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Background: Internal migrants pose a critical threat to eliminating Tuberculosis 
(TB) in many high-burden countries. Understanding the influential pattern of 
the internal migrant population in the incidence of tuberculosis is crucial for 
controlling and preventing the disease. We used epidemiological and spatial data 
to analyze the spatial distribution of tuberculosis and identify potential risk factors 
for spatial heterogeneity.

Methods: We conducted a population-based, retrospective study and identified 
all incident bacterially-positive TB cases between January 1st, 2009, and 
December 31st, 2016, in Shanghai, China. We used Getis-Ord Gi* statistics and 
spatial relative risk methods to explore spatial heterogeneity and identify regions 
with spatial clusters of TB cases, and then used logistic regression method to 
estimate individual-level risk factors for notified migrant TB and spatial clusters. A 
hierarchical Bayesian spatial model was used to identify the attributable location-
specific factors.

Results: Overall, 27,383 bacterially-positive tuberculosis patients were notified 
for analysis, with 42.54% (11,649) of them being migrants. The age-adjusted 
notification rate of TB among migrants was much higher than among residents. 
Migrants (aOR, 1.85; 95%CI, 1.65-2.08) and active screening (aOR, 3.13; 95%CI, 
2.60-3.77) contributed significantly to the formation of TB high-spatial clusters. 
With the hierarchical Bayesian modeling, the presence of industrial parks (RR, 
1.420; 95%CI, 1.023-1.974) and migrants (RR, 1.121; 95%CI, 1.007-1.247) were the 
risk factors for increased TB disease at the county level.

Conclusion: We identified a significant spatial heterogeneity of tuberculosis in 
Shanghai, one of the typical megacities with massive migration. Internal migrants 
play an essential role in the disease burden and the spatial heterogeneity of TB 
in urban settings. Optimized disease control and prevention strategies, including 
targeted interventions based on the current epidemiological heterogeneity, 
warrant further evaluation to fuel the TB eradication process in urban China.
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Introduction

The cumulative reduction in tuberculosis (TB) incidence was still 
relatively low and fell short of the WHO target. China has the third 
highest burden of TB disease in the world, with an estimated 784,400 
new TB cases in 2021 (1). Furthermore, population migration (2), 
multidrug resistance (3, 4), and HIV infection (5) contributed 
substantially to tuberculosis disease both in China and worldwide. 
Shanghai was one of the megacities with a massive internal migrant 
population in China, with an estimated 10.47 million internal 
migrants by the end of 2020 (6). Accordingly, revealing the influential 
pattern of the internal migrant population in the incidence of TB 
could help provide better guidance on controlling and preventing 
the disease.

A combination of hot spot analysis, spatial relative risk, individual 
factors, and spatial elements analysis may provide pivotal information 
for evaluating the spatial distribution heterogeneity of infectious 
diseases and their risk factors. Recently, many studies reported the 
spatial heterogeneity of infectious diseases with spatial hot spot 
analysis (7–9). Such analysis also helped to detect the high-risk regions 
of TB (10, 11). Researchers regarded the high-risk regions as the 
disease control targets gaining a good control effect (12). In exploring 
risk factors, the combined analysis of individual and spatial factors 
may help clarify the causes of the formed TB spatial heterogeneity 
more comprehensively, which is more conducive to exploring and 
identifying high-risk regions for possible targeted interventions 
(13–15).

In the past two decades, China’s leading urban and east coastal 
cities have experienced massive internal migration from the western 
and rural regions, where more than 80% of incident TB cases are 
located. The migrant population had been reported to be associated 
with increased TB cases in those cities and likely transmitted TB 
among local residents (16). Although some studies showed that 
internal migrants were the main driving force of TB (17, 18), few 
studies provided direct evidence of the role of internal migrants on TB 
at the county level of the city. Here, we conducted a population-based 
retrospective study in Shanghai, China, using epidemiological, spatial, 
and hierarchical Bayesian analysis methods to analyze the spatial 
heterogeneity of TB patients in the urban region of China and 
determine the spatial heterogeneity of TB disease. It provided a basis 
for public health decision-makers to develop targeted prevention and 
control strategies for TB.

