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Background: Intervertebral disc degeneration (IDD) is one of the most common

health problems in the elderly and amajor causative factor in low back pain (LBP).

An increasing number of studies have shown that IDD is closely associated with

autophagy and immune dysregulation. Therefore, the aim of this study was to

identify autophagy-related biomarkers and gene regulatory networks in IDD and

potential therapeutic targets.

Methods: We obtained the gene expression profiles of IDD by downloading the

datasets GSE176205 and GSE167931 from the Gene Expression Omnibus (GEO)

public database. Subsequently, differentially expressed genes (DEGs) analysis,

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene ontology

(GO), and gene set enrichment analysis (GSEA) were performed to explore the

biological functions of DEGs. Differentially expressed autophagy-related genes

(DE-ARGs) were then crossed with the autophagy gene database. The hub genes

were screened using the DE-ARGs protein–protein interaction (PPI) network.

The correlation between the hub genes and immune infiltration and the

construction of the gene regulatory network of the hub genes were

confirmed. Finally, quantitative PCR (qPCR) was used to validate the correlation

of hub genes in a rat IDD model.

Results:We obtained 636 DEGs enriched in the autophagy pathway. Our analysis

revealed 30 DE-ARGs, of which six hub genes (MAPK8, CTSB, PRKCD, SNCA,

CAPN1, and EGFR) were identified using the MCODE plugin. Immune cell

infiltration analysis revealed that there was an increased proportion of CD8+ T

cells and M0 macrophages in IDD, whereas CD4+ memory T cells, neutrophils,

resting dendritic cells, follicular helper T cells, and monocytes were much less

abundant. Subsequently, the competitive endogenous RNA (ceRNA) network

was constructed using 15 long non-coding RNAs (lncRNAs) and 21 microRNAs
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(miRNAs). In quantitative PCR (qPCR) validation, two hub genes, MAPK8 and

CAPN1, were shown to be consistent with the bioinformatic analysis results.

Conclusion: Our study identified MAPK8 and CAPN1 as key biomarkers of IDD.

These key hub genes may be potential therapeutic targets for IDD.
KEYWORDS

intervertebral disc degeneration (IDD), immune infiltration, bioinformatic analysis,
autophagy, MAPK8, CAPN1
Introduction

Intervertebral disc degeneration (IDD) is a major global public

health problem (1) that is frequently observed in middle-aged and

elderly people (2) and is the pathological basis of a number of

degenerative spinal conditions and diseases, such as low back pain

(LBP) (3), disc herniation (4), and cervical spondylosis (5). IDD is a

degenerative musculoskeletal disease associated with multiple factors

and has a complex and multifaceted pathogenesis that mainly

includes excessive mechanical stress (6), excessive apoptosis of

nucleus pulposus (NP) cells (7), abnormal degradation of the

extracellular matrix (ECM) (8), inflammatory response (9),

autophagy disorders (10), oxidative stress injury (11), and genetics

(12). The current therapies for symptom management and pain

control cannot heal the injured disc or prevent the progression of

IDD (13, 14). The primary concern of our study was identifying what

molecules are involved and what biological functions are related to

the process of IDD, as potential IDD therapeutic targets.

Autophagy is the biological process for the self-degradation and

recycling of cellular components; it relies on lysosomes to clear

redundant protein polymers and damaged organelles, such as

mitochondria and peroxisomes (15–18). Many diseases, notably

cancer, diabetes, heart disease, and muscle disease, are related to

autophagy disruption (10, 19, 20). An increasing number of studies

have shown that there is a close relationship between autophagy and

IDD, and it has been reported that autophagy-related apoptosis

promotes the progression of IDD (10). In addition, there is a

significant correlation between the progression of IDD and

immune cell infiltration (21). Moreover, in recent years, particular

attention has been given to non-coding RNAs, including

microRNAs (miRNAs) and long non-coding RNAs (lncRNAs),

which revealed that they play significant roles in the initiation

and progression of IDD (22, 23).

