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Introduction: Fatigue is dangerous for certain jobs requiring continuous
concentration. When faced with new datasets, the existing fatigue detection
model needs a large amount of electroencephalogram (EEG) data for training,
which is resource-consuming and impractical. Although the cross-dataset fatigue
detection model does not need to be retrained, no one has studied this problem
previously. Therefore, this study will focus on the design of the cross-dataset
fatigue detection model.

Methods: This study proposes a regression method for EEG-based cross-dataset
fatigue detection. This method is similar to self-supervised learning and can be
divided into two steps: pre-training and the domain-specific adaptive step. To
extract specific features for different datasets, a pretext task is proposed to
distinguish data on different datasets in the pre-training step. Then, in the
domain-specific adaptation stage, these specific features are projected into a
shared subspace. Moreover, the maximum mean discrepancy (MMD) is exploited
to continuously narrow the differences in the subspace so that an inherent
connection can be built between datasets. In addition, the attention
mechanism is introduced to extract continuous information on spatial features,
and the gated recurrent unit (GRU) is used to capture time series information.

Results: The accuracy and root mean square error (RMSE) achieved by the
proposed method are 59.10% and 0.27, respectively, which significantly
outperforms state-of-the-art domain adaptation methods.

Discussion: In addition, this study discusses the effect of labeled samples. When
the number of labeled samples is 10% of the total number, the accuracy of the
proposed model can reach 66.21%. This study fills a vacancy in the field of fatigue
detection. In addition, the EEG-based cross-dataset fatigue detectionmethod can
be used for reference by other EEG-based deep learning research practices.

KEYWORDS

fatigue detection, cross-dataset, EEG, regression method, self-supervised learning

1 Introduction

Fatigue is one of the major factors leading to human errors, which is accompanied by
impaired attentional control, decreased individual alertness, and poor performance in tasks
(Liu et al., 2020). These are dangerous for certain jobs requiring continuous concentration,
such as pilots, vehicle drivers, and helmsmen (LiuW. et al., 2019). To avoid failures caused by
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fatigue, researchers are working on ways to detect/monitor fatigue
using different types of signals. The first is based on individual
behavior, including physiological responses, such as eyelid-related
parameters (Hu and Zheng, 2009), facial expressions (Liu Y. et al.,
2019), head movement (SMITH et al., 2016), percentage of eye
closure (PERCLOS) (Zheng and Lu, 2017), and the performance
observed during the execution of specific tasks, such as reaction time
(RT) and response accuracy (Huang et al., 2016; Liu et al., 2020;
Zeng et al., 2020). The second is based on psychological surveys,
such as the Karolinska Sleepiness Scale, Stanford Sleepiness Scale,
and Chalder Fatigue Scale (Foong et al., 2019; Qin et al., 2020;
Krigolson et al., 2021; Zeng et al., 2021). The third is based on
physiological signals, such as electroencephalogram (EEG) (Gao
et al., 2019; Peng et al., 2021), electrooculogram (Bulling et al., 2011),
electrocardiogram (Murugan et al., 2020), or a combination of
signals (Qi et al., 2018; Du et al., 2022). Precisely, EEG measures
the potential difference produced from the electrical signals
generated by the synaptic excitation of neurons to the scalp, and
it can directly reflect the activities of nerve cells in the brain (Kostas
et al., 2021; Liqiang et al., 2022). Therefore, it is considered to be the
most effective method to detect fatigue.

At present, the fatigue detection method of within-subject
and cross-subject has achieved outstanding performance. For the
within-subject fatigue recognition, Yang et al. (2021a) proposed a
complex network (CN)-based broad learning system (CNBLS) to
realize fatigue detection based on EEG. The classification
accuracy of CNBLS was 99.58%. Wang H. et al. (2021)
introduced a new attention-based multiscale convolutional
neural network–dynamical graph convolutional network model
for driving fatigue detection. The two-class accuracy was 95.65%.
For cross-subject fatigue recognition, Zeng et al. (2020) used the
InstanceEasyTL method to detect driver fatigue, and the two-
class accuracy was 88.02%. Liu et al. (2020) proposed a transfer
learning-based algorithm using maximum independence domain
adaption (MIDA), and it achieved an accuracy of 73.01% with all
30 channels for the two-class mental fatigue recognition. Wei
et al. (2018) developed a subject-transfer framework for obviating
inter- and intra-subject variability in drowsiness detection, and
this framework remarkably reduced the required calibration time
for a new user. In addition, in the emotion recognition field, Iyer
et al. (2023) proposed the ensemble learning-based EEG emotion
recognition system, and the ensemble model outperforms the
compared methodologies with 97.16% accuracy for EEG-based
emotion recognition on the SEED dataset. In the sleep stage
classification, Sharma et al. (2021) used a discrete wavelet
transform and discrete entropy to analyze EEG signals,
studied the wavelet sub-band of EEG sleep records and its
performance based on wave dispersion entropy, and finally
obtained EEG features suitable for sleep stage classification.

