
Entanglement entropy production in Quantum Neural
Networks
Marco Ballarin1,2,3, Stefano Mangini1,4,5, Simone Montangero2,3,6, Chiara Macchiavello4,5,7, and
Riccardo Mengoni8

1These authors contributed equally to this work
2Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131, Padova, Italy
3INFN, Sezione di Padova, via Marzolo 8, I-35131, Padova, Italy
4Dipartimento di Fisica, Università di Pavia, Via Bassi 6, I-27100, Pavia, Italy
5INFN Sezione di Pavia, Via Bassi 6, I-27100, Pavia, Italy
6Padua Quantum Technologies Research Center, Università degli Studi di Padova
7CNR-INO - Largo E. Fermi 6, I-50125, Firenze, Italy
8CINECA Quantum Computing Lab,Via Magnanelli, 6/3, 40033 Casalecchio di Reno, Bologna, Italy

Quantum Neural Networks (QNN) are
considered a candidate for achieving quan-
tum advantage in the Noisy Intermedi-
ate Scale Quantum computer (NISQ) era.
Several QNN architectures have been pro-
posed and successfully tested on bench-
mark datasets for machine learning. How-
ever, quantitative studies of the QNN-
generated entanglement have been inves-
tigated only for up to few qubits. Tensor
network methods allow to emulate quan-
tum circuits with a large number of qubits
in a wide variety of scenarios. Here, we
employ matrix product states to charac-
terize recently studied QNN architectures
with random parameters up to fifty qubits
showing that their entanglement, mea-
sured in terms of entanglement entropy
between qubits, tends to that of Haar dis-
tributed random states as the depth of the
QNN is increased. We certify the random-
ness of the quantum states also by mea-
suring the expressibility of the circuits, as
well as using tools from random matrix
theory. We show a universal behavior for
the rate at which entanglement is created
in any given QNN architecture, and conse-
quently introduce a new measure to char-
acterize the entanglement production in
QNNs: the entangling speed. Our results
characterise the entanglement properties
of quantum neural networks, and provides
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new evidence of the rate at which these
approximate random unitaries.

1 Introduction

Nowadays quantum computing is a well-
established research field where quantum phe-
nomena like superposition and entanglement are
exploited in order to process information, possi-
bly more efficiently than standard classical data
processing [1]. The aim of quantum computing
is to devise quantum algorithms capable of gen-
erating a target quantum state representing the
solution of a given problem. In the last decade,
the community has put a large effort into the re-
alization of hardware able to perform quantum
computation.

Accompanying the rise of quantum computing,
another research area, namely Machine Learning
(ML), has gained a lot of popularity. We live un-
doubtedly in the era of big data, where informa-
tion is collected by the most disparate devices.
In this context, ML constitutes a set of tech-
niques for efficiently identifying patterns in huge
datasets and for inferring input-output relations
in data, even in the case of previously unseen in-
puts [2, 3]. ML proves to be a powerful tool with
a wide range of applications: from image classi-
fications [4], over devising playing strategies for
complex games [5], to controlling nuclear fusion
reactors [6].

Inspired by some of these outstanding results, a
new interdisciplinary research topic that goes by
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the name of Quantum Machine Learning (QML)
has recently begun to combine quantum com-
puting and machine learning techniques in var-
ious ways, with the hope of achieving improve-
ments in both fields [7, 8, 9, 10, 11]. As small-
scale quantum devices start to be available [12],
a new class of quantum procedures called vari-
ational quantum algorithms have been developed
to take advantage of current and near-term quan-
tum hardware, by trading theoretical guarantees
of success with feasibility of execution [9, 11, 13].
Generally speaking, a variational quantum circuit
is a hybrid quantum-classical algorithm employ-
ing a quantum circuit U(θ) that depends on a
set of parameters θ, which are adjusted in order
to minimize a given objective function. While
the objective function is evaluated by measur-
ing outcomes of the variational circuit, optimiza-
tion is performed by a classical iterative optimiza-
tion algorithm that proposes better candidates
for the parameters θ, starting from random (or
pre-trained) initial values.

Within the domain of variational quantum cir-
cuits, quantum versions of neural networks, often
referred to as quantum neural networks (QNNs),
represent a promising quantum alternative for
classical supervised learning [10, 14]. An efficient
encoding of input data is key to perform com-
putations in a high dimensional (possibly even
infinite) Hilbert space. In fact, it is possible to
encode classical inputs x into a quantum state
|F(x)⟩ using a parameterized quantum circuit
(PQC), a procedure which goes by the name of
feature encoding. Thus, the goal of the feature
map F is to map classical vectors to the qubits’
Hilbert space. This feature map is accompanied
by a layered structure of additional variational
PQCs, which are trained in order to solve the de-
sired learning task. Recently, QNNs gained a lot
of attention after it was shown that they could be
more expressive and efficiently trained than their
classical counterparts [14]. Still, the dispute on
how to achieve quantum advantages over machine
learning is still far from being settled [15, 16, 17].
As for classical neural networks, the type of im-
plementation of parameterized quantum circuits
has a profound impact on the QNN performances,
both in terms of trainability and classification ac-
curacy [18, 19, 20, 21, 22]. Thus, characterizing
parameterized quantum circuits in terms of their
expressibility and entangling capability is key to

selecting a good ansatz, i.e. structure, for a QNN.

Following and expanding the investigation pi-
oneered in [23], in this work we study the entan-
glement properties of quantum neural networks
initialized with random parameters. We em-
ploy methods from the tensor network literature,
namely Matrix Product States (MPS), to study
the entanglement generated in various QNNs ar-
chitectures composed of up to 50 qubits. Since
MPS are a very powerful tool for simulating quan-
tum systems with bounded entanglement, if a
quantum neural network can only access low en-
tangled states, it can be easily simulated, which
spoils any hope of achieving a concrete quan-
tum advantage. Thus, using entanglement en-
tropy among qubits as a figure of merit, we eval-
uate the entanglement capabilities of some of the
most common and promising QNN architectures
[14, 23]. We consider several QNNs with differ-
ent combinations of feature maps F and varia-
tional forms V and perform an extended numeri-
cal analysis varying: (i) the number of qubits n,
(ii) the number of layers L in the network, (iii)
the entangling topology of the circuit, (iv) the
data re-uploading [24, 25] structure being either
alternated or sequential. In this respect, we fo-
cus our analysis on data re-uploading quantum
circuits because, as extensively discussed later,
recent results in the quantum machine learn-
ing literature highlight the need for such a cir-
cuit structure to increase the expressibility of
the parametric models implemented by quantum
neural networks. Thus, we consider this class
of parametrized quantum circuits due to their
practical relevance in quantum machine learning
tasks. Nonetheless, in Sec. 3.4, we also analyze
instances of random quantum circuits where pa-
rameters are not shared between layers (hence no
data reuploading is used) and show that, as long
as entanglement is involved, the results presented
in this paper depend primarily on the architecture
of the parametric quantum circuit, and not on the
presence of shared parameters. A summary of the
circuit templates analyzed in this work is shown
in Fig. 1.

For all the considered QNNs with nearest
neighbour connectivity, as the number of layers
L is increased, the entanglement generated inside
the circuit grows, eventually reaching a plateau
when L ≈ n, where n is the number of qubits.
This behavior is associated with the typical en-
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Figure 1 – Graphical representation of QNN and MPS. (a) QNN structure with alternating feature map
F and variational ansatz V . Note that the ansatz parameters are different in each layer, while the feature
map parameters are the same throughout the whole circuit. (b) MPS diagram. Each sphere is a tensor,
representing a qubit qj . The entanglement entropy between bi-partitions A and B is computed by "cutting"
the connecting edge ej . (c) Circuits analyzed in the manuscript, depicted with a linear entanglement topol-
ogy, i.e. entangling gates are only applied between nearest neighbors on a line. (d) Different entanglement
topologies: circular, with the first and last qubit of the line connected, and full, where the entangling gates
are applied between each pair of qubits (see Appendix C for a clear definition and discussion). When
using parameterized two qubits gates, like the controlled rotations in circuit 2, the entanglement maps
are generalized to their parameterized version by substituting X gates on the controlled qubits with the
corresponding parameterized operation. Note that the circuit templates 2 and ZZFeatureMap are those
used in the QNN of [14], and also that circuits 1, 2 and 3 share similarities with circuits 1, 15, and 13
of [23], respectively.

tanglement of a random Haar-distributed quan-
tum state. The choice of the entangling topology
(nearest neighbors, circular, or all to all) clearly
affects the rate of creation of entanglement in the
circuit. We also point out that a careless defi-
nition of a full, i.e. all to all, connectivity map
can effectively result in a linear nearest-neighbors
interaction if unparameterized two qubits gates
(Cnots) are used, something apparently over-
looked in the recent literature using this type of
ansatz [14, 26, 27]. By bounding the entangle-
ment generated by the circuit, we are able to sim-
ulate QNNs with MPS up to n = 50 qubits. It
should be stressed that such simulations are exact
up to a given number of layers, after which a trun-
cation of the entanglement via MPS is applied.
By appropriately normalizing the entanglement
produced we show that all the points for a given
QNN architecture follow the same curve, inde-
pendently from the number of qubits. Thus, we
exploit this behavior to define a universal figure of
merit given the QNN architecture, the entangling
speed. This figure of merit characterizes how fast
the entanglement is produced by the QNN, with
respect to the number of layers L.