Materials and methods

Study setting and design

Shanghai (Supplementary Figure S1) is one of the first-tier cities 
in China, with internal migrants accounting for 42% of the population 
(6). According to China’s household registration system, people 
without Shanghai household registration are regarded as internal 
migrants and come from the mainland in China (the distribution of 
population within Shanghai is shown in Supplementary Figure S2A). 
We  conducted a population-based retrospective study on all 
bacterially-positive TB cases in Shanghai between January 1st, 2009, 
and December 31st, 2016. In 2005, Shanghai Municipal Center for 
Disease Control and Prevention started a TB surveillance system. 

We collected and abstracted TB patients’ social demographic data 
(sex, age, occupation), epidemiological information (treatment 
history, treatment outcomes, patient notification source, diagnosis 
delay, and addresses), and laboratory results (sputum smear test) from 
the system (Table 1). We analyzed all bacterially-positive TB patients 
who were notified and who lived in Shanghai municipal city, which 
was defined as TB patients who had a positive sputum smear-or 
culture-positive bacterial culture.

Data source and definitions

We assigned each patient to a single county based on their address 
recorded in the routine TB surveillance system at the time of 
diagnosis. We  geocoded addresses using the Google Map tool (R 
package “ggmap”) and Baidu Map for those address names that cannot 
be  recognized by Google Map (geocoding results were adjusted 
between the two methods). We also manually checked and geocoded 
those addresses hard to perform batch geocoding. The region-level 
spatial data included all the counties according to the national 
standards. This study excluded the cases located in Chongming Island 
and cases lacking county-level address information 
(Supplementary Figure S1A).

We divided the TB patient sources into three categories: active 
screening (including contact tracing investigation and health 
examination), and passive screening (including symptom-based visits 
and referral by community healthcare centers or non-TB-designated 
facilities). The diagnosis delay time was calculated as the period from 
the onset of the first symptom(s) possibly related to the TB to the date 
when the patient first being diagnosed with pulmonary TB.

Spatial distribution analysis

Overview of the spatial distribution of TB
The distribution of the residential address of each TB patient was 

geocoded and displayed by ArcGIS 10.8 (ESRI Inc., Redlands, CA, 
United  States). We  mapped the spatial distribution of internal 
migrants among all populations based on the 2010 national census 
data and depicted the overall/internal migrant TB notified incidence 
rate in Shanghai at the county level in ArcGIS. We also used Inverse 
Distance Weighting (IDW) in the R package “gstat” to smooth the 
maps described above.

Hot spot analysis of notified TB patients
We used Getis-Ord General G and hot spot analysis (Getis-Ord 

Gi* statistics) from the ArcGIS cluster distribution mapping module 
to explore the statistically significant high clustering counties of 
overall TB, internal migrant TB, and resident TB. Briefly, the 
Getis-Ord Gi* was estimated by comparing the local sum for a feature 
and its neighbours with the sum of all features (19). We  utilized 
Queen’s case as the spatial relationship conceptualization parameter, 
which could reduce the effect of irregular area size and shape (20) and 
was effective in simulating the infectious process of infectious diseases 
such as TB. We employed false discovery rate (FDR) correction to 
overcome multiple testing and spatial dependence limitations, which 
was better than assuming that each local test was performed 
independently or applying traditional overly conservative multiple 
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TABLE 1 Demographic and clinical characteristics of internal migrant and resident tb cases in Shanghai, 2009–2016.

