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Abstract. We present a comparison between Netatmo hourly precipitation amounts and observations of the
same quantity from weather stations managed by national meteorological services, the latter used as reference
values. The empirical distributions of the crowdsourced observations in the surroundings of reference stations
are used to assess accuracy and precision of crowdsourced data. We found that reference values are typically
within the distribution of the crowdsourced data. However, as the amount of precipitation increases, the spread
of the crowdsourced distribution increases and the reference values are more and more frequently found to-
wards the right tail of the distribution. These results indicate that accuracy and precision of crowdsourced data
change as precipitation increases. We have studied the sensitivity of our results to the size of the neighbourhood
chosen around the reference stations and we show that by aggregating the values over those neighbourhoods,
crowdsourced data can be trusted in determining precipitation occurrence. We have assessed the variability of
precipitation within small neighbourhoods (of radius 1, 3 and 5 km) and we provide estimates on the basis of
the precipitation amounts. Our study quantifies the variability of hourly precipitation over small regions, of the
size of the so-called “unresolved spatial scales” in limited area models, based on three years of data collected at
several places in Scandinavia.

1 Introduction

Observational networks of private weather stations managed
by citizens, also known as crowdsourced data, are quickly be-
coming an important source of opportunistic information on
weather that is hard to ignore for national meteorological ser-
vices. Crowdsourced data opens up the possibility of contin-
uously monitoring precipitation by means of in-situ measure-
ments at km-scale resolutions over much wider regions than
using only traditional stations. The use of private weather sta-
tions in spatial analysis has also been investigated by several
research teams in Europe (e.g. Bárdossy et al., 2021; Man-
dement and Caumont, 2020; de Vos et al., 2017). All studies
emphasize the issues encountered when using crowdsourced
data, such as noisy measurements, the difficulties in assess-
ing their representativeness and the ever-present problem of
quality control (Alerskans et al., 2022). For instance, specific
quality control techniques have been developed for precipi-

tation crowdsourced data by de Vos et al. (2019) and Båserud
et al. (2020).

In Norway, the Netatmo network outnumbers the network
of traditional stations by a factor of around 50 (Nipen et al.,
2020). This information alone provides us with sufficient mo-
tivation to further investigate the characteristics of these mea-
surements and, in previous works, we have combined crowd-
sourced hourly totals, weather radars and NWP model output
to improve locally the reconstruction of precipitation (Lus-
sana et al., 2021).

To the best of our knowledge, Netatmo’s rain gauges have
not been part of metrological intercomparison studies with
other types of rain gauges, such as those conducted by the
World Meteorological Organization (WMO) (Colli et al.,
2013). Then, it is not possible for us to refer to the scientific
literature to obtain specific algorithms to post-process their
measurements. Our study is not a metrological intercompari-
son either. Instead, we adopt the point of view of end users of
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observational databases available today within national me-
teorological services. Crowdsourced data enriches the com-
plexity of those databases. A conscious use of these new data
source passes through the characterization of their uncer-
tainty, which is often application-dependent. In many cases,
applications such as verification or post-processing of numer-
ical model output make use of reference observations from
traditional weather stations, which are operated by national
meteorological services according to the high standards de-
scribed by WMO (2021d). In particular, we focus on Scan-
dinavia and the reference stations considered are those man-
aged by the Norwegian Meteorological Institute (MET Nor-
way), the Swedish Meteorological and Hydrological Institute
(SMHI) and the Finnish Meteorological Institute (FMI). The
reference dataset is then a composite of different instruments
and possibly different technologies to measure precipitation.
Nonetheless, for our purpose all these stations are regarded
to be of the same high quality, since for our applications they
represent the unknown true value of hourly precipitation with
satisfactory accuracy and precision.

We aim at assessing the uncertainty of Netatmo’s hourly
precipitation totals with respect to reference observations
from traditional weather stations (i.e. the traditional “target”
dataset for several meteorological applications). The main re-
search questions we address are the following: if we consider
a reference station and its observations, what is the distribu-
tion of the nearby crowdsourced observations? How does this
distribution vary with the distance from the reference station?

The confidence we can have in crowdsourced observations
originates from the redundancy of the observational network.
If we move a little further along this line of thinking, we
can ask ourselves if by aggregating crowdsourced observa-
tions together we can increase our confidence in the observed
value. In fact, this is another of the research questions that
will be addressed in this article.

Finally, we use the crowdsourced dense measurement net-
work, which has been operational for several years, for study-
ing the variability of precipitation over short distances. One
way or another, numerous applications either require or ben-
efit from information on spatial variability. Not only spatial
quality checks require it (Lussana et al., 2010) but also spa-
tial analysis procedures benefit from a realistic specification
of observation representativeness errors (Uboldi et al., 2008;
Soci et al., 2016), which is a concept strictly linked to the
local spatial variability of a field. Stochastic precipitation en-
sembles that reconstruct daily precipitation, such as that pro-
posed by Frei and Isotta (2019), may also use information
on local variability for verification purposes, for instance.
Other important applications are those related to the inter-
pretation of numerical model output, either from numerical
weather prediction (NWP) or reanalysis models. The local
spatial variability can quantify the effects of spatial scales
unresolved by the models.

The article is organized as follows. Section 2 describes the
data used. Section 3 presents the results obtained. Finally,

in our Conclusions, we highlight the main outcomes of our
work.

2 Data

WMO provides guidelines, such as WMO (2021d), defining
expected accuracy, precision and uncertainty of precipitation
measurements, as evaluated against ground-level reference
gauges. The amount measured by commonly used gauges
at national meteorological services may be less than the ac-
tual precipitation reaching the ground by up to 30 % or more.
The main source of uncertainty is the error due to “system-
atic wind field deformation above the gauge orifice: typically
2 % to 10 % for rain and 10 % to 50 % for snow” (WMO,
2021d). There are several other sources of uncertainty, such
as the “systematic mechanical and sampling errors, and dy-
namic effects errors (i.e. systematic delay due to instrument
response time): typically 5 % to 15 % for rainfall intensity, or
even more in high-rate events”. The target uncertainty of pre-
cipitation measurements for hydrological purposes (i.e. on a
6 h reporting interval for hydrological forecasting) is reported
in WMO (2021c), where it is set to: ± 2 mm below 40 mm,
±5 % above 40 mm.