In addition, we evaluate the expressibility mea-

sure of the considered QNNs as defined in [23]
and argue that the optimality of the QNN intro-
duced in [14] may be related to its good trade-
off between mild entanglement production and
high expressibility. Finally, we employ tools from
random matrix theory, specifically convergence
to the Marčenko-Pastur distribution, to further
characterise the resemblance of the deep enough
quantum neural networks to random unitary ma-
trices. At last, we note that differently from [23]
which bases their analysis on the Meyer-Wallach
entanglement measure [28], in this work we make
use of the entanglement entropy among subsys-
tems, which allows for a more careful analysis of
the entanglement distribution in the system, and
it is also readily accessed in an MPS simulation
with no computational overhead.

The manuscript is organized as follows. In
Sec. 2 we review the basis of tensor networks
and MPS, and introduce the Von Neumann en-
tropy as an entanglement measure. We then dis-
cuss the entanglement entropy properties of ran-
dom quantum states. We proceed by discussing
the most recent results on parameterized quan-
tum circuits and QNNs, especially, on the relation
between randomness, trainability, and entangle-
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ment found in these circuits. In Sec. 3 we show
the results of our analysis for various QNN archi-
tectures, and discuss the results in Sec. 4. Finally,
we discuss the implications of our work and pos-
sible routes for future investigations in Sec. 5.

2 Methods

2.1 Tensor Networks and Matrix Product
States

An n-qubit quantum state is defined in a Hilbert
space H of dimension dim(H) = 2n. The expo-
nential scaling of H with n makes the classical
description of quantum states an exponentially
expensive task. This problem is widely known in
many-body quantum physics, and many different
techniques have been developed to alleviate the
issue, like the Density Matrix Renormalization
Group (DMRG) or Tensor Network (TN) tech-
niques [29, 30].

In this work, we use Tensor Network methods
to efficiently describe the n-qubit state. In par-
ticular, we employ Matrix Product States (MPS),
which are a specific tensor network ansatz par-
ticularly suited to represent 1-dimensional (i.e.
like atoms on a chain, as in Fig. 1) quantum
states [31]. The power of tensor networks lies in
the assumption that we are only interested in a
tiny subspace of the entire Hilbert space, namely
the states that display a limited amount of en-
tanglement.

An n-qubit pure state |ψ⟩ ∈ H can be written
as a MPS as follows [31]

|ψ⟩ =
1∑

s1,...,sn=0

χ∑
α1,...,αn=1

M[1],s1
1α1 M[2],s2

α1α2 · · ·

M[n−1],sn−1
αn−2αn−1 M[n],sn

αn−11 |s1s2 . . . sn⟩ .

(1)

Each tensor M[i],si
αiαi+1 is a local description for the

[i]-th site, which allows one to apply a local oper-
ator to a certain site without the need to change
all the other coefficients. For a fixed si, M[i],si

αiαi+1
is a χ× χ complex matrix, meaning that Eq. (1)
is the sum of basis elements weighted by matrix
products. The integer χ is called the MPS bond
dimension, and a sufficiently high χ is needed
to express a general |ψ⟩ in such form. However,
MPS with a lower χ can still encode all the mean-
ingful states, albeit clearly not all possible states.
In particular, to correctly describe any quantum

state the bond dimension needed is χ = d⌊ n
2 ⌋,

where d is the local dimension of the degrees of
freedom (d = 2 for qubits). We can also efficiently
evolve the state under the application of 2-qubit
gates, using an approach known in the literature
as time-evolving block decimation [32], and per-
form measurements. Simulations using MPS are
not bounded by the number of qubits in the sys-
tem, but by the amount of entanglement gener-
ated inside it, as we explain in detail in Section
2.2.

Nonetheless, while the use of an MPS simula-
tion imposes some constraints on the maximum
entanglement that it is possible to represent, this
issue is relevant only for very deep circuits involv-
ing many qubits. Indeed, we reliably simulate
circuit instances involving up to n = 50 qubits
and moderate depth, which is already sufficient
to provide clear insights on the entanglement en-
tropy generated in such circuits. Moreover, as
explained below in Sec. 2.2, during an MPS sim-
ulation one has constant access to the singular
values of the quantum state, so the entanglement
of the state can be calculated on the fly with-
out any computational overhead. Thus, MPS are
an effective tool to study the entanglement prop-
erties of quantum circuits, especially in regimes
that cannot be easily accessed with a full-scale
simulation of the statevector of the system.

2.2 Entanglement measure in Matrix Product
States
Entanglement in quantum states can be evalu-
ated using the so-called Von Neumann entan-
glement entropy. Let ρ = |ψ⟩⟨ψ| be the quan-
tum state of a system of n qubits, and con-
sider a bipartition A ,B of such system of qubits
nA and nB = n − nA respectively, like the one
shown in Fig. 1(b). The entanglement entropy of
the subsystem A having reduced density matrix
ρA = TrB[ρ], is defined as

S(ρA) = − Tr[ρA log ρA] , (2)

and quantifies the amount of entanglement shared
between the parties A and its complement B.
Note that throughout the whole manuscript we
consider logarithms in natural base e. If A and
B are in a product state then S(ρA) = 0, while
if the two subsystems share maximal entangle-
ment one has S(ρA) = nA log(2) [31]. An impor-
tant property of Eq. (2) is that the entanglement
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entropy of the two subsystems is equal, namely
S(ρA) = S(ρB), as it can be easily checked us-
ing the Schmidt decomposition of the pure global
state ρ = |ψ⟩⟨ψ| (see below).

It turns out that matrix product states are a
natural tool to characterize the entanglement en-
tropy of a quantum system. This can be illus-
trated by considering the simple case of a state
of n = 2 qubits. The statevector

|ψ⟩ =
1∑

i, j=0
cij |ij⟩ , with

1∑
i, j=0

|cij |2 = 1, (3)

can be expressed in the Schmidt decomposition
as

|ψ⟩ =
χs∑
α=1

λα |ξα⟩1 |ηα⟩2 , (4)

where χs is the Schmidt rank, λα are the Schmidt
coefficients, and {|ξα⟩1}, {|ηα⟩2} are orthonormal
bases in the space of the first and second qubit
respectively. Using the decomposition (4) in
Eq. (2), the entanglement entropy between the
two qubits then amounts to

S(ρA) = −
χs∑
α=1

λ2
a log λ2

α , (5)

In an MPS simulation we always have access
to a subset of the Schmidt coefficients, since
such representation is built by iteratively apply-
ing the Singular Value Decomposition (SVD), a
procedure equivalent to Schmidt-decomposing a
quantum state. The reason why we have access
only to subsets of them is that we impose the
following conditions on the Schmidt coefficients.
Listing the coefficients in ascending order, i.e.
λ0 ≥ λ1 ≥ · · · ≥ λχs , then:

• Schmidt coefficients whose ratio with λ0 is
smaller than ϵ are discarded. The value of ϵ
in this work is fixed at ϵ = 10−9;

• only the first largest χmax coefficient are re-
tained. The value χmax is called maximum
bond dimension.

The approximation we are performing is the opti-
mal one in terms of the represented entanglement.
Then, the measure of entanglement for the MPS
now becomes

S(ρA) = −
χmax∑
α=1

λ2
a log λ2

α. (6)

As explained in detail in Appendix F, despite the
approximations, the faithfulness of the simula-
tion can be easily monitored. Finally, we remark
that since we have constant access to the con-
sidered subset of Schmidt coefficients during the
state evolution, we are able to compute the en-
tanglement entropy of a quantum state without
any computational overhead.

2.3 Entanglement entropy in random quantum
states
In this section we briefly describe the entangle-
ment features of uniformly distributed random
pure quantum states, that is quantum states sam-
pled according to the unique unitarily invari-
ant probability distribution induced by the Haar
measure. Denoting by U(n) the group of 2n × 2n
unitary matrices, there is a unique unitarily in-
variant probability measure µ(U) defined on the
group, and such measure is called Haar mea-
sure [33, 34, 35]. Unitary invariance corresponds
to the requirement that the measure is invariant
under translations in the space of unitary matri-
ces, that is

µ(MU) = µ(UM) = µ(U) U,M ∈ U(n) .

The Haar measure induces a uniform probability
distribution in the space of unitary matrices so
that sampling a quantum state according to the
Haar measure means randomly picking a state
uniformly from the space of quantum states. We
denote with P(n) such probability distribution.