Characteristics Migrant patients Resident patients p value

n = 11,649 (%) n = 15,734 (%)

Gender <0.001

  Female 4,129 (35.45) 3,847 (24.45)

  Male 7,520 (64.55) 11,887 (75.55)

Age, median years (IQR) 29 (23–41) 57 (43–71) <0.001a

Age group, years <0.001

  0–14 43 (0.37) 40 (0.25)

  15–24 3,499 (30.04) 1,294 (8.22)

  25–34 3,780 (32.45) 1,570 (9.98)

  35–44 1,988 (17.07) 1,227 (7.80)

  45–54 1,138 (9.77) 2,777 (17.65)

  55–64 709 (6.09) 3,474 (22.08)

  ≥65 492 (4.22) 5,352 (34.02)

Occupation <0.001

  Labour worker 4,194 (36.00) 1,466 (9.32)

  Farmer 370 (3.18) 1,302 (8.28)

  Commercial service 686 (5.89) 499 (3.17)

  Medical staff 44 (0.38) 81 (0.52)

  Student/teacher 445 (3.82) 616 (3.92)

  Retirement 459 (3.94) 5,867 (37.29)

  Unemployed 2,256 (19.37) 1,969 (12.51)

  Other 3,195 (27.43) 3,934 (25.00)

TB history <0.001

  New case 10,546 (90.53) 13,087 (83.18)

  Retreated case 1,103 (9.47) 2,647 (16.82)

Treatment outcome <0.001

  Cured/completion 10,174 (87.34) 13,006 (82.66)

  Other 1,475 (12.66) 2,728 (17.34)

Sputum AFB test <0.001

  Positive 8,482 (72.81) 11,894 (75.59)

  Negative 3,136 (26.92) 3,762 (23.91)

  Other 31 (0.27) 78 (0.50)

Patient source <0.001

  Active screeningb 476 (4.09) 216 (1.37)

  Passive screening 11,157 (95.78) 15,499 (98.51)

  Other 16 (0.14) 19 (0.12)

Diagnosis delay <0.001

  0–2 weeks (w) 3,142 (26.97) 3,786 (24.06)

  2 w–1month (m) 3,322 (28.52) 4,876 (30.99)

  1–3 m 4,232 (36.33) 5,856 (37.22)

  3–6 m 692 (5.94) 912 (5.80)

  6 m–1 year 261 (2.24) 304 (1.93)

IQR, interquartile range; TB, tuberculosis; AFB, acid fast bacilli. 
aResult of Wilcoxon rank-sum test.
bInclude contactor investigation (10 cases in migrants, 6 cases in residents).
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testing methods (21). The estimated Z-score and p value were used to 
verify significant hot spots (high clusters) and cold spots (low clusters). 
The detected statistically significant hot spots mean counties with a 
high notification rate of TB and are surrounded by other counties with 
high values as well. The threshold for determining hot spots is 
Z-score > 1.65 and p < 0.10.

Spatial relative risk estimation

The spatial relative risk function in the R package “sparr” (22) was 
used to compare the kernel density estimation (KDE) of internal 

migrant TB f








 and resident TB g r f g
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relative risk, which was performed by taking the logarithm to treat two 
layers of observation symmetric. The spatial relative risk was given as
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where X x x xn= …{ }1 2, , ,  was the observed points of the internal 
migrant TB cases, Y y y yn= …{ }1 2, , ,  was the observed points of the 
resident TB cases. W  was the study region. We applied the adaptive 
bandwidth into KDE for the reason of the distance between each 
location varied widely. h was the adaptive bandwidth with a symmetric 
estimation based on a pooled-data pilot density performed by 
bootstrap (23). The p value surfaces were formed via Monte-Carlo 
(MC) simulation of kernel-estimated risk functions. ρ



> 0 indicated a 
higher localized density of the internal migrant TB relative to the 
resident TB in the affected spatial areas.