The Netatmo rain gauges are tipping buckets and
their specification can be found online, https://www.
netatmo.com/el-gr/weather/weatherstation/specifications
(last access: 11 April 2023). The size of the bucket is
13 cm× 13 cm× 11 cm, the record frequency is 5 min, the
resolution is 0.1 mm and the reported accuracy is 1 mm h−1,
within the measurement range of precipitation rate of 0.2 to
150 mm h−1.

It is worth remarking that, although the nominal record
frequency of Netatmo’s stations is 5 min, it is often seen in
the data that the updates are not synchronized between the
stations (de Vos et al., 2018). Specifically, Netatmo’s stations
report hourly precipitation totals approximately every 5 min.
For each station, we simply use the hourly value that is clos-
est to the end of each hour, which for us is the timestamp that
identifies the hour.

As stated in the Introduction, we use traditional stations,
managed by national meteorological services, as our refer-
ence stations. Specifically, we have considered only stations
having a WMO Integrated Global Observing System iden-
tification number (WMO, 2021b, a). The data sources are:
MET Norway for Norway; SMHI for Sweden and FMI for
Finland. We have used the open-access application program-
ming interfaces of these institutions (see the Section on Data
availability).

Netatmo rain gauges are not equipped with heating de-
vices, therefore their measurements are more likely to be af-
fected by gross-measurement errors for temperatures close
to zero or negative. In those situations, the typical behav-
ior of a Netatmo’s station is that it often does not measure
precipitation, even when we know there is precipitation. Fur-
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thermore, not all Netatmo rain gauges stations are equipped
with temperature sensors. Therefore, in this study, to fil-
ter out crowdsourced observations stuck to 0 mm because
of cold weather, we require that: (i) our reference dataset
includes only quality-controlled hourly precipitation totals
registered when the temperature measurement at the same
(WMO-compliant) station was higher than 2 ◦C; (ii) if the
reference value is greater than 1 mm, then we exclude from
our statistical analysis all those crowdsourced values less
than 0.1 mm. This last check is a simple but effective way to
decrease the statistical weight in our analysis of those cases
where occurrence of precipitation is not measured because
of gross-measurement errors, independently of the tempera-
ture. Apart from the filtering just mentioned, both reference
and crowdsourced data have not been post-processed in any
way, for instance they have not been corrected for the wind-
induced undercatch.

We have decided not to process crowdsourced data with
an automatic quality control procedure because this will in-
evitably remove some of the highest values, for instance. In
general, by applying a quality control procedure our analysis
would be affected by our subjective choices on setting up the
procedure, which necessarily have to be linked to a specific
application. Instead, we decided to show the potential of the
data as they are made available to the public by Netatmo. In
this way, the results provided are useful for a wide range of
applications, including that of designing quality control pro-
cedures. The working assumptions allowing us to use the raw
crowdsourced data are: (i) most of the crowdsourced data are
representative of the atmospheric state, which we have veri-
fied by inspecting data samples and through their use in pilot
studies (Lussana et al., 2021); (ii) we have to use statistical
estimators that are resistant to possible outliers, such as the
percentiles and we avoid using extremes (i.e. the 1st or the
99th percentiles).

For tipping-bucket rain gauges, WMO (2021d) recom-
mends to apply intensity-dependent corrections “to improve
the accuracy of the intensity measurements and to overcome
the underestimation of intensity for high rainfall rates and
the overestimation of intensity for low rainfall rates, both of
which are typical in non-corrected tipping-bucket gauges”.
In the paper by Lanza and Stagi (2008), the bias introduced
by water losses during the tipping movement of the bucket is
quantified on average as 10 %–15 % at rain intensities higher
than 200 mm h−1. Examples of correction algorithms applied
to tipping-buckets rain gauges are described by Habib et al.
(2001), Lanza and Stagi (2009) and Stagnaro et al. (2016).
By addressing the research questions reported in the Intro-
duction, we believe we can go one step further in finding a
way to adjust Netatmo precipitation data such that they be-
come better comparable with measurements from traditional
stations.

3 Results

The number of Netatmo rain gauges available in Scandinavia
is increasing constantly over the recent years. For this rea-
son, we consider only the most recent years in our analy-
sis. The results presented are based on hourly measurements
from 1 September 2019 to 1 November 2022.

Our investigation is on the quantification of the empirical
distribution of crowdsourced data over small circular regions
and its comparison with reference observations. The circular
regions chosen have radii (indicated by r in the figures and
in the text) of 1, 3 and 5 km. By considering three regions,
we can evaluate the sensitivity of the outcomes to the size of
the neighbourhood. We consider these regions as small ones
because they are representative of meteorological phenom-
ena not well resolved by current numerical models (Frogner
et al., 2019; Haakenstad and Øyvind Breivik, 2022). Besides,
for atmospheric processes, there is a connection between the
aggregation time and the spatial scales represented (Orlanski,
1975; Thunis and Bornstein, 1996). Specifically, when con-
sidering hourly precipitation totals, the smaller scales which
make sense to study are within the Meso-γ scale (i.e. char-
acterized by a minimum horizontal length scale of the order
of 1 km).

The maps in Figs. 1a–3a show the spatial distribution of
reference stations with enough crowdsourced data within
neighbourhoods of 1, 3 and 5 km, respectively. As reported
in the captions of the figures, the numbers of stations used
are: 15, 51 and 81; for the radii of 1 km (Fig. 1), 3 km
(Fig. 2) and 5 km (Fig. 3), respectively. Note that when con-
sidering neighbourhoods of 1 km we set a threshold of at
least 5 crowdsourced observations, while for 5 and 10 km we
raise that threshold to 10. We impose a minimum number of
crowdsourced observations such that we can have confidence
in the statistics obtained. As expected, the spatial distribu-
tions on the maps show that by increasing the neighbourhood
size, we get more samples. However, for all three configura-
tions, the reference stations considered are located in densely
populated areas and often in the bigger cities. This is not sur-
prising, given that for this type of opportunistic data sources
we expect a higher redundancy where most people live.