We are interested in the entanglement features
of random quantum states, particularly in the en-
tanglement entropy. Let |ψ⟩ ∈ (C2)⊗n be a quan-
tum state of n qubits sampled from the uniform
distribution |ψ⟩ ∼ P(n), and a bipartition of the
n qubits system in two subsystems A and B, of
size nA and nB = n− nA respectively. Then, for
nA ≤ nB, the expected value of the entanglement
entropy (2) corresponding to this cut amounts to
the Page value [33, 36]

E[S(ρA)] =
dAdB∑
j=dB+1

1
j

− dA − 1
2dB

, (7)

where dB = 2nB , dA = 2nA are the local dimen-
sions of the two subsystems, and the expectation
value is over the uniform probability distribution
E(·) = E|ψ⟩∼P(n)(·). One can check that the en-
tanglement is highest whenever the two partitions
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have equal size nA = nB = n/2 (for n even, and
similarly for n odd, nA = ⌊n2 ⌋ and nB = ⌈n2 ⌉).

From Eq. (7) it follows that E[S(ρA)] ≥
log dA − dA/2dB [33], and since the maximum
value of the entanglement entropy for such bi-
partition is log dA, obtained if the subsystems
A and B share maximal entanglement, one con-
cludes that random states are generally highly
entangled. Indeed, in ref. [33] it was shown that
the probability that a random pure state has en-
tanglement entropy lower than log dA−dA/2dB is
exponentially small. Thus, with very high prob-
ability, random quantum pure states are almost
maximally entangled.

2.4 Quantum Neural Networks as Parameter-
ized Quantum Circuits

Currently available quantum devices are still too
small and noisy to perform relevant fault-tolerant
computations of notorious and efficient quantum
algorithms, like Shor’s factoring [1, 12]. For this
reason, recent research has focused on a new
paradigm of quantum computation based on so-
called variational quantum algorithms (VQAs),
which trade theoretical success guarantees with
feasibility of execution, and are thought to be the
most effective way to reach a quantum advantage
in the near term, already with small quantum de-
vices [9, 11, 37].

Variational quantum algorithms are based on
PQCs, which are quantum circuits in which some
of the unitary operations are characterized by
variational parameters to be adjusted in order
to solve an optimization problem. The optimal
parameters are found by minimizing a properly
chosen cost (or loss) function encoding the task
to be solved. Let Uθ be the unitary evolution
implemented by a quantum circuit with tunable
parameters θ, and O a Hermitian operator (an
observable). The goal of variational quantum al-
gorithms is to optimize the quantum circuit pa-
rameters θ in order to minimize the expectation
value (or variations thereof)

f(θ) = ⟨O⟩θ = Tr
[
OUθρU

†
θ

]
(8)

where ρ is an initial quantum state, generally set
to the ground state ρ = |0⟩⟨0|. This is achieved
by means of an iterative hybrid quantum-classical
approach where the quantum computer is used
to estimate the cost function (8), and given such

value, the classical computer proposes new vari-
ational parameters according to an optimization
method, the most common one being gradient de-
scent.

There is freedom in the choice of the gate se-
quence defining the parameterized unitary Uθ,
and a choice of its structure is referred to as vari-
ational ansatz. For example, the unitary could
be composed of a layer of Pauli rotations around
the X-axis on each qubit R(θ) = exp(−iθX/2),
followed by a layer of Cnots acting on pairs of
neighboring qubits. This is in fact the general
blueprint of variational quantum circuits, as they
are generally created by repeating single-qubits
parameterized rotations followed by multi-qubits
operations which introduce entanglement into the
computation. Examples of parameterized quan-
tum circuits are shown in Fig. 1.

Quantum Neural Networks. As it is often
the case with learning tasks, either classical or
quantum, the goal is to solve a problem given ac-
cess to a dataset of inputs X = {xi}i, represen-
tative of the task to be solved. Whenever data
is involved, variational quantum circuits are of-
ten referred to as Quantum Neural Networks, as
they share the very same idea as their classical
counterpart: learn patterns in input data by ad-
justing tunable parameters through the iterative
minimization process known as training. In this
case, the quantum circuit of the neural network
depends on two sets of parameters x and θ, the
former being the input data to be analyzed, and
the latter the variational parameters to be ad-
justed (i.e. the weights of the neural network).
In the quantum machine learning jargon, the en-
coding scheme used to load the input data onto
the quantum computer is known as feature map,
and consists of a unitary operation parameter-
ized by x. We will denote such feature encod-
ing gate with F(x), where x ∈ X . As with the
variational unitary, there is no standard choice
for a feature map, and one has to pick a specific
ansatz, ideally biasing the choice towards archi-
tectures built using knowledge of the problem to
be solved [22, 21]. Summing up, a general QNN
can be then expressed as

UQNN(x;θ) =
1∏
i=L

V (θi)F(x)

= V (θL)F(x) · · ·V (θ1)F(x) ,
(9)
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where F(x) is the feature map ansatz depend-
ing on the input data x; V (θi) is a variational
ansatz depending on trainable parameters θi ∈
θ = (θ1, · · · ,θL) with θi ∈ Rp; and L is the
number of repetitions (also referred to as layers)
of the such layered structure.

It was recently shown that uploading the in-
put data multiple times throughout the circuit is
essential for quantum neural networks to model
higher-order functions of the inputs [25, 38].
Such procedure is now standard practice in the
quantum neural network-based quantum machine
learning, and it is called data reuploading [39, 24].
Notice that the input data in the feature map in
Eq. (9) is the same in every layer, while the vari-
ational blocks V use a different parameter vector
in every layer. In Fig. 1(a) we give a graphical
representation of the general structure of QNNs.
As for the explicit implementation of F and V ,
there is no fixed choice and these are usually com-
posed of single qubit rotations followed by en-
tangling operations, either fixed (e.g. Cnots) or
themselves parameterized (e.g. controlled rota-
tions). See Fig. 1(c) for some prototypical exam-
ples of parameterized blocks proposed in the liter-
ature [14, 23], which we will consider throughout
the manuscript.

2.5 Randomness, Entanglement and Trainabil-
ity.

One of the hardest theoretical challenges affecting
quantum machine learning models is the emer-
gence of so-called barren plateaus (BPs) in their
optimisation landscape [40]. BPs are regions in
parameter space where the loss function is es-
sentially flat, with no interesting minimising di-
rection, so that it is not possible to train the
model efficiently and independently of the opti-
mization methods used, be it gradient-based [41]
or gradient-free [42]. Different sources can lead to
the unfolding of barren plateaus, and these can
be broadly grouped into three main categories:
randomness-induced BP [40, 43, 44], BP induced
by global cost functions defined with observables
having support on a large number of qubits [19],
and eventually noise-induced BP [45].

In this work we are concerned with the former
type of barren plateaus, that roughly occur when
parameterized quantum circuits, when initialised
with random parameters, resemble general ran-
dom unitaries. Indeed, despite being quite lim-

ited in terms of qubits connectivity and gate oper-
ations, common instances of parameterized quan-
tum circuits are often found to behave as unitary
2-designs, that is they efficiently approximate the
statistics of Haar-random unitaries up to the sec-
ond moment [46]. In this case, then one can
prove that the variance of the gradients of any
cost function f(θ) defined on the circuit will van-
ish exponentially with the number of qubits n,
namely [43]

Varθ[∂kf(θ)] ∈ O
(
b−n)

b > 1 , (10)

where f(θ) is as in Eq. (8). Specifically, the cost
function concentrates around its mean value and
stays constant almost everywhere in parameter
space [47], which makes training unfeasible.

Vanishing gradients are used as a witness to
assess whether a parameterized quantum circuit
resembles a unitary 2-designs. Of course, this is
only necessary but not sufficient condition, as
one can easily devise a circuit that is not a 2-
design but has vanishing gradients, for example
using a global cost with a shallow circuit [19].

In addition to vanishing gradients, another
witness of randomness is the entanglement gen-
erated inside the circuit [44]. Indeed, as dis-
cussed previously in Sec. 2.3, random quantum
states are almost maximally entangled, so one
can use the maximality of entanglement gener-
ated by a parameterized circuit as an indicator
of the resemblance to a random unitary evolu-
tion. As for vanishing gradients, the presence
of large entanglement is however only a nec-
essary but not sufficient condition for random-
ness, as a simple shallow circuit composed of
Hadamards and Cnots can create maximally en-
tangled states (GHZ states), which are clearly
not random. As discussed in [48], the so-called
entanglement-induced BPs [44, 49] provide an al-
ternative yet equivalent description of local cost
barren plateaus (circuits with global costs always
suffer of vanishing gradients [19], regardless of
randomness), as they both stem from the proxim-
ity of parameterized quantum circuits to unitary
2-designs.

Indeed, if a circuit is a unitary 2-design, then
the average entanglement entropy of any subsys-
tem A of dimension dA (dA ≤ dB) will be already
very close to its maximal value [48, 50]

log dA − 1 ≤ Eθ[S(ρA)] ≤ log dA , (11)
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and approaches the Page value (7) for truly Haar-
random states. We provide a proof of Eq. (11)
based on the Rényi 2-entropy in Appendix A.