Hierarchical Bayesian modelling on spatial 
risk factor analysis

To better understand the distribution and variation of TB patients 
among the general population, we used a hierarchical Bayesian disease 
mapping technique to model total TB case counts at the county level 
as a function of county-level risk factors. We also used the model to 
identify residual county-level hot spots representing greater than 
expected TB incidence among the general population, possibly 
indicating areas with increased disease transmission. The model was 
given as

 
Y i mi i i i i|E Poisson E and, ~ ; , , ;λ λ( ) = …1

 
ln λ γ φ θi i i i( ) = + + +Oi

Tz

where Yi was the total number of TB cases in county i; Ei was the 
expected number of TB cases; λi  was the relative risk in county i; Oi  
was an offset term representing the log of the total population; and zi  
was the vector of county-level predictors of TB risk with γ  the 
corresponding vector of regression parameters.

We selected county-specific covariates for inclusion in the model 
based on previously reported associations with TB disease (24). These 

covariates included the fraction of the population that has migrated, 
population density, household size, rooms per household, per capita 
GDP and a binary indicator of whether the county is an industrial hub.

We used the Besag-York-Mollié (BYM) model (25) to account for 
spatial correlation in the data. Specifically, the φi random effects were 
modelled using the intrinsic conditional autoregressive model while 
θi were modelled as independent and identically distributed Gaussian 
distributions with zero mean and unknown variance. Again, we opt 
for weakly informative prior distributions for the random effect 
variance parameters.

Statistical analysis

The chi-square test or Fisher exact test was used to test the 
significance of differences between groups. Non-normally distributed 
quantitative variables were expressed as the median and interquartile 
range (IQR) and tested using the Wilcoxon rank-sum test. Univariable 
and multivariable logistic regression analyses were used to calculate the 
adjusted odds ratio (aOR) and 95% confidence interval (95%CI) for 
risk factors associated with the high clusters. The multivariable logistic 
regression model used the backward method for independent variable 
selection. Statistical analyses were performed in R (version 4.2.1).

Results

Demographic and clinical characteristics of 
migrant and resident TB patients

During the study period, of 61,200 TB cases notified in Shanghai, 
China, a total of 27,383 bacterially-positive TB cases were included in 
our final analysis (Supplementary Figure S1A). 42.54% (11,649/27,383) 
of them were internal migrant TB patients. The internal migrant and 
resident TB were mostly males (64.55% and 75.55%, respectively). The 
notification rate among migrants was higher than that among 
residents yearly (Supplementary Figure S3). After age-adjusted 
estimation, the average standardized annual notification rate of 
internal migrants (20.98/100,000) was higher than that among 
residents (12.31/100,000). Figure  1 shows the difference in the 
standardized rate between these two populations by different 
age groups.

Table 1 shows the demographic and clinical characteristics of 
resident and internal migrant TB patients. Internal migrant patients 
were younger (median age: 29 years vs. 57 years; Table 1; Figure 1; 
Supplementary Figure S4) and were more likely to be labour workers 
(36.00% vs. 9.32%) than the resident patients. Internal migrant TB 
patients were more likely to be notified from active screening than 
residents (4.09% vs. 1.37%). Both internal migrant and resident 
patients had a high proportion of diagnosis delay (73.03% and 75.94% 
with more than 2 weeks delay, respectively), indicating the need for 
active case finding among both populations.

Spatial heterogeneity of TB in Shanghai

To investigate the role of internal migrants in the burden of TB in 
the megacity, we first examined the spatial distributions of the average 
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annual notification rate of TB and the proportion of internal migrants 
by using the IDW method (Figure 2). The average annual notification 
rate of TB at the county levels ranged from 2.21 to 29.83 cases per 
100,000 population among 196 counties in Shanghai. The areas with 
a high notification rate of TB were mainly in the Songjiang and 
Minhang Districts, which also had a high proportion of internal 
migrants among the total inhabitants (Figures  2A,B; 
Supplementary Figures S2A,B). Overall, the counties with high TB 
notification rates concordant with those with a high proportion of 
internal migrants. The central county (Jiading town) of Jiading District 
had a low proportion of migrants. It had a high TB notification rate, 
which was more significant for internal migrant TB (Figure 2C). The 
spatial distribution heterogeneity between internal migrant TB and 
resident TB was substantial (Figures 2C,D).