The procedure used to collect the samples for the study is
the following. Given the reference stations in Figs. 1–3, we
collect one “sample” for each station every hour. Each sam-
ple is a collection of the following values (or records): the
reference observed valueR; the observed value of the nearest
crowdsourced rain gauge CNN; percentiles from the distribu-
tion of the crowdsourced observations, such as: the 10th C10,
the 25th C25, the median C50, the 75th C75 and the 90th C90.
We are considering percentiles because they provide more
robust (i.e. less dependent on prior assumptions on proba-
bility distribution functions that precipitation should follow)
and resistant (i.e. less influenced by outliers) estimates (Lan-
zante, 1996). Then, aggregated statistics of each record over
all samples are calculated with several different mathemati-
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Figure 1. Empirical distribution of crowdsourced hourly precipitation totals (C) as a function of reference observations (R) based on
measurements from 1 September 2019 to 1 November 2022. The crowdsourced stations used lie within circular regions of radius equal
to 1 km from the reference stations and there must be at least 5 crowdsourced observations simultaneously available. Panel (a) shows the
location of the 15 reference stations and the inset on the top right shows the number of observations as a function of the precipitation
classes (see Sect. 3). Panel (b) shows aggregated statistics (i.e. median over all samples) on C conditional to R, such as: the crowdsourced
observation nearest to the reference (green, NN in the legend stands for nearest neighbour); the median of all observations within the circular
region (black); the IQR (i.e. interquartile range, dark gray shaded area); the IDR (i.e. interdecile range, light gray shaded area).

Figure 2. Empirical distribution of crowdsourced hourly precipitation totals (C) as a function of reference observations (R) based on
measurements from 1 September 2019 to 1 November 2022. The crowdsourced stations used lie within a circular region of radius equal to
3 km from the reference stations. We have used only those cases when at least 10 crowdsourced observations were simultaneously available.
Panel (a) shows the location of the 51 reference stations. The layout is similar to Fig. 1.

cal operators, depending on the specific elaboration or score
we want to compute. The aggregated statistics will be indi-
cated with the symbol 〈 . . . 〉 (e.g. 〈R〉 indicates the aggre-
gated statistics of the reference observed values over all sam-
ples).

Precipitation measurement uncertainties follow a multi-
plicative error model (Tian et al., 2013), as a consequence
our assessment takes into account that observation uncer-
tainty increases with the amount. This leads us to define
a number of precipitation classes for hourly precipitation
amounts, which we will use to stratify the input samples

and, consequently, the outcomes of our study. The classes
with respect to the generic record X (either one of R or
C50, as we will see in the following) are (units are mm):
0≤X < 0.1, 0.1≤X < 0.2, . . . , 0.9≤X < 1, 1≤X2, 2≤
X < 3, . . . , 9≤X < 10. The whole list of classes is reported
in the first column of Tables 1–3.

Considering the climatology of hourly precipitation in
Scandinavia, most of the samples should refer to situations
of no- or light precipitation (from 0.1 to 2 mm). Then, the
number of samples will decrease for increasing precipitation
amounts. The exact number of samples in each class is re-
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Figure 3. Empirical distribution of crowdsourced hourly precipitation totals (C) as a function of reference observations (R) based on
measurements from 1 September 2019 to 1 November 2022. The crowdsourced stations used lie within circular regions of radius equal to
5 km from the reference stations. We have used only those cases when at least 10 crowdsourced observations were simultaneously available.
Panel (a) shows the location of the 81 reference stations. The layout is similar to Fig. 1.

Table 1. Statistics of the empirical distribution of crowdsourced observations conditional to classes of reference precipitation R based on
measurements from 1 September 2019 to 1 November 2022. The crowdsourced stations used lie within circular regions of radius equal to
1 km from the reference stations and there must be at least 5 crowdsourced observations simultaneously available. The data shown in the
table have been used to obtain the graph in Fig. 1b. The first column reports the definitions of the precipitation classes. The second column is
the number of samples in a class n, besides n∗ shown in brackets is the number of samples when the classes are defined with respect to C50
(e.g. . . . ≤ C50〉 . . . ). For the symbols in the remaining three columns see Sect. 3. Note that in the column 〈CNN|R〉, the relative difference
between 〈CNN|R〉 and 〈R〉 is reported in brackets (only when |〈CNN|R〉− 〈R〉|> 0.1 mm). In the last column, the 5-tuple is the set of
percentiles and the closest to 〈R〉 is shown in bold (more than one bold value is admissible for ties).

R class (mm) n (n∗) 〈R〉 〈CNN|R〉 〈(C10,C25,C50,C75,C90)|R〉
(mm) (mm) (mm)

0≤ R < 0.1 97 835 (99 739) 0.00 0.00 (–) (0.00, 0.00, 0.00, 0.00, 0.00)
0.1≤ R < 0.2 4321 (3297) 0.10 0.00 (–) (0.00, 0.00, 0.00, 0.10, 0.10)
0.2≤ R < 0.3 3433 (3186) 0.20 0.20 (–) (0.04, 0.10, 0.20, 0.28, 0.30)
0.4≤ R < 0.5 1080 (1000) 0.40 0.30 (–) (0.11, 0.20, 0.30, 0.40, 0.51)
0.5≤ R < 0.6 1552 (1173) 0.50 0.50 (–) (0.18, 0.30, 0.45, 0.58, 0.66)
0.6≤ R < 0.7 591 (596) 0.70 0.60 (–) (0.20, 0.40, 0.60, 0.70, 0.82)
0.8≤ R < 0.9 532 (458) 0.80 0.70 (–) (0.30, 0.50, 0.66, 0.80, 0.93)
0.9≤ R < 1 443 (383) 0.90 0.80 (–) (0.32, 0.58, 0.75, 0.90, 1.04)
1≤ R < 2 2104 (1982) 1.30 1.10 (−15 %) (0.75, 0.91, 1.10, 1.31, 1.55)
2≤ R < 3 764 (626) 2.30 2.00 (−13 %) (1.37, 1.65, 2.00, 2.27, 2.63)
3≤ R < 4 345 (274) 3.40 2.83 (−17 %) (2.00, 2.40, 2.83, 3.23, 3.76)
4≤ R < 5 169 (118) 4.40 3.70 (−16 %) (2.55, 3.08, 3.60, 4.14, 4.78)
5≤ R < 6 93 (58) 5.40 4.80 (−11 %) (3.35, 3.94, 4.65, 5.30, 6.08)
6≤ R < 7 46 (44) 6.20 5.03 (−19 %) (3.86, 4.58, 5.68, 6.60, 7.60)
7≤ R < 8 33 (22) 7.40 5.80 (−22 %) (4.46, 5.23, 6.40, 7.53, 8.82)
8≤ R < 9 17 (9) 8.40 8.10 (−4 %) (3.09, 5.10, 6.70, 7.93, 10.12)
9≤ R < 10 16 (8) 9.40 8.40 (−11 %) (4.85, 6.11, 7.22, 8.56, 10.20)
10≤ R < 20 23 (12) 12.20 12.02 (−1 %) (6.44, 7.90, 10.15, 11.63, 13.52)
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Table 2. Statistics of the empirical distribution of crowdsourced observations conditional to classes of reference precipitation R based on
measurements from 1 September 019 to 1 November 2022. The crowdsourced stations used lie within circular regions of radius equal to
3 km from the reference stations and there must be at least 10 crowdsourced observations simultaneously available. The data shown in the
table have been used to obtain the graph in Fig. 2b. The layout is similar to Table 1.