Recent investigations quantify the tight con-
nection between trainability and randomness in
terms of the expressibility, roughly defined as the
ability of a parameterized quantum circuit to ad-
dress the full unitary space [23], and show that
highly expressible ansätze have flatter loss land-
scape, hence they are harder to train [43]. We fur-
ther discuss the expressibility measure in Sec. 4.

To summarise, while the presence of entangle-
ment is a necessary ingredient to avoid classical
simulability, its uncontrolled growth is likely to
signal the emergence of barren plateaus. The
evaluation of the entangling capabilities of pa-
rameterized quantum circuits is then a valuable
diagnostic tool to provide information both on
the classical simulability and trainability issues
of quantum machine learning models. At last,
we note that although various methods have
been put forward to mitigate the occurrence of
BPs [51, 52, 53], including proposals based on
entanglement control [48, 49, 54], these remain a
bottleneck for scaling up quantum machine learn-
ing computations based on variational circuits.

3 Results

We now proceed to analyze the entanglement pro-
duction in various quantum neural network ar-
chitectures with different feature maps and vari-
ational ansatz, obtained composing the circuit
blocks shown in Fig. 1. In particular, we take as a
prototypical example the QNN introduced in [14],
argued as a good candidate for quantum machine
learning applications in terms of capacity and ex-
pressibility, possibly achieving an advantage over
classical counterparts. Such QNN model uses as
feature-map F(x) the so-called ZZFeatureMap
firstly introduced in [55] as a classically-hard map
to load classical data on a quantum state in a non-
linear fashion. The variational block V (θ) is in-
stead composed of single qubit rotations followed
by entangling operations. In order to better un-
derstand the effect of every single operation in
the quantum circuit, we also consider variations
of the QNN introduced above, varying both the
feature map, the variational form, and the entan-
gling topology. All considered circuit blocks are
graphically represented in Fig. 1.

Be UL(x,θ) the unitary representing a specific
quantum neural network with L layers with in-
put data x = (x1, . . . , xm) ∈ Rm, and variational
parameters θ = (θ1, . . . , θp) ∈ Rp, see Eq. (9).
We consider random instances of such QNN by
sampling both the inputs and the variational pa-
rameters according to the uniform distribution
xi, θi ∼ Unif(0, π), hence obtaining a collection
of QNNs UL = {UL(xi,θi) , i = 1, . . . ,M}. Then,
we study the entanglement entropy properties of
each of these instances and average the result
over the M trials (unless stated otherwise, we
take M = 100). Thus, when in the following
we refer to the entanglement entropy of a quan-
tum circuit, we are always denoting the average
over M realizations of that circuit. In order to
evaluate the influence of the depth on the entan-
glement, we repeat this analysis by increasing the
number of layers in the quantum neural network
L = 1, . . . , Lmax.

Note that although the total number of pa-
rameters (inputs and parameters) depends on the
specific feature map and variational form used,
for the considered circuits such difference gener-
ally amounts to a constant and does not have
a relevant impact on the results. In Tab. 1 we
report the number of parameters in each circuit
template analyzed in this work. We anticipate
that while the number of parameters in the con-
sidered quantum circuits only scales polynomially
with the system size n, these are found to be suf-
ficient to reproduce some entanglement features
of random unitaries, which are instead character-
ized by an exponential number parameters. This
is in agreement with results on random quantum
circuits that states that polynomial resources are
sufficient to approximate unitary designs [56, 57].
We refer to Sec. 4 for an extended discussion.

3.1 Alternating vs. Sequential data reupload-
ing

As a first analysis, we study the difference in
entanglement growth between a standard QNN
using an alternated repetitions of feature maps
and variational forms (as in Fig. 1), and one
in which we have first L repetitions of the fea-
ture map followed by L repetitions of the vari-
ational form. We call this structure sequen-
tial. The former leverages an alternated evo-
lution of the quantum state which is typical of
quantum neural networks using a data reupload-
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Abbr. Number of parameters
Linear Circular Full

Circuit 1 C1 2n 2n 2n
Circuit 2 C2 n n n

Circuit 3 C3 2n− 1 2n n2+n
2

Circuit ZZFeatureMap Czz n n n

Table 1 – Number of parameters for each considered circuit and their relative entanglement topology.
Notice that, while the number of parameters remains constant for Czz as shown in the table, the number
of parametric gates varies analogously to C3.
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Figure 2 – Normalized entanglement difference
∆S, as defined in Eq. (12) for different numbers
of qubits. The used QNN is defined by F = Czz
and V = C2. All the data points are obtained by
averaging over 103 realizations.

ing scheme [24, 25, 38]. The latter instead uses
an initial data-dependent evolution followed by
a trainable unitary, thereby creating an archi-
tecture similar to quantum kernel machines [58].
While the two structures (alternated and sequen-
tial) may be mapped to each other using ancillary
qubits [59], they can have rather different perfor-
mances, and we hereby show how they also cre-
ate entanglement in a different way. Specifically,
given the two unitary evolutions, namely the fixed
input-dependent feature map F(x) and the vary-
ing parameterized variational form V (θi), one ex-
pects the alternated dynamics

Ualt = V (θL)F(x) · · ·V (θ1)F(x) ,

to introduce randomness at a faster rate than the
sequential process

Useq =
L∏
i=1

V (θi)
L∏
i=1

F(x) ,

and hence introduce more entanglement in the
system. Such intuition is confirmed by the nu-

merical results, and may be understood as a
consequence of the universality of the alternat-
ing dynamics proved for example for QAOA cir-
cuits [60, 61].

Here we use F = Czz and V = C2, as defined
in Fig. 1, both with linear topology. Be Salt and
Sseq the entanglement entropy of the bipartition
with an equal number of qubits, which is gener-
ally the highest, for the alternating and sequential
structure, respectively. We define the normalized
difference as

∆S = Salt − Sseq

(Salt + Sseq)/2 , (12)

and study its behavior as the depth of the quan-
tum circuit is increased, as shown in Fig. 2.

The metric is always positive and features a
maximum, implying that the alternated structure
is creating entanglement faster (i.e. with fewer
layers) than its non-alternated counterpart. Note
that for L = 1 layers the two structures are iden-
tical, so the generated entanglement is the same
up to the statistical error, which explains why all
the curves start around zero. At a high num-
ber of repetitions, the two structures tend to the
same value, showing a ∆S ≃ 0, which can be un-
derstood in light of the results presented in the
following sections: as the number of layers of a
QNN is increased, the entanglement rapidly con-
verges to that of a Haar-distributed random state,
thus the alternated and non-alternated structure
eventually converge to the same value. Given the
higher entanglement production rate of the alter-
nated structure, in the following analysis, we shall
focus on this structure only.

3.2 Entanglement distribution across bonds
It is natural to ask how the choice of the feature
map, the variational form, and the entangling
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Figure 3 – Average entanglement entropy across
bonds for a system composed of n = 8 qubits,
where ei is the bond connecting qubit i and i+1,
as in Fig. 1. The curves represent different num-
bers of layers L in the quantum neural network.
(a) QNN with structure: F = Czz, V = C2,
both with linear entanglement. (b) QNN with
structure: same as in (a) but with circular en-
tanglement. (c) QNN with structure: F = C1
which has no entangling gates, and V = C2 with
linear entanglement.

topology impact the growth of entanglement of
the quantum state. In this section, we start to
explore this question by studying how entangle-
ment is distributed across all possible ordered bi-
partitions of the n qubits in the network. That is,
given an MPS representation as in Fig. 1(b), we
study the entanglement entropy corresponding to
each bond in the linear chain. Denoting with ei
the bond connecting qubit qi and qi+1, the entan-

glement entropy of that bond is (see Eq. (2))

S(ei) = − Tr
[
ρ[1:i] log ρ[1:i]

]
ρ[1:i] = Tri+1,...,n[ρ]

, (13)

where ρ[1:i] is the reduced density matrix of all
the qubits up to the i-th one, and ρ is the state
obtained from the quantum neural network ρ =
UL(x,θ) |0⟩⟨0|UL(x,θ)†.

In Fig. 3 we show the entanglement entropy dis-
tribution for the case of n = 8 qubits using three
different quantum neural networks architectures:
in panel (a) the one proposed in [14] with fea-
ture map F = Czz, variational ansatz V = C2,
both with linear entanglement; in (b) same as be-
fore but using a circular entanglement topology;
and eventually in panel (c) a simpler circuit us-
ing a tensor product feature map F = C1 which
encodes data independently on each qubit, fol-
lowed by the same variational ansatz V = C2,
again with linear entanglement both. For refer-
ence, it is also shown the expectation value of the
entanglement entropy for Haar-random quantum
states evaluated with Eq. (7), as well as an up-
per bound given by the highest possible entangle-
ment log(min(dA, dB)), obtained if the two par-
titions A and B were maximally entangled. Note
that while we report only the simulation data for
n = 8, the discussion has general validity as iden-
tical results hold for all tested numbers of qubits,
n = 2, . . . , 20.