Although many studies have provided preliminary evidence for

the regulatory role that autophagy dysregulation plays in the

development of IDD, most studies have focused only on the

biological functions performed by specific genes and have not

focused on their integration with the altered immune

microenvironment within the intervertebral disc and the regulation

of target gene expression by non-coding RNAs. Based on a high-

throughput sequencing dataset of IDD patients obtained from public
02
databases, we performed bioinformatics analysis to identify the hub

genes associated with immune infiltration and autophagy dysfunction

in the development of IDD and performed competing endogenous

RNA (ceRNA) network construction for the hub genes. Finally, PCR

validation confirmed the relevance of MAPK8 and CAPN1 in the

IDD pathogenesis.
Material and methods

Data source and processing

In this study, three IDD-related high-throughput RNA sequencing

datasets were obtained from the Gene Expression Omnibus (GEO;

https://www.ncbi.nlm.nih.gov/geo/) database, that is, GSE176205,

GSE167931, and GSE167199. The detailed contents of three series

are listed in Supplementary Table S1. Both the GSE176205 (containing

three controls and six IDD samples) and GSE167931 (containing four

controls and five IDD samples) datasets were applied for differentially

expressed genes (DEGs) analysis and normalized using the

normalizeBetweenArrays function via the limma R package. The two

preprocessed datasets mentioned above were combined, and batch

effects were removed using the sva R package with the ComBat

function. After obtaining the combined dataset, the DEGs of the

control and IDD samples were analyzed using the limma R package,

with |log2FC| > 1.5 and p < 0.05 being used as screening thresholds.

The GSE167199 dataset contained three controls and three IDD

samples that were applied for microRNAs and lncRNA analysis. The

GENCODE database was used for lncRNA annotation. Figure 1 shows

the workflow of this study.
Functional enrichment analysis of DEGs

The DAVID database (https://david.ncifcrf.gov/) was used to

identify biological terms that were enriched with DEGs, filtering out

statistically significant gene ontology (GO) terms and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways at a

threshold of p < 0.05. All results were plotted using the ggplot2

R package.
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Gene set enrichment analysis

Gene set enrichment analysis (GSEA) of DEGs obtained from the

differential analysis was performed to explore the potential biological

processes of DEGs involved in IDD. The hallmark gene set was

obtained from the MSigDB database, and GSEA analysis was

performed using the ClusterProfiler R package (24). The gene sets of

the DEGs were sorted according to log2FC, and the normalized

enrichment score (NES) in GSEA was obtained. | NES | > 1 and

p < 0.05 were considered to indicate significantly enriched pathways.
Identification and functional enrichment
of differentially expressed
autophagy-related genes

We selected C5 ontology gene sets in the MsigDB database as the

filtering criteria, and the 404 genes from the 11 gene sets that are

related to autophagy were obtained. In addition, 232 genes involved

in autophagy were obtained from the Human Autophagy database

(http://www.autophagy.lu/index.html). The obtained gene sets were

combined to create a gene set containing 547 ARGs. The intersection

of ARGs and DEGs was used to obtain the differentially expressed

autophagy-related genes (DE-ARGs). KEGG and GO analyses of DE-
Frontiers in Immunology 03
ARGs were performed using the DAVID database, with p < 0.05 as

the threshold.
Construction of protein–protein
interaction network

The Search Tool for the Retrieval of Interacting Genes/proteins

(STRING; https://string-db.org/) database contains both the known

and predicted protein interactions; these were used to construct the PPI

network. The DE-ARGs list was imported into the STRING online

platform, and PPI analysis was performed with the default settings and

imported into Cytoscape 3.9.1 software. The hub PPI network was

screened and visualized using theMCODE analysis plugin. Genes from

the hub PPI network were treated as hub genes for subsequent analysis.