R class (mm) n (n∗) 〈R〉 〈CNN|R〉 〈(C10,C25,C50,C75,C90)|R〉
(mm) (mm) (mm)

0≤ R < 0.1 514 457 (521 327) 0.00 0.00 (–) (0.00, 0.00, 0.00, 0.00, 0.00)
0.1≤ R < 0.2 21 790 (18 948) 0.10 0.00 (–) (0.00, 0.00, 0.05, 0.10, 0.18)
0.2≤ R < 0.3 19 414 (18 599) 0.20 0.20 (–) (0.00, 0.10, 0.20, 0.3, 0.37)
0.4≤ R < 0.5 5830 (5830) 0.40 0.30 (–) (0.00, 0.20, 0.30, 0.40, 0.55)
0.5≤ R < 0.6 8828 (7005) 0.50 0.40 (–) (0.00, 0.28, 0.40, 0.60, 0.71)
0.6≤ R < 0.7 3357 (3364) 0.70 0.60 (–) (0.02, 0.33, 0.56, 0.71, 0.90)
0.8≤ R < 0.9 2954 (2381) 0.80 0.70 (–) (0.05, 0.40, 0.61, 0.81, 1.00)
0.9≤ R < 1 2531 (2137) 0.90 0.80 (–) (0.04, 0.45, 0.70, 0.90, 1.10)
1≤ R < 2 12 212 (11 493) 1.30 1.11 (−15 %) (0.64, 0.90, 1.10, 1.40, 1.62)
2≤ R < 3 4515 (3972) 2.30 2.00 (−13 %) (1.20, 1.60, 1.95, 2.33, 2.73)
3≤ R < 4 2148 (1655) 3.30 2.83 (−14 %) (1.70, 2.23, 2.80, 3.31, 3.80)
4≤ R < 5 1018 (772) 4.40 3.70 (−16 %) (2.12, 2.90, 3.60, 4.24, 4.90)
5≤ R < 6 575 (367) 5.40 4.60 (−15 %) (2.69, 3.59, 4.40, 5.20, 5.90)
6≤ R < 7 282 (172) 6.40 5.23 (−18 %) (3.11, 4.22, 5.18, 6.20, 7.02)
7≤ R < 8 166 (82) 7.40 5.98 (−19 %) (3.27, 4.60, 5.70, 6.90, 7.98)
8≤ R < 9 84 (71) 8.40 7.20 (−14 %) (3.54, 5.20, 6.64, 7.75, 8.74)
9≤ R < 10 76 (30) 9.30 8.04 (−14 %) (4.17, 5.73, 7.25, 8.94, 10.72)
10≤ R < 20 135 (75) 11.6 10.1 (−13 %) (4.57, 7.10, 8.84, 10.75, 13.04)

Table 3. Statistics of the empirical distribution of crowdsourced observations conditional to classes of reference precipitation R based on
measurements from 1 September 2019 to 1 November 2022. The crowdsourced stations used lie within circular regions of radius equal to
5 km from the reference stations and there must be at least 10 crowdsourced observations simultaneously available. The data shown in the
table have been used to obtain the graph in Fig. 3b. The layout is similar to Table 1.

R class (mm) n (n∗) 〈R〉 〈CNN|R〉 〈(C10,C25,C50,C75,C90)|R〉
(mm) (mm) (mm)

0≤ R < 0.1 882 111 (891 622) 0.00 0.00 (–) (0.00, 0.00, 0.00, 0.00, 0.00)
0.1≤ R < 0.2 34 588 (32 724) 0.10 0.10 (–) (0.00, 0.00, 0.05, 0.10, 0.20)
0.2≤ R < 0.3 32 718 (31 332) 0.20 0.20 (–) (0.00, 0.1, 0.2, 0.30, 0.40)
0.4≤ R < 0.5 10 054 (9741) 0.40 0.30 (–) (0.00, 0.20, 0.30, 0.43, 0.60)
0.5≤ R < 0.6 14 792 (11 691) 0.50 0.50 (–) (0.00, 0.25, 0.40, 0.60, 0.74)
0.6≤ R < 0.7 5537 (5515) 0.70 0.60 (–) (0.00, 0.30, 0.56, 0.73, 0.90)
0.8≤ R < 0.9 4996 (4179) 0.80 0.70 (–) (0.00, 0.40, 0.61, 0.83, 1.01)
0.9≤ R < 1 4153 (3649) 0.90 0.80 (–) (0.00, 0.40, 0.70, 0.90, 1.11)
1≤ R < 2 20 49 (19 552) 1.30 1.20 (–) (0.60, 0.83, 1.10, 1.40, 1.67)
2≤ R < 3 7781 (6613) 2.30 2.00 (−13 %) (1.11, 1.50, 1.90, 2.32, 2.73)
3≤ R < 4 3656 (2749) 3.30 2.90 (−12 %) (1.61, 2.15, 2.70, 3.30, 3.80)
4≤ R < 5 1748 (1273) 4.30 3.70 (−14 %) (2.08, 2.80, 3.50, 4.15, 4.75)
5≤ R < 6 940 (529) 5.30 4.70 (−11 %) (2.48, 3.35, 4.25, 5.10, 5.80)
6≤ R < 7 485 (282) 6.30 5.30 (−16 %) (2.80, 3.90, 4.85, 5.90, 6.80)
7≤ R < 8 286 (148) 7.30 6.10 (−16 %) (3.17, 4.40, 5.45, 6.65, 7.76)
8≤ R < 9 149 (76) 8.40 7.10 (−15 %) (3.17, 4.78, 6.15, 7.30, 8.79)
9≤ R < 10 122 (62) 9.40 8.20 (−13 %) (3.82, 5.31, 7.04, 8.81, 10.43)
10≤ R < 20 222 (105) 11.60 10.10 (−13 %) (3.98, 6.00, 8.44, 10.49, 12.50)
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ported in Tables 1–3 (second columns) and it is shown in the
upper-right insets of Figs. 1a–3a (the y-axis has a logarith-
mic scale). Note that when R is used to distinguish between
the classes (i.e.X = R in the definition of classes above), this
corresponds to n in the tables and the gray dots in the figures.
Alternatively, when X = C50, this corresponds to n∗ in the
tables and blue dots in the figures. It is worth remarking that
not all results reported in the tables are shown in the figures.
In particular, in the figures, we show values between 0 and
10 mm and we require at least 60 samples (n > 60) within a
class in order to show the aggregated statistics. The choice is
based on the fact that in the figures we do not want to com-
pare with each other values characterized by rather different
uncertainties. In the tables, the choice is left to the readers.