However, when faced with new users under different datasets, the
model of within-subject and cross-subject fatigue detection still needs a
large amount of EEG data for training. It has poor applicability. The
cross-dataset fatigue detection model has a strong practical application
value because it does not need to be retrained, and it can directly detect
fatigue states of new datasets. In order to get a general cross-dataset
fatigue detection model, this study considers different sets in BCIs. In
other words, different datasets have different label spaces (He and Wu,
2020). For fatigue detection, this means that the subjects of different

datasets perform different fatigue-induced tasks. Different tasks have
different feature spaces. Thus, the very effort of selecting different
features for different tasks is a critical challenge for cross-dataset fatigue
detection. However, the within-subject and cross-subject fatigue
detection models are difficult to generalize knowledge to new
datasets because they suffer the drawbacks of fully supervised
learning and large-scale labeled datasets for training (Ye et al., 2022),
and the label work process is prone to human bias andmay also result in
ambiguous annotations. In particular, each dataset has multiple
subjects, so cross-dataset fatigue detection is a multi-source to multi-
target domain problem.

Up to now, themethods of fatigue detection aremainly judged from
facial expressions, physiological signals, and questionnaire surveys, but
it is difficult to have a general fatigue detectionmodel to adapt to various
fatigue-induced tasks. To the best of our knowledge, no one has studied
this problem previously. However, the idea of a cross-dataset has gained
widespread attention in other fields, such as emotion recognition, sleep
staging, and personal identification. Ni et al. (2021) used a domain
adaptation sparse representation classifier to minimize the data
distribution difference between datasets and then classify emotions
for EEG collected from different subjects, different periods, and
different devices. Eldele et al. (2022) used the adversarial learning
framework called ADAST for automatic sleep staging. The
framework can tackle the domain shift problem in the unlabeled
target domain, which is a limitation to domain adaptation in sleep
staging. Kong et al. (2018) proposed amethod for cross-dataset personal
identification based on a brain network of EEG signals. The method
used brain functional networks and linear discriminant analysis (LDA)
to classify personal identification. As can be seen from the
aforementioned fields, domain adaptation is one of the main
methods to solve cross-dataset problems (Chen et al., 2021; Ding
et al., 2021). In addition, the method proposed in this study can
also be applied to these fields.

In real life, there is a coherent sequence of changes in EEG
variables during the transition from normal driving, high mental
workload, and eventual mental fatigue and drowsiness, so fatigue
detection should be a regression problem. However, current fatigue
evaluation methods are mostly classification methods, aiming to
divide the brain states into two or more alert and fatigue states (Yang
et al., 2021b). This is a simplified version of regression analysis. To
develop a model that can adapt to different fatigue-induced tasks,
this study focuses on the following four points to carry out the
specific content of this study.

(a) A regression method for EEG-based cross-dataset fatigue
detection is proposed to detect the fatigue states of the new
datasets collected for different fatigue-induced tasks. The
method includes two steps: pre-training and the domain-
specific adaptive step. The purpose of pre-training is mainly
to extract specific features for different datasets. The domain-
specific adaptive step is mainly to align specific features
extracted from the pre-training step and mine the internal
relationship between features. To validate the proposed
method, a large number of experiments were conducted to
compare the proposed method with state-of-the-art domain
adaptation methods.

(b) In the pre-training step, this study designs a pretext task to
distinguish data from the source or target domains. In this
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way, the specific features of different fatigue-induced tasks
can be obtained. The pre-training step includes a common
feature extractor and a domain discriminator. In this study,
we have performed a lot of experiments to verify that the
accuracy of pre-training steps is better than that of no pre-
training steps, which proves the contribution of pre-
training.

(c) In the domain-specific adaptive step, this study proposes an
EEG-based domain-adaptive fatigue detection network. In
addition, it includes a domain-specific feature extractor,
domain distribution alignment network, and regression
multilayer perceptron. Maximum mean discrepancy (MMD)
is used to optimize the network parameters in the domain-
specific adaptive step, which can minimize differences between
the source and target domains.

(d) The attention mechanism is introduced to extract continuous
information on spatial features, and the gated recurrent unit
(GRU) is introduced to capture information on time series. This
study also conducts experiments to verify the effectiveness of the
attention mechanism and GRU.

The rest of this paper is organized as follows: Section 2
describes the proposed method. Section 3 presents the
experiment and results. Section 4 discusses the results, and
Section 5 concludes the paper.

2 Materials and methods

2.1 Problem statement

It is difficult to obtain a general model that is suitable for datasets
because of different tasks. Therefore, if the model trained by one
dataset is applied to another dataset directly, it will lead to
performance degradation. When faced with a new dataset, the
conventional method needs to undergo the calibration process,
that is, to collect lots of new labeled data and train a new model
for these data (Wang Y. et al., 2021). This is time-consuming and not
economical.

Suppose we have labeled EEG samples from one dataset
Xs, Ys{ } � (xsi, ysi){ }Ns

i�1, denoted as the multi-source domain Ds,
and unlabeled EEG samples from the another dataset
Xt{ } � xtj{ }Nt

j�1, denoted as the multi-target domain Dt, where
Xs ∈ Rd×Ns , Xt ∈ Rd×Nt , Ys ∈ RC×Ns , xsi, xtj ∈ Rd, and ysi ∈ RC is
a one-hot vector, d is the feature dimensionality, C is the fatigue
index, and Ns and Nt are the number of samples in multi-source
and multi-target domains, respectively. However, the marginal
distributions and conditional distributions of the feature space,
and the fatigue index space of both domains are different due to
the domain shift: Ps(Xs) ≠ Pt(Xt) and Ps(Ys|Xs) ≠ Pt(Yt|Xt).
Domain adaptation solves this problem by mapping the multi-
source and multi-target domains to a new space R and then

FIGURE 1
All trails’ reaction times.
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minimizing the distance Ds−t between the multi-source mapping
distributions RXs and multi-target mapping distributions RXt.