Receiver operating characteristic (ROC) curve analysis was used to

evaluate the diagnostic performance of the hub genes. ROC analysis

was carried out using the pROC package in R.
Immune cell infiltration analysis

The CIBERSORT algorithm, which is used to evaluate changes

in immune cells during immune infiltration, was used in this study
FIGURE 1

The workflow of this study.
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to investigate changes in the relative proportion of immune cell

infiltration in IDD. We performed a correlation analysis of immune

cell infiltration and hub gene expression levels using the psych

package in R.
Construction of ceRNA network

We utilized the following procedures to construct the ceRNA

network: (1) differential analysis of GSE167199 with the limma

package in the R environment using | log2FC | > 1 and p < 0.05 as

screening thresholds to obtain differentially expressed

microRNAs (DE-miRNAs) and differentially expressed

lncRNAs (DE-lncRNAs); (2) using the ENCORI database

(https://rna.sysu.edu.cn/encori/index.php) to predict the target

miRNAs of the hub gene that intersect with DE-miRNAs to

construct the final mRNA–miRNA axis; (3) using mirNet

(https://www.mirnet.ca/) to predict the lncRNAs that would be

targeted by the DE-miRNAs that bind to the hub gene [the

predicted lncRNAs were then taken to intersect with the DE-

lncRNAs from (1) to construct the miRNA–lncRNA axis]; and (4)

combining the multiple mRNA–miRNA and miRNA–lncRNA

axes obtained from the above steps into a mRNA–miRNA–

lncRNA regulatory axis according to the predicted binding

trends. In addition, the ceRNA network was visualized using

Cytoscape software.
IDD rat models

Twenty-four 8-week-old adult male Sprague Dawley rats were

used in this study. The rats were anesthetized by intraperitoneal

injection with 2% (w/v) pentobarbital (40 mg/kg) and randomly

assigned to either the control group or the IDD group, with an

equal number assigned to each group. The caudal discs C7/8 were

identified and selected for the study according to the methods

used in the previous study (25). A 27-gauge needle punctured

discs C7/8, crossing the nucleus pulposus to the contralateral

annulus fibrosus. After complete penetration, the needle

was rotated twice 360° and held for 60 s. The resistance of

the contralateral annulus fibrosus controlled the depth of

needle penetration.
X-rays and MRI

After we anesthetized the rats with isoflurane (3% for

induction and 1% for maintenance), we placed them in an

induction box in which the air flow rate was adjusted to 1 L/

min. Once the rats were fully anesthetized, we removed them from

the induction box and placed respiratory masks on them, through

which they inhaled isoflurane gas at an adjusted concentration of

1%. The rats were placed in prone positions under the X-ray

equipment (Toshiba China, E7252) and in a 7.0 T small-animal

MRI system (CG NOVILA 7.0 T, Chenuang, China), and images

were collected.
Frontiers in Immunology 04
Hematoxylin and eosin staining

After 4 weeks of feeding, all rats were euthanized, and their caudal

intervertebral discs were collected. Half of the samples from each group

were fixed in 10% buffered formalin for 48 h, and the other half were

frozen and stored at –20°C. Subsequently, the caudal intervertebral disc

samples were decalcified in 10% etheylenediaminetetraacetic acid

(EDTA) for 14 days and embedded in paraffin. The samples were

cut into 4-mm-thick coronal-oriented sections, which were then

processed for hematoxylin and eosin (H&E) staining (26, 27).
Real-time quantitative polymerasechain
reaction

Total RNA was extracted from the frozen NP tissue of caudal

vertebra using the TRIzol reagent (Invitrogen, CA, USA).

PrimeScriptTM RT Master Mix #RR036 A (Takara, Beijing,

China) was used to synthesize complementary DNA (cDNA)

according to information on the quantity and quality of the RNA.