First of all, the findings agree with the intuition
that deeper circuits are able to create higher en-
tangled states with respect to shallower ones, in
accordance with results from [23]. In particular,
the entanglement entropy is higher at the center
of the chain. Clearly, depending on the specifics
of the QNN, the entanglement grows faster in cer-
tain architectures with respect to others. Regard-
ing the effect of the entangling topology, compar-
ing panels (a) and (b) we see that circular connec-
tions produce greater entanglement compared to
the nearest-neighbors interaction and that such
entanglement grows at a faster rate as the num-
ber of layers is increased. As for the choice of the
feature map, since the QNN in panel (c) produces
entanglement only through the entangling gate in
the variational blocks, its entanglement is lower
and also grows slower with respect to the QNN
in panel (a), even though it has twice the number
of parameters in the feature map.
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Interestingly, however, as the number of lay-
ers approaches the number of qubits L ≈ n, all
investigated QNNs converge to the same values,
that is those obtained for random states sampled
from the uniform Haar distribution. Deep enough
QNNs are then flexible enough to reproduce the
same entanglement spectrum of a random state,
which, as discussed in section 2.3, are very highly
entangled. Again, even though the measure of en-
tanglement is different, this is in agreement with
the results presented in [23], where the conver-
gence to the Haar distribution is encountered for
various parameterized quantum circuits, and also
with other results in the literature regarding the
properties of random quantum circuits to approx-
imate the Haar distribution [62, 63]. We will dis-
cuss this more in detail in Sec. 4. A more in-depth
analysis of the convergence is the subject of the
next section.

3.3 Entanglement scaling with increasing
depth
In order to better understand the entanglement
scaling properties of QNNs, we introduce a new
quantity, defined as the total entanglement en-
tropy Stot created in the MPS chain

Stot =
n−1∑
i=1

S(ei) , (14)

which is the sum of the entanglement entropy of
all the ordered bipartitions of the quantum state.
We use this global measure to quantify how fast
QNNs approach the Haar distribution in terms
of overall entanglement production. In particu-
lar, we define a new figure of merit, the entan-
gling layers L̃, defined as the number of layers
needed by an architecture to reach 90% of the
total entanglement of a Haar distributed state
SHaar
tot , namely

L̃ = min # of layers s.t. Stot ≥ 0.9SHaar
tot .

(15)

The choice of the 90% threshold allows to select
states that are already very close to the Haar-
random value, and avoids undesired oscillating
behaviours obtained when higher thresholds are
used, e.g. 99%, which are caused by statistical
fluctuations (recall that every QNN is sampled
multiple times with different parameters to cal-
culate averages).

In Fig. 4 we show the behavior of L̃ for four dif-
ferent QNNs as the number of qubits is increased.
Note that each QNN is considered with all the
three possible entangling topologies (linear, cir-
cular and full as defined in Fig. 1). At last, note
that all QNNs leverage the same variational form
V = C2, while the feature map is changed, as
reported in the legend.

First, we observe that the entangling layers dis-
play a linear behavior when a linear entanglement
topology is used. This means that the number of
layers needed to entangle the system scales lin-
early with the size of the system. The behavior
changes abruptly when we move to a circular or
full entangling topology. All architectures display
a faster entanglement production when passing
from a linear to a circular topology, as can be
seen from the lower slope of the curves. The all-
to-all connectivity speeds up entanglement pro-
duction only for F = Czz, C3, while the circuits
F = C2, C1 show essentially the same behavior
of the linear case. We now proceed to discuss
more in detail such results.

We start comparing the entangling capabilities
of Czz vs. C2. Both with linear and circular en-
tangling topology, C2 is able to produce entangle-
ment essentially at the same rate as Czz, despite
C2 being of a much simpler structure, with half
the number of two-qubit gates. However, things
change dramatically using a full entangling map,
as the QNN reaches the 90% threshold already at
L̃ = 1, while C2 needs more layers, showing the
same dependence of a linear connectivity. While
counter-intuitive at first, is it easy to see that
the entanglement generated by C2 with a full ar-
chitecture is indeed equivalent to the linear one.
This is due to a simple circuit identity regard-
ing networks of Cnots reported in Fig. 5. Such
circuital identity holds for any number of qubits,
which makes the full entangling map as shown in
Fig. 1 just as a linear entangling map in disguise
(in particular, it is the inverse of the linear entan-
gling map). See Appendix C for a more precise
statement, discussion and proof. Such circuital
identity thus explains the equivalence of the yel-
low (F = C2) and red (F = C1) curves between
the first and last plot of Fig. 4.

Such equivalence clearly does not hold if con-
trolled rotations are used instead of Cnots. In-
deed, the feature map F = C3 uses controlled
rotations with independent random parameters,
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=

Figure 5 – Circuital identity between a full entan-
gling map made of only Cnots and the adjoint
of a linear entangling map.

and given that these gates do not cancel out, the
entanglement is always increasing going from low
to high connectivity. Note that such increase is
mainly due to the feature map, as the variational
ansatz V = C2 is the same as other structures,
suffering from the Cnots cancellation issue de-
scribed above.

For comparison, we also show the performances
of a QNN with the tensor product feature en-
coding F = C1, using no entangling operations.
Interestingly, even if this QNN uses two-qubit in-
teractions only inside the variational blocks, these
are sufficient to create entanglement similar to
other considered QNNs, even at a slower yet com-
parable rate.

We report in Appendix E the complete simula-
tion results detailing the evolution of the entan-
glement with the depth of the circuit, for different
numbers of qubits.

3.4 Entanglement Speed
So far we have presented numerical evidence for
the entanglement production in QNNs up to a
maximum of 20 qubits. In the following we ex-
tend the analysis leveraging MPS to simulate
quantum systems of bigger size up to 50 qubits,
with a maximum bond dimension of χmax = 4096.
More importantly, we show how the entanglement
growth follows a behavior that is specific to each
particular QNN architecture and the number of
layers considered, but independent of the number
of qubits in the circuit. We can thus uniquely as-
sign an entanglement speed value to each QNN,
which, we stress again, only depends on the choice
of the ansatz, and holds identically for any in-
stantiation of that QNN with arbitrary number
of qubits.

Taking into account the entanglement growth
discussed in Sec. 3.3, we restrict the analysis to
a linear architecture, to increase as much as pos-
sible the number of layers we can correctly sim-
ulate with tensor networks techniques. Indeed,
the entanglement production with a circular or
full topology is too fast to allow for a convergent
simulation with MPS for deep circuits.

Furthermore, we introduce the maximum Haar
entanglement entropy, defined as the maximum
across all bond entropies for a given number of
qubits, as

SHaar
n,max = max

A

(
E[S(ρA)]

)
≈ n

2 log 2 − 1
2 for nA = n

2 ≫ 1,
(16)

where the approximation in the second line has an
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sus the normalized number of layers L/n, for dif-
ferent number of qubits n, and for the QNN de-
fined by F = Czz, V = C2 with linear connec-
tivity. All the normalized entanglement points
follow the same curve, independently of the sys-
tem size n. The points for n = 8, 12, 16, 20 are
obtained by averaging over 103 samples, while for
n = 30, 50 the averages are over 10 samples.

errors that scales as O
(
2−n/2

)
, see Appendix B

for its derivation. Thus, for n ≥ 30 qubits, when
the exact computation of the Haar entanglement
entropy is unfeasible, we employ the approxi-
mated Eq. (16). Finally, we define the normalized
entanglement entropy S̃n as:

S̃n = maxei [S(ei)]
SHaar
n,max

. (17)

We stress that S̃n is normalized to the maximum
Haar entanglement for a fixed n, not to the real
maximum of the entanglement, which would be
S = n

2 log 2 for the equal size bipartition.
In Fig. 6 we show the evolution of S̃n ver-

sus the normalized number of layers L/n for
n ∈ {8, 12, 16, 20, 30, 50} qubits, for the QNN
defined with F = Czz, V = C2 with linear con-
nectivity. We note that all the points, indepen-
dently of the system size n, follow the same curve:
an initial linear growth of the entanglement is fol-
lowed by a saturation to the Haar-random value
for the entanglement entropy (7). In particular,
we check this behaviour also at large system sizes
with n = 30, 50 qubits and circuits with up to
L = 11 layers, and confirm that such scaling is
indeed size independent. See Appendix F for a
discussion on the errors introduced by truncation
in the MPS representation for simulations with
n = 30, 50 qubits.