2.2 Datasets

2.2.1 SEED dataset
The data were collected by Zheng and Lu (2017). A total of

23 subjects participated in the experiments. The experimental data
collection scenario was a virtual-reality-based simulated driving
scene. A four-lane highway scene is shown on a large LCD
screen in front of a real vehicle without the unnecessary engine
and other components. The vehicle movements in the software
application are controlled by the steering wheel and gas pedal.
During the experiments, the subjects were asked to drive the car
using the steering wheel and gas pedal, and the scenes were
simultaneously updated according to the participants’ operations.
The 12-channel EEG signals from the hindbrain (CP1, CPZ, CP2,
P1, PZ, P2, PO3, POZ, PO4, O1, OZ, and O2) and 6-channel EEG
signals from the temporal lobe (FT7, FT8, T7, T8, TP7, and TP8)
were recorded. The author of the dataset used independent
component analysis filtering to remove noise, such as the artifact
of eye movement, electromyography, and baseline drift. In this
study, we filtered the dataset with 1-Hz high-pass and 50-Hz
low-pass finite impulse response (FIR) filters. The processed data
were finally downsampled to 128 Hz. The vigilance annotation
method of the dataset used PERCLOS, which refers to the
percentage of eye closure. Specifically, eye movements were
simultaneously recorded using SMI ETG eye tracking glasses.

Data labels were defined in a way that classifies EEG data into
three fatigue states (awake, fatigue, and drowsy) with two thresholds
(0.35 and 0.7) based on the PERCLOS index. In addition, in the
following study, this study uses “SEED_0” for awake, “SEED_1” for
fatigue, and “SEED_2” for drowsy in the SEED dataset.

2.2.2 Multi-channel dataset
The dataset consists of EEG signals collected by Cao et al.

(2019). In the experiment, 27 participants were invited to the
experiment. Fatigue and drowsy states were induced by a 90-min
sustained-attention night-time driving task in an immersive
driving simulator. The participants were tasked to drive and
maintain the car in the center of the lane. Lane-departure events
were randomly induced, which made the car drift to the left or
right from the lane, and participants were asked to move back as
quickly as possible by steering the wheel. In addition, their
reactions were timed. The vigilance annotation method of the
dataset used the RT, which provides a gauge of the subjects’
fatigue level. The preprocessed version of the dataset was used in
this study. As described by the authors, the raw EEG signals were
filtered by 1-Hz high-pass and 50-Hz low-pass FIR filters.
Apparent eye blinks that contaminate the EEG signals were
manually removed through visual inspection by the authors of
the dataset. Ocular and muscular artifacts were removed by the
automatic artifact removal plug-in of EEGLAB. The processed
data were finally downsampled to 128 Hz.

The RT is the time difference between the lane-departure event
onset and the subject’s response onset. This study calculated all
trails’ RT, and the boxplot of these is shown in Figure 1. As can be
seen from Figure 1, each person’s RT is different, and it has a long-
tail effect. Therefore, the RT τ is transformed into the drowsiness
index (DI) (Yang et al., 2021a) by the following Equation 1 in this
study. The RT has been proved to have a strong correlation with the
drowsiness level, while the DI is positively correlated with the RT.
Therefore, the DI can be used to indicate the drowsiness level. The
curves before and after the transformation are shown in Figures 2A,
B (take s01_051017m.set as an example). As can be seen from
Figure 2B, the fatigue curve determined according to the
performance observed during the execution of specific tasks
fluctuates greatly.

FIGURE 2
Curves before and after the transformation. (A) RT curve. (B) DI curve.
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DI � max 0,
1 − e− τ−τ0( )

1 + e− τ−τ0( )( ), (1)

where τ0 was set to 1.
The transformation can normalize the RT to the interval [0,1]

and overcome the long-tail effect. Like the SEED dataset, the data
labels are defined in such a way that the EEG data are classified into
three fatigue states (awake, fatigue, and drowsy) based on the DI
index with two thresholds (0.35 and 0.7). Specifically, in the
following study, this study uses “multi-channel_0” for awake,
“multi-channel_1” for fatigue, and “multi-channel_2” for drowsy
in the multi-channel dataset.

2.2.3 Channel selection
For the EEG setup, the SEED dataset recorded 12-channel EEG

signals from the posterior site (CP1, CPZ, CP2, P1, PZ, P2, PO3,
POZ, PO4, O1, OZ, and O2) and 6-channel EEG signals from the
temporal site (FT7, FT8, T7, T8, TP7, and TP8) according to the
International 10–20 electrode system, as shown in Figure 3A.

The multi-channel dataset included 32 EEG signals and one
signal for vehicle position. The first 32 signals were from the Fp1,
Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCZ, FC4, FT8, T3, C3, Cz, C4, T4,
TP7, CP3, CPz, CP4, TP8, A1, T5, P3, PZ, P4, T6, A2, O1, Oz, and
O2 electrodes. Two electrodes (A1 and A2) were references placed
on the mastoid bones. The next signal was used to describe the

FIGURE 3
Channels of the SEED dataset and multi-channel dataset. (A) SEED dataset. (B) Multi-channel dataset.

FIGURE 4
Random sampling method.
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position of the simulated vehicle. This study compares the channels
of the SEED dataset with those of the multi-channel dataset and
selects the channels according to the one-to-one correspondence
principle, as shown in Figure 3. In particular, if there are more
datasets, channel selection should be based on the dataset with the
lowest number of channels.