To further explore the spatial heterogeneity of TB in this megacity, 
we conducted a hot spot analysis using the Getis-Ord General G and 
Getis-Ord Gi* statistics. The result of Getis-Ord General G showed 
that the average annual notification rates of overall TB, internal 
migrant TB, and resident TB at the county levels all had high-value 
clustering (Z-score > 1.96 and p < 0.05) (Supplementary Table S1). Our 
analysis detected 13 high-clustering counties of overall TB, most of 
which were in Songjiang and Minhang Districts (Figure 3A). Among 
migrant TB cases, 15 high-clustering counties were identified, and all 
were in Songjiang, Minhang, and Jiading Districts (Figure 3B). In 
Songjiang and Minhang Districts, the high-clustering counties of 
overall TB were highly consistent with the high-clustering counties of 
internal migrant TB (the overlapping rate: 76.92%, 
Supplementary Figure S5). In contrast, the high clusters of resident TB 
were mainly in Jinshan District (Figure 3C). We observed significant 
heterogeneity in the distribution of high-clustering counties between 
internal migrants and residents.

Despite the utilized area data, we conducted a spatial relative risk 
analysis of the geographic point data (Figure 4). We identified the 

relatively higher risk counties (Chedun, Zhongshan, and Xinqiao 
counties located on the border between Songjiang and Minhang 
Districts) of internal migrant TB than resident TB. Overall, 
we detected significant spatial heterogeneity of TB in Shanghai, and 
internal migrants seemed to play a role in it. It was important to 
explore the formation of spatial heterogeneity and the role of internal 
migrants in TB in Shanghai.

Risk factors of spatial heterogeneity

Individual factors associated with the risk of TB
To explore possible risk factors of the spatial heterogeneity 

identified in Figure 3, we used univariable and multivariable logistic 
regression to evaluate the potential risk factors of spatial clusters. The 
multivariable logistic analysis result (Table 2) showed risk factors that 
were associated with having a high-clustering county included 
migrants (aOR, 1.85; 95%CI, 1.65–2.08), sputum AFB test negative 
(aOR, 1.55; 95%CI, 1.40–1.70), and active screening (aOR, 3.13; 
95%CI, 2.60–3.77). Surprisingly, labour workers had 6.06 times the 
risk of being in a high-clustering county than commercial service staff.

We also performed logistic regression on the high-clustering 
counties in Jiading District identified in Figure 3B. We found that 
patients being students or teachers were associated with the spatial 
clusters in this district (Supplementary Table S2).

Spatial factors associated with the risk of TB
Geographic covariates in different spatial regions could impact the 

incidence and prevalence of TB disease. Based on the hierarchical 
Bayesian analysis results with the BYM model (Table  3; 
Supplementary Table S3), we found that industrial parks (RR, 1.420; 
95%CI, 1.023–1.974) and migrants (RR, 1.121; 95%CI, 1.007–1.247) 
were the risk factors associated with the risk of incident TB in 

FIGURE 1

Number of TB cases, notification rate in different age groups of internal migrants and residents. The bar graph represents the number of cases, and the 
line graph represents the notification rate. Orange and blue correspond to migrant TB and resident TB, respectively.
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Shanghai. In contrast, the increasing per capita GDP (RR, 0.978; 
95%CI, 0.960–0.995) in each county was associated with reduced TB 
incidence. We gained posterior risk, and residual relative risk plotted 
in Supplementary Figure S6 and found that the counties with posterior 
risk over 1 were in the counties with residual relative risk greater than 
1. It suggested that these high-risk counties that might not 
be  explained adequately by spatial factors might be  caused 
by transmission.

Origins of internal migrant TB patients in 
Shanghai

To understand the mechanisms driving TB risk among internal 
migrants, we explored the original place of household registration of 
internal migrant TB patients in Shanghai in Figure 5. Most internal 
migrant patients were originally from Anhui (21.71%), Sichuan 
(11.63%), and Jiangsu (10.02%) provinces (Figure 5A). The notification 
rate of TB between internal migrants who moved to Shanghai from 

each province and the original province had a positive correlation 
(R = 0.59, p < 0.001, Figures 5B,C). It suggested the original provinces’ 
TB background characteristics (e.g., TB incidence and burden) had a 
possible impact on the incident TB among the accordant internal 
migrants in Shanghai.