In Tables 1–3, for the class 0≤X < 0.1 (i.e. first row in
the tables) n∗ is always higher than n. Then, for classes
where the maximum precipitation amount is below 1 mm,
we still have some cases when n∗ exceeds n. This never hap-
pens for classes referring to amounts higher than 1 mm and
the deviations become greater as the amount increases. This
mismatch between crowdsourced and reference precipitation
in the frequency of occurrence of several classes, especially
those with more intense precipitation, will be further investi-
gated in Sect. 3.1.

3.1 Comparison of crowdsourced data against
traditional observations

The distributions of crowdsourced precipitation conditional
to (classes of) reference precipitation amounts have been
computed and they are reported in Tables 1–3. Besides, in
Figs. 1b–3b, the black lines and the gray shaded regions show
an estimate of the distribution of crowdsourced precipitation
conditional to reference precipitation amounts (i.e. R is now
a continuous range of values, instead of a set of discretized
classes). Figures show “estimates” obtained from the data
in the tables, in the sense that we begin our elaboration by
classifying our samples with respect to R. Then, for each
of the classes, the aggregated statistics over all samples for
every record is obtained using the median as the aggrega-
tion operator. This procedure is indicated with the follow-
ing notation e.g. 〈C50|R〉 that stands for: the median over
all samples (i.e. 〈 . . . 〉; remember one sample corresponds
to one hour) of the median of the crowdsourced observa-
tions (C50) within a circular region surrounding a reference
station, when we select only those samples belonging to a
specific precipitation class (R). The aggregated statistics are
then reported in Tables 1–3, in the third (〈CNN|R〉) and fourth
columns (the 5-tuple 〈Cx |R〉, with x = {10,25,50,75,90}).
In the second column, 〈R〉 is the median over all samples
of all R values within a class. From the tables, we build the
figures. Let us consider the thick black line in Fig. 1, which
show 〈C50|R〉 when r = 1 km, the line is obtained by join-
ing together the pairs of points (〈R〉, 〈C50|R〉) in Table 1.
Similar procedures apply for all the other lines and for the

shaded regions. The light gray region spans the area between
〈C10|R〉 and 〈C90|R〉 (i.e. the interdecile range or IDR in
brief). The dark gray region spans the area between 〈C25|R〉

and 〈C75|R〉 (i.e. the interquartile range or IQR). The two
shaded areas give an indication of the variability expected on
crowdsourced data given a reference precipitation amount;
we will explore these aspects in more detail in Sect. 3.2. It
is however worth noting that the IDR and the IQR are rather
symmetric around 〈C50|R〉. The graphs of Figs. 1b–3b show
something more: the green line is 〈CNN|R〉 and the blue line
is 〈R|C50〉. The latter is an aggregated statistics conditional
to the crowdsourced precipitation amounts, which is defined
as the median of R over all samples within a circular region
surrounding a reference station, when we select only those
samples with C50 belonging to a specific precipitation class.
Sometimes, the lines in Fig. 1 do not cover the whole range
of reference precipitation values because for higher amounts
we do not have enough samples (see Sect. 3).

The results in Tables 1–3 show that 〈R〉 is always in-
cluded in the IDR of the crowdsourced observations and
often it is within the IQR. However, we can notice a sort
of drift in the positioning of 〈R〉 within the distributions.
In the first lines, 〈R〉 stands close to the median 〈C50|R〉,
then it gradually moves towards the higher percentiles. For
instance, 〈R〉 is in between 〈C50|R〉 and 〈C75|R〉 up un-
til the classes: 8≤ R < 9 (r = 1 km); 7≤ R < 8 (r = 3 km);
6≤ R < 7 (r = 5 km). Then, for even higher amounts, 〈R〉
falls often between 〈C75|R〉 and 〈C90|R〉. The “drifting” of
R within the crowdsourced distributions is also shown in
Figs. 1–3 (i.e. the gradual increase in the deviation between
the dashed and the thick black lines, as measured using the
gray shaded areas as references). In the ideal situation of
the reference and crowdsourced precipitation being random
variables having the same probability density function, one
should expect the line of 〈C50|R〉 to lie on the identity line
(the black dashed line) and the gray regions to be centered
on that line too. This is not a bad assumption for classes of
light precipitation (vast majority of the cases) but it becomes
an increasingly less good approximation as the amount in-
creases.

The blue lines in Figs. 1–3, on the other hand, show that
〈R|C50〉 stay close to the identity line even for the highest
precipitation classes. This means that we can rely on C50 as
an estimator of R across the range of precipitation amounts.
However, for the higher values there is a systematic under-
estimation in the frequency of occurrence of those events, as
pointed out in Sect. 3 when discussing on the differences be-
tween n and n∗ in Tables 1–3.

Since the aggregated statistics in the last column of Ta-
bles 1–3 involve regionalization of point values into values
representative of an area, then part of the underestimation
may be due to the smoothing inherent in the regionalization
processes (or “conditional bias”; Wilks, 2019). It is then in-
teresting to consider 〈CNN|R〉 (fourth column in the tables
or the green lines in the figures), since in this case we are
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Figure 4. Quantile–quantile (Q–Q) plots comparing reference and crowdsourced hourly precipitation. The datasets are the same used for
Figs. 1–3 and the three panels refer to the three neighbourhood sizes r = 1, 3, 5 km. The crowdsourced variables are listed in the legend, with
reference to Sect. 3 for the meaning of the symbols.