2.2.4 EEG segmentation division
In our previous work, we found that the random sampling

method can reduce overfitting. It is shown in Figure 4. The specific
process is as follows. Assuming that the EEG sequence length is N
and the sample length of the EEG segment is T, the EEG sequence of
length N contains a number of EEG sub-sequence [Ni,Ni+1], and
each has its own index. For example, the EEG sub-sequence
[N0, N1] corresponds to indexN1 and the EEG sub-sequence
[N1, N2] corresponds to indexN2, and so on. A random offset of
[0, T − 1]will be set for the EEG sequence and EEG segments in each
training iteration, which means that different EEG segments will be
used in each iteration. The relationship between the EEG segment

[iT, (i + 1)T] and the corresponding index index[iT,(i+1)T] is shown
in Equation 2.

index iT, i+1( )T[ ] �

indexN1 , if 0< iT<N1 ,∫N1

iT
indexN1dt + ∫ i+1( )T

N1

indexN2dt

T
, if N1 < iT<N2 ,

∫N1

iT
indexN1dt + ∫N2

N1

indexN2dt + ∫ i+1( )T

N2

indexN3dt

T
, if N2 < iT<N3.

. . . , . . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

In this study, the EEG data on the SEED dataset were used as the
independent variable and the PERCLOS was used as the dependent
variable. In addition, the PERCLOS values provided in the SEED
database were calculated every 8 s, so the PERCLOS values between
two 8 s EEG segments were obtained by the aforementioned
interpolation method. In the multi-channel dataset, EEG data
were used as the independent variable and the DI as the
dependent variable, and the DI values were obtained by the
aforementioned interpolation method.

FIGURE 5
Regression method for EEG-based cross-dataset fatigue detection: (A) pre-training and (B) domain-specific adaptive step. In the pre-training step,
the multi-source domain and multi-target domain data are input into Gf and then fed into Dg . In the domain-specific adaptive step, the specific features
of the two domains are extracted by Sf . Then, the distance MMD between the specific features is calculated by Da , and the fatigue index of the source
domain is fitted by Rp.
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2.3 Proposed method

In order to get a fatigue detection model that can adapt to
different tasks, this study proposes a regression method for EEG-
based cross-dataset fatigue detection, as shown in Figure 5. In the
pre-training step (Figure 5A), Xs and Xt are input into the common
feature extractor Gf to extract specific features (Fs(Xsi) and Ft(Xtj))
for different tasks. Then, the domain discriminator Dg is used to
determine whether these specific features come from Xs (“0”) or Xt

(“1”). The cross-entropy loss is calculated and backpropagated to
optimize the network. In this way, the specific features of different
fatigue-induced tasks can be obtained.

In the domain-specific adaptive step (Figure 5B), this study
proposes an EEG-based domain-adaptive fatigue detection network.
In addition, it includes a domain-specific feature extractor Sf ,
domain distribution alignment network Da, and regression
multilayer perceptron Rp. First, the specific features of Xs and Xt

are extracted by Sf . Then, the distance MMD (Chen et al., 2021)
between the specific features is calculated by Da, and the fatigue
index of the source domain is fitted by Rp to calculate the mean
squared error (MSE). Finally, the MMD and MSE were
backpropagated to constantly update the network parameters and
narrow the differences between features. The method can make the
distribution domains of Ds and Dt more uniform, that is,

lim
t → s

[Ps(Xs) � Pt(Xt)] and lim
t → s

[Ps(Ys|Xs) �
Pt(Yt|Xt)]. Its aim is to extract the invariant features among
domains and reveal the relationships between instances of the
different datasets (Ye et al., 2022).

In terms of the design of a network structure, this study
introduces the attention mechanism to extract the discriminative
spatial representations and introduces the GRU to capture the
relationship of EEG samples and the long-range information
about EEG slices. The implementation processes of the proposed
method are described in detail in Section 2.3.1 and Section 2.3.2.

FIGURE 6
(A) Channel-wise attention model. (B) Spatial attention model. (C) Network structure of the common feature extractor.
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2.3.1 Design of a common feature extractor
In prior work, this study observed that the performance of

shallower models more quickly saturated to lower performance
levels, as compared to the deeper networks. If the shallow
network depth is increased only, it is easy to cause overfitting
and deteriorate the network performance. The residual network
(ResNet) solves the problems of traditional convolutional neural
network (CNN) degradation and gradient disappearance/explosion
by adding jump connections.

Apart from these factors, this study investigates a different
aspect of architectural design: attention. The significance of
attention has been studied extensively in the literature (Mnih
et al., 2014; Gregor et al., 2015). In addition, it plays an

important role in deciding ‘where’ to focus, as shown in Chen
et al. (2017). Woo et al. (2018) exploited CBAM, which is both
channel-wise and spatial attention-based on efficient architecture.
They integrated CBAM into ResNet and applied it to computer
vision, and this method showed very good performance. Thus, the
attention mechanism is very good at capturing spatial
representations. However, there are few applications for fatigue
detection (Wang H. et al., 2021).

In this study, ResNet50 was selected as the CNN to extract
spatial local features of one-dimensional EEG samples. In addition,
the CBAM network is integrated into ResNet50 by referring to the
experiment of Woo et al. (2018). The channel-wise attention and
spatial attentionmodels are shown in Figures 6A, B. Themethod can
adaptively estimate the importance of EEG channels without any
prior information and effectively learn the discriminative spatial
representations in EEG slices. In addition, several pioneering works
mainly focus on the relationship of EEG samples or the connection
between different channels, whereas few studies considered
capturing the information about EEG slices. The GRU is added
to capture the latent long-range temporal information on EEG
signals. The network structure design of the common feature
extractor Gf is shown in Figure 6C.