Discussion

Our findings revealed the impact of population structure and 
migration on TB disease distribution during the urbanization in the 
past decades in eastern China. Significant spatial heterogeneity existed 
in the distribution of TB in Shanghai. The high clusters in Shanghai 
TB were mainly concordant with the high clusters of internal migrant 
TB. Population mobility was the main driving factor of the TB burden 
in the megacity in China, and the notification rate of TB among 
migrants was correlated with the original provincial TB incidence.

This study identified significant spatial heterogeneity of TB in 
Shanghai, especially among the internal migrant population. High 
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FIGURE 2

Distribution map of migrant population proportion and notification rate with inverse distance weighted (IDW) smoothing. The proportion of internal 
migrants among all population (A). The geographic distribution of the notification rate of overall TB (B), internal migrant TB (C) and resident TB (D) by 
county level in Shanghai, 2009–2016.
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FIGURE 3

Spatial clustering patterns of TB by county level in Shanghai, 2009–2016. (A,B,C) Illustrate the overall, migrant, and resident TB, respectively.

FIGURE 4

Adaptive bandwidth spatial log-relative risk surfaces of internal migrant TB. The gradient color scale represented the degree of the spatial log-relative 
risk. The outer contour indicated the p-value was 0.05, and the inner contour denoted the risk surface with a statistically significant (p = 0.01), in which 
the risk of internal migrant TB was relatively higher than that of the resident TB.

https://doi.org/10.3389/fpubh.2023.1155146
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Lin et al. 10.3389/fpubh.2023.1155146

Frontiers in Public Health 08 frontiersin.org

TABLE 2 Multivariable logistic regression on the risk factors of TB spatial high clustering in Shanghai.

Characteristics Low-clusters Non-clusters High-clusters p valuea Multivariable 
regressiona

n = 83 (%) n = 25,071 (%) n = 2,229 (%) aOR 
(95%CI)

p value

Demographic attribute <0.001

  Resident 51 (61.45) 14,909 (59.47) 774 (34.72) Ref

  Migrant 32 (38.55) 10,162 (40.53) 1,455 (65.28) 1.85 (1.65, 2.08) <0.001

Gender 0.103

  Female 27 (32.53) 7,266 (28.98) 683 (30.64) ..

  Male 56 (67.47) 17,805 (71.02) 1,546 (69.36) ..

Age group, years <0.001

  0–14 0 (0.00) 79 (0.32) 4 (0.18) 0.43 (0.15, 1.22) 0.113

  15–24 11 (13.25) 4,166 (16.62) 616 (27.64) 1.06 (0.86, 1.31) 0.594

  25–44 23 (27.71) 7,709 (30.75) 833 (37.37) 0.84 (0.69, 1.03) 0.090

  45–64 29 (34.94) 7,612 (30.36) 457 (20.50) 0.73 (0.61, 0.87) <0.001

  ≥65 20 (24.10) 5,505 (21.96) 319 (14.31) Ref

Occupation <0.001

  Commercial service 3 (3.61) 1,141 (10.59) 41 (1.84) Ref

  Labour worker 11 (13.25) 4,610 (18.39) 1,039 (46.61) 6.06 (4.39, 8.35) <0.001

  Farmer 0 (0.00) 1,435 (5.72) 237 (10.63) 6.61 (4.62, 9.46) <0.001

  Medical staff 0 (0.00) 120 (0.48) 5 (0.22) 1.43 (0.55, 3.71) 0.458

  Student/teacher 3 (3.61) 937 (3.74) 121 (5.43) 3.62 (2.49, 5.27) <0.001

  Retirement 30 (36.14) 6,084 (24.27) 212 (9.51) 1.48 (1.02, 2.15) 0.038

  Housework/unemployed 9 (10.84) 3,920 (15.64) 296 (13.28) 2.30 (1.65, 3.22) <0.001

  Other 27 (32.53) 6,824 (27.22) 278 (12.47) 1.30 (0.93, 1.82) 0.124

TB history <0.001

  New case 73 (87.95) 21,562 (86.00) 1,998 (89.64) ..