Figure 5. Equitable threat score (ETS) comparing reference and crowdsourced hourly precipitation. The datasets are the same used for
Figs. 1–3 and the three panels refer to the three neighbourhood sizes reported (r equal to 1, 3 and 5 km). The green line shows the ETS for the
crowdsourced observation nearest to the reference. The black and the gray lines show the ETS for selected percentiles of the crowdsourced
observations within the neighbourhood.

comparing point values against point values and we should
not expect conditional biases. The tables shows that 〈R〉 and
〈CNN|R〉 do have very similar values (between ±0.1mm)
for precipitation classes below: 1 mm (r = 1 and r = 3 km);
2 mm (r = 5 km). Then, 〈CNN|R〉 underestimates 〈R〉 and the
relative differences are within the range of values:−22 % and
−1 % (r = 1 km);−19 % and−13 % (r = 3 km);−16 % and
−11 % (r = 5 km).

The empirical distributions of crowdsourced and refer-
ence hourly precipitation observations are compared in the
quantile–quantile (Q–Q) plots shown in Fig. 4. The thin-
dashed black lines mark the identity lines y = x, which is
where the points would lie if the two distributions were simi-
lar. We point out that: (i) the Q–Q plots for both C75 and CNN
stays close enough to the identity line; (ii) the graphs in the
three panels are rather similar among each other, although a
slight worsening of the agreement can be noticed as the dis-
tance increases. It is worth remarking that the crowdsourced

data have not been quality controlled, then the higher quan-
tiles are most likely affected by outliers (e.g. C90 in Fig. 4a).
Looking at the figure, it is possible to state that a Q–Q map-
ping procedure (Wilks, 2019) might be a good way to deal
with some of the underestimation issues we have reported
above.

The last result we present in this section focuses on the per-
formances of crowdsourced observations in distinguishing
between precipitation yes/no cases and, more in general, on
the agreement between crowdsourced and reference precipi-
tation being simultaneously above predefined thresholds. In
Fig. 5, the equitable threat score (ETS, Jolliffe and Stephen-
son, 2012) of the crowdsourced precipitation is shown for the
three neighbourhoods used in our study. Given a threshold of
precipitation (on the x-axis), the ETS measures the fraction
of crowdsourced observations that were correctly predicting
an amount above that threshold, adjusted for the hits asso-
ciated with random chance. A “hit” is defined as “both the
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Figure 6. Spatial variability of crowdsourced hourly precipitation as a function of reference precipitation amounts, within circular regions of
1 km radius. IQR stands for interquartile range, while IDR stands for interdecile range. The dataset used, the reference precipitation classes
and the constraints imposed are the same as for Fig. 1. In panel (a), The tick red lines show the median of the IQRs (IDRs in panel b) within
the precipitation classes. In panel a, The shaded pink regions delimit the area between the 25th and the 75th percentiles of the IQRs (IDRs in
panel b).

Figure 7. Spatial variability of crowdsourced hourly precipitation as a function of reference precipitation amounts, within circular regions
of 3 km radius. The layout is similar to Fig. 6 and the dataset used is the same as that used in Fig. 2.

crowdsourced observation (or derived statistics) and the ref-
erence are greater than the threshold”. Because of the dif-
ferences between n and n∗ (see Sect. 3), we should expect
an increase of “misses” when the amount increases (i.e. “the
crowdsourced observation is below the threshold, while the
reference is above”). The ETS graphs show that we can have
good confidence in the ability of crowdsourced data in distin-
guishing between precipitation yes/no events. As expected,
performance deteriorates with increasing precipitation. The
aggregation of crowdsourced data over small regions yields
somewhat better and more stable results, as can be seen in the
graphs by comparing the results for the nearest neighbours
(green line) and those for the aggregated statistics (black and
– especially – the gray line).

3.2 Spatial variability of precipitation

The spatial variability of precipitation over neighbourhoods
of 1, 3 and 5 km has been measured using the IDR
(i.e. 〈(C90−C10)|R〉) and the IQR (i.e. 〈(C75−C25)|R〉).
Given a neighbourhood, IDR gives an idea of the total range
of values we should expect to find in the crowdsourced ob-
servations, extreme values included. IQR represents the typ-
ical (i.e. most likely) range of values. Variability is assumed
to depend on precipitation intensity, then we will present our
results using the same precipitation classes defined in Sect. 3.

The results are presented in Tables 4–6 and Figs. 6–8
for the three neighbourhoods. In both figures and tables, we
have used the normalized crowdsourced variability (units %),
where the normalization of the spread is meant with respect
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Figure 8. Spatial variability of crowdsourced hourly precipitation as a function of reference precipitation amounts, within circular regions
of 5 km radius. The layout is similar to Fig. 6 and the dataset used is the same as that used in Fig. 3.

Table 4. Spatial variability of crowdsourced observations conditional to classes of reference precipitation R based on measurements from
1 September 2019 to 1 November 2022. The crowdsourced stations used lie within circular regions of radius equal to 1 km from the reference
stations and there must be at least 5 crowdsourced observations simultaneously available. The data shown in the table have been used to
obtain the graph in Fig. 6. The first column reports the definitions of precipitation classes. For the notation in the remaining three columns,
see Sect. 3. The second (fourth) column is equivalent to 〈C90−C10|R〉 (〈C75−C25|R〉). The 3-tuple in these columns show the results with
three different aggregation operators 〈 . . . 〉, which are over all samples in each class: (25th percentile, median (bold), 75th percentile). The
third (fifth) column is the normalized IDR (IQR), which is defined as 〈C90−C10|R〉/〈C50|R〉 (〈C75−C25|R〉/〈C50|R〉). The 3-tuple in
these columns show the results with three different aggregation operators, as for the second and fourth columns, with the difference that the
operator used for 〈C50|R〉 is always the median (i.e. 〈C50|R〉 is constant over each 3-tuple).