TB Green® Premix Ex Taq™ #RR420B (Takara) was used to

perform quantitative PCR (qPCR) on the 7500 Real-Time PCR

System (Applied Biosystems, CA, USA). The primer sequences are

listed in Supplementary Table S2, and the primers were created by

Sangon Biotech (Shanghai, China). The relative expression levels of

the genes were calculated utilizing the 2–(DDCT) method, with

GAPDH serving as the internal reference gene for the PCR data.
Statistical analysis

The data processing, statistical analysis, and graphs were performed

or generated via R 4.2.1 software and GraphPad Prism 9 software. In all

analyses, p < 0.05 was regarded as statistically significant.
Results

Identification of DEGs

Two high-throughput sequencing datasets, GSE176205 and

GSE167931, were normalized and merged into one dataset for

this study. Batch effect elimination was then performed on the

merged dataset before data analysis (Figures 2A, B). A total of 636

DEGs, containing 468 upregulated genes and 168 downregulated

genes, were obtained from the combined dataset using the limma

package for differential gene analysis in R (Figures 3A, B). All DEGs

are shown in Supplementary Table S3.
Enrichment analysis of DEGs

To further explore the potential biological changes of these

screened DEGs, KEGG and GO enrichment analyses were

performed using the DAVID online database and exported into
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the R environment for visualization. The KEGG results showed that

the DEGs were mainly enriched in amyotrophic lateral sclerosis,

coronavirus disease (COVID-19), shigellosis, Salmonella infection,

and protein processing in the endoplasmic reticulum. Most of the

top 15 KEGG pathways were in immune-related diseases

(Figures 4A, B). The results of GO BP (biological process)

annotation showed that the DEGs were mainly enriched in

chromatin organization, protein autophosphorylation, and

autophagy. The top 15 GO biological processes revealed that the

DEGs were closely associated with autophagy (Figures 4C, D).

The gene set h.all.v2022.1.Hs.symbols was used for GSEA

analysis. After excluding the results without statistical

significance, MITOTIC_SPINDLE, IL2_STAT5_ SIGNALING,

TNFA_SIGNALING_VIA_NFKB, and UV_RESPONSE_DN were

significantly activated in IDD (Figure 5), suggesting that these

biological processes may be closely related to IDD.
Identification of DE-ARGs

To further explore autophagy-related genes (ARGs) in IDD, we

combined the 404 ARGs obtained from the MsigDB database with

the 232 ARGs obtained from the Human Autophagy database to

obtain a total of 547 ARGs. The ARGs were then intersected with
Frontiers in Immunology 05
the DEGs to obtain the 30 DE-ARGs (Figure 6A). KEGG and GO

analyses of the DE-ARGs were performed using the DAVID

database with p < 0.05 as the threshold, and the enrichment

results were visualized in R software (Figures 6B, C).
Construction of PPI and identification of
hub genes

We explored the interactions among the 30 DE-ARGs using the

STRING database with medium confidence and obtained a PPI

network containing 30 nodes and 24 edges (Figure 7A). Using

Cytoscape’s internal analysis plug-in, MCODE, the PPI network of

the DE-ARGs was filtered to gain the subnetworks with the highest

clustering scores for visualization (Figure 7B). As shown in the

figure, we hypothesized that MAPK8, CTSB, PRKCD, SNCA,

CAPN1, and EGFR are hub genes.

The heat map and 3D PCA map of these six hub genes in the

combined dataset revealed that the control group was significantly

different from the IDD group (Figures 7C, D). In both the

GSE176205 and GSE167931 datasets, the AUC values of the six

hub genes were above 0.75, indicating that the six hub genes have

excellent diagnostic performance and can be used as promising

biomarkers in the diagnosis of IDD (Figure 7E).
BA

FIGURE 3

Differential expression of mRNA associated with IDD. (A) Volcano map of differentially expressed genes between control and IDD samples. (B) Heatmap
of differentially expressed genes between control and IDD samples. The scale() function was used to normalize the expressions of the DEGs in R. DEG,
differentially expressed genes; IDD, intervertebral disc degeneration; mRNA, messenger RNA.
BA

FIGURE 2

GEO dataset preprocessing. (A) Gene expression level of the dataset before preprocessing. (B) Gene expression level of the dataset after
preprocessing. GEO, Gene Expression Omnibus.
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The changes in immune cell infiltration
in IDD