Inspired by the behavior of S̃n, we introduce a

measure for the entanglement production which
is specific to a given QNN architecture (feature
map plus variational ansatz) and independent of
the number of qubits. Borrowing from the liter-
ature on random quantum circuits, it is known
that the entanglement of a system undergoing
random evolution initially grows linearly in time
(depth of the circuit) before reaching the plateau
of Haar random states [64, 65, 66, 54]. Indeed,
as clear from Fig. 6, we observe the same initial
linear growth, and thus we define the entangling
speed vs as

S̃n ∝ vs ·
(
L

n

)
for S̃n ≤ 0.5, (18)

where 0.5 is a threshold such that the linear be-
havior holds. The entangling speed can thus be
obtained by fitting the curve in Fig. 6 with the
linear function (18) in the appropriate range. We
report in Tab. 2 the entangling speed for a subset
of the inspected architectures, and notice that en-
tanglement is produced at sensibly different rates.
In agreement with the findings of Sec. 3.3, we see
that for a linear topology the circuit C2 builds
the entanglement at the fastest rate. Indeed, fix-
ing the feature map to F = Czz, C2 produces
entanglement 3 times faster than C3.

To further characterise the applicability of the
entangling speed, we show that the behavior of
Fig. 6 evaluated for random circuits also holds
when the input data x ∈ Rn in the feature map
F(x) are not drawn from the uniform distribu-
tion, but rather from real-world datasets. In par-
ticular, we select two common datasets in the ma-
chine learning literature, the wine [67] and breast
cancer [68] datasets, and calculate the entangle-
ment generated in the circuit when these data
are fed into the feature maps (variational blocks
are still populated with random parameters as be-
fore). The results presented in Fig. 7 are obtained
by rescaling all the features of the datasets in the
interval [0, π]. For each sample in the dataset, we
average over M = 10 runs with randomly drawn
parameters for the variational ansatz. The re-
sults shown in the figure are then obtained as
the average over the whole dataset. The wine
dataset (n = 13 features, hence n = 13 qubits,
and 178 samples) follows perfectly the theoret-
ical curve, and the breast cancer (n = 9 fea-
tures, hence n = 9 qubits, and 286 samples) only
slightly deviates from it, producing entanglement
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Feature map F Variational ansatz V Entangling speed vs

Czz C2 (1.8 ± 0.1)
Czz C3 (0.59 ± 0.02)
C1 C3 (0.316 ± 0.006)

Table 2 – Entangling speed, i.e. a measure of how fast the entanglement is created, for different QNN
architectures. These results are obtained using up to 16 qubits.

at a smaller rate. We then conclude that the en-
tangling speed depends primarily on the architec-
ture of the circuit rather than the actual values
of the parameters. Clearly, this holds for reason-
ably distributed data features, that is excluding
pathological cases of values being either zero or
concentrating around it. Finally, to verify that
the QNN architecture is ultimately responsible
for the entanglement speed, we analyze random
circuits where the encoding blocks do not share
the parameters, but these are sampled indepen-
dently for each layer, thus effectively removing
the data-reuploading feature. This case is por-
trayed in Figure 7 with yellow square markers,
each obtained by averaging over M = 2000 real-
izations of the random circuit, from which it is
clear the normalized entanglement S̃n again fol-
lows the same behavior of the previous scenarios.

Thus, the entangling speed can be used as a
good estimate of the entanglement generated in a
QNN also in real use cases, especially at the start
of optimisation, when trainable parameters are
usually initialised at random. For example, one
could measure the entangling speed of the archi-
tecture of interest on a random quantum circuit
of just a few qubits, and then estimate the en-
tanglement generated with the same architecture
on an arbitrary number of qubits and circuit lay-
ers, especially in regimes where simulations are
no longer computationally feasible.

3.5 Expressibility

In addition to entanglement, another useful quan-
tity to characterize parametrized quantum cir-
cuits is the expressibility, as defined by authors
in [23]. Such measure quantifies how well the
QNN is able to explore the Hilbert space by com-
paring the distribution of fidelities of states gen-
erated by the QNNs with that of randomly Haar-
distributed ones (see Appendix D for a formal
definition and explanation).

Thus, in order to have a comprehensive under-
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Figure 7 – Normalized entanglement using three
different ways to sample the inputs x in the data
encoding blocks. (i) “Random with data reu-
ploading” indicates the case of random synthetic
inputs with data reuploading, as shown also in
Fig. 6. (ii) “Random” indicates the case of ran-
dom synthetic inputs without data reuploading,
that is encoding blocks in different layers have
different random parameters. (iii) “Wine” and
“Breast cancer” indicates inputs drawn from the
corresponding real-world dataset, used with data
reuploading. In all cases, the parameters in the
variational blocks are sampled from the uniform
distribution Unif(0, π). Such distribution is used
also to sample the synthetic random inputs. Data
points for real-world datasets are obtained by
first averaging over 10 realization for each sam-
ple in the dataset, and then averaging again over
the whole dataset. Results for random inputs
without data reuploading (yellow square mark-
ers) are obtained by averaging over 2000 realiza-
tions of the circuits. The error bars show the
standard deviation of the mean. Error bars asso-
ciated with random inputs with data reuploading
(blue curve) are not shown to avoid cluttering but
are of comparable size with the other points.
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in Fig. 4, for n = 8 qubits with linear entan-
glement. The expressibility measures how well
a variational circuit is able to address the uni-
tary space (the lower, the better). All QNNs use
the same variational form V = C2, but with dif-
ferent feature maps. As the number of layers is
increased, QNNs become more expressible, even-
tually reaching a plateau.

standing of the factors at play in the behavior
of QNNs, in Fig. 8 we show the expressibility
measure for the QNNs analyzed in Fig. 4 with
a linear connectivity. As one would expect, the
expressibility increases as the number of layers is
increased, up until a plateau is reached.

Interestingly, the structure with F = V = C2
turns out to be the least expressible of all the
structures considered, even if it is the one pro-
ducing entanglement at the fastest rate, in agree-
ment with the results reported in [23], as such
QNN is indeed very similar to the parameter-
ized circuit labeled ‘15’ in [23]. On the contrary,
the QNN with F = Czz, and V = C2 proposed
in [14] is able to reach high expressibility while
producing entanglement at a controlled pace. As
the presence of high entanglement is correlated
with trainability issues [44], this QNN attains an
optimal balance of mild entanglement with high
expressibility even at low depth, which could be
related to its good performances in quantum ma-
chine learning task [14, 55]. However, a simi-
lar, yet less favorable balance, is achieved by the
other two architectures, so further investigation
is needed to discriminate where the optimality
comes from.

In this respect, the authors in [18] found the
expressibility to be correlated with the classifi-
cation accuracy of QNNs in supervised learning
tasks, while weak correlation was found with the
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Figure 9 – Convergence to the Marčenko-Pastur
(MP) distribution of the eigenvalues. The cumu-
lative distribution function (CDF) C(λ) of the
eigenvalues λ2 corresponding to the central bond
of a quantum state of n = 15 qubits, generated
with F = Czz, V = C2, and linear connectivity.
We show the behavior for different numbers of
layers L, and for truly Haar-random states which,
as expected, exactly follows the MP curve.

entanglement generated inside the circuit, in line
with the observations regarding entanglement-
induced barren plateaus [44]. As discussed ear-
lier in Sec. 2.5, both expressibility and high en-
tanglement are related to the resemblance of the
circuit to a random unitary, but while the former
provides a more direct evidence, the latter gives
an indirect indication. Indeed, there are cases of
circuits having low expressibility but high entan-
glement, indicating that such circuits selectively
explore only some highly-entangled regions of the
Hilbert space [23].

3.6 Distribution of the singular values

The randomness of a quantum state can also
be probed using tools from random matrix the-
ory. Specifically, this can be done by study-
ing the distribution of the eigenvalues of the re-
duced density matrices, which are known to fol-
low the Marčenko-Pastur (MP) law when pure
random quantum states are considered [69, 70].
More in detail, let |ψ⟩ ∈ HA ⊗ HB be an Haar-
random bipartite quantum state with Schmidt
decomposition |ψ⟩ =

∑d
i=1 λi |ξi⟩A⊗|ηi⟩B, where

d = min(dA, dB) and dA,B is the dimension of the
Hilbert space HA,B. The reduced density matrix
ρA = TrB [|ψ⟩⟨ψ|] has eigenvalues λ2

i given by the
square of the singular values, and for large sys-
tem size their distribution is described by the MP
distribution [71, 72].
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In Figure 9 we show the cumulative distri-
bution function of the eigenvalues C(λ2) of the
reduced state of the first half of the qubits, ob-
tained with a QNN with n = 15 qubits, feature
map F = Czz, variational ansatz V = C2, and
linear connectivity. The distribution of the singu-
lar values for the QNN is obtained by running the
circuit 102 times with different sets of parameters,
and storing the singular values corresponding to
the central cut. Then, we construct the cumu-
lative distribution from the histogram of all the
singular values obtained from the simulations. As
the number of layers L is increased, the distribu-
tion of the eigenvalues approaches the theoretical
MP distribution, eventually matching it when the
number of layers is equal to the number of qubits.
This behavior is displayed also by other QNN ar-
chitectures. For completeness, we also show the
distribution of the eigenvalues of a truly Haar-
random quantum state, generated by sampling
its entries independently from a normal complex
distribution and then normalising it [69], which,
as expected, follows perfectly the MP curve.