2.3.2 Domain-specific adaptive step
In the domain-specific adaptive step, this study builds the

domain-specific feature extractor Sf. The domain-specific feature
extractor Sf extracts multi-representations of Xs and Xt, that is,
RXsi
{ }Ns

i
and RXtj

{ }Nt

j
. Sf maps them to a common subspace∅ and

preserves the key features of each domain and Sf by using a
Gf-based shared feature extractor, i.e., Sf � Gf, which is unlike
the totally unshared architectures that require an extra network and
increase the complexity of the model. Therefore, most domain-
adaptive algorithms adopted this shared design (Eldele et al., 2022;
He et al., 2022). To make these high-level features with different
representations closer, this study employed MMD to estimate the
distance between the domains in the latent space (Chen et al., 2021;
Tao and Dan, 2021; Cao et al., 2022). In addition, it is calculated by

FIGURE 7
Fatigue index distribution of the SEED and multi-channel
datasets. SEED_0, SEED_1, and SEED_2 indicate awake, fatigue, and
drowsy states of the SEED dataset, respectively. Multi-channel_0,
multi-channel_1, and multi-channel_2 indicate awake, fatigue,
and drowsy states of the multi-channel dataset, respectively.

FIGURE 8
Distributions of the three states of the two datasets. (A) 3-D scatter plot of EEG samples of the SEED dataset. (B) 3-D scatter plot of EEG samples of
themulti-channel dataset. Yellow color indicates the awake state of the two datasets, blue indicates the fatigue state, and red indicates the drowsy state in
(A) and (B). (C) Boxplot and violin plot of EEG samples of the two datasets. SEED_0, SEED_1, and SEED_2 indicate awake, fatigue, and drowsy states of the
SEED dataset, respectively. Multi-channel_0, multi-channel_1, andmulti-channel_2 indicate awake, fatigue, and drowsy states of themulti-channel
dataset, respectively.
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the domain distribution alignment network Da. The final MMD is
the sum of the MMD of each source domain expression and the
corresponding target domain expression, as shown in Equation 3.

MMD RXsi
{ }Ns

i
, RXtj
{ }Nt

j
( ) � 1

Ns
∑Ns

i�1∅ RXsi
{ }

i
( ) − 1

Nt
∑Nt

j�1∅ RXtj
{ }

j
( )�������� ��������2.

(3)

Finally, the multi-representation vector RXsi
{ }Ns

i
is connected

to a new vector and fed into the regression multilayer perceptron
Rp to predict the fatigue index. We use the MSE to calculate loss,
as shown in Equation 4. The total loss function can be expressed
as Equation 5.

MSE Ŷ, Y( ) � 1
Ns

∑Ns

i�1
ŷi − yi( )2, (4)

Lloss � MSE Ŷ, Y( ) + α × MMD RXsi
{ }Ns

i
, RXtj
{ }Nt

j
( ), (5)

where α is the proportionality coefficient.
The training is based on Equation 5. Minimizing this formula is

to minimize the MMD and MSE so that the distance between the
source domain and the target domain can be as small as possible in
different potential spaces, and the index prediction is as close as
possible to the actual index.

In summary, the method proposed in this study follows the
algorithm, as shown in Algorithm 1.

Input: The EEG data on the source domain and target

domain, Xs and Xt.

The labels of source domain Ys, epoch N and batch size B,

learning rate lr, parameters α;

Output: prediction of target domain data, Ŷ{ }.
Step 1:

Pre-training

Initialize the parameters of the model

1. for (epoch ← 1; epoch ≤ N; epoch ← epoch + 1) do

2. repeat

3. Sample source examples xsi{ }Ns

i�1 from Xs{ };
4. Sample target examples xtj{ }Nt

j�1 from Xt{ };
5. Sample labels “0” (source domain) and “1”

(target domain);

5. Use Gf to extract Fs(Xsi) and Ft(Xtj);
6. Fs(Xsi) and Ft(Xtj) are input into the Dg to compute

the cross-entropy loss;

7. Update the model by minimizing the cross-

entropy loss;

8. end for Step 2: Domain-specific adaptive

Initialize domain-specific feature extractor Sf

9. for (epoch ← 1; epoch ≤ N; epoch ← epoch + 1) do

10. repeat

11. Sample source examples (xsi , ysi){ }Ns

i�1 from Xs, Ys{ };
12. Sample target examples xtj{ }Nt

j�1 from Xt{ };
13. Use Sf to extract RXsi

{ }Ns

i
and RXtj

{ }Nt

j
;

14. RXsi
{ }Ns

i
and RXtj

{ }Nt

j
are input into Da to

compute MMD( RXsi
{ }Ns

i
, RXtj
{ }Nt

j
) (3);

15. Concat RXsi
{ }Ns

i
to regression multilayer

perceptron Rp to calculate the MSE(Ŷ, Y) (4);
16. The total loss is Lloss (5);

17. Update the model by minimizing the total loss;

18. end for 19. Input Xt{ } into the updated model to

predict;

20. return prediction of target domain data, Ŷ{ }.
Algorithm 1: A regression method for EEG-based cross-dataset
fatigue detection.

