signals of a large number of tones while maintaining a small
variance with regard to the initialization of the phases.

The invariance regarding initialization is important, be-
cause as a consequence the optimization ofCF needs to be run
only once for a certain tone number and amplitude spectra,
and the resulting signal may be reused for multiple applica-
tions, which is an advantage, as the computation time of the
algorithm is rather high. In the future, it would be worth-
while to study CFI, CFQ, and PAPR if certain subcarriers
in the OFDM signal are modulated with data. Furthermore,
the possibility of real-time minimization is also an open is-
sue, as the current solution is computationally complex, and
computation time increases quadratically with respect to the
number of tones.
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