4 Discussion

Moments of the Haar distribution can be approxi-
mated efficiently using local random quantum cir-
cuits of sufficient depth. Depending on the con-
nectivity dimension D of the qubits, defined as
the number of other qubits that are connected
to each qubit, order O(poly(t) · n1/D)-depth ran-
dom circuits are sufficient to create approximate
unitary t-designs [62, 63, 57, 56], that is circuits
that generate a distribution of unitaries which ap-
proximately matches moments of the Haar dis-
tribution up to order t [46]. Numerical stud-
ies suggest that these results also hold for ran-
dom parameterized quantum circuits of various
forms [40, 19, 43, 23].

We extend these results by showing similar re-
sults also for quantum neural networks featuring
data re-uploading, both for random instances us-
ing random inputs and parameters, and also for
real-world dataset when these are used as inputs
in the feature map. In particular, for a linear con-
nectivity, as the number of layers approaches to
the number of qubits L ≈ n, QNNs display the
same entanglement entropy properties of Haar-
distributed random states, a fact which can be
taken as a proxy for QNNs approximating uni-

tary designs. Such behaviour was also confirmed
by studying the randomness of the circuits with
other metrics, namely the expressibility and the
convergence to the Marčenko-Pastur distribution
of the eigenvalues of the reduced states. In both
cases, we find strong evidence of the QNN re-
producing the same features of random quantum
states as the number of layers approaches the sys-
tem size using a linear connectivity.

Our analysis also underlines the importance
of the entangling operations, as careless use of
an all-to-all connection can result in unwanted
simplifications, making the effective connectivity
identical to a nearest-neighbors one. Parameter-
ized two-qubit interactions can solve the prob-
lem, even though they may be challenging to
implement on real hardware. A good trade-off
is achieved with a circular entangling topology,
which is immune to simplifications and shows re-
markable entangling capabilities. Indeed, from
the results of Fig. 4, we see that such connectiv-
ity is able to create high multiparite entanglement
between qubits already at shallow depth, and
with only minor additional hardware resources
compared to the linear connectivity. An all-to-all
topology instead reaches typical values for entan-
glement of random states essentially at constant
number of layers L ∈ O(1) — implying in general
O

(
n2)

entangling operations —, independently of
the system size, and the architecture used (when
non-trivial feature maps and variational ansätze
are used).

While limiting the entanglement inside a quan-
tum neural network may be necessary to ensure
its trainability [44], low entanglement makes the
circuit prone to be simulated exactly with an
MPS, as discussed in Sec. 3.4. Thus, we envi-
sion that a sweet spot should be found in order
for QNNs to show signs of quantum advantage:
not too high to preclude trainability, not to low
to escape triviality.

At last, the introduction of the entangling
speed vs (18) can be used as a figure of merit
for the entanglement production of a given QNN,
independent of the size of the system. Indeed,
the entangling speed can be studied and assigned
to an architecture in the simulable regime (low
number of qubits n), and then used to estimate
the number of layers to achieve a well-determined
quantity of the entanglement, for any system size.
We also stress that vS characterizes the most in-
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teresting interval of layers in a circuit. As dis-
cussed earlier, a value of the entanglement too
high might be connected to barren plateaus, un-
derlying the importance of exploring the regime
where the entanglement has not saturated yet,
and the linear regime still holds.

We now briefly comment on future interest-
ing investigation directions regarding entangle-
ment and QNNs. The focus of this work was to
carefully study the entanglement features of com-
mon quantum ansätze, specifically when they are
initialized with random parameters and no opti-
mization has yet started. A natural followup is to
ask whether entanglement plays any role also dur-
ing the optimization process, which is at core of
variational quantum algorithms. While for some
specific variational procedures like QAOA [73] or
VQE-based ground state solvers [74] one has some
knowledge of the structure of the target solution,
and hence can infer the behaviour of the entangle-
ment created in the circuit, this is not the case for
quantum machine learning tasks, as they are usu-
ally very task-dependent. Indeed, current propos-
als for QML advocate for the use of constrained
quantum ansätze specifically tailored to the prob-
lem under investigation [22, 21, 75], and then one
expects the depth of the circuit and the entangle-
ment generated inside it to highly depend on the
specific task to be solved, and dataset to fit, either
classical or quantum [76]. Moreover, while the
use of deep QNN ansätze (with arguably more en-
tanglement) could offer some optimization advan-
tages due to overparametrization [77, 78, 79], the
emergence of barren plateaus suggests using shal-
low circuits instead [19, 45]. The characterisation
of the role played by entanglement in QNNs, and
how it may be leveraged to achieve a quantum
advantage over classical methods will be objects
of future studies.

5 Conclusion

In this paper we discussed in detail the entan-
glement generated by different promising Quan-
tum Neural Networks (QNNs) when these are
initialised with random parameters, and showed
that they reproduce the same properties of ran-
dom quantum states under various measures.

We employed a Matrix Product States (MPS)
simulation of the quantum circuits, which guar-
antees an easy computation of the entanglement

in the circuits, and let us study systems of large
system size composed of up to n = 50 qubits.

We showed that while all the architectures tend
to a Haar entanglement distribution for a suffi-
ciently high number of layers, the speed of con-
vergence strongly depends on the specific circuit
ansatz. This result highlights the universal be-
havior of the normalized entanglement produc-
tion (17) for a given architecture, so we intro-
duced a new measure to characterize a QNN in
terms of its entanglement production: the entan-
gling speed (18).

Finally, we argued that a trade-off between ex-
pressibility and entanglement is the key to a bet-
ter understanding of QNN performances and an
auspicious target for the search of quantum ad-
vantage. While high entanglement is a necessary
condition to avoid classical simulability, a too-
large entanglement is detrimental to the training
procedure due to its tight connection with barren
plateaus, as discussed in Sec. 2.2. A promising fu-
ture direction is to extend the entanglement anal-
ysis of QNNs not only at initialization but also
during the training procedure [48, 54, 74]. These
tests would help to understand if QNNs really are
a suitable platform for proving quantum advan-
tage.

Code availability
All simulations with a number of qubits n ≤ 12
were performed using Qiskit [80], while larger sys-
tems were simulated with Quantum Matcha Tea
package [81] available at https://baltig.infn.
it/quantum_tea/quantum_tea. The simulations
for the training sections were performed using
Pennylane [82]. All the code for reproducing the
results presented here is available at the repos-
itory: https://github.com/mballarin97/mps_
qnn.
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A Lower bound on entanglement entropy for unitary 2-designs
The presented derivation is a straightforward application of known results on the entanglement of
random states and properties of Rényi-entropies [50, 48]. Rényi α-entropies of a density operator ρ are
defined as

Sα(ρ) = 1
1 − α

log Tr[ρα] , (19)

where limα→1 Sα(ρ) = S(ρ) is the Von Neumann entropy of Eq. (2), and it holds that Sβ(ρ) ≤ Sα(ρ)
for β ≥ α. Of particular interest is the Rényi 2-entropy S2(ρ) = − log Tr

[
ρ2]

depending on the purity
Tr

[
ρ2]

of the system, which is much easier to computer and it can be used to lower bound the Von
Neumann entropy via S(ρ) > S2(ρ).

Let |ψ⟩ ∈ (C2)⊗n be the state of a composite system made of subsystems A and B with dimensions
dA = 2nA and dB = 2n−nA , respectively. Suppose |ψ⟩ is a random state |ψ⟩ = U |ψ0⟩, where U is
sampled from an ensemble of unitaries that constitutes at least a unitary 2-design. Then, the average
value of the purity of the reduced density matrix ρA = TrB[|ψ⟩⟨ψ|] amounts to [50, 48]

E2-design Tr
[
ρ2
A

]
= dA + dB
dAdB + 1 . (20)

By the convexity of Rényi-entropies with respect to Tr[ρα], and using Jensen’s inequality (E f ≥ f E),
one can lower bound the average Rényi 2-entropy as E2-design[S2(ρA)] ≥ − logE2-design[ρ2

A], hence

E2-design[S2(ρA)] ≥ − log dA + dB
dAdB + 1 > log dA − log dA + dB

dB
> log dA − 1 . (21)

Then, since S(ρ) ≥ S2(ρ) ∀ ρ, taking the expectation value on both sides yields a lower bound on the
average Von Neumann entropy of ρA, namely

log dA − 1 < E2-design[S2(ρA)] ≤ E2-design[S(ρA)] ≤ log dA. (22)

which is the bound shown in Eq. (11) in the main text.
If the state |ψ⟩ is instead a truly Haar-random state, that is U is sampled from the uniform Haar

distribution and not just from a 2-design, the entanglement entropy is given by the Page value of
Eq. (7) in the main text, which is itself lower bounded by [33]

EHaar[S(ρA)] > log dA − 1
2
dA
dB

> log dA − 1
2 (dA < dB) . (23)

Summarising, for dA < dB, putting together the bounds (22) and (23) one has

log dA − 1 < E2-design[S(ρA)] < log dA (24)

log dA − 1
2 < EHaar[S(ρA)] < log dA , (25)