3 Results

3.1 Dataset evaluation

In order to develop a model that can adapt to different fatigue
tasks, we need to select a dataset with large information as the source
domain and another as the target domain. Therefore, we need to
reasonably judge the richness of each dataset and the information it
contains.

First, this study evaluates the distributions of two datasets. The
SEED dataset and multi-channel dataset have different experimental
tasks, so they may present different features. Therefore, the amount
of information contained in each dataset should be evaluated
comprehensively in order to select the appropriate source and
target domains. Figure 7 shows the boxplot of the fatigue index
distribution of the SEED and multi-channel datasets. Meanwhile, in
order to see the distributions of the three states of the two datasets
more directly, this study randomly picked out almost 256 EEG
samples from the two datasets (each dataset has 128 samples) to
visualize them with Uniform Manifold Approximation and
Projection (UMAP) (Banville et al., 2021) via a 3-D scatter plot,
as shown in Figures 8A, B. In addition, their boxplot and violin plot
are displayed in Figure 8C.

It can be seen from Figure 7 that the fatigue index of the SEED
dataset has a more centralized distribution with no outliers, while
that of the multi-channel dataset has more outliers on “multi-
channel_0.” Also, the multi-channel dataset is wider than the
SEED dataset. It means that the changes of the multi-channel
dataset are greater and scattered. In addition, it can be seen from
Figure 8A that the SEED dataset has more transition features from
awake to fatigue and from fatigue to drowsy states. However, the
multi-channel dataset has less crossover (Figure 8B), which is not
conducive to extract the transition features. We can observe from
Figures 8A, C that the SEED dataset had a more concentrated EEG
distribution and fewer outliers. Therefore, the SEED dataset is more
suitable as the source domain. It is noteworthy that for different
data, the range of the data after dimensionality reduction is different
(Li et al., 2022). This study only shows the visualization effect of the
proposed method here.

3.2 Experiment details

It should be noted although all the samples in the SEED and
multi-channel datasets are labeled, the labels of the multi-channel
dataset are used only for assessment but not for training. In the
experiment, one sample size was 17*1024. In addition, the size of the
GRU hidden layer is 64, and the number of hidden layers is 1. The
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optimizer uses a combination of the stochastic gradient descent and
cosine gradually warm-up learning rate. In the cosine learning rate,
every 100 epochs are half of the period of the cosine function, and
the learning rate is 0.05 at most and 0.001 at least. In the gradually
warm-up learning rate, the learning rate in the first 10 epochs is very
small, and the learning rate starts to follow the change of the cosine
learning rate from the epoch 11. The momentum in the optimizer is
0.9, and the weight decay rate is 0.001. α is 0.3. To avoid overfitting
the source domain, this study also adds a dropout with a rate of
0.25 to the model. At each epoch, every 32 samples as a batch are
used to train the network. The study used a single-layer multilayer
perceptron (MLP) with one node as the regression multilayer
perceptron and MLP with a 64-node domain distribution
alignment network. All experiments are conducted in PyTorch
libraries with an NVIDIA GeForce GTX 3060 GPU. All codes
generated in this study are available at GitHub: https://github.
com/yangyangyang-github/RMCDFD.

3.3 Performance evaluation

Different performance measurements, such as precision,
recall, F1 score, accuracy, and root mean square error
(RMSE), have been used to confirm the performance of the
proposed method.

Precision � TP

TP + FP
, (6)

Recall � TP

TP + FN
, (7)

F1score � 2*Precision*Recall
Precision + Recall

, (8)

Accuracy � TP + TN

TP + TN + FN + FP
, (9)

RMSE Y, Ŷ( ) � �������������
1
N

∑N
i�1

yi − ŷi( )2,√√
(10)

where TP, TN, FP, and FN represent the number of true positive,
true negative, false positive, and false negative values. Y �
(y1, y2, . . . , yN)T is the true value, and Ŷ � (ŷ1, ŷ2, . . . , ŷN)T is the
prediction.

3.4 Result

To validate the proposed method, this study compares the
proposed method with the random value (33.33%). Likewise, we
also compare the performance with that of other state-of-the-art
domain adaptation methods, including transfer component analysis
(TCA) (Pan et al., 2011), MIDA (Liu et al., 2020), InstanceEasyTL
(Zeng et al., 2020), dynamic domain adaptation (DDA) (Li et al.,
2022), and ADAST (Eldele et al., 2022). Meanwhile, in order to
verify the effectiveness of source domain and target domain
selection, this study compares the performance of all methods
under two scenarios: 1) SEED → multi-channel and 2) multi-
channel → SEED. These baselines are summarized as follows,
and Table 1 shows the main results of five-fold cross-validation,
which is averaged after 10 runs.TA
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TCA: It seeks a projection to a latent subspace, where the
projected source data and target data achieve a reduced MMD in
a reproducing kernel Hilbert space, which measures the distance
between the empirical means of two distributions.

MIDA: It uses the Hilbert–Schmidt independence criterion to
evaluate the independence of potential subspaces and hopes that the
maximum independence of subspaces can be achieved.

InstanceEasyTL: In order to match the different distribution of
EEG signals from different subjects, it adopts a strategy of alignment
with certain weights to align EEG samples collected from both
source and target domains.

DDA: It introduces a dynamic training strategy where the model
focuses on optimizing the global domain discrepancy in the early
training steps and then gradually switches to the local subdomain
discrepancy.

ADAST: It develops a mechanism to preserve the domain-
specific features in both domains. In addition, it designs an
iterative self-training strategy to improve the classification
performance on the target domain via target domain pseudo labels.