We evaluated the relative abundance of infiltrating immune cell

subtypes in normal and IDD samples using the CIBERSORT

algorithm. The bar graph and heat map show the infiltration of

multiple immune cell subtypes in each sample (Figure 8A). The

violin plot shows the difference in the percentage of immune cells

between the two sample groups (Figure 8B). Compared with the

normal samples, the IDD samples showed increased infiltration of
Frontiers in Immunology 06
CD8+T cells and M0 macrophages, whereas CD4 memory resting T

cells, neutrophils, resting dendritic cells, follicular helper T cells,

and monocytes showed decreased infiltration (Figure 8C).

Finally, the heat map revealed the correlation between the hub

genes and immune cell infiltration (Figure 8D). As shown, the

expression of hub genes was significantly correlated with immune

cell infiltration across the subtypes. The reduced CD4 memory

resting T cells in IDD samples are negatively correlated with highly

expressed CAPN1 and EGFR and positively correlated withMAPK8,

CTSB, and PRKCD expression.
B

C

D

A

FIGURE 4

Functional enrichment of analysis of DEGs. (A, B) KEGG pathway analysis of DEGs. (C, D) GO biological process enrichment results of DEGs. DEG,
differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Potential mRNA–miRNA–lncRNA (ceRNA)
network of hub genes

To reveal the potential post-transcriptional regulatory

mechanisms of these six hub genes, we screened differentially

expressed miRNAs and lncRNAs during IDD development and

constructed a ceRNA network. DE-miRNAs and DE-lncRNAs of

GSE167199 were identified and screened in R software using the

limma package, with |log2FC| > 1 and p < 0.05 set as significance

thresholds. A total of 139 DE-lncRNAs (Supplementary Table S4)

and 65 DE-miRNAs (Supplementary Table S5) were identified

(Figures 9A, B).

Subsequently, the six hub genes targeted miRNAs were

predicted using the ENCORI online database and intersected

with DE-miRNAs to obtain mRNA–miRNA binding pairs
Frontiers in Immunology 07
(Supplementary Table S6). Moreover, the mirNet database was

used to predict the possible binding lncRNAs of DE-miRNAs

screened in the previous step, and the predicted lncRNAs were

intersected with DE-lncRNAs to construct miRNA–lncRNA

binding pairs (Supplementary Table S7). The mRNA–miRNA

and miRNA–lncRNA binding pairs were then integrated to

construct the ceRNA network of the six hub genes (Figures 9C, D).
Validation of hub genes

According to the results, X-ray, MRI, and H&E staining of NP

tissue sections revealed a severely damaged NP in IDD rat models

(Figure 10A). Reverse transcription qPCR (RT-qPCR) analysis

showed that the mRNA levels of aggregated proteoglycan
B C

D E

A

FIGURE 5

GSEA analysis of HALLMARK between control samples and IDD samples. (A) Normalized enrichment scores (NES) for HALLMARK gene sets representing
the combined dataset. (B–E) Results of GSEA analysis after using threshold screening. GSEA, gene set enrichment analysis; IDD, intervertebral disc
degeneration.
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(aggrecan) and type II collagen (COL-2) were decreased in IDD

models (Figure 10B). We examined the mRNA expression of the

hub genes in the IDD model. As the results showed, unlike other

hub genes, only the expressions of CAPN1 and MAPK8 were

consistent with our DEGs analysis results (Figure 10C). In

addition, we also performed correlation analysis of CAPN1 and

MAPK8 with immune cell subtype infiltration using p < 0.05 as

screening threshold (Figure 10D). Therefore, CAPN1 and MAPK8

were validated as the final hub genes in the progression of IDD.
Frontiers in Immunology 08
Discussion

LBP is one of the most common health problems and represents

a significant economic and lifestyle burden to human society,

affecting approximately 60%–80% of the global population (28–

30). IDD is one of the most important factors in the pathogenesis of

LBP, and the application of high-throughput sequencing

technology combined with bioinformatics analysis could help us

to identify the biomarkers or key biological functions during IDD
B

C

A

FIGURE 6

Identification of autophagy-related differentially expressed genes. (A) Venn diagram of DE-ARGs between DEGs and ARGs. (B, C) KEGG and GO
biological process enrichment results of DE-ARGs. ARGS, autophagy-related genes; DE-ARGs, differentially expressed autophagy-related genes; DEGs,
differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1188774
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1188774
development and provide new ideas and options for IDD treatment

(31, 32).