  Retreated case 10 (12.05) 3,509 (14.00) 231 (10.36) ..

Sputum AFB test <0.001

  Positive 66 (79.52) 18,831 (75.11) 1,479 (66.35) Ref

  Negative 17 (20.48) 6,134 (24.47) 747 (33.51) 1.55 (1.40, 1.70) <0.001

  Other 0 (0.00) 106 (0.42) 3 (0.13) 0.43 (0.13, 1.37) 0.152

Patient source <0.001b

  Passive screening 82 (98.80) 24,534 (97.86) 2,040 (91.52) Ref

  Active screeningc 1 (1.20) 507 (2.02) 184 (8.25) 3.13 (2.60, 3.77) <0.001

  Other 0 (0.00) 30 (0.12) 5 (0.22) 1.49 (0.56, 3.98) 0.422

Diagnosis delay 0.127

  0–2 w 18 (21.69) 6,360 (25.37) 550 (24.68) ..

  2 w–1 m 30 (36.15) 7,465 (29.78) 703 (31.54) ..

  1–3 m 24 (28.92) 9,282 (37.02) 782 (35.08) ..

  3–6 m 6 (7.23) 1,450 (5.78) 148 (6.64) ..

  6 m–1 y 5 (6.02) 514 (2.05) 46 (2.06) ..

aOR, adjusted odds ratio; CI, confidence interval; TB, tuberculosis; AFB, acid fast bacilli. 
aNon-clusters vs high-clusters.
bResult of Fisher exact test.
cInclude contactor investigation (0 cases in low-clusters, 12 cases in non-clusters, 4 cases in high-clusters).
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clusters of internal migrant TB were mainly in certain counties in 
Songjiang, Minhang, and Jiading Districts, all designated industrial 
districts in Shanghai (26). In general, the personal life, work, and 
communication patterns of the migrant population were mainly in a 
clustered environment, which could promote the role of the migrant 
population in the development of TB disease and lead to a regional 

high TB burden (27). These social and residential patterns and the 
related spatial aggregation could be the reason for forming spatial 
clusters in the current study. The resident TB cases, especially the 
older adult, were spatially clustered in the downtown, which could 
also lead to clustering transmission (16). In addition, the previous 
research found that local high clusters related to local transmission 

TABLE 3 Hierarchical Bayesian modelling on the spatial risk factors of TB.

Parameter Relative risk 95%CI

Presence of industrial parks 1.420 (1.023, 1.974)

Percentage of migrants (per 10% increase) 1.121 (1.007, 1.247)

Population density (per 1,000 increase) 1.011 (0.999, 1.024)

Per capita GDP (per 1,000 increase) 0.978 (0.960, 0.995)

Household size (per 1 increase) 2.108 (0.851, 5.419)

Number of rooms per household (per 1 increase) 0.834 (0.539, 1.284)

CI, confidence interval. The bold value indicates that the 95%CI did not include 1.

FIGURE 5

The origin of household registration among migrant TB cases in Shanghai. The background color of the map (A) indicated the notification rate of TB 
according to 2010 TB notification rate in each province in mainland China. Lines and dots presented the origin of migrant TB cases and the number of 
TB cases of the migrant population from the corresponding provinces moving to Shanghai, respectively. (B) The notification rate of TB between 
migrants who moved to Shanghai from each province and the original province. (C) Scatter plot of correlation analysis of TB notification rate reported 
in the original province and Shanghai migrant TB average annual notification rate. The size of the red circle in the figure indicated notified TB cases 
among extra-provincial internal migrants in Shanghai.
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(16). The clustering pattern identified for Songjiang District in our 
study using kernel density estimation (Supplementary Figures S7C,D) 
was similar to the previous reported. Thus, the high clusters in other 
districts in Shanghai identified in our study might be caused by local 
transmission, but this warrant further molecular analysis.

