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As an essential mediator of inflammation and innate immunity, the receptor-
interacting serine/threonine-protein kinase-2 (RIPK2) is responsible for
transducing signaling downstream of the intracellular peptidoglycan sensors
nucleotide oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2),
which will further activate nuclear factor kappa-B (NF-κB) and mitogen-
activated protein kinase (MAPK) pathways, leading to the transcription
activation of pro-inflammatory cytokines and productive inflammatory
response. Thus, the NOD2-RIPK2 signaling pathway has attracted extensive
attention due to its significant role in numerous autoimmune diseases, making
pharmacologic RIPK2 inhibition a promising strategy, but little is known about its
role outside the immune system. Recently, RIPK2 has been related to
tumorigenesis and malignant progression for which there is an urgent need for
targeted therapies. Herein, we would like to evaluate the feasibility of RIPK2 being
the anti-tumor drug target and summarize the research progress of
RIPK2 inhibitors. More importantly, following the above contents, we will
analyze the possibility of applying small molecule RIPK2 inhibitors to anti-
tumor therapy.
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Introduction

Chronic inflammatory diseases like inflammatory bowel disease (IBD), rheumatoid
arthritis (RA), and psoriasis comprise a group of disorders in which deregulation of the
immune systems plays a pivotal role in establishing and maintaining disease (Ozkurede and
Franchi, 2012; Broderick et al., 2015; Bertani, 2022). Common to these diseases is an
excessive inflammatory response, causing the production and release of inflammatory
cytokines and chemokines that accelerate a vicious cycle of inflammation with the
immune system unable to resolve this cascade. This abnormal inflammatory response
results in tissue destruction and impaired mucosal healing of the gastrointestinal tract in
IBD, tissue destruction in joints accompanied by joint pain and swelling in RA, and
dermatosis in psoriasis (Podolsky, 2002; Xavier and Podolsky, 2007; Armstrong and
Read, 2020; Tartey and Kanneganti, 2020).

Cumulative evidence has shown that aberrant activation of innate immune signaling is
involved in the occurrence and development of autoimmune diseases, and nucleotide-
binding oligomerization domain-like receptor (NLR), a family of evolutionarily conserved
innate immune receptors, plays essential roles in various autoimmune diseases (Cooney
et al., 2010). NLRs consisting of a C-terminal leucine-rich repeat (LRR), a central nucleotide-
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binding domain, and an N-terminal effector domain, form a group
of pattern recognition receptors (PRRs) that mediate the immune
response by specifically recognizing cellular pathogen-associated
molecular patterns (PAMPs) or damage-associated molecular
patterns (DAMPs) and triggering numerous signaling pathways,
including RIPK2 kinase, caspase-1, NF-κB, MAPK and so on (Ogura
et al., 2001; Philpott et al., 2014; Li and Wu, 2021).

Notably, the NOD2-RIPK2 pathway has attracted particular
attention due to its role in granulomatous inflammatory diseases,
including IBD (Gutierrez et al., 2002). RIPK2 signaling relies on the
N-terminal kinase domainwith dual Ser/Thr andTyr kinase activities as
well as the C-terminal caspase activation and recruitment domain
(CARD), which mediates the assembly of the CARD-CARD domain
with activated NODs (Gong et al., 2018). Once engaged, RIPK2 is firstly
activated by autophosphorylation and further targeted by X-linked
inhibitor of apoptosis (XIAP) and other E3 ligases for non-degradative
polyubiquitination, such as the linear ubiquitin chain assembly complex
(LUBAC).With the recruitment of TGF-Beta activated kinase 1 binding
protein 1 (TAB1) and TAB2/3, ubiquitin-coupled proteins
subsequently activate TGF-Beta activated kinase 1 (TAK1) and
result in the activation of MAPK/c-Jun N-terminal kinase (JNK)/
p38/extracellular regulated protein kinases (ERK) kinase signaling
pathways and NF-κB (Kobayashi et al., 2002; Adhikari et al., 2007;
Krieg et al., 2009; Gong et al., 2018; Topal and Gyrd-Hansen, 2021).

Except for autoimmune diseases, pathologies like tumors can be
caused by the dysregulation of the immune system. So far it is been clear
that the tumor microenvironment, which is largely orchestrated by
chronic irritation and inflammation, is a necessary participant in the
neoplastic process, fostering proliferation, survival, and invasion
(Coussens and Werb, 2002). During the development of chronic
inflammation, the NF-κB pathway has long been considered as a
prototypical proinflammatory signaling pathway, which is
hyperactivated at high frequencies in the tumor (Taniguchi and
Karin, 2018). Therefore, it comes as no surprise to infer that one of
the main NF-κB regulators, RIPK2, is also highly expressed and
unfriendly to antitumor therapy. Data from GEPIA 2 (http://gepia2.
cancer-pku.cn/#general) have exactly illustrated that
RIPK2 predominantly expresses in the human breast, skin, and lung
tissues plus blood system, and is upregulated in various types of tumors,
such as breast, ovarian, colon, esophagus, stomach, and pancreas
cancers (Tang et al., 2019). As the noteworthy association between
RIPK2 expression level and tumorigenesis has been established,
RIPK2 should be regarded as a potential target for cancer
therapeutic intervention. In this review, we will give an overview of
the integrated role of RIPK2 in the progression of tumor malignancy
and the feasibility of RIPK2 as an anti-tumor therapeutic target.