Autophagy, a highly conserved self-phagocytosis process in

eukaryotic cells, prevents excessive apoptosis and promotes the

secretion of the ECM in NP cells, and therefore plays a protective

role in disc degeneration (20). Several compounds, such as

autophagy agonists, can attenuate IDD by promoting autophagy

to reduce oxidative stress, apoptosis, and ECM degradation in NP

cells (33).
Frontiers in Immunology 09
The NP tissue of the disc is surrounded by annulus fibrosus and

cartilage endplate, a unique structure that sets NP cells and ECM in this

tissue apart from the immune cells. However, when degeneration

occurs, the NP outflow is recognized as a “foreign antigen” when it

comes into contact with the external immune system, and an

autoimmune response is generated to initial immune response. Once

the NP tissue is damaged, the granulation tissue is formed, allowing the

external blood vessels to extend and causing the NP tissue to be

exposed to external immune cells. At this point, the ECMs secreted by
B

C

D E

A

FIGURE 7

Screening of hub gene in DE-ARGs. (A) The protein–protein interaction network visualized by STRING. (B) Six hub genes were screened by the
MCODE plug-in. Red nodes represent upregulated expressed genes, blue nodes represent downregulated expressed genes. (C, D) Gene expression
heat map and 3D PCA map of the six hub genes. (E) ROC curve of six hub genes in GSE176205 and GSE167931. DE-ARGs, differentially expressed
autophagy-related genes; PCA, principal component analysis; ROC, receiver operating characteristic; STRING, Search Tool for the Retrieval of
Interacting Genes/Proteins.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1188774
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1188774
NP cells, such as collagen and proteoglycan, are recognized as

autoantigens and trigger a secondary immune response mediated by

cytotoxic T cells (34, 35). Therefore, identifying the molecules related to

inflammatory environment and immune cell infiltration in

degenerating discs is important for revealing the underlying

mechanisms of IDD pathogenesis.

In this study, we performed KEGG and GO enrichment

analyses with the 636 obtained DEGs from the IDD database. The
Frontiers in Immunology 10
KEGG results showed that many immune-related disease pathways

were highly activated in the IDD group, such as shigellosis,

Salmonella infection, and Yersinia infection. Previous studies have

shown that bacterial infections, such as Staphylococcus aureus and

Cutibacterium acnes, create an inflammatory environment in the

intervertebral disc and promote IDD progression (36–38).

Moreover, GO results demonstrate that autophagy plays a

central role during IDD development. Thus, based on above
B

C D

A

FIGURE 8

The visualization of cell infiltration between the IDD and control groups. (A) The stacked bar chart and heat map indicates the relative proportions of
22 immune cells. (B) A violin plot of the immune cell proportions in two groups. (C) Significantly different immune cell infiltration in the two sample
groups. (D) Heat map of the correlation between the expression of the six hub genes and the infiltration of 22 immune cell type proportions.
(* p < 0.05, ** p < 0.01) .
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results, we next screened for only autophagy-related genes in DEGs

and explored the possible core DEGs. Using the MCODE plug-in of

Cytoscape software, we successfully screened the core gene clusters

of 30 DE-ARGs. Combined with PPI network identification, we

selected six genes as the hub genes, that is MAPK8, CTSB, PRKCD,

SNCA, CAPN1, and EGFR. The expression of these six hub genes in

the original raw data was significantly different between the control

and IDD samples.