Table 1 reports the recall, precision, F1 score, accuracy, and
RMSE metrics of the proposed methods in two-domain transfer
scenarios. It can be seen from Table 1 that the proposed method
achieves a better result in the two-domain transfer scenarios. In the
first scenario, the recall, precision, F1 score, and accuracy metrics
achieved by the proposed method are 44.81%, 47.83%, 46.27%, and
59.10%, which significantly outperforms TCA by 10.55%, 11.31%,
10.92%, and 16.72%, respectively. In the second scenario also, the
proposed method performs better than the others. In addition, the
recall, precision, and F1 score metrics of the first scenario are about

5% higher than those of the second scenario, and the accuracy metric
is 13.89% higher than that in the second scenario. Meanwhile, the
RMSE in the first scenario was 0.02 higher than in the second
scenario. Therefore, the comparison of the two scenarios in Table 1
verifies the effectiveness of the selection of the source and target
domains. In the following experimental verification, the first
scenario is taken as an example.

In Table 1, the results illustrate the advantages of the proposed
method over other methods. To make the comparison more
intuitive, this study visualizes the results of all methods using
UMAP (Banville et al., 2021), and they are shown in Figure 9.

3.5 Ablation experiment

In order to deeply understand the effect of attention, GRU, and
pre-training, this study also compares the performance of the
proposed method without attention (no attention), without GRU
(no GRU), and without pre-training (no pre-training). It is also
shown in Table 2.

As can be observed from Table 2, the proposed method’s
accuracy is about 10% more than those of other methods.
Specifically, the precision of the proposed method in the drowsy
state is 40% higher than that of no pre-training, the recall is more
than 20%, and the F1 score is more than 30%. It can also be seen
from Table 2 that no pre-training method shows poor recognition
performance in the drowsy state. The other three methods all have a
pre-training part, and all of them perform better than the no pre-
training model in terms of indicators of the drowsy state. Moreover,

FIGURE 9
Visualized results of all methods. (A) Proposed method. (B) TCA. (C)MIDA. (D) InstanceEasyTL. (E) DDA. (F) ADAST. Yellow color indicates the awake
state of the dataset, blue indicates the fatigue state, and red indicates the drowsy state. SEED_0, SEED_1, and SEED_2 indicate awake, fatigue, and drowsy
states of the SEED dataset, respectively. Multi-channel_0, multi-channel_1, and multi-channel_2 indicate the awake, fatigue, and drowsy states of the
multi-channel dataset, respectively.
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it is of note that although a certain module is removed, the proposed
method is still better than the random value.

In order to intuitively show how the proposed method
reduces the distribution discrepancies between the domains,
this study exhibits the outputs of the different stages via

UMAP. Figures 10A–C show the distributions of original EEG
samples, distributions after pre-training, and distributions after
domain-specific adaptation, respectively. The distributions of the
no attention, no GRU, and no pre-training are shown in Figures
10D–F, respectively. As can be seen from Figure 10B, the raw

FIGURE 10
Outputs of the different stages. (A) Original EEG sample distribution of the two datasets. (B) Distribution after pre-training. Specifically, black
indicates the SEED dataset, and red indicates the multi-channel dataset of (A) and (B). (C) Distribution after the domain-specific adaptive step. (D)
Distribution of no attention. (E) Distribution of no GRU. (F) Distribution of no pre-training. In (C), (D), (E), and (F), yellow indicates the awake state of the
dataset, blue indicates the fatigue state, and red indicates the drowsy state. SEED_0, SEED_1, and SEED_2 indicate awake, fatigue, and drowsy states
of the SEED dataset, respectively. Multi-channel_0, multi-channel_1, and multi-channel_2 indicate the awake, fatigue, and drowsy states of the multi-
channel dataset, respectively.

TABLE 2 Cross-dataset fatigue detection results.

Proposed method No attention No GRU No pre-training

Accuracy (%) 59.10 49.56 44.45 46.74

Precision (%) Awake 77.25 92.50 81.07 47.13

Fatigue 17.46 20.30 17.81 46.67

Drowsy 48.79 9.32 20.45 0

Recall (%) Awake 73.71 57.76 52.44 23.57

Fatigue 35.72 90.53 76.55 87.29

Drowsy 25.00 0.24 1.13 0

F1 score Awake 75.44 71.11 63.68 31.42

Fatigue 23.45 33.17 28.89 60.82

Drowsy 33.06 0.46 2.14 0

RMSE 0.27 0.27 0.35 0.27
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EEG data from the source and target domains are gathered into
two groups by pre-training, which demonstrates the data
distribution discrepancy between the source and target
domains. Figure 10C proves that the proposed method reduces
the difference at the domain level. It is obvious from Figures
10D–F that the three methods all have scattered data points that
have not been aggregated, and the classification boundary is not
obvious.

3.6 Effects of labeled data

Utilization of a small amount of target labels can effectively
improve accuracy (Li et al., 2022). Thus, this study deliberately
investigates the relationship between the amount of target labels
and the method performance. Here, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, and 0.8 of the number of target labels are added to fine-tune
the model. The performance of the proposed method is

FIGURE 11
Accuracy after adding labels. Specifically, bold red indicates the accuracy of the proposed method. (A) Results compared with methods of Section
3.4. (B) Results compared with methods of Section 3.5.

FIGURE 12
RMSE after adding labels. Specifically, red indicates the accuracy of the proposed method, which achieves better performance.
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compared to the methods presented in Section 3.4 and Section
3.5. The accuracy and RMSE are shown in Figures 11, 12,
respectively.