Manuscript

RIPK2 promotes the malignant progression
of cancer

Gynecological tumors
Breast cancer (BRCA)

The amplification of ErbB2 (HER2) occurs in approximately
10%–34% of BRCA, which is a predictor of high credibility against
BRCA recurrence and survival. The growing drug resistance concern

towards human epithelial growth factor receptor-2 (HER2)-targeted
therapy subsequently spawned a new goal in breast cancer research,
to be specific, the identification of druggable kinases beyond HER2.
According to the research of proteogenomic analysis of The Cancer
Genome Atlas (TCGA) samples, RIPK2 is highly expressed and has
a high amplification rate in BRCA, which exhibited similar gene
amplification-driven proteogenomic patterns to HER2(Mertins
et al., 2016). Another study about pan-cancer analysis of the
carcinogenic role of RIPK2 also illustrated that the gene
amplification rate of RIPK2 in BRCA and uterine carcinosarcoma
(UCS) was approximately 8.5% (Zhang et al., 2022a). Therefore,
RIPK2 is likely to become a convincing predictor of BRCA
recurrence and survival in the future, on the other hand,
inhibition of RIPK2 could be a reasonable choice for BRCA-
targeted therapy, especially in HER2 negative status.

In the molecular classification of HER2-negative breast cancer,
triple-negative breast cancer (TNBC) has the poorest prognosis than
any other type of breast cancer. The expression of RIPK2 in TNBC is
higher than that of other molecular subtypes, and its high expression
is negatively related to the prognosis of TNBC. Mechanistically,
RIPK2 directly contributes to the tumor’s multiplication, invasion,
and metastasis by promoting NF-κB and JNK activation (Singel
et al., 2014; Jaafar et al., 2018). Hence, these results not only highlight
that RIPK2 is a novel prognostic biomarker in breast cancer, but also
suggest that targeting RIPK2 may improve the outcome of advanced
breast cancer patients with RIPK2 amplification or overexpression.

Ovarian cancer (OC)
Serous ovarian cancer is a type of epithelial ovarian cancer that is

conventionally treated with surgery and chemotherapy based on
platinum agents and paclitaxel (Karnezis et al., 2017; Freimund et al.,
2018). However, paclitaxel resistance is one of the primary factors
for the poor prognosis. In a bioinformatics study searching for
potential biomarkers associated with paclitaxel resistance in OC
treatment, researchers found a correlation between the higher
expression of RIPK2 and the development of paclitaxel resistance
(Shen et al., 2022). The mechanism leading to the resistance, for one
thing, depends on the over-activation of RIPK2-mediated NF-κB
signaling pathway, and another facet is the change of tumor
microenvironment caused by RIPK2-mediated immune
infiltration, including CD4+ memory T-cell, dendritic cells (DCs),
common lymphoid progenitors (CLPs) (Shen et al., 2022; Zhang and
Wang, 2022). Therefore, this makes sense to choose RIPK2 as a
candidate target for OC, as RIPK2 inhibitors could be used in
combination with chemotherapy agents to grapple with potential
drug resistance and significantly ameliorate the original immune
microenvironment that promotes tumor progression.

Gastrointestinal cancers
Colorectal cancer (CRC)

As an important mediator required for immune and
inflammatory response, RIPK2 is closely related to the
occurrence and development of IBD. Considering the chronic
inflammatory intestine microenvironment of IBD patients and
the essentiality of inflammation in the incidence of CRC, the
susceptibility to CRC in IBD patients is likely to be
conspicuously increased by comparison with the normal
population (Stronati et al., 2010; Rubin et al., 2012; Axelrad
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et al., 2016). Moreover, the association between RIPK2 and
vulnerability to CRC has been directly confirmed in a recent
study of CRC patients. RIPK2 was found to be significantly
upregulated in rectal tumor tissues compared with normal
adjacent mucosa, suggesting that RIPK2 plays a vital role in the
progression of IBD to CRC (Flebbe et al., 2019).

To understand how RIPK2 promotes the malignant progression
of CRC, a correlation analysis between RIPK2 expression level and
cytokines involved in the progression of CRC hinted that patients
with high RIPK2 expression also had higher secretion levels of
interleukin (IL)-6, IL-8, and vascular endothelial growth factor
(VEGF). However, the increased secretion of these factors is not
conducive to the improvement of prognosis and CRC patients’
survival rate (Jaafar et al., 2021). Accordingly, in the regulation
network whose function can be interfered with, Mir-146a is found to
be a negative regulator of RIPK2, which further exerts anti-tumor
effects on CRC through RIPK2 inhibition and the following
limitation on bone marrow-mediated inflammatory IL-17
production and IL-17 signaling transduction (Garo et al., 2021).
From this, we can find firm evidence for RIPK2 inhibition in the
treatment of inflammation-related cancers, i.e., CRC. Furthermore,
results from the RIPK2-based regulatory network casts a new light
on development strategies for RIPK2 inhibitors. The inhibition of
RIPK2 should not be confined to direct inhibition, indirect
interference with RIPK2 protein function through amplification
of negative regulatory signals and interdiction of positive
regulatory signals also has certain feasibility.

Hepatocellular carcinoma (HCC)
Chronic inflammation caused by excessive drinking, aflatoxin

intake, or hepatitis B/C virus infection is the most important risk
factor for developing liver cirrhosis, and finally HCC (Badvie, 2000;
Matsuzaki et al., 2007). Notably, tumor necrosis factor (TNF)-α and
IL-6 played pivotal roles in inflammation-induced HCC
tumorigenesis and progression. In tracing the upstream
regulators of TNF-α and IL-6, Pim-2 proto-oncogene, serine/
threonine kinase (PIM2) was discovered as an upstream
candidate gene (Fox et al., 2003; Asano et al., 2011). The
following study further provides evidence of the oncogenic
function of PIM2 in HCC. In particular, a feedback loop between
PIM2 and TNF-α becomes the driving force from chronic liver
inflammation to HCC. The expression level of PIM2 can be
upregulated by the stimulation of TNF-α, and the abnormal
expression of PIM2 in HCC cells can in turn promote the NF-κB
mediated transcription of TNFα through the phosphorylation of
RIPK2 (Tang et al., 2020).