R class (mm) 〈IDR|R〉 (mm) norm. 〈IQR|R〉 (mm) norm.
〈IDR|R〉 (%) 〈IQR|R〉 (%)

0.1≤ R < 0.2 (0.00, 0.10, 0.20) (–, –, –) (0.00, 0.07, 0.10) (–, –, –)
0.2≤ R < 0.3 (0.16, 0.24, 0.39) (78, 120, 195) (0.07, 0.10, 0.20) (37, 50, 100)
0.4≤ R < 0.5 (0.25, 0.36, 0.54) (83, 120, 181) (0.10, 0.18, 0.30) (33, 60, 100)
0.5≤ R < 0.6 (0.30, 0.46, 0.70) (67, 102, 156) (0.11, 0.20, 0.35) (24, 44, 78)
0.6≤ R < 0.7 (0.40, 0.60, 0.86) (67, 100, 143) (0.17, 0.30, 0.45) (29, 50, 75)
0.8≤ R < 0.9 (0.40, 0.65, 0.95) (61, 98, 144) (0.17, 0.28, 0.50) (27, 42, 76)
0.9≤ R < 1 (0.44, 0.74, 1.01) (59, 99, 135) (0.20, 0.30, 0.54) (27, 40, 72)
1≤ R < 2 (0.50, 0.74, 1.12) (45, 67, 102) (0.22, 0.38, 0.56) (20, 34, 50)
2≤ R < 3 (0.84, 1.24, 1.91) (42, 62, 96) (0.40, 0.60, 0.90) (20, 30, 45)
3≤ R < 4 (1.16, 1.75, 2.65) (41, 62, 94) (0.55, 0.88, 1.30) (19, 31, 46)
4≤ R < 5 (1.62, 2.31, 3.40) (45, 64, 94) (0.78, 1.10, 1.50) (22, 31, 42)
5≤ R < 6 (1.90, 2.64, 4.36) (41, 57, 94) (0.91, 1.30, 1.90) (20, 28, 41)
6≤ R < 7 (2.22, 3.44, 5.78) (39, 61, 102) (1.10, 1.47, 2.80) (19, 26, 49)
7≤ R < 8 (2.65, 4.08, 7.04) (41, 64, 110) (1.25, 1.73, 2.95) (20, 27, 46)
8≤ R < 9 (2.95, 6.60, 9.55) (44, 99, 143) (1.82, 2.67, 3.90) (27, 40, 58)
9≤ R < 10 (2.67, 4.36, 7.54) (37, 60, 104) (1.01, 2.49, 3.22) (14, 34, 45)
10≤ R < 20 (4.50, 7.18, 10.70) (44, 71, 105) (2.44, 3.83, 5.53) (24, 38, 54)

to the observed amount. We have used three different aggre-
gation operators 〈 . . . 〉, which are: the 25th, the 50th (me-
dian) and the 75th percentiles of all samples within a class.
Then, for instance, in Table 4, the 3-tuple in the first row
of the second column (〈IDR|R〉, units mm) is (0.00, 0.10,
0.20) and it means: 0.00 mm is the 25th percentile of all IDR
samples within the class 0.1≤ R < 0.2; 0.10 mm is the me-

dian of all IDR samples within the same class; 0.20 mm is
the 75th percentile of all IDR samples within the same class.
Since we are using the spread of the crowdsourced obser-
vation, the normalization is done on the basis of 〈C50|R〉

(and not of 〈R〉). Then, the normalized IDR (IQR) is de-
fined as 〈C90−C10|R〉/〈C50|R〉 (〈C75−C25|R〉/〈C50|R〉).
Note that, for the results presented in this section, the op-
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Table 5. Spatial variability of crowdsourced observations conditional to classes of reference precipitation R based on measurements from
1 September 2019 to 1 November 2022. The crowdsourced stations used lie within circular regions of radius equal to 3 km from the reference
stations and there must be at least 10 crowdsourced observations simultaneously available. The data shown in the table have been used to
obtain the graph in Fig. 7. The table layout is similar to Table 4.

R class (mm) 〈IDR|R〉 (mm) norm. 〈IQR|R〉 (mm) norm.
〈IDR|R〉 (%) 〈IQR|R〉 (%)

0.1≤ R < 0.2 (0.10, 0.16, 0.30) (200, 320, 600) (0.00, 0.10, 0.15) (0, 200, 300)
0.2≤ R < 0.3 (0.20, 0.30, 0.50) (100, 150, 250) (0.10, 0.20, 0.28) (50, 100, 138)
0.4≤ R < 0.5 (0.32, 0.50, 0.70) (107, 167, 233) (0.16, 0.22, 0.35) (52, 75, 117)
0.5≤ R < 0.6 (0.43, 0.61, 0.87) (108, 152, 217) (0.20, 0.30, 0.45) (50, 75, 112)
0.6≤ R < 0.7 (0.56, 0.78, 1.00) (100, 139, 179) (0.25, 0.35, 0.52) (45, 62, 94)
0.8≤ R < 0.9 (0.61, 0.88, 1.12) (100, 144, 184) (0.28, 0.40, 0.60) (45, 66, 98)
0.9≤ R < 1 (0.69, 0.94, 1.22) (99, 134, 174) (0.30, 0.41, 0.64) (43, 59, 91)
1≤ R < 2 (0.7, 0.99, 1.35) (64, 90, 123) (0.32, 0.50, 0.70) (30, 45, 64)
2≤ R < 3 (1.10, 1.50, 2.07) (56, 77, 106) (0.52, 0.74, 1.03) (27, 38, 53)
3≤ R < 4 (1.55, 2.10, 2.78) (55, 75, 99) (0.75, 1.01, 1.4) (27, 36, 50)
4≤ R < 5 (2.02, 2.69, 3.46) (56, 75, 96) (0.95, 1.27, 1.70) (26, 35, 47)
5≤ R < 6 (2.34, 3.17, 4.20) (53, 72, 95) (1.15, 1.50, 2.05) (26, 34, 47)
6≤ R < 7 (2.96, 3.88, 5.14) (57, 75, 99) (1.40, 1.89, 2.45) (27, 36, 47)
7≤ R < 8 (3.46, 4.39, 5.92) (61, 77, 104) (1.60, 2.10, 2.85) (28, 37, 50)
8≤ R < 9 (3.77, 4.85, 6.40) (57, 73, 96) (1.64, 2.24, 3.00) (25, 34, 45)
9≤ R < 10 (4.55, 6.38, 8.26) (63, 88, 114) (1.91, 3.09, 4.58) (26, 43, 63)
10≤ R < 20 (5.07, 7.52, 10.80) (57, 85, 122) (2.31, 3.54, 5.10) (26, 40, 58)

Table 6. Spatial variability of crowdsourced observations conditional to classes of reference precipitation R based on measurements from
1 September 2019 to 1 November 2022. The crowdsourced stations used lie within circular regions of radius equal to 5 km from the reference
stations and there must be at least 10 crowdsourced observations simultaneously available. The data shown in the table have been used to
obtain the graph in Fig. 8. The table layout is similar to Table 4.