CIBERSORT is an inverse convolution analysis algorithm based on

linear support vector regression that estimates the relative abundance

of immune cells in a mixed cell population by analyzing gene

expression data (39). Using this algorithm, we found that there was

increased infiltration of CD8+ T cells and M0 macrophages in IDD

samples, and decreased infiltration of CD4+ memory T cells,

neutrophils, resting dendritic cells, follicular helper T cells, and

monocytes. Correlation analysis of the expression of six hub genes

with the relative abundance of 22 immune cell types revealed that the

hub genes were significantly correlated with several immune cell types

that were increased or decreased in the IDD group. The increased

infiltration of CD4+ and CD8+ T cells has been reported in

spontaneous disc herniation in the human tumor necrosis factor
Frontiers in Immunology 11
alpha (TNF-a)-overexpressing transgenic mouse model (Tg197) (40).

Thus, we speculate that the efflux of NP from the degenerating disc and

exposure to the external immune environment generates an

inflammatory environment. Released pro-inflammatory cytokines

promote the infiltration of other immune cells, regulate hub gene

expression and the biological behavior of NP cells, maintain the

inflammatory microenvironment, and ultimately exacerbate

disc herniation.

Non-coding RNAs, such as lncRNAs and miRNAs, have also

attracted widespread attention for their role in mediating autophagy

in IDD (41–43). Non-coding RNAs can regulate the degree of

activation of autophagy in immune cells by directly or indirectly

targeting autophagy-related genes and the associated signaling

pathways. However, relatively little is known about the co-

regulation mechanisms of non-coding RNAs. LncRNAs,

microRNAs, and mRNAs can regulate the development and

progression of IDD by forming ceRNA networks (21, 44, 45). The

GSE167199 dataset used in this study was also used previously for

the study of ceRNA networks and identified two ceRNA axes,

lncRNA XIST-hsa-miR-4775-PLA2G7 and lncRNA XIST-hsa-

miR-424–5p-AMOT/TGFBR3, that may be involved in the
B

C D

A

FIGURE 9

Construction of ceRNA network of the six hub genes. (A) Volcano plot of differentially expressed lncRNAs between normal and IDD samples. (B) Volcano
plot of differentially expressed miRNAs between normal and IDD samples. (C) The ceRNA network of upregulated expression of hub genes. (D) The
ceRNA network of downregulated expression of hub genes. IDD, intervertebral disc degeneration; ceRNA, competing endogenous RNA; lncRNA, long
non-coding RNA; miRNA, microRNA.
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progression of IDD (46). However, the experimental results were

mainly based on one RNA sequencing dataset. They did not involve

online databases for target prediction, so multiple samples and

online databases need to be combined for comprehensive analysis.

The ceRNA networks regulating IDD’s molecular mechanisms

remain to be further investigated and explored.

Through differential analysis of gene expression profiles

downloaded from the GEO database and online database
Frontiers in Immunology 12
prediction, we identified several pairs of ceRNA axis and

constructed ceRNA regulatory networks for the six hub genes.

Among the ceRNA networks, several miRNAs and lncRNAs have

been reported in the literature to be involved in disease regulation.

In NP cells, the overexpression of LINC00324 increases Fas ligand

(FasL) expression and promotes disc degeneration (47). The miR-

140–3p affects bone marrow stromal cells (BMSCs) in degenerative

intervertebral disc disease (IVD) by directly targeting KLF5 and
B C

D

A

FIGURE 10

Expression levels of the hub genes in normal rat and IDD models. (A) Representative images of X-ray, MRI and H&E staining after needle puncture (B) The
mRNA expression level of marker genes of NP. (C) The mRNA expression of the six hub genes in normal and IDD models. (D) CAPN1 and MAPK8 were
analyzed for correlation with immune infiltration, and the analysis results of p < 0.05 were retained. H&E, hematoxylin and eosin; IDD, intervertebral disc
degeneration; mRNA, messenger RNA. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001; ns, not significant).
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interacting with the N–cadherin/MDM2/Slug axis, thereby

regulating regenerative effects in degenerative IVD (48).