Apart from the alteration of the tumor microenvironment,
regulatory networks have also been discovered between
RIPK2 and tumor driver genes. It is by now generally accepted
that c-Myc amplification is the culprit that promotes malignant
progression, particularly in liver cancer (Kawate et al., 1999; Shachaf
et al., 2004; Cancer Genome Atlas Research Network. Electronic
address and Cancer Genome Atlas Research, 2017). However, none
of the c-Myc targeted agents have been approved by Food and Drug
Administration (FDA) so far, which is mainly due to c-Myc being a
non-enzymatic transcription factor as well as the potential off-target
effects and subsequent toxicity that are difficult to estimate after
inhibition (Huang et al., 2014; Chen et al., 2018a). According to the

research from Yan et al, RIPK2 phosphorylates, stabilizes, and
activates c-Myc through activating RIPK2/MKK7(/JNK)/c-Myc
signaling axis, inhibition of RIPK2 by gene silence or small
molecule inhibitors effectively blocks the phosphorylation
cascades, resulting in instability of the c-Myc protein and
metastasis inhibition (Yan et al., 2022). Besides, in tumor cell
lines examined with high expression of c-Myc and PIM1/
2 kinases, knockdown of Pim kinases significantly reduced
endogenous c-Myc expression level, which caused the
suppression of cell transformation and proliferation. This implies
that the strong synergy between these two proto-oncogenes is
associated with tumorigenesis (Zhang et al., 2008). More
interestingly, RIPK2 may play a part in the c-Myc/Pim
synergistic impact on malignant progression, as RIPK2 is one of
the PIM2 substrates to be phosphorylated (Fox et al., 2003).
Together with the sample analysis result that the activity score of
RIPK2 is highly correlated with c-Myc activity scores in clinical
tissue specimens of 32 cancer types (Yan et al., 2022), we speculate
that RIPK2 could also be a potential target for HCC treatment with
high reliability.

Others
In addition to colorectal and liver tumors, the abnormal

activation of RIPK2 is also allied to the malignant progression of
other digestive tumors, which consists of gastric cancer and
esophageal squamous cell carcinoma (Montenegro et al., 2020;
Yang et al., 2021; Nomoto et al., 2022). From the mechanistic
point of view, the unrestrained proliferation, metastasis, and
apoptosis inhibition are dependent on the NF-κB signaling
pathway over-activated by RIPK2 (Yang et al., 2021; Nomoto
et al., 2022). Taken together, a variation in RIPK2 expression
level could serve as a new molecular marker for auxiliary
diagnosis and molecular classification of tumors mentioned
above. As for being the new target to shrink tumors, such
expositions are unsatisfactory because the specificity and
importance of the NF-κB signaling pathway in tumor
pathogenesis are still not clearly defined.

Head-neck cancers
Oral squamous cell carcinoma (OSCC)

As far as we know, the mechanism of IL-8 promoting tumor
progression is mainly through its role as an autocrine growth factor
and angiogenesis factor, and the concentration of IL-8 in the saliva
of OSCC patients is higher than that of normal cohorts, which
indicates that IL-8 is a potential biomarker and intervention target
for OSCC (Hwang et al., 2012; Lisa Cheng et al., 2014). In a
correlation study of IL-8 and OSCC, IL-8 silence effectively
harms to OSCC cell viability and colony formation since IL-8
works through C-X-C motif chemokine receptor 1 and 2
(CXCR1/2)-mediated NOD1/RIPK2 signaling pathway activation
(Chan et al., 2016). That is to say, the dysfunction of NOD1 signaling
pathways may be associated with OSCC progression, and both
NOD1 and RIPK2 could be used as potential novel biomarkers
for oral carcinogenesis (Wang et al., 2014).

As persistent chronic infection is one of the high-risk factors for
malignant transformation of oral epithelial cells (Whitmore and
Lamont, 2014), it means a lot to distinguish the distribution of oral
flora between tumor patients and the normal population for
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tumorigenesis prevention. P. gingivalis is a key pathogen in
periodontitis and the release of various virulence factors after
infection may cause insufficient clearance of bacteria, which
greatly increases the susceptibility to OSCC(Tezal et al., 2005;
Hajishengallis, 2015; Lamont and Hajishengallis, 2015). The
mechanism behind this is the bacterial component peptidoglycan
(PDG) effectively activates the expression of RIPK2 and the
downstream MAPK signal cascade, which ultimately upregulates
programmed cell death-ligand 1 (PD-L1) to protect tumors from
immune surveillance and clearance (Hirai et al., 2017; Groeger et al.,
2020). It can be seen that NOD2/RIPK2 signaling pathway plays
multiple roles in OSCC development, on one side, promoting the
release of inflammatory factors to maintain the chronic
inflammatory microenvironment; on the other side, boosting the
expression of PD-L1 through MAPK signaling activation to help
immune escape, both of which jointly promote the malignant
progression of OSCC.

Glioma
The degree of tumor malignancy is closely related to the

dysfunction of intracellular signaling pathways, among which the
role of NF-κB and MAPK pathways in the tumorigenesis and
progression of glioma has received more attention (Zhao et al.,
2021). Studies have shown that the NF-κB pathway is constitutively
activated and upregulated in glioma cells in response to different
stimuli, since a negative feedback loop exists in the regulation of NF-
κB, in which the key intermediate protein that determines the
activation degree of NF-κB was found to be TNF receptor
associated factor 3 (TRAF3) and the upstream regulator is
RIPK2. On the one hand, RIPK2 negatively regulates the
expression of TRAF3 to release the confinement to NF-κB; on
the other hand, upregulated TRAF3 can in turn restrain
RIPK2 expression (Cai et al., 2018). It is the imbalance of this
negative feedback circle that leads to the malignant progression of
glioma, which undoubtedly highlights the critical role of RIPK2-
mediated NF-κB hyperactivation in pathogenesis.