R class (mm) 〈IDR|R〉 (mm) norm. 〈IQR|R〉 (mm) norm.
〈IDR|R〉 (%) 〈IQR|R〉 (%)

0.1≤ R < 0.2 (0.10, 0.20, 0.30) (200, 400, 600) (0.00, 0.10, 0.20) (0, 200, 400)
0.2≤ R < 0.3 (0.20, 0.34, 0.52) (100, 170, 260) (0.10, 0.20, 0.30) (50, 100, 150)
0.4≤ R < 0.5 (0.36, 0.51, 0.74) (120, 170, 247) (0.20, 0.28, 0.40) (67, 92, 133)
0.5≤ R < 0.6 (0.48, 0.68, 0.92) (120, 170, 230) (0.20, 0.30, 0.50) (50, 75, 125)
0.6≤ R < 0.7 (0.60, 0.80, 1.10) (107, 143, 196) (0.28, 0.40, 0.60) (49, 71, 107)
0.8≤ R < 0.9 (0.66, 0.90, 1.21) (108, 148, 198) (0.30, 0.40, 0.61) (49, 66, 100)
0.9≤ R < 1 (0.73, 1.00, 1.30) (104, 143, 186) (0.30, 0.45, 0.70) (43, 64, 100)
1≤ R < 2 (0.76, 1.04, 1.46) (69, 95, 133) (0.38, 0.50, 0.75) (34, 45, 68)
2≤ R < 3 (1.15, 1.54, 2.14) (61, 81, 113) (0.58, 0.80, 1.10) (30, 42, 58)
3≤ R < 4 (1.60, 2.14, 2.85) (59, 79, 106) (0.80, 1.10, 1.50) (30, 41, 56)
4≤ R < 5 (2.00, 2.62, 3.44) (57, 75, 98) (0.97, 1.27, 1.80) (28, 36, 51)
5≤ R < 6 (2.42, 3.20, 4.24) (57, 75, 100) (1.20, 1.60, 2.20) (28, 38, 52)
6≤ R < 7 (2.98, 3.90, 5.35) (61, 80, 110) (1.40, 1.90, 2.62) (29, 39, 54)
7≤ R < 8 (3.35, 4.40, 6.36) (61, 81, 117) (1.57, 2.15, 3.22) (29, 39, 59)
8≤ R < 9 (3.78, 5.24, 6.55) (61, 85, 107) (1.82, 2.48, 3.42) (30, 40, 56)
9≤ R < 10 (4.67, 6.22, 8.34) (66, 88, 119) (2.22, 3.03, 4.60) (32, 43, 65)
10≤ R < 20 (5.80, 7.90, 11.15) (69, 94, 132) (2.78, 4.24, 6.00) (33, 50, 71)

erator used in the aggregation of 〈C50|〉 is always the median
over the samples (i.e. even when calculating the 25th per-
centile of e.g. 〈C90−C10|R〉/〈C50|R〉, we have used the me-
dian to obtain 〈C50|R〉). In the tables, the absolute values
of the variability are reported (i.e. 〈IDR|R〉 ≡ 〈C90−C10|R〉

and 〈IQR|R〉 ≡ 〈C75−C25|R〉) but not on the figures.

The link between figures and tables is explained with an
example. Let us consider Fig. 7a, the pink area shows the
range of values delimited by the first and the third values of
the 3-tuple in the fifth column of Table 5 (i.e. the range of
values for the normalized 〈IQR|R〉, between the 25th and the
75th percentiles). The thick red line joins together the second
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values of the 3-tuple in the fifth column of Table 5 (i.e. the
medians of norm. 〈IQR|R〉). Then, the pink area is the vari-
ability we have found in the normalized crowdsourced vari-
ability. The thick red line is the “typical” value of the nor-
malized crowdsourced variability.

A common feature of all the three figures is that the nor-
malized spatial variability is very high for light precipita-
tion (i.e. less than 1 mm), often even with values higher
than 100 %. Then, the normalized variability stabilizes and
reaches a plateau which remains fairly constant throughout
the range of precipitation amounts. As expected, the vari-
ability increases as the area of the neighbourhood considered
increases too.

For the IQRs, the plateaus, reached for values ≥ 2 mm,
are (we consider the medians here): between 26 % and 40 %
(1 km); between 34 % and 43 % (3 km); between 36 % and
50 % (5 km). For the IDRs, the plateaus, reached for values
higher than 2 mm, are: between 57 % and 99 % (1 km); be-
tween 72 % and 88 % (3 km); between 75 % and 94 % (5 km).

4 Conclusions

The relationship between the empirical distributions of Ne-
tatmo’s hourly precipitation totals conditional to reference
precipitation has been investigated. We have found that the
reference observations are always included in the envelope
of the empirical distribution of crowdsourced data (i.e. be-
tween the 10th and the 90th percentiles). However, there are
indications that for intense precipitation crowdsourced data
may underestimate precipitation. This is inline with WMO
guidelines, which recommend to correct measurements from
tipping-buckets rain gauges and to adjust measurements of
different rain gauges to make them more comparable.

The results obtained by comparing the empirical distri-
butions of crowdsourced and reference precipitation suggest
that it would probably be possible to use a quantile-quantile
mapping procedure to adjust the crowdsourced observations
toward the reference values.

It might also be beneficial to aggregate the crowdsourced
data over small neighbourhoods, of the size of 1 to 5 km,
instead of using the raw data. In this way, crowdsourced
data performs better in distinguishing between precipitation
yes/no events, for instance.

The investigation of the crowdsourced precipitation spatial
variability shows that when comparing measurement from
two points, even if not very far from each other (i.e. distance
between 1 to 5 km), one should not be surprised to find val-
ues that are quite different from each other (up to 50 % of
the mean hourly precipitation in the area). The variability is
quantified in detail in the presented tables. The results are
representative of the actual spatial variability of precipitation
over small distances, as described in Sect. 3. However, part
of the variability is certainly given by the not ideal siting ex-
posure of Netatmo’s stations and, in this sense, the results

obtained can be considered as a maximum estimate of the
variability.
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