Alternatively, in the limit when the subsystem B is much larger than A, dB ≫ dA, then by approxi-
mating the logarithm log(1 + x) ≈ x in (21) one also has

log dA − dA
dB

< E2-design[S(ρA)] < log dA (26)

log dA − 1
2
dA
dB

< EHaar[S(ρA)] < log dA , (27)

Thus, the entanglement entropy of a state sampled from a 2-design is close to that of a truly Haar-
random state, with both achieving near-maximal entanglement. Of course, one also expects the Von
Neumann entropy of a general t-design to be upper bounded by the Page value, Et-design[S(ρA)] <
EHaar[S(ρA)], with equality obtained in the limit t ≫ 1.
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B Computation of the Haar entanglement distribution
While Eq. (7) is the theoretical definition of the Haar entanglement entropy, it is not possible to exactly
compute it, due to the exponential number of terms in the sum. However, it is possible to exploit the
similarity of the sum with the harmonic series to obtain a good approximation. First, we denote with
Hn the truncated harmonic series:

Hn =
n∑
k=1

1
k
. (28)

Then, we rewrite in a more convenient way the sum in Eq. (7):

dAdB∑
j=dB+1

1
j

=
dAdB∑
j=1

1
j

−
dB∑
j=1

1
j

= HdAdB
−HdB

. (29)

Using well-known results for the truncated Harmonic series [83]:

Hn = logn+ γ + 1
2n − ϵn, (30)

where γ ≃ 0.5772 is the Euler-Mascheroni constant, and 0 ≤ ϵn ≤ 1/8n2. Thus, the correction ϵn goes
to zero as the number of terms in the sum n increases, allowing for a meaningful approximation of
the value. Using this technique, we are able to estimate the Haar entanglement entropy of a 50-qubits
state with an error of the order 10−16.

We now proceed to compute the maximum and average of the distribution with a fixed number of
qubits n. Using Eq. 7 and recalling dA(B) = 2nA(B) , nB = n− nA, nA ∈ [1, n/2] we can write:

E[S(ψA)] = HdAdB
−HdB

− dA − 1
2dB

(31)

= H2n −H2n−nA − 2nA − 1
2n−nA+1 (32)

= log 2nA − 2nA − 1
2n−nA+1 +O

( 1
2n−nA

)
. (33)

We are now interested in the maximum and average of the distribution. It is easy to see that the
maximum is achieved for nA = n/2. In this scenario 2nA ≫ 1:

max
A

(
E[S(ψA)]

)
= n

2 log 2 − 1
2 +O

( 1
2n/2

)
. (34)

Taking into account that for an n qubit system the maximum of the entanglement entropy is S = n
2 log 2

we can state that, in the large n limit, a Haar state presents a maximally entangled bond.

C Triviality of the full entangling map
The full entangling map defined as

Algorithm 1 Full entangling map
Input: q1, . . . qn, qubits
Output: Quantum circuit

1: for i = 1 to n do
2: for j = i to n do
3: Cnot(qi, qj)
4: end for
5: end for
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can be shown to be equivalent to a nearest neighbors entangling map with the gates in reversed
order, see Fig. 10. The proof is straightforward and obtained by direct evaluation, making use of some
circuit identities for networks of Cnots [84]. In particular, (i) a Cnot can be distributed into four
Cnots acting on an additional intermediate qubit

=

(ii) Cnots having different controls and targets commute with each other

=

(iii) a cascade of Cnots can be decomposed as

=

The full entangling map can be highly simplified using these three rules, reducing it to a simple
sequence of nearest-neighbors interactions. For example, for n = 3 qubits, using (i) to distribute the
long-range Cnot, one obtains

=

1

=

The simplification process can be iterated for a higher number of qubits by first commuting long range
Cnots at the end of the circuit to create a final cascade, and then making use of the result from the
lower dimension case. In Fig. 10 the simplification process for n = 4, 5 qubits is explicitly shown, and
it is directly generalized for all numbers of qubits.

Clearly, these results only hold for networks composed of plain Cnots, and do not apply for general
two-qubit interactions made of controlled unitaries.

D Expressibility of Parameterized Quantum Circuits
The expressibility introduced in [23] quantifies how well the QNN is able to explore the unitary space
by comparing the distribution of fidelities of states generated by the QNN with that of randomly
Haar-distributed ones.

Let U(ϕ) be the unitary operation implemented by a parameterized quantum circuit (PQC) with
parameters ϕ (in our case, we would have ϕ = (x,θ)), and be |ψϕ⟩ = U(ϕ) |0⟩. Given two realizations
of the PQC with parameters ϕ1 and ϕ2, consider the fidelity F = |⟨ψϕ1 |ψϕ2⟩|2. By repeatedly sampling
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Figure 10 – Equivalence of the full entangling map with a nearest-neighbors scheme. Using the circuit
identities discussed in the main text, it is straightforward to check that the all-to-all entangling scheme as
defined in Alg. 1 is equivalent to a nearest-neighbors interaction.

two sets of parameters and evaluating the corresponding fidelity F , one can construct a histogram
approximating the probability distribution P̂PQC(F ) of the fidelity for states generated by the PQC.
For Haar random quantum states, the probability density function of fidelities is known and amounts
to PHaar(F ) = (N − 1)(1 − F )N−1, where N = 2n is the dimension of the Hilbert space [85].

The expressibility is then defined as the Kullback–Leibler divergence DKL between the estimated
fidelity distribution and that of a Haar-distributed ensemble, namely

Expressibility := DKL

(
P̂PQC(F )||PHaar(F )

)
. (35)

E Extensive analysis of the entanglement scaling with the increasing depth

In Fig. 11 we show the behavior of the total entanglement Stot defined in Eq. (14) for four different
QNNs as the depth of the quantum circuit is increased. Note that each QNN is considered with all
the three possible entangling topologies (linear, circular and full as defined in Fig. 1), and the results
are shown for several numbers of qubits n = 4, 6, 8, 10, 12. At last, note that all QNNs leverage the
same variational form V = C2, while the feature map is changed, F = Czz,C2,C3,C1 for panels (a),
(b), (c) and (d), respectively. See main text for comments on results.

F Convergence of MPS simulations

Using tensor network, specifically MPS, methods we perform an approximation to simulate large sys-
tems, in this work up to n = 50 qubits. However, the error introduced by the approximations can be
monitored, so one always has an estimate of the faithfulness of the tensor network simulation [70]. Let
|ψexact⟩ be the true state of the quantum system after the i-th two qubit gates in the circuit is applied
(one qubit gates do not imply additional approximation errors), and let |ψtrunc⟩ denote the truncated
quantum state represented by the MPS. The fidelity between these two states evaluated on the i-th
step of the computation is

Fi = | ⟨ψexact|ψtrunc⟩ |2 =

∣∣∣∣∣∣
χexact∑
α=1

λα ⟨ξα|1 ⊗ ⟨ηα|2
χs∑
β=1

λβ |ξβ⟩1 ⊗ |ηβ⟩2

∣∣∣∣∣∣
2

(36)

=
∣∣∣∣∣
χs∑
α=1

λ2
α

∣∣∣∣∣
2

=

∣∣∣∣∣∣1 −
χexact∑
α=χs+1

λ2
α

∣∣∣∣∣∣
2

, (37)
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Figure 11 – Total entanglement Stot (14) for four different QNN architectures, each evaluated with different
entangling topologies (linear, circular and full), shown for increasing number of layers L and for several
numbers of qubits n. QNNs architecture given by: (a) F = Czz, V = C2; (b) F = C2, V = C2; (c)
F = C3, V = C2; (d) F = C1, V = C2. Note that QNNs leverage the same variational form V , while the
feature map F is changed. See the main text for a discussion of the results.

where we represented the states in the Schmidt decomposition with respect to the bond where the i-th
two-qubit gate was applied, and χs is the bond dimension of the MPS state. The fidelity Ft of the
simulation after application of the t-th two-qubit gate is lower bounded by the product of the previous
fidelities Fi, as [70]

Ft ≥
t−1∏
i=1

Fi. (38)

where we note that the single step fidelities Fi are readily accessed during the MPS simulation, since
one calculates the fidelity before the truncation of the singular values takes place. Equation (38) gives
a lower bound to the error introduced by truncation in terms of the fidelity between the true state and
the one evolved using an MPS simulation, and one can then control the faithfulness of the simulation
at any given time step of the circuit.

In Figure 12 we show the infidelity 1 − F of the final state from the circuit for n = 30, 50 with a
maximum bond dimension χs = 4096. The plotted result is the average over M = 10 realization of
the quantum circuit with different sets of parameters. Defining reliable results with the infidelity of at
most 1 − F = 10−4 we observe that, for n = 50, we reliably describe circuits up to 11 layers, while for
n = 30 we can reach L = 12 layers.
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Figure 12 – We show the infidelity of the state as a function of the number of layers for n = 30, 50 qubits.
The results are reliable up to L = 11 layers for n = 50 and up to L = 12 for n = 30.
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