Despite some current advances in multimodal treatment have
been achieved, glioma is still one of the common tumors that
seriously threaten human health (Sathornsumetee and Rich,
2006). Temozolomide (TMZ) is the first-line chemotherapy agent
for the treatment of malignant glioma (Kaina, 2019). However, drug
resistance to TMZ mainly contributes to unfavorable prognosis
(Stupp et al., 2014; Hernandez-Duran et al., 2015). To figure out
the exact mechanism of TMZ resistance, it is necessary to find key
genes mediating drug resistance based on the distinction of gene
expression patterns between resistant and sensitive tumors. Among
the differentially expressed genes, RIPK2 presents higher expression
in TMZ-resistant glioma than in sensitive glioma. Moreover,
exogenous overexpression of RIPK2 induces activation of the NF-
κB pathway and enhanced expression of O-6-methylguanine-DNA
methyltransferase (MGMT), which is one of the downstreams of
NF-κB. Both the activation of NF-κB and the upregulation of
MGMT contribute to the reduced sensitivity to TMZ (Chen
et al., 2018b; Hu et al., 2021). These results suggest that
combined treatment with RIPK2/NF-κB/MGMT signaling
pathway inhibitors and TMZ enhances the therapeutic efficacy in
RIPK2-positive TMZ-resistant glioma.

As a whole, in tumor types with high RIPK2 expression,
RIPK2 can indeed effectively promote the malignant progression
of the tumor, which has an undesirable effect on prognosis. The
source of unfavorable impact mainly lies in the overactivation of the
NF-κB signaling pathway and the changes in the immune
microenvironment caused by a boost in pro-inflammatory factor
secretion (Figure 1). Therefore, the effectiveness of RIPK2 as an anti-
tumor target has been comprehensively verified, and the specific-
targeting feasibility of RIPK2 will be further discussed in the
following part.

Development on RIPK2 inhibitors has
achieved initial success

Type I RIPK2 inhibitors that interact
exclusively within the ATP-binding pocket

Gefitinib (Iressa) and erlotinib (Tarceva)
With tyrosine kinase activity, RIPK2 can undergo tyrosine

autophosphorylation in response to NOD2 activation (Nembrini
et al., 2009). In a small-scale screening, two epidermal growth factor
receptor (EGFR) inhibitors—gefitinib and erlotinib—were found to
exert an inhibitory impact on the tyrosine kinase activity of RIPK2,
following the suppression of NOD2-induced NF-κB activation and
cytokine release in NOD2 over-activation status. To determine
whether these EGFR inhibitors act on RIPK2 directly, a
RIPK2 mutant containing the homologous desensitizing mutation
in the ATP-binding pocket (T95M) was generated and presented
decreased sensitivity to the EGFR inhibitors. Coupled with the
minor effect of erlotinib or gefitinib on lipopolysaccharide (LPS)
or TNF signaling pathways, the direct inhibitory effect of erlotinib or
gefitinib on RIPK2 was substantiated (Tigno-Aranjuez et al., 2010).
However, the type I inhibitor gefitinib presented much lower activity
in cells relative to in vitro assays because of its ATP-competitive
action mode, which may be inactivated due to the high cellular
concentration of ATP (Canning et al., 2015). Moreover, the lack of
specificity set a limit to their application in RIPK2-related
indications.

WEHI-345
WEHI-345 was identified through screening on a proprietary

library containing 120 kinase inhibitors. This compound is an ATP
analog with an IC50 value of 130 nM for RIPK2 kinase activity
inhibition in vitro, which also exhibits superior selectivity. WEHI-
345 functions mainly by binding to the ATP-binding pocket of
RIPK2 and changing its conformation to inhibit NOD signaling, so
that RIPK2 no longer binds to IAPs, for which RIPK2 ubiquitination
and downstream NF-κB signaling activation interfere in succession.
In the mice model, targeting RIPK2 with WEHI-345 was beneficial
in nearly 50% of multiple sclerosis (MS) prevention (Nachbur et al.,
2015). Virtually, the compound is currently only used as a tool drug,
mostly owing to WEHI-345’s effect on NF-κB signaling is only to
delay activation rather than block it completely. The exact reason is
still pretty flimsy whether it is due to incomplete inhibition of
RIPK2 kinase activity by WEHI-345 or an alternative RIPK2-
independent pathway to activate NF-κB.
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GSK583
By focusing the structure-activity relationship (SAR) strategy

on the synergistic optimization of RIPK2 kinase potency and
extensive kinome selectivity, GSK583, a RIPK2 candidate
inhibitor, is stand out. The superior activity and high
selectivity of GSK583 are explicitly proved by kinase activity,
cytokine secretion. and organoid model verification. First, the
IC50 of in vitro binding is 5 nM. In addition to its strong
selectivity for p38α and vascular endothelial growth factor
receptor 2 (VEGFR2), GSK583 shows excellent selectivity in
the 300-kinase group at the concentration of 1 μM. At the
cellular level, the IC50 values of TNF-α and IL-8 secretion by
GSK583 are measured as 18 nM (human monocytes) and 8 nM
(HEK), respectively. Following 1 μM GSK treatment, only an
inhibitory effect on activated NOD1/2 signal is observed,
whereas Toll-like receptors (TLR2/4/7) or cytokine receptors
(like IL-1R) activation is rarely weak. Ultimately, an ex vivo
culture system is used to evaluate the effect of GSK583 on
spontaneous proinflammatory cytokine release in intestinal
explants. It has been found that the production of TNF-α and
IL-6 is significantly inhibited in a concentration-dependent
manner in Crohn’s disease (CD) and ulcerative colitis (UC)
samples, and the magnitude of inhibition is comparable to that
of the steroid prednisolone. Despite its excellent kinase
selectivity, GSK583 is the substrate of human Ether-a-go-go

related gene (hERG) channels and CYP3A4, which hinders its
further development as a drug candidate (Haile et al., 2016).

GSK2983559
The concerted activity at hERG ion channels and poor

pharmacokinetics/pharmacodynamics (PK/PD) profile have
imposed restrictions on the further progress of GSK583. To
optimize for these flaws, the modulation of lipophilicity and
strengthening of hinge binding capacity are conducted. These
efforts first led to inhibitor 7, which inhibited RIPK2 with higher
potency, ameliorated human whole blood (hWB) activity, and
reduced hERG activity (14 μM) (Haile et al., 2018; Haile et al.,
2020). Further studies bring out the discovery of GSK2983559,
which maintains hWB activity while not affecting the hERG
channel. Although the solubility is imperfect, the design of
phosphate ester prodrug provides more desirable
pharmacokinetic properties across species as well as favorable
activity in murine IBD models and UC/CD explants. Of note,
GSK2983559 is the first RIPK2 inhibitor that has entered Phase I
clinical trials (Haile et al., 2019). The single-center, randomized,
double-blind and placebo-controlled phase I study was aimed to
evaluate the safety, tolerability, pharmacokinetics, and
pharmacodynamics of GSK2983559 in single (in both fed and
fasted states) and repeated oral doses in healthy participants.
Unfortunately, after the end of the phase I trial in 2019, GSK

FIGURE 1
RIPK2 is closely related to tumor malignant progression. NOD1 and NOD2 recruit their common adapter RIPK2 through CARD-CARD interaction
and then induce the phosphorylation of RIPK2, which further promotes ubiquitination of RIPK2 upon binding through TNF receptor associated factor
(TRAF) family member TRAF6, inhibitor of apoptosis (IAP) family member XIAP and cellular inhibitor of apoptosis proteins (cIAPs), thereby recruiting and
phosphorylating TAK1, TAB1 and TAB2/3, which ultimately induces MAPK (p38, ERK and JNK) and NF-κB activation and initiates downstream
signaling cascades. In addition to NOD1/2, PIM2 also phosphorylates RIPK2, which induces NF-κB signaling pathway activation and promotes ERK
phosphorylation.With the over-activated ofMAPK andNF-κB signal, chronic inflammatory infiltration is formed, together with the up-regulation of PD-L1
or MGMT expression, mediating malignant proliferation, invasive metastasis, immune escape and drug resistance of tumors.
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decided to terminate the further development of GSK2983559 due to
non-clinical toxicology findings and reduced safety margins (data
source: https://www.pharmcube.com/).

GSK-derived compounds
The Novartis RIPK2 inhibitor is obtained similarly to GSK583.

After structural optimization, compound 8 can inhibit RIPK2 kinase
activity at 3 nM. Even though compound 8 can selectively restrain
muramyl dipeptide (MDP)-promoted cytokine production in both
human peripheral blood mononuclear cells (hPBMC) and bone
marrow-derived macrophages (BMDM), in vivo applicability plus
kinome analysis have yet not been analyzed. Without these essential
proving experiments carried out, and thus, it is equivocal whether
the significant off-target effects exist or not (He et al., 2017).
Different from compound 8, derivative 17 is obtained from
GSK2983559 through cyclization strategy and structural
optimization. 17 presents high affinity with RIPK2 (Kd =
5.9 nM) and high degree of discriminability towards receptor-
interacting protein kinase 1 (RIPK1, Kd > 30,000 nM). Besides in
vivo effectiveness, 17 displays good metabolic stability and no
cytochrome P450 (CYP) inhibition (Wu et al., 2022).

To discover structurally diverse inhibitors of RIPK2, the
fragment-based drug design (FBDD) procedure begins by
screening the GSK compound collection. Subsequently, by
employing the principles of fragment evolution and robust
crystallography, pyrazolocarboxamide 11 is found a potent and
selective ATP-competitive RIPK2 kinase Inhibitor based on
structure-based design. Even though the IC50 of 11 is 30 nM and
compared with activin receptor-like kinase 5 (ALK5), VEGFR2, and
lymphocyte-specific protein tyrosine kinase (LCK), it shows more
than a hundredfold inhibitory activity, the selectivity for same-
family proteins is still unknown (Haffner et al., 2019).

BI 706039
As a potent and specific functional inhibitor of RIPK2, BI

706039 effectively blocks MDP-induced TNF-α production from
human (IC50 < 1.0 nM) and mouse cells (IC50 = 2.9 nM). Besides, it
has a more than 500-fold selectivity on other pattern recognition
receptor pathways as well as favorable pharmacokinetic properties.
To further analyze the in vivo effectiveness of BI 706039, the T-bet/
Rag2 double knockout (TRUC) mouse model of IBD is introduced
to evaluate the potency of BI 706039 on intestinal inflammation.
Oral, daily administration of BI 706039 with distinct dosages all
displays improvement in colonic histopathological inflammation,
colon weight, and protein terminal levels normalized for fecal
lipocalin, the greatest remission appears at the dose of 2.5 mg/kg.
Taken together, it is suggested that a relatively low dose of BI
706039 can lead to a significant improvement in intestinal
inflammation (Ermann et al., 2021).

OD36 and OD38
With the development of a proprietary novel small molecule

macrocyclization platform—Oncodesign, lead compound
optimization has got iterative improvement until the desired
selectivity and metabolic half-life properties are achieved. Early
RIPK2-specific compounds (OD 36 and OD38) screened by this
technique have shown ideal inhibitory activity against RIPK2 both
in vitro and in vivo using an MDP-induced peritonitis mice model.

Both OD36 and OD38 show high potency with IC50 values in the
lower nanomolar range (5.3 nM and 14.1 nM for OD36 and OD38,
respectively). However, while maintaining strong inhibitory activity
against RIPK2, the off-target effects increased at higher
concentrations with OD36 given. Things are different when it
comes to OD38, whose inhibitory effect is rarely influenced by
concentration alteration (Tigno-Aranjuez et al., 2014). These results
are useful in ascribing alleviating effects of IBD symptoms directly to
RIPK2 inhibition.

Activin receptor-like kinase-2 (ALK2) inhibitor
derived RIPK2 inhibitors

It has been reported in the literature that various ALK2 inhibitors
oftentimes demonstrate inhibitory activity against RIPK2(Mohedas
et al., 2013;Mohedas et al., 2014). Encouraged by this correlation, SAR
analysis has been conducted to find new structures. A new series of
RIPK2 kinase/NOD signaling inhibitors based on a 3,5-diphenyl-2-
aminopyridine scaffold was developed. Representative compounds
are numbered CSLP37 and CSLP58. The IC50 value of CSLP37 on
RIPK2 is 16 ± 5 nMwhile on NOD cell signaling is 26 ± 4 nM. At the
same time, CSLP37 shows more than 20-fold selectivity versus ALK2
(Suebsuwong et al., 2020). In order to further improve the selectivity
for ALK2, another series with the core of pyrido [2,3-day]pyrimidin-
7-one was designed. Compared with CSLP37, the representative
compound UH15-15 inhibits the RIPK2 kinase with IC50 of 8 ±
4 nM and presents more than 300-fold selectivity compared to
ALK2. Additionally, UH15-15 has in vitro absorption, distribution,
metabolism, excretion (ADME) and pharmacokinetic characteristics,
which further support the feasibility of applying UH15-15 as a new
RIPK2 inhibitor (Nikhar et al., 2021).

RIPK2 inhibitors with novel structures
Through structure-based drug design, RIPK2 inhibitors with

new cores derived from the Fms related receptor tyrosine kinase 3
(FLT3) inhibitor CHMFL-FLT3-165 are discovered. Among the series,
compound 10w is identified as a particularly potent RIPK2 inhibitor
with an IC50 of 0.6 nM, which shows the sub-nanomolar
RIPK2 inhibitory activity. In the mice model of acute colitis, 10w
exerts a better therapeutic effect than the WEHI-345 and Janus kinase
(JAK) inhibitor fegotinib or tovaxicin, as demonstrated by weight loss,
tissue inflammation, and disease activity index (DAI) score. A study on
this compound is still in its infancy, the pharmacokinetic properties still
need to be further optimized (Yuan et al., 2022). In addition, a patent
(WO 2020/132384 A1) demonstrated a series of thienopyridines as
novel RIPK2-specific inhibitors. The results from standard time-
resolved fluorescence energy transfer (TR-FRET) screening assay for
RIPK2 inhibition revealed that compounds 1, 40, 46, 75, 105, and
120 among the series all display commendable inhibitory activity with
IC50 less than 10 nM (Sabnis, 2020).

Type II RIPK2 inhibitors that target the
inactive “DFG-out” conformation of the
kinase domain

Ponatinib
Type II inhibitors also provide a new tool for kinase inhibition.

As the first to be found, ponatinib blocks RIPK2 kinase activation
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without affecting the C-terminal CARD domain and its engagement
with NOD2. Phosphor-activated RIPK2 is subsequently
polyubiquitinated by multiple E3 ligases, ponatinib can
completely inhibit this modification, whereas type I inhibitors
previously only caused a postponement in ubiquitination.
Meanwhile, ponatinib displays excellent selectivity toward MDP-
dependent signaling relative to LPS-dependent pathways (Canning
et al., 2015). But ponatinib is also a potent inhibitor of RIPK1 and
receptor-interacting protein kinase 3 (RIPK3) kinase activity,
making it a pan-RIPK inhibitor (Najjar et al., 2015).

CSR35
The type II pan-kinase inhibitors ponatinib and regorafenib,

with IC50 values of 7 and 41 nM, respectively, could serve as initial
templates for RIPK2 activation loop targeting (Canning et al., 2015).
In order to improve the selectivity, another design of
RIPK2 inhibitors based on pan-kinase inhibitor regorafenib has
appeared, with the purpose of engaging basic activation loop
residues Lys169 or Arg171. The proof-of-concept of the design
strategy for RIPK2 activation loops is achieved by introducing the
carboxylic acid fragment into regafenib. And a series of CSR
products, among which CSR35 is the best, is obtained. X-ray
crystallography confirms the interaction of CSR35 with RIPK2,
including ion-ion contacts with Lys69 side chains, and IC50

values of CSR35 demonstrate modest percent inhibition in the
initial assessment, to be specific, 2.26 ± 0.11 µM. In addition,
derivatives lacking hinge binding groups that remain mild
inhibitory activity can be regarded as scaffolds for designing
inhibitors engaged with the activation loop, such as type III,
which means, given the diversity of activation loop kinase
segments, this strategy can bring forward additional design
solution for improving the selectivity of similar inhibitors
(Suebsuwong et al., 2018).

RIPK2 inhibitor 1
By employing similarity-based virtual screening and molecular

docking analysis, RIPK2 inhibitor 1, which has a similar binding
pattern to ponatinib, is identified. RIPK2 inhibitor 1 empirically
blocks RIPK2 autophosphorylation as well as NF-κB signaling,
which finally attenuates lung and intestinal inflammation at the
dosage of 1–2 μg/g. Even though RIPK2 inhibitor 1 demonstrates
in vitro inhibition of several other kinases, consisting of a 20%–30%
inhibitory effect on c-ABL, Aurora B, or HER2, it may be due to the
off-target effect indirectly aroused by resolving the inflammation
(Salla et al., 2018).

RIPK2 proteolysis-targeting chimeras
(PROTACs)

Considering the half-life of RIPK2 protein is 50 h or longer
(Doherty et al., 2009), the prolonged half-life makes RIPK2 a
prospective candidate protein to explore the potential for
extended PD response from PROTAC-mediated target
degradation (Figure 2). The disclosed structures of potent and
selective RIPK2 PROTACs include the Von Hippel-Lindau tumor
suppressor (VHL)-based RIPK2 PROTAC 1 and analogous
PROTACs 2 and 3, where the VHL binder is substituted with

IAP and Cereblon (CRBN)-based E3 ligase recruiting moieties,
respectively. All PROTACs mentioned above degraded RIPK2 in
a concentration-dependent manner. The IAP-based PROTAC 2 is
found to have a pDC50 value of 9.4 ± 0.1, which presents better
degradation efficacity than VHL-based PROTAC 1 (pDC50 8.7 ±
0.1) and CRBN-based PROTAC 3 (pDC50 8.6 ± 0.4) (Bondeson
et al., 2015; Mares et al., 2020).

PROTAC 6 optimized according to 2 produces the concentration-
and time-dependent decrease in RIPK2 protein level in human
PBMCs, with a pDC50 of 9.4 ± 0.2. At the same time,
6 significantly increases the binding capacity to RIPK2, thereby
acquiring an extremely selective binding profile and low off-target
probability. Specifically, RIPK2 is the only detected degradation target
of PROTAC 6 at a concentration below 0.1 µM. The PK/PD study also
reveals that repeated administration results in the cumulative impact
on protein degradation of RIPK2 without drug accumulation.
Considering the relatively slower rate of protein synthesis, dosing
at longer intervals can still provide sustained efficacy (Mares et al.,
2020). Further optimization focuses on improved solubility and
increased human/rat microsomal stability, and PROTAC
20 possesses the best overall profile with good solubility, effective
degradation of RIPK2, and accompanying inhibition of inflammatory
cytokine release. Moreover, the utilization of a slow-release matrix
makes the long-acting parenteral formulation last longer than
1 month feasible (Miah et al., 2021).

Overall, most reported RIPK2 inhibitors have been ATP-
competitive type I molecules, among which mainly originate from
the EGFR inhibitor gefitinib (Tigno-Aranjuez et al., 2010) (Table 1).
However, there are relatively few type II inhibitors, which are mainly
designed and modified based on the binding mode of ponatinib and
RIPK2. More importantly, due to the higher affinity between
endogenous full-length RIPK2 and ATP and the preferred DFG-
out conformation, the in vitro kinase potency and cellular activity of
ponatinib vastly outperforms the type I inhibitor (Canning et al.,
2015). Nonetheless, the optimized type II inhibitors cannot show
comparable effects, even worse. The most likely explanation is that the
existence of a hinge-binding ‘‘head” is as important as the allosteric
pocket, that is to say, the kinase inhibitor with both type I and type II
characteristics is the best choice.

As for anti-tumor therapy, we deem that the application of
RIPK2 kinase inhibitors is superior to RIPK2 PROTACs. Firstly,
most tumors are in the NF-κB hyperactivation status, and as the
direct upstream of NF-KB, the functional inhibition of RIPK2 can
better control the activation degree of the NF-κB signaling pathway.
Secondly, RIPK2 expression level has great heterogeneity in tumors,
and the correlation between RIPK2 expression level and prognosis in
different types of tumors can be opposite. Third, RIPK2 still plays a
normal function in innate immunity, excessive degradation of
RIPK2 protein may destroy its original physiological function,
whichmeans that the therapeutic window of PROTACswill be narrow.

Perspective

It is generally believed that inflammation, especially chronic
inflammation, is closely connected with tumor proliferation,
angiogenesis, and immune escape (Korniluk et al., 2017; Greten
and Grivennikov, 2019; Zhao et al., 2021). As one of the
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representatives of inflammatory immune receptors, NOD-like
receptors mainly participate in the innate inflammatory immune
response by mediating the NF-κB, MAPK, and autophagy-related
pathways (Motta et al., 2015). However, the role of NOD1/2 in
cancer is complex. More precisely, NOD1 exerts its anti-tumor
effects through the induction of apoptosis, but uncontrolled
apoptosis mediated by NOD1 might induce immunosuppression
microenvironment, thereby promoting tumor progression.
Furthermore, the anti-inflammatory function of NOD2 is
dependent on the recognition and binding of bacteria and their
derivatives, and when this association is inadequate,
NOD2 contributes to chronic inflammation and promotes cancer
(Zhang et al., 2022b; Wang, 2022). Hence, direct targeting NOD1/
2 against tumor may result in a therapeutic effect that contradicts
expectations.

Unlike NOD1/2 inhibitors, targeting the downstream protein of
NOD1/2 signaling pathway, RIPK2, to fight against cancer is more
advantageous for the following three reasons. Firstly, RIPK2 is
highly expressed in a variety of tumors, especially in breast and
colon tumors (Jaafar et al., 2018; Jaafar et al., 2021); secondly, the
molecular mechanisms that RIPK2 promotes tumor progression are
multi-faceted, containing both mechanisms related to the regulation
of the tumor immunemicroenvironment andmechanisms related to
oncogene amplification or transcription factor addiction that are
independent to its primal immune regulatory function, whichmeans

RIPK2 inhibition is more destructive to tumors; finally, the
development of RIPK2 inhibitors is currently the most advanced
compared with other key proteins in the NOD1/2 signaling pathway,
even if the only clinical trials have temporarily ended in failure,
through continuous optimization of compound structures and
updating of inhibitor design inspirations based on the results of
the existing preclinical tests, we believe that there will be molecules
with better activity and safety.