LINC01535 affects clear cell renal cell carcinoma progression by

mediating PI3K/Akt signaling through the LINC01535/miR–146b-

5p/TRIM2 axis (49), corresponding to the LINC01535/miR-146b-

5p binding pair predicted in this study. Although there are no

studies on the relationship between LINC01535 and IDD, based on

the results of previous studies and bioinformatic analysis, it is

reasonable to believe that the ceRNA axis, composed of

LINC01535 and several other non-coding RNAs, is involved in

the regulatory network on disc degeneration.

Finally, we designed in vitro experiments to verify whether or

not the hub genes were differentially expressed in the NP of the IDD

rat model. Based on the RT-qPCR results, we found that two hub

genes,MAPK8 and CAPN1, were differentially expressed in the IDD

and control groups, and that these expression trends were

consistent with the results of previous bioinformatics analysis.

MAPK8, also known as c-JUN N-terminal kinase (JNK), is a

member of the MAPK family that regulates a variety of

physiological responses, including inflammatory responses, cell

differentiation, cell proliferation, and cell death. The dysregulation

of MAPK8 has also been implicated in several diseases, including

diabetes, cancer, autoimmune diseases, cardiac hypertrophy, and

asthma (50). Previous studies have shown that MAPK8 also has

some relevance to the physiological state of NP cells. In human NP

cells, the use of JNK pathway inhibitors can counteract interleukin

17 (IL-17)-induced COX2/PGE2 production and IVD

inflammation, which may be a potential therapeutic target for

alleviating IDD (51). At high osmotic pressure, the JNK pathway

can regulate cell generation, proliferation, and apoptosis in rabbit

NP cells, which helps to elucidate the pathological mechanisms

involved in intervertebral discs under elevated osmotic pressure and

load (52). In another study, the development of disc degeneration in

rabbits was prevented by regulating the JNK signaling pathway and

the downstream p53 pathway, in which JNK/p53 plays an important

role (53). Therefore, MAPK8 could be further investigated as a

potential biomarker for IDD.

Calpain 1 (CAPN1), an intracellular cysteine protease, is

ubiquitously expressed in mammals, and is involved in the

cleavage of cytoskeletal, mitochondrial, and lysosomal membrane

proteins and mediated impairment of autophagic flux to neurons

(54). Virus-infected cardiomyocytes induce inflammation in an

immune-mediated manner via NLRP3 inflammasome. CAPN1

inhibitors can inhibit NLRP3 inflammasome release and alleviate

myocardial injury (55). CAPN1 has been well studied in autophagy-

related diseases, but whether or not it impacts the progress of IDD,

or whether the signal pathway related to CAPN1 regulates

autophagy activity and finally acts on the degenerated NP, has

not been reported on in detail in published studies and needs

further research.

Of course, this study inevitably has some limitations. First, the

sample size of gene expression profiles downloaded from public

databases is slightly inadequate, and individual differences in the

samples may affect the analysis results’ generalizability. In addition,

only the mRNA levels and not the protein levels of the hub gene
Frontiers in Immunology 13
were validated by RT-qPCR. More relevant in vivo and in vitro

experiments are needed to demonstrate the role of these hub genes

and their potential mechanisms in IDD. Finally, some of the

lncRNAs and miRNAs obtained from the analysis have not been

reported in IDD-related studies, and further experiments are

needed for validation.

In summary, we analyzed the DEGs of IDD using

bioinformatics methods, including the functional enrichment

analysis of DEGs, acquisition of autophagy-related DEGs, PPI

network analysis, and in vitro qPCR validation. In addition, we

performed immune cell infiltration analysis and lncRNA–miRNA–

mRNA network construction, and investigated the correlation

between immune cell infiltration and ceRNA network in IDD. In

animal experiments, we validated the expression of two hub genes

(MAPK8 and CAPN1) at the mRNA level, which was consistent

with the results of bioinformatics analysis. Our study provides new

insights into the pathogenesis of IDD and helps to identify new

potential therapeutic targets in the pathogenesis of IDD.
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