In previous study (16), migrants infected with TB had two 
patterns: pre-migration infection and transmission or recent 
infection after migration. Internal migrant TB cases in Shanghai 
might have been infected with Mycobacterium tuberculosis before 
coming to Shanghai and then developed symptoms in Shanghai. 
Like the epidemiology of TB among international immigrants, the 
internal migrant TB in our study also showed a significant 
correlation with the background notified incidence of TB in their 
places of origin (28, 29). Therefore, the TB background 
characteristics in the original residential area of migrants might 
be  one of the drivers of TB burden in their destinated cities. 
Meanwhile, the routine occupational health examinations of 
migrant workers in high-endemic areas can be improved to actively 
find the TB cases. Aside from the reactivation of latent TB infection 
(LTBI) acquired before migration, the high spatial clusters among 
internal migrants could have also resulted from the transmission or 
recent infection after migration. A previous model study in one of 
the Shanghai districts estimated that approximately 43% of migrant 
cases would result from recent infection (18). Together these 
findings suggest that efficient interventions are needed to interrupt 
the transmission.

Meanwhile, the mobility of internal migrants between their work 
region and the center of the district (i.e., usually the medical, 
entertainment, and shopping centers) could lead to spill-out 
transmission across counties (16). This could also explain the finding 
we observed in Jiading District-another industrial district similar to 
Songjiang in Shanghai-in which high clusters in the district center 
were found in counties with many surrounding industrial parks. Such 
transmission events could be  caused by casual contact with TB 
infectors (30).

We also noticed that active TB screening was significantly 
associated with forming high clusters. Most active screenings of TB 
were from internal migrants due to the forced occupational health 
examination, particularly in the large industrial parks (e.g., Songjiang 
and Minhang), which increased the possibility of TB case notification 
among migrants. The notification rate of TB was lower than the 
estimated level (31, 32), which was associated with failing to diagnose 
TB patients and report them to the national registry (33). Despite the 
contribution of TB cases from active case examination among internal 
migrant, it only accounts for 4.64% and 6.61% of the overall TB cases 
notified in Songjiang and Minhang districts, respectively 
(Supplementary Figure S8). The social and medical benefits of 
migrants were significantly diminished, and their mobility also made 
it more challenging to complete DOTS (Directly Observed Treatment, 
Short-Course). Thus, we  should strengthen the ability to actively 
screen cases among migrants in high-clustering regions, which 
received less attention (34), and identify potential cases as early as 
possible to interrupt the transmission. Meanwhile, the active screening 
of cases among the residents cannot be ignored.

This study has several limitations. Firstly, we  used the home 
address reported during the confirmation of TB patients, which may 
not necessarily be  where the cases were infected or transmitted. 

Secondly, the retrospective study design may limit the power to 
examine the associated risk factors; a further investigation, such as a 
genomic epidemiology study, was warranted to explore the 
transmission of TB in the role of formed high-risk counties. Finally, 
due to the health insurance and TB stigma, we may miss some TB 
cases among migrants who could leave Shanghai after the diagnosis of 
TB; however, the healthcare resources in Shanghai are relatively rich 
compared to the other provinces where those migrants came from, 
this influence could be limited.

Conclusion

In summary, our study elucidated that the migrant population 
played an essential role in both the spatial heterogeneity of TB and 
its burden in one of the largest megacities in China. Targeted 
interventions including active case finding in areas with high 
clusters of TB, primarily focusing on migrant populations, may 
be more effective in achieving TB control goals. Meanwhile, further 
model prediction and molecular epidemiology analysis are needed 
to identify spatial cluster risk factors to interrupt 
transmission accurately.
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