Regarding the application of RIPK2 inhibitors in tumor therapy,
we hold the opinion that three main aspects could be considered.
First, is prescribing the RIPK2 inhibitor alone. It has been reported
that the small molecule cRIPGBM selectively induces apoptosis in
glioblastoma multiforme cancer stem cells (GBM CSCs) in vitro and
significantly decrease tumor size in the xenograft mouse model.
Mechanistically, cRIPGBM directly interacts with RIPK2, which
results in decreased association with TAK1 and increased
association with caspase 1, leading to downstream activation of
the apoptotic signaling cascade. Given the high rate of GBM tumor
relapse and therapeutic resistance, the observed sensitivity of GBM
CSCs to RIPK2-induced apoptosis has profound implications for the
development of new therapies for GBM (Lucki et al., 2019).

Second, RIPK2 inhibitors can be used in combination with
chemotherapeutic agents. The PIM2-upregulated phosphorylation
level of RIPK2 enhances HCC cells’ ability to tolerate 5-Fluorouracil
(5-FU) and cisplatin (Tang et al., 2020). In GBM treatment, silencing

FIGURE 2
The action principle and structure of RIPK2 PROTACs. Protein turnover data for RIPK2 obtained by dynamic stable isotope labelingwith amino acid in
cell culture (SILAC) labeling experiments indicate that RIPK2 typically has a half-life of ~50 hours or longer (Mathieson et al., 2018). The extended half-life
makes RIPK2 a suitable candidate protein to explore the potential of PROTAC-mediated target degradation for prolonged PD responses.
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TABLE 1 Structures and Inhibitory Activity of Type I and II RIPK2 Specific Inhibitors

Name Structure Type Kinase IC50 Reference

WEHI-345 I 130 nM Nachbur et al. (2015)

GSK583 I 5 nM Haile et al. (2016)

GSK2983559 I 2 nM Haile et al. (2019)

Compound 8 I 3 nM He et al. (2017)

Derivative 17 I Unknown Wu et al. (2022)
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TABLE 1 (Continued) Structures and Inhibitory Activity of Type I and II RIPK2 Specific Inhibitors

Name Structure Type Kinase IC50 Reference

Pyrazolocarboxamide 11 I 30 nM Haffner et al. (2019)

OD36 I 5.3 nM Tigno-Aranjuez et al. (2014)

OD38 I 14.1 nM Tigno-Aranjuez et al. (2014)

CSLP37 I 16±5 nM Suebsuwong et al. (2020)

UH15-15 I 8±4 nM Nikhar et al. (2021)
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TABLE 1 (Continued) Structures and Inhibitory Activity of Type I and II RIPK2 Specific Inhibitors

Name Structure Type Kinase IC50 Reference

Compound 10w I 0.6 nM Yuan et al. (2022)

CSR35 II 2.26±0.11 µM Suebsuwong et al. (2018)

RIPK2 inhibitor 1 II Unknown Salla et al. (2018)
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of RIPK2 enhanced cellular sensitivity to TMZ, which offers a novel
strategy for RIPK2-positive TMZ-resistant glioma (Hu et al., 2021).
Moreover, DAMPs produced during paclitaxel treatment can
activate the NOD2 signaling and worsen the tumor
microenvironment, resisting the therapeutic effect of paclitaxel,
but NOD2 antagonist enables the sensitization of
chemotherapeutic response (Dong et al., 2017). As a part of the
NOD2 signaling pathway, RIPK2 inhibitionmay offer the equivalent
therapeutic benefits.

Last, is the attempt of coupling RIPK2 inhibitors with immune
checkpoint inhibitors (ICIs) in cancer treatment. Inflammatory
breast cancer (IBC) is type of tumors that remains a significant
challenge. As it is often poorly responsive to conventional therapies,
investigators have been eager to determine whether ICIs will bring
benefits to IBC patients. According to a recent Phase 2 trial, single-
agent treatment with anti-programmed cell death 1 (PD-1) antibody
pembrolizumab as maintenance therapy for metastatic IBC has
reported a disease control rate of 47% after 5 months (Gao et al.,
2020). To further improve the response rate, RIPK2 inhibitors can
be introduced for the reason that the associated “molecular
inflammation” is the driving force behind IBC tumorigenesis and
metastasis (Zare et al., 2018). The upregulated expression of
RIPK2 and activation of inflammatory mediators, especially the
hyperactivated stage of NF-κB signaling in IBC makes it more
reasonable for synergy between RIPK2 inhibitors and ICIs.

Admittedly, what we cannot be ignored is the fact that NODs and
their downstream RIPK2 can not only promote the proliferation,
metastasis, and invasion of tumors, but also exert an inhibitory
effect on tumor progression as immune responders, which may be
related to different tumor types on the one hand. On the other hand,
NODs and RIPK2 in the early stage can activate the adaptive immune
response, thereby killing tumor cells; however, overactivated such
proteins may be the prime mover behind aggravated inflammation
and tumor progression in the advanced stage. This means that precise
differentiation and staging of tumors with the indicated phenotype, like
excessive activation of NF-κB, has important reference value for the
application of RIPK2 inhibitors as anti-tumor drugs or biological
modulators enhancing the effectiveness of antineoplastic agents.
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