As shown in Figure 11, once the labeled data are added, the
performance of the method significantly improves, as expected (Li
et al., 2022). This emphasizes the importance of the labeled data. In
particular, the proposed method shows excellent performance in a
small number of labeled samples. Meanwhile, it can be seen from
Figure 12 that the RMSE of the proposed method is kept at a low
level, and with the increase of labeled samples, the RMSE of all
methods decreases.

4 Discussion

In terms of fatigue detection methods, fatigue is mainly judged
from facial expressions, physiological signals, and questionnaire
surveys. The existing fatigue detection methods are almost
within-subject and cross-subject fatigue detection. However, they
need a large amount of EEG data for training, which is resource-
consuming and impractical when faced with a new dataset. It is a
worth exploring question to develop a model that can adapt to a
variety of datasets.

Therefore, this study proposes a regression method for EEG-
based cross-dataset fatigue detection. To validate the performance,
this study compares the proposed method with that of other state-
of-the-art domain adaptation methods. It can be seen from Table 1
that the proposed method outperforms all other methods, which
does not need any labeled target data. Meanwhile, the comparison of
the two scenarios in Table 1 verifies the validity of the selection of
source and target domains, which means that the dataset with rich
information is more suitable for the source domain. In addition, as
can be seen from Figure 9A, the proposed method better aggregates
each state, while other methods (Figures 9B–F) do not overlap the
center of the same state.

For the proposed method, in the pre-training step, different
domains should be mapped into the same space to distinguish
samples of different datasets to extract specific features for different
tasks. As can be seen from Table 2, the model without pre-training
performsworse in the drowsy state than themodel with pre-training. As
can be seen from Figure 10F, the distribution of the model without pre-
training is not concentrated in the drowsy state. Pre-trained models
have a more aggregated distribution with fewer scattered data points.
These validate the results of Table 2 and suggest that pre-training
contributes to cross-dataset fatigue detection.

Then, the domain-specific adaptive step makes the multi-source
domain and the multi-target domain closer, and the sample is highly
aggregated. We can notice that this step can reduce the domain
discrepancy at the domain level in the comparison between Figures
10B, C. It shows that it is effective to perform adaption alignment on
top of specific features, which can avoid the occurrence of
misalignment and learn fatigue-aware fine-grained transfer
features (Li et al., 2022).

Since fatigue is a continuously changing sequence rather than
several discrete states, the accuracies of no attention and no GRU are
lower. We can see from Figures 10D, E that the conditional
distribution of source and target domains using no attention and
no GRU model matched, and aligned distributions are not well

aggregated. As shown in the fatigue state in Figure 10D, there are still
scattered points that have not been aggregated. In addition, fatigue
and drowsy states are not concentrated in one area, so is the drowsy
state in Figure 10E. This may be due to a lack of temporal and spatial
information related to fatigue.

In addition, this study studies the effect of labeled samples on the
results. We can observe from Figure 11 that the more labeled the data,
the better the classification. This further validates the idea of supervised
learning. However, considering a weak correlation between the target
and source domains, blindly increasing the amount of source data does
not improve the accuracy and causes computational burden (Wang Y.
et al., 2021). It can also be seen from the results of Figure 11 that with the
increase in the number of labeled samples, the performance does not
increase monotonously. There is no denying that with the increase in
the samples, the performance of the proposed method is clearly
improved. At the same time, this also shows that if there are labeled
samples in the actual target, then these samples should be used. We
choose the unsupervised domain adaptation approach only when the
target is completely unmarked.

Although this study proposes a regression method for EEG-based
cross-dataset fatigue detection, there are still some limitations. Although
the specific experimental design of the two datasets is different, they are
all fatigue caused by driving tasks. The model may not perform well in
the face of more fatigue datasets, such as those caused by sleep
deprivation. Therefore, we will further study how to minimize the
differences in fatigue caused by different tasks. In addition, the accuracy
of the proposed method is only 59.10%. It is a little low, and part of the
reason may be that the fatigue evaluation indexes are not necessarily
100% correct. The use of the behavioral index (RT in this study) to
evaluate fatigue needs further development.

5 Conclusion

Since the cross-dataset fatigue detection model can extract
general features of fatigue, it does not need to be retrained when
facing new datasets. However, no one has studied this problem
previously. Therefore, the study proposes a regression method for
EEG-based cross-dataset fatigue detection, which mainly includes
two steps: pre-training and the domain-specific adaptive step. In the
pre-training step, this study designs a pretext task to distinguish data
from the source or target domain. In this way, the specific features of
different fatigue-induced tasks can be obtained. In the domain-
specific adaptive step, this study proposes an EEG-based domain-
adaptive fatigue detection network, including a domain-specific
feature extractor, domain distribution alignment network, and
regression multilayer perceptron. This step focuses on
minimizing the data distribution difference between the source
and target domains by using MMD. The accuracy and RMSE
achieved by the proposed method are 59.10% and 0.27,
respectively, which significantly outperforms state-of-the-art
domain adaptation methods. In addition, this study also discusses
the effect of labeled samples. When the number of labeled samples is
10% of the total number, the accuracy of the proposed model can
reach 66.21%. The proposed method can be used for reference in the
field of cross-dataset fatigue detection. In the future, we will
investigate the EEG-based cross-dataset fatigue detection method
due to different fatigue-induced